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Abstract: We study neutral fermions pair creation with anomalous magnetic moment
from the vacuum by time-independent magnetic-field inhomogeneity as an external back-
ground. We show that the problem is technically reduced to the problem of charged-particle
creation by an electric step, for which the nonperturbative formulation of strong-field QED
is used. We consider a magnetic step given by an analytic function and whose inhomogene-
ity may vary from a “gradual” to a “sharp” field configuration. We obtain corresponding
exact solutions of the Dirac-Pauli equation with this field and calculate pertinent quantities
characterizing vacuum instability, such as the differential mean number and flux density
of pairs created from the vacuum, vacuum fluxes of energy and magnetic moment. We
show that the vacuum flux in one direction is formed from fluxes of particles and antipar-
ticles of equal intensity and with the same magnetic moments parallel to the external field.
Backreaction to the vacuum fluxes leads to a smoothing of the magnetic-field inhomogene-
ity. We also estimate critical magnetic field intensities, near which the phenomenon could
be observed.
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1 Introduction

The violation of vacuum stability stimulated by external electromagnetic fields is com-
monly associated with the possibility of such backgrounds producing work on virtual pairs
of particles and antiparticles. The most well-known examples are electric-like fields, as
they produce work on charged particles and are able to tear apart electron/positron pairs
from the vacuum if the field amplitudes approach the so-called Schwinger critical value
Ec = m2c3/e} ≈ 1.3 × 1016 V/cm [1]. The phenomenon has been a subject of intense
investigation since the seminal works of Klein [2], Sauter [3, 4], Heisenberg and Euler [5],
and Schwinger [1]. An extensive discussion about the origin of the effect, theoretical foun-
dations, and experimental aspects can be found in some reviews and monographs; see
e.g. [6–15] and references therein.

Following the above interpretation, one may ask oneself about the possibility that in-
homogeneous macroscopic magnetic fields which, contrary to homogeneous magnetic fields,
produce a work on particles with a magnetic moment, may create pairs from the vacuum.
The answer to this question is affirmative, provided the particles are neutral and have an
anomalous magnetic moment. Bearing in mind, first of all, very strong magnetic fields ob-
served in astrophysics, we can assume that this type of fields is practically time-independent
and steplike, that is, their gradient is always positive. It must be said that the works avail-
able in the literature on calculating such an effect, using sometimes inconsistent heuristic
approaches, often contradict each other [16–19]. In this regard, in work [20], it was shown
that the problem could be formally reduced to the calculation of charged particle creation
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from the vacuum by stationary inhomogeneous electric fields of constant direction (the
so-called electric step potential gives this field). In particular, it was shown that we are
technically dealing with the calculation of an effect similar to the well-known Klein effect,
see refs. [2–4]. We recall that study of the effect began early in the framework of relativistic
quantum mechanics, see ref. [21] for a review; its consistent nonperturbative description
within QED was given by Gavrilov and Gitman, in refs. [22, 23].

At present, there exist two types of particles enjoying the properties mentioned above:
the neutron and the neutrino. According to experimental data, neutrons have a magnetic
moment µN ≈ −1.04187563(25) × 10−3µB [24], where µB is the Bohr magneton. As for
neutrinos, there is not a general consensus because of the different types of neutrinos, mech-
anism under which neutrinos acquires magnetic moment, specific models, etc. Presently,
experimental constraints range from µντ < 3.9 × 10−7µB (for the tau neutrino) [25] until
µνe < 2.9 × 10−11µB (for the electron neutrino) [26]. Moreover, stringent constraints ob-
tained from astrophysical observations [27–32] indicate that µν < (2.6− 4.5) × 10−12µB
while lower upper bounds, predicted by effective theories above the electroweak scale, sug-
gest that µν < 10−14µB [33]. It is important to point out that for some theories beyond
the Standard Model (SM) [34], it was reported that the magnetic moment for the neutri-
nos lie within the range

(
10−12 − 10−14)µB. For a more extensive discussion concerning

experimental aspects and theoretical predictions for neutrinos’ electromagnetic properties,
see e.g. the reviews [35–39] and references therein.

Vacuum instability effects due to inhomogeneous magnetic fields may be relevant to
studies on dark matter. One of the reasons concerns the existence of sterile neutrinos,
which may constitute dark matter and also couple to external magnetic fields through
their electromagnetic properties. Presently, it is known that light sterile neutrinos appear
in the low-energy effective theory in most extensions of the SM and, in principle, can have
any mass, particularly in the range of 1 eV. Sterile neutrinos with masses of several keV
can account for cosmological dark matter, see e.g. refs. [40, 41] for a recent review, and
references therein. It is possible that due to some new physics, the neutrino magnetic
moment is big. Various observational constraints on the magnetic moment µ of a dark
matter particle for masses M in the range 1 keV to 100 MeV have been considered in
refs. [42, 43]. The strongest limits on µ emerge at the lightest mass scales. For example, if
M = me/10, then |µ| < 3.4× 10−5µB due to precision electroweak measurements.

Apart from neutral particles, it is important to mention that charged particles can be
created by inhomogeneous magnetic fields in de Sitter spacetimes [44–46]. In refs. [44, 45]
for instance, the authors calculated transition amplitudes and probabilities of charged pair
production by the magnetic field of a magnetic dipole as an external background in de Sitter
spacetime perturbatively and shown that the corresponding probabilities are nontrivial. In
ref. [46], the consideration was further extended to the case where an external Coulomb
field creates charged particles. Theoretically, it is also known that pairs of particles and
antiparticles having a magnetic charge can be created by a constant and homogeneous
magnetic field [47, 48]. This matter has gained considerable attention lately due to the
possibility of monopole-antimonopole and axion-like particle pair production in the early
Universe [49–52] and during heavy-ion collisions [53–55], especially with the design of recent
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experiments aimed at detecting magnetic monopoles in the Large Hadron Collider (LHC);
e.g. [56–58] (see also ref. [59] for a review). In particular, the mechanism of monopole-
antimonopole pair production provides an explanation for the dissipation of primordial
magnetic fields consistent with gamma ray observations of intergalactic magnetic fields [60–
62]. It has been discussed that even heavy monopoles (with masses ∼ 1016 GeV) could be
pair produced in the early Universe [49]. Besides the aforementioned types of particles and
external backgrounds, it should be noted that neutrino/antineutrino (νν̄) pairs may also
be created from the vacuum by dense matters as external backgrounds. For example, it
was reported some years ago that νν̄ pairs can be created in Neutron stars [63, 64] due
to the interaction with the background matter. In these works, the authors considered
time-independent matter densities and calculated νν̄ pair production rate in analogy with
Schwinger’s result for electron-positron pair production by a constant electric field [1]. It
was also reported that νν̄ pairs can also be created due to a coherent interaction with a
dense medium [65]. Some years later, νν̄ pair production rates for time-dependent matter
densities were calculated nonperturbatively through semiclassical methods in ref. [66] and
perturbatively in ref. [67], using the S-matrix formalism. More recently, some of us [68]
considered a consistent nonperturbative formulation for calculating νν̄ pair creation from
the vacuum by a time-dependent background matter. It was also demonstrated in ref. [69]
that νν̄ pairs could be created from the vacuum by an accelerated matter due to the
neutrino electroweak interaction with background fermions.

Understanding the mechanism responsible for neutral fermion pair production by in-
tense magnetic fields may be particularly important to comprehend the physics of highly
magnetized astrophysical objects and events occurring in the Universe. For example, it
was reported a few years ago [70–72], that magnetic fields of the order of 1016 − 1018 G
could be generated during a supernova explosion or in the vicinity of magnetars. More-
over, ultra-intense magnetic fields (of order up to 1020 G) can be produced at the core of
compact magnetars [73, 74]. Based on experimental values for the neutron mass and
its magnetic moment [24], it is possible that such objects can produce pairs of neu-
trons/antineutrons, and it may affect their inner dynamics. Another important aspect
of the present study concerns the possibility of inspecting conditions for neutrino pair
production based on predictions for the neutrinos magnetic moment1 supplied by the SM
µν ≈ 3.2 × 10−19µB × (mν/1 eV) [35, 38]. Considering an acceptable range of values to
neutrinos masses, say 1 eV−10−2 eV, we discuss below that neutrinos with such small mag-
netic moments can be created only by inhomogeneous magnetic fields several orders above
the astronomical scale. The situation is very different for neutrinos with larger magnetic
moments, which could be already created from the vacuum by magnetic fields of order
1016 G. Thus, neutrino pair production by intense magnetic-field inhomogeneity may in-
directly indicate that the SM must be extended in order to account for larger magnetic
moments, possibly near the experimental reach.

The mechanism discussed in this work corresponds to the most fundamental process
driven by the interaction between neutral fermions with electromagnetic backgrounds,

1Loop-induced magnetic moment.
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namely the creation of neutral fermion pairs with anomalous magnetic moment from the
vacuum by an inhomogeneous external magnetic field. The process in consideration is
particularly different from neutrino pair production by an electron in a constant magnetic
field, in which neutrino/antineutrino pairs are created as a decay process of the initial
electron stimulated by the magnetic field; see e.g. ref. [38] and references therein. It was
demonstrated in [20] that a quantization in terms of neutral particles and antiparticles is
possible in terms of the states with well-defined spin polarization. In this case, the prob-
lem can be technically reduced to the problem of charged-particle creation by electric fields
given by step potentials (in short, electric steps) for which a nonperturbative formulation
in QED [22, 23] can be used. This formulation is based on the possibility of finding exact
solutions to the Dirac-Pauli equation with steplike magnetic fields. As an example, neutral
fermion creation from the vacuum by a linearly growing magnetic field was considered in
ref. [20]. In the present article, we develop the technique proposed in ref. [20] taking into
account recent theoretical constructions [22, 23]. Based on these developments, we study
neutral fermion pair production from the vacuum by the magnetic step given by an ana-
lytic function that enables studying the role of the field inhomogeneity on pair production.
In section 2 we demonstrate how to reduce the problem under consideration to the prob-
lem of charged-particle creation by an electric step. Then we describe an external field
for which we calculate nonperturbatively neutral fermion pair production. In sections 3
and 4, we present differential and total quantities characterizing the vacuum instability
and scrutinize their behavior when the field varies “gradually” or “sharply” along the in-
homogeneity direction. Numerical estimates to the critical field are given. In section 5,
we find vacuum fluxes of energy and the magnetic moment produced by the magnetic-field
inhomogeneity. Section 6 is devoted to the concluding remarks. In appendix A, we con-
struct corresponding in- and out-solutions of the Dirac-Pauli equation with the external
field under consideration. With the aid of these solutions, we find differential and total
quantities characterizing vacuum instability.In this work we consider the four-dimensional
Minkowski spacetime, parameterized by coordinates X = (Xµ , µ = 0, j) = (t, r), t = X0,
r = Xj = (x, y, z), j = 1, 2, 3, and metric tensor ηµν = diag (+1,−1,−1,−1). We also
employ natural units, in which } = 1 = c.

2 Solutions of the Dirac-Pauli equation with well-defined spin polariza-
tion

In this section we present general considerations on the Dirac-Pauli equation with inho-
mogeneous magnetic fields. In particular, we discuss the spinor structure of solutions and
their asymptotic properties at specific remote distances. Such properties are important to
correctly classify solutions and to define quantities characterizing vacuum instability, as
discussed in section 3.

The motion of a relativistic spin 1/2 neutral particle with anomalous magnetic moment
µ, mass m, in external electromagnetic fields is described by the relativistic wave equation(

iγµ∂µ −m−
1
2µσ

µνFµν

)
ψ (X) = 0 , (2.1)
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which is conventionally called the Dirac-Pauli (DP) equation2 [75]. Here ψ (X) is a four
spinor, γµ =

(
γ0,γ

)
are Dirac matrices, σµν = (i/2) [γµ, γν ]−, Fµν = ∂µAν − ∂νAµ is

the electromagnetic field strength tensor, and µ should be understood as the algebraic
value of the magnetic moment (e.g., µ = − |µN | for a neutron). In what follows we con-
sider external fields of a specific type, corresponding to a time-independent magnetic field
oriented along the positive direction of the z-axis, inhomogeneous along the y-direction,
B (r) = (0, 0, Bz (y)), and homogeneous at remote distances, Bz (±∞) = const. Moreover,
it is assumed that its gradient is always positive ∂yB (y) ≥ 0, ∀ y ∈ (−∞,+∞), meaning
that Bz (+∞) > Bz (−∞) and that the field is genuinely a step. We conveniently refer to
fields of this type as steplike magnetic fields or simply as magnetic steps.

The general method for solving the DP equation (2.1) with steplike magnetic fields was
presented before by two of us in ref. [20]. We recall some properties of the DP equation
with such fields and present new details that simplify the spinor structure of the solutions.
In the Schrödinger form, the DP equation (2.1) reads

i∂tψ (X) = Ĥψ (X) , Ĥ = γ0
(
γ3p̂z + ΣzΠ̂z

)
. (2.2)

Here Σz = iγ1γ2 and
Π̂z = Σz (γp̂⊥ +m)− IµBz (y) , (2.3)

is an integral of motion spin-operator,
[
Π̂z, Ĥ

]
−

= 0. The subscript “⊥” labels quantities
perpendicular to the field, e.g. p̂⊥ = (p̂x, p̂y), and I denotes the 4×4 identity matrix. Since
the operators p̂0, p̂x, and p̂z are compatible with the Hamiltonian (and also with Π̂z),
the DP spinor admits the general form ψn (X) = exp (−ip0t+ ipxx+ ipzz)ψn (y), where
ψn (y) depends exclusively on y and obeys the eigenvalue equation:

Π̂zψn (X) = e−ip0t+ipxx+ipzzΠzψn (y) , Πzψn (y) = sωψn (y) , s = ±1 ,

Πz = π̂z − IµBz (y) , π̂z = Σz

(
γ1px + γ2p̂y +m

)
, (2.4)

By acting the squared Hamiltonian operator (2.2) onto ψn (X), we observe that the total
particle’s energy p0, longitudinal momentum pz, and ω are interrelated, p2

0 = ω2 + p2
z →

p0 = ω
√

1 + p2
z/ω

2, sgn (p0) = sgn (ω). This relation indicates that ω is the transverse3

part of the total energy. Thanks to this identity, we may introduce an additional operator

R̂ = ĤΠ̂−1
z

[
I +

(
p̂zΠ̂−1

z

)2
]−1/2

, (2.5)

which is also an integral of motion and commutes with all previous operators. In particular,
this operator implies that ψn (y) also obeys the eigenvalue equation

R̂ψn (X) = e−ip0t+ipxx+ipzzRψn (y) , Rψn (y) = sψn (y) ,

R = Υγ0
(

Σz + spz
ω
γ3
)
, Υ = 1√

1 + p2
z/ω

2 . (2.6)

2See the textbook [76] for a more detailed consideration of the Dirac-Pauli equation and its solutions to
a wider class of electromagnetic backgrounds.

3That is, the total energy on the xy plane.
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As a result, we select p̂x, p̂z, Π̂z, R̂ as the complete set of commuting operators, whose
eigenvalues are n = (px, pz, ω, s).

The set of equations (2.4) and (2.6) are simultaneously satisfied choosing ψn (y) in the
form

ψn (y) = (I + sR) [π̂z + I (µBz (y) + sω)]ϕn,χ (y) υ(χ)
κ , (2.7)

where ϕn,χ (y) are functions while υ(χ)
κ belongs to a set of four constant spinors, satisfying

the eigenvalue equations

iγ1υ(χ)
κ = χυ(χ)

κ , γ0γ2υ(χ)
κ = κυ(χ)

κ , χ = ±1 , κ = ±1 , (2.8)

and the orthonormality conditions υ(χ′)†
κ′ υ

(χ)
κ = δχ′χδκ′κ. Substituting the spinor (2.7)

into (2.4) one finds that the scalar functions ϕn,χ (y) are solutions of the second-order
ordinary differential equation{

− d2

dy2 − [sω + µBz (y)]2 + π2
x + iµχB′z (y)

}
ϕn,χ (y) = 0 , π2

x = m2 + p2
x , (2.9)

where the prime denotes differentiation with respect to y, B′z (y) = ∂yBz (y). Although the
separation of degrees-of-freedom given by eq. (2.7) simplifies the structure of the solutions,
it is important to point out that none of the operators listed in (2.8) are integrals of motion.
Thus, it is possible to select any spinor of the basis υ(χ)

κ to study pair creation. To keep
expressions as general as possible, we leave this choice arbitrary in all calculations below.

Equations (2.9) are quite similar to equations you have to deal with when analyzing
charged particle production by an inhomogeneous electric field given by zero component of
electromagnetic potential A0 (y), when all spatial components are zero, Aj = 0. In this case,
the Dirac equation has the form (it is assumed that the charge of the electron is −e, e > 0)

i∂0ψ
(D)(X) = Ĥ(D)ψ(D)(X) , Ĥ(D) = γ0

(
−iγj∂j +m

)
+U (D)(y) , U (D)(y) = −eA0 (y) ,

(2.10)
and a complete set of solutions can be chosen as

ψ(D)(X) = exp (−ip0t+ ipxx+ ipzz)ψ(D)
n (y) , p⊥ = (px, pz) ,

ψ(D)
n (y) =

{
γ0
[
p0 − U (D)(y)

]
− γ2p̂y − γ⊥p⊥ +m

}
ϕ(D)
n,χ (y)υ(D)

χ,σ ,

γ0γ2υ(D)
χ,σ = χυ(D)

χ,σ , χ = ±1, σ = ±1 , (2.11)

where υ(D)
χ,σ are constant orthonormalized spinors and the set of quantum numbers n =

(px, pz, p0, σ) parameterize the solutions.4 Scalar functions ϕ(D)
n,χ (y) satisfy the following

second-order differential equation:{
p̂2
y −

[
p0 − U (D)(y)

]2
+ p2

⊥ +m2 − iχU (D)′ (y)
}
ϕ(D)
n,χ (y) = 0 . (2.12)

4To avoid confusion with the DP case, note that we labelled Dirac spinors, operators, and potentials
with a superscript “(D)”.
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Comparing eqs. (2.9) and (2.12), we see that the production of neutral fermions with
anomalous magnetic moment by magnetic-field inhomogeneities can be seen as the produc-
tion of charged particles from the vacuum by an effective electric field through the formal
identification eA0 (y)↔ µBz (y). The conserved energy sω and the parameter π2

x in eq. (2.9)
correspond to p0 and p2

⊥ + m2 in eq. (2.12), respectively. Thus, the problem of neutral
fermion pair production with well-defined values of the complete set of commuting operators
p̂x, p̂z, Π̂z, R̂ [whose eigenvalues are (px, pz, ω, s)] can be technically reduced to the problem
of charged-particle production with well-defined energy, transversal momentum, and spin
polarization [whose eigenvalues are (px, pz, p0, σ)]. It should be remarked, though, that the
production of charged particles is possible only in cases of critical potential steps, whose
magnitudes obey the inequality

∣∣∣U (D)(+∞)− U (D)(−∞)
∣∣∣ > 2m. The spectrum of charged

pairs created from the vacuum lies in the range
∣∣∣U (D)(+∞)− U (D)(−∞)

∣∣∣ > 2
√

p2
⊥ +m2

(this range often is referred to as the Klein zone) and the problem has to be considered in
framework of the strong-field QED; see refs. [22, 23]. As it shall be discussed in section 3,
a similar condition also applies to neutral fermions. Exact solutions of eq. (2.12) for the
number of critical potential steps can be found, e.g. in refs. [77–81]. In our subsequent
calculations, we rely on a modification of the general theory described in refs. [22, 23] by
taking into account the specifics of the problem under consideration.

At this point, it is worth discussing some general features of neutral fermions in steplike
magnetic fields and solutions of eq. (2.9). Because of the spectrum of the spin operator R̂,
there are two species of neutral fermions differing by the value of s— one species for which
s = +1 and another for which s = −1. Consequently, the potential energy of a neutral
fermion in this field is given by Us (y) = sU (y), where U (y) = −µBz (y). To facilitate
subsequent discussions, it is convenient to select a fixed sign for particle magnetic moment.
Thus, from now on, we choose a fermion with a negative magnetic moment as the main
particle, µ = − |µ|. Since the external field increases monotonically with y (its gradient is
positive, as stated before), the maximum potential energy that may be experienced by the
fermion is determined by the magnitude of the step

U ≡ UR − UL > 0 , (2.13)

which is essentially the difference between the asymptotic values UR = U (+∞), UL =
U (−∞) and is positive, by definition.5 Thus, for fermions with s = +1, the magnitude
of the potential step is U = U+1 (R) − U+1 (L) while for fermions with s = −1 it is
U = U−1 (L) − U−1 (R), where Us (L/R) = sUL/R. At remote distances — where the
field can be considered as homogeneous and no longer accelerates particles — the term
proportional to χ in eq. (2.9) is absent. Therefore, solutions of eq. (2.9) intrinsically have
well-defined left ζϕn,χ (y) and right ζϕn,χ (y) asymptotic forms

ζϕn,χ (y) = ζN exp
(
iζ
∣∣∣pL
∣∣∣ y) , ζ = sgn

(
pL
)
, y → −∞ ,

ζϕn,χ (y) = ζN exp
(
iζ
∣∣∣pR
∣∣∣ y) , ζ = sgn

(
pR
)
, y → +∞ , (2.14)

5The labels “L” and “R” mean “asymptotic left region y → −∞” and “asymptotic right region y → +∞”
, respectively.
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in which ζN , ζN are normalization constants,
∣∣∣pL/R

∣∣∣ are y-components of fermions mo-
menta at corresponding remote regions,∣∣∣pL/R

∣∣∣ =
√

[sπs (L/R)]2 − π2
x , πs (L/R) = ω − sUL/R , (2.15)

and πs (L/R) are their transverse kinetic energies at remote areas. Correspondingly, we
may introduce the asymptotically-left ζψn (X) = exp (−ip0t+ ipxx+ ipzz) ζψn (y) and
the asymptotically-right ζψn (X) = exp (−ip0t+ ipxx+ ipzz) ζψn (y) sets of DP spinors

ζψn (y) = ζN eiζ|p
L|y (I + sR)

[
Σz

(
γ1px +m

)
+ I

(
sπs (L)− χζ

∣∣∣pL
∣∣∣)] υ(χ)

κ , y → −∞ ,

ζψn (y) = ζN eiζ|pR|y (I + sR)
[
Σz

(
γ1px +m

)
+ I

(
sπs (R)− χζ

∣∣∣pR
∣∣∣)] υ(χ)

κ , y → +∞ ,

(2.16)

which, in turn, obey the eigenvalue equations

p̂y ζψn (X) = ζ
∣∣∣pL
∣∣∣ ζψn (X) , ĥkin

⊥ ζψn (X) = sπs (L) ζψn (X) , y → −∞ ,

p̂y
ζψn (X) = ζ

∣∣∣pR
∣∣∣ ζψn (X) , ĥkin

⊥
ζψn (X) = sπs (R) ζψn (X) , y → +∞ , (2.17)

where ĥkin
⊥ = Π̂z − I |µ|Bz (y) is the one-particle transverse kinetic energy operator. It is

important to emphasize both sets of solutions exist provided the quantum numbers n obey
the conditions

[sπs (L/R)]2 > π2
x . (2.18)

These inequalities ensure the nontriviality of DP spinors with real asymptotic momenta pL

and pR in remote areas and impart consequences to the quantization of the theory, as shall
be discussed below.

At last it should be noted that if the field is homogeneous, then the left and right
asymptotic potentials coincide UR = UL ≡ U and the step is trivial, U = 0. As a
result, there is no distinction between the asymptotic momenta

∣∣∣pL
∣∣∣ =

∣∣∣pR
∣∣∣ = py =√

(ω − sU)2 − π2
x and the transverse kinetic energy remains the same throughout the space,

πs (L) = πs (R) ≡ ω0 = ω − sU = ±
√
m2 + p2

⊥. In a complete absence of external fields,
Bz (y) = 0→ U = 0, the transverse kinetic energy ω0 fully coincides with the total trans-
verse energy, ω0 = ω = ±

√
m2 + p2

⊥.
It must be pointed out that the time independence of the magnetic field under consider-

ation is an idealization. Physically, it is meaningful to believe that the field inhomogeneity
was switched on sufficiently fast before instant tin. By this time, it had time to spread to
the whole area under consideration and then acted as a constant field during a large time
T . It is supposed that one can ignore effects of its switching on and off. This is a kind
of regularization, which could, under certain conditions, be replaced by periodic boundary
conditions in t; see refs. [22, 23] for details. Therefore, it is convenient to use the inner
product on the time-like hyperplane y = const, which has the form

(
ψ,ψ′

)
y =

∫
dtdxdzψ† (X) γ0γ2ψ′ (X) , (2.19)
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after imposing specific normalization conditions.6 We assume that all processes take place
in a macroscopically large space-time box, of volume TVy, Vy = LxLz, and impose periodic
boundary conditions upon DP spinors in the variables t, x, z at the boundaries. Thus, the
integrals in (2.19) are calculated from (−T/2,−Lx/2,−Lz/2) to (+T/2,+Lx/2,+Lz/2)
and the limits (T, Lx, Lz) → ∞ are taken at the end of calculations. The time T can
be interpreted as a time of observation of the evolution of the system under considera-
tion. Under these conditions, the inner product is y-independent and we may impose the
normalization conditions(

ζ′ψn′ , ζψn
)
y = ζηLδn′nδζ′ζ ,

(
ζ′
ψn′ , ζψn

)
y

= ζηRδn′nδζ′ζ , ηL/R = sgn [πs (L/R)] .
(2.20)

Considering that the “left” and “right” sets of DP spinors are orthonormal and com-
plete, we may decompose one set into another with the help of specific coefficients

ηL
ζψn (X) = g

(
+|ζ
)

+ψn (X)− g
(
−|ζ
)
−ψn (X) ,

ηR ζψn (X) = g
(

+|ζ
)

+ψn (X)− g
(−|ζ) −ψn (X) , (2.21)

which, by definition, are inner products between different sets of DP spinors(
ζψn,

ζ′
ψn′

)
y

= δnn′g
(
ζ |ζ

′) = δnn′g
(
ζ′ |ζ
)∗

. (2.22)

Substituting the identities (2.21) into the normalization conditions (2.20) supply us with
two important identities∑

ζ′′=±
ζ ′′g

(
ζ′ |ζ′′

)
g
(
ζ′′ |ζ

)
= ζηLηRδζ′ζ =

∑
ζ′′=±

ζ ′′g
(
ζ′ |ζ′′)

g
(
ζ′′ |ζ

)
, (2.23)

from which we may derive a number of supplementary identities, for example |g (+|−)|2 =∣∣g (−|+)∣∣2, ∣∣g (+|+)∣∣2 = |g (−|−)|2, and
∣∣g (+|+)∣∣2 − |g (+|−)|2 = ηLηR. The above-presented

plane waves can form wave packets in a given asymptotic region. In this case, as it is
mentioned above, the problem can be technically reduced to the problem of charged-particle
creation by an electric step [22, 23]. It allows to quantize the DP field operator in the
framework of QED with external backgrounds. Based on this quantization, it is possible
to calculate all quantities characterizing vacuum instability by steplike magnetic fields, as
discussed in section 3.

To explicitly calculate neutral Fermion pair production, we consider a case with an
external field when the complete set of exact solutions of eq. (2.9) can be found. Taking
into account the relations of solutions of eqs. (2.9) and (2.12), eA0 (y) = µBz (y), we see
that one can use exact solutions of eq. (2.12) with the number of step potentials, namely,
the Sauter potential, A0 (y) = −E% tanh (y/%), [4], step between two capacitor plates, and
configurations of two exponential steps or two inverse potential steps; see refs. [77–81]. We
consider the following external field

Bz (y) = %B′ tanh (y/%) , B′ > 0 , % > 0 , (2.24)
6Note that for ψ′ = ψ, the inner product (2.19) divided by T coincides with the definition of the current

density accross the y-const. hyperplane.
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Figure 1. Magnetic steps (2.24) as a function of y, %, and B′. In the left panel, % is the same for
both curves but B′1 = 2×B′2. On the right panel, B′ is the same for both curves while %1 = 2× %2.

which obeys the properties discussed at the beginning of this section and, at the same time,
is an analytic function. The latter property allows one to study the vacuum instability in
the regimes of both “gradually” and “sharply” varying field configurations. The field under
consideration is homogeneous at remote distances, Bz (±∞) = ±%B′ = const., and its
gradient is always positive ∂yBz (y) = B′ cosh−2 (y/%) ≥ 0; in particular, U = 2% |µ|B′ for
this field. The amplitude7 B′ and the “inhomogeneity length” % describe, respectively, the
“slope” of the field with respect to the y-axis and how “rectilinear” it is in the neighborhood
of the origin. Thus, the larger B′ and %, the more “steep” and the more “rectilinear” the
pattern of (2.24) near the origin. For illustrative purposes, we present in figure 1 the
magnetic step (2.24) as a function of y, %, and B′.

Due to an analogy of field (2.24) to the field of effective Sauter potential, we refer to
this field as Sauter-like magnetic step. It must be noted that Nikishov, in refs. [78, 79],
studied solutions of the Dirac equation with this field and calculated characteristics of pair
creation from the vacuum in the framework of one-particle relativistic quantum mechanics.
A detailed discussion of pair production rate by the Sauter potential was presented in
refs. [82]. In the framework of a nonperturbative formulation of strong-field QED, vacuum
instability in the field with the Sauter potential was considered in ref. [22]. In which follows,
we use results obtained in the latter work, taking into account relation between eqs. (2.9)
and (2.12); see appendix A for in- and out-solutions of the DP equation with the field (2.24).

3 Vacuum instability processes

As discussed in the preceding section, both the nontriviality of DP-spinors as the assump-
tion on their completeness (2.21) crucially depends on the restrictions imposed by eq. (2.18).
This inequality imposes certain limitations upon the quantum numbers. For example, for
critical external fields, whose step magnitude obeys the inequality

U > Uc = 2m, (3.1)
7We represent B′ with a “prime” to emphasize that it corresponds to the amplitude of the gradient,

∂yBz (y)|y=0 = B′, rather than the field (2.24), which is intrinsically a “step” and not a “barrier”.
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the whole manifold of quantum numbers can be divided into five sub-ranges, Ωk , k =
1, . . . , 5. While the division of each sub-range Ωk can be realized by following the same
considerations developed for charged particles in an electric step [22], here we stick to the
range where particle creation is possible, the so-called Klein zone Ω3. This sub-range,
which exists only for critical fields (3.1), is defined by a bounded set of quantum numbers

Ω3 = {n : UL + πx ≤ sω ≤ UR − πx , πxz ≤ U/2} , πxz =
√
π2
x + p2

z , (3.2)

for which the restrictions sπs (L) ≥ πx and sπs (R) ≤ −πx are satisfied. In particular,
sηL = +1 while sηR = −1. As a result, two linearly-independent “left” ζψn3 (X) and
“right” ζψn3 (X) sets of DP spinors do exist for quantum numbers within the Klein zone,
n3 = n ∈ Ω3.

The quantization of DP fields is realized using sets of exact solutions with special
properties in remote areas. More specifically, one needs to classify stationary solutions as
particle or antiparticle states and as incoming waves (waves traveling toward the “step” )
or outgoing waves (waves traveling outward the “step” ) in remote areas. Selecting such
solutions demands careful consideration of the inner product between DP spinors on y-
and t-constant hyperplanes because important quantities to the scattering problem are
expressed as surface integrals on such hyperplanes. Examples include classical/quantum
kinetic energies, current field operators, magnetic moment field operators, and fluxes of par-
ticle/antiparticle energies across y-constant hyperplanes in remote areas. A detailed study
of these quantities was presented in refs. [22, 23] for charged particles and in [20] for neutral
fermions. For fermions with s = +1, it was demonstrated that the set ζψn3 (X) corresponds
to antiparticle states while the set ζψn3 (X) corresponds to particle states in specific remote
areas. Moreover, “in”-solutions (incoming waves) and “out”-solutions (outgoing waves) are:

in-solutions: −ψn (X) , −ψn (X) , out-solutions: +ψn (X) , +ψn (X) , n ∈ Ω3 . (3.3)

The above sets of solutions are complete and orthogonal with respect to the inner product
on t-constant hyperplane

(
ψn, ψ

′
n′
)

=
∫
Vy
dxdz

∫ K(R)

−K(L)
dyψ†n (X)ψ′n′ (X) , (3.4)

where the lower/upper cutoffs K(L/R) are macroscopic but finite parameters of the volume
regularization that are situated far beyond the region of a large gradient ∂yBz (y). The
cutoffs are chosen so that the principal value of integral (3.4) is determined by integrals over
areas where the gradient ∂yBz (y) is small, and its influence on pairs creation can be ne-
glected. Macroscopic times of motion of particles and antiparticles, t(L) = K(L)

∣∣∣πs (L) /pL
∣∣∣

and t(R) = K(R)
∣∣∣πs (R) /pR

∣∣∣, in the regions of a small gradient are assumed to obey the
condition

t(L) − t(R) = O (1) , (3.5)

where O (1) denotes terms that are negligibly small compared to t(L/R). The inner prod-
uct (3.4) between both sets of DP spinors reads:

( ζψn, ζψn′) =
(
ζψn,

ζψn′

)
=Mnδnn′ ,

(
ζψn,

ζψn′

)
= 0 , n, n′ ∈ Ω3 , (3.6)
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where Mn = 2 |g (+|−)|2 t(L/R)/T ; see refs. [20, 22]. Due to classification (3.3) and the
above properties, we may quantize the DP field operator Ψ̂ (X) by decomposing it in
(y-independent) sets of creation and annihilation operators of particles and antiparticles.
Because there are two linearly independent sets of spinors (3.3), the quantization is per-
formed using two distinct “in” and “out” sets of annihilation & creation operators

in-set: −bn3 (in) , −b†n3 (in) , −an3 (in) , −a†n3 (in) ,
out-set: +bn3 (out) , +b

†
n3 (out) , +an3 (out) , +a†n3 (out) , (3.7)

which, in turn, obey the following anticommutation relations[
−an′

3
(in) , −a†n3 (in)

]
+

=
[
−bn′

3
(in) , −b†n3 (in)

]
+

= δn′
3n3 ,[

+an′
3

(out) , +a†n3 (out)
]

+
=
[

+bn′
3

(out) , +b
†
n3 (out)

]
+

= δn′
3n3 , (3.8)

and whose annihilation operators (3.7) annihilate the corresponding vacuum states8

−bn3 (in) |0, in〉 = −an3 (in) |0, in〉 = 0 , +bn3 (out) |0, out〉 = +an3 (out) |0, out〉 = 0 .
(3.9)

The algebra (3.8) realizes the equal-time anticommutation relations for DP fermion fields
in the Heisenberg representation [20]. Finally, the quantized DP field operator in the Klein
zone reads

Ψ̂ (X) =
∑
n∈Ω3

M−1/2
n

[
−an (in) −ψn (X) + −b

†
n (in) −ψn (X)

]
,

=
∑
n∈Ω3

M−1/2
n

[
+an (out) +ψn (X) + +b

†
n (out) +ψn (X)

]
. (3.10)

Using orthogonality relations between DP spinors (2.20), (3.6) and the relations given
by eqs. (2.21), we may find a linear relation between the “in”-set of creation/annihilation
operators in terms of the “out”-set and vice-versa. For example, two (out of four) canonical
transformations have the following form

−b
†
n (in) = −g

(
+|−

)−1 +an (out) + g
(
+|−

)−1
g
(
−|−

)
+b
†
n (out) ,

+an (out) = −g
(
−|+

)−1
−b
†
n (in) + g

(−|+)−1
g
(

+|+
)
−an (in) . (3.11)

With the aid of the canonical transformations (3.11), we may finally compute the most
important differential quantity to the study of pair creation, namely the differential mean
number of “out” particles created from the “in” vacuum,

N cr
n =

〈
0, in

∣∣∣ +a†n (out) +an (out)
∣∣∣ in, 0〉 =

∣∣∣g (−|+)∣∣∣−2
, n ∈ Ω3 . (3.12)

8Rigorously, there are five “in” vacuum states |0, in〉(i) and five “out” vacuum states |0, out〉(i), each
corresponding to vacuum states for quantum numbers defined within the five existing subranges ni ∈ Ωi,
i = 1, . . . , 5 [22]. Because we are restricting to processes within the Klein zone, we omit the superscript (3)
on the partial vacua (3.9) for simplicity.
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As expected, this quantity coincides with the mean number of “out” antiparticles created
from the “in” vacuum N cr

n =
〈

0, in
∣∣∣ +b

†
n (out) +bn (out)

∣∣∣ in, 0〉 = |g (+|−)|−2 thanks to the
identity |g (+|−)|−2 =

∣∣g (−|+)∣∣−2.
All the information about pair creation by the external field is enclosed in g

(
−|+

)
.

To find this coefficient, we use solutions of the DP equation given in appendix A and an
appropriate Kummer relation [84] that connects three Gauss Hypergeometric functions
appearing in one of the relations given by eq. (2.21). After straightfoward calculations (see
the appendix A for details), we discover that

g
(
−|+

)
= −ηL

+NΓ (c− a− b+ 1) Γ (1− c)
−NΓ (1− a) Γ (1− b) , (3.13)

where parameters a,b, and c are given by eq. (A.3) in the appendix A. Calculating the
absolute square

∣∣g (−|+)∣∣−2, we finally obtain the differential mean number of pairs created
from the vacuum:

N cr
n =

sinh
(
π%
∣∣∣pR
∣∣∣) sinh

(
π%
∣∣∣pL
∣∣∣)

sinh [π% (U + |pL| − |pR|) /2] sinh [π% (U + |pR| − |pL|) /2] . (3.14)

Note that N cr
n is positive-definite because the difference

∣∣∣∣∣∣pL
∣∣∣− ∣∣∣pR

∣∣∣∣∣∣ bounded in this sub-

range; 0 ≤
∣∣∣∣∣∣pL

∣∣∣− ∣∣∣pR
∣∣∣∣∣∣ ≤ √U (U− 2πx). The above expression gives the exact distribution

of neutral fermions of species s = +1 created from the vacuum by the field (2.24).
As pointed out in section 2, there are two species of neutral fermions, one with s = +1

and another with s = −1. In the latter case, the classification differs from the one given by
eq. (3.3), namely +ψn3 (X) and +ψn3 (X) are “in”-solutions while −ψn3 (X) and −ψn3 (X)
are “out”-solutions. This is explained by the fact that particles (antiparticles) of different
species are accelerated by the field in opposite directions. One can represent the DP field
operator Ψ̂ (X) by decomposing it in the sets of the “in”-solutions and “out”-solutions for
the species s = −1. Then one gets definition for creation and annihilation operators of
particles and antiparticles of the species s = −1. Repeating the steps from eq. (3.11) to
eq. (3.14) one gets the same form (3.14) for the differential mean numbers of pairs of species
s = −1 created where general definition of parameters pL/R, given by (2.15), is used.

As discussed before, the production of neutral fermions with anomalous magnetic mo-
ment by magnetic-field inhomogeneities can be formally understood as a case of charged
particle production from vacuum due to an effective electric field identifying eA0 (y) with
µBz (y). In the case under consideration, the magnetic field (2.24) is related to the ef-
fective Sauter potential, A0 (y) = −E% tanh (y/%). The parameters pL/R in eq. (3.14) are
y-components of fermions momenta at corresponding remote regions, given by eq. (2.15),
where |πs (L/R)| are their transverse kinetic energies at remote areas, π2

x = m2 + p2
x , and

U is the magnitude of the step. Comparing eq. (3.14) with the corresponding equation in
the case of the Sauter potential, we see (in accordance with above discussed relations) that
differential mean numbers of pairs created from the vacuum due to the Sauter electric field
has the same form (3.14) with the step magnitude given by U = 2eE% and momenta pL/R

given by ∣∣∣pL/R
∣∣∣ =

√
[π0 (L/R)]2 − π2

⊥ , π0 (L/R) = p0 − UL/R , (3.15)
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where |π0 (L/R)| are kinetic energies of electrons and positrons in remote areas, UR =
−UL = eE%, and π2

⊥ = p2
x+p2

z+m2. In both systems, pairs of particles and antiparticles are
accelerated along the gradient direction of the corresponding potential steps and pL/R are
components of the momenta along the acceleration direction. We observe that the similarity
between these systems applies up to the level of differential quantities, as these depend
on quantum numbers for which a one-by-one formal identification is possible. However,
it must be noted that complete sets of commuting operators in these two systems are
essentially different. In the case of the magnetic field, the complete set of quantum numbers
is n = (px, pz, ω, s), whereas, for the case of the electric field the set is n = (px, pz, p0, σ).
Moreover, the phase spaces formed by quantum numbers are quite distinct, which means
that there are no similarities between integral quantities of both systems. Nevertheless, we
can use general procedures [22, 23] for calculating integral quantities.

The flux density of created particles of a given species s reads:

ncr
s = 1

VyT

∑
n∈Ω3

N cr
n = 1

(2π)3

∫
dpz

∫
dpx

∫
dp0N

cr
n . (3.16)

It should be noted that both densities coincide, ncr
+1 = ncr

−1. However, it should not be for-
gotten that these fluxes have opposite directions. Because particles and their antiparticles
with a given s have opposite directions of acceleration, there exists a state polarization out
of the region of strong magnetic-field inhomogeneity. The final particles with s = +1 and
antiparticles with s = −1 are situated in the left remote area while final antiparticles with
s = +1 and particles with s = −1 are situated in the right remote area. The total flux
density of particles created with both s = ±1 is ncr = ncr

+1 + ncr
−1.

The vacuum-vacuum transition probability reads:

Pv = |〈0, out|0, in〉|2 = exp

 ∑
s=±1

∑
n∈Ω3

ln (1−N cr
n )

 . (3.17)

To obtain the rightmost expression in eq. (3.17), one needs to find an unitary operator VΩ3

that connects the “in” and “out” vacua, |0, out〉 = V †Ω3
|0, in〉; see e.g. refs. [22, 77] for its

explicit form.
If the total number of created particles N cr = VyTn

cr is small, one may neglect higher-
order terms in eq. (3.17) to conclude that the vacuum-vacuum transition probability slightly
deviates from the unity, Pv ≈ 1−N cr. This indicates that the external field weakly violates
the vacuum. Assuming that the effective action Seff for this problem satisfies the Schwinger
relation Pv = exp (−2ImSeff), we may straightforwardly establish a connection between the
effective action with the flux density (3.16) by taking into account that its imaginary part
is also small in this regime, Pv ≈ 1− 2ImSeff . Therefore,

ImSeff ≈ VyTncr/2 . (3.18)

We see that the summations over s in eqs. (3.16), (3.17) just produce an extra factor of 2 in
final expressions. That is why it is enough choosing s fixed to perform specific calculations;
hereafter, we select s = +1 for convenience.
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4 Pair creation in special configurations

To unveil important features about pair creation, here we study the differential and total
quantities introduced before in situations where the external field lies in two special con-
figurations, namely when the field “gradually” varies along the y-axis and “sharply” varies
near the origin y = 0. For convenience, we separately discuss each configuration below.

4.1 “Gradually”-varying field configuration

This field configuration corresponds to the case where the amplitude B′ is sufficiently large
and the field inhomogeneity stretches over a relatively wide region of the space, such that
the condition √

%U/2� max
(

1, m√
|µ|B′

)
, (4.1)

is satisfied. Accordingly, the arguments of the hyperbolic functions in (3.14) are large,
meaning that the mean number of pairs created acquires the following approximate form,

N cr
n ≈ e−πτ , τ = %

(
U−

∣∣∣pR
∣∣∣− ∣∣∣pL

∣∣∣) . (4.2)

Let us study the behavior of the approximation (4.2) with respect to the quantum numbers.
According to eq. (2.15), τ grows monotonically with ω and px, which means that it has
a minimum at ω = px = 0. At this point, τ = τ0 = τ |ω=px=0 ≈ m2/ |µ|B′, and the
distribution (4.2) reaches its maximum, N cr

n ≈ Nmax
n = exp

(
−πm2/ |µ|B′

)
. If ω = 0 but

|px| deviates from the origin such that it remains sufficiently away from the borders of the
Klein zone (3.2), τ is approximately given by

τ = λ+O
(
%π4

x/U3
)
, λ = π2

x

|µ|B′
, (4.3)

and the mean number (4.2) approaches to the uniform distribution, Nuni
n = exp (−πλ),

found earlier in ref. [20] for the case of a linearly growing magnetic field. This similarity
is not unexpected because the field profile approaches a linearly growing magnetic field at
regions sufficiently near the origin as soon as % increases. In other words, for sufficiently
large %, the gradient of the magnetic field (2.24) becomes almost constant and that is why
the differential mean number of pairs created by this field tends to the uniform distribution
in the regime (4.1). However, this similarity is just local as the distribution Nuni

n cannot
be uniformly extended to the whole Klein zone. For example, let us analyze cases where
either px or ω are sufficiently large. According to the conditions (3.2), for values of px
close enough to the borders of the Klein zone, p2

x . (U/2)2 −m2, we observe that ω ≈ 0
and both momenta

∣∣∣pL
∣∣∣, ∣∣∣pR

∣∣∣ are significantly small. As a result, the mean number (4.2)
is exponentially small in this case N cr

n ≈ exp (−π%U) (thus, quite distinct of Nuni
n ). In

the oposite situation, that is if |ω| . U/2− πx, we see that either
∣∣∣pL
∣∣∣ or ∣∣∣pR

∣∣∣ approaches
its maximum value

√
U (U− 2πx) while the remaining one tends to zero. For example,

if ω is large and positive, say ω = U/2 − πx − 0+, then
∣∣∣pL
∣∣∣ = U [1 +O (πx/U)] while∣∣∣pR

∣∣∣ ≈ 0. In this case, the mean number (4.2) is also small due to the condition (4.1)
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and, again, quite different from the uniform distribution Nuni
n . Hence, we observe that the

most significant contribution to (4.2) comes from finite values of |px| and from a relatively
wide range of ω but, still, sufficiently away from the borders of the Klein zone (3.2) such
that the conditions min

(
π2

+1 (L) , π2
+1 (R)

)
� π2

x remains valid. In this case, τ admits the
following approximation

τ = (U/2)2

(U/2)2 − ω2
λ+O

(
π4
x/ |π+1 (R)|3

)
+O

(
π4
x/ |π+1 (L)|3

)
. (4.4)

Now, we can estimate the flux density of pairs created ncr for a magnetic step evolving
gradually along the y-direction according to (4.1). To this end, it is convenient to transform
the original integral over p0 into an integral over ω through the relation between p0, ω, and
pz discussed before, p2

0 = ω2 + p2
z. Performing such a change of variables, the flux density

of the particles created by the external field in the configuration (4.1) has the form

ncr ≈ 4
(2π)3

∫ pmax
z

0
dpz

∫ pmax
x

−pmax
x

dpx

∫ ω2
max

0
dω2 e−πτ√

ω2 + p2
z

,

pmax
z =

√
(U/2)2 −m2 , pmax

x =
√

(U/2)2 −m2 − p2
z , ωmax = U/2− πx . (4.5)

The multiplicative factor 4 comes from the summation over s and from the fact that the
integrand is symmetric in pz. To obtain an analytical expression to N cr, we formally
extend the integration limits of the last two integrals to infinity. This procedure amounts
to incorporating exponentially small contributions to ncr since the differential mean number
is exponentially small at large px and ω. In this case, we may technically interchange the
order of the last two integrals in (4.5) and use the approximation given by eq. (4.4) to
discover that the flux density of the created particles is approximately given by

ncr≈ 1
2π3 %

2 (|µ|B′)5/2 e−πm2/|µ|B′
Ib′ , Ib′ =

∫ ∞
0

du

(u+1)5/2 ln
(√

1+u+
√

1+2u√
u

)
e−πb

′u ,

(4.6)
where b′ = m2/ |µ|B′. For the sake of comparison with the total number of neutral fermions
created from the vacuum by a linearly-growing magnetic step [20], let us study the behavior
of (4.6) in strong-inhomogeneity and weak-inhomogeneity cases, specified by the conditions
b′ � 1 and b′ � 1, respectively.

In the strong-inhomogeneity case, we may expand the exponential in Ib′ and retain the
first terms of the series to realize that the flux density of the created particles (4.6) admits
the form

ncr = %2
(
π + ln 2− 1

6π3

) (
|µ|B′

)5/2
e−πm

2/|µ|B′
[
1 +O

(
πm2

|µ|B′

)]
,

m2

|µ|B′
� 1 . (4.7)

This result can be immediately compared to the flux density of the created particles from
the vacuum by a linearly-growing magnetic step in the strong-inhomogeneity case, found
previously in ref. [20]; cf. eq. (60). To establish an effective way of comparing results
obtained by different external fields, we consider that both external fields have the same step
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magnitude U and the same degree of inhomogeneity, determined by the ratio m2/ |µ|B′.
Rephasing eq. (4.7) in terms of U and m2/ |µ|B′,

ncr = mU2
(
π + ln 2− 1

24π3

)√ |µ|B′
m2 e−πm

2/|µ|B′
[
1 +O

(
πm2

|µ|B′

)]
,

m2

|µ|B′
� 1 , (4.8)

and comparing with the corresponding result found in ref. [20] for a linearly-growing mag-
netic step in the same regime9

ncr = mU2

√2− 1 + ln
(
1 +
√

2
)

8π3

√ |µ|B′
m2 e−πm

2/|µ|B′
, (4.9)

it is possible to conclude that a Sauter-like magnetic step (2.24) produces fewer pairs from
the vacuum compared to a linearly-growing magnetic step because the numerical factor
found in (4.8), ≈ 3.8 × 10−3, is smaller than the one appearing in (4.9), ≈ 5.2 × 10−3.
As stated before, this comparison is meaningful as long as both external fields have the
same step magnitude U, inhomogeneity scale m2/ |µ|B′ and “gradually” vary along the
inhomogeneity direction. In the case of weak-inhomogeneity, b′ = m2/ |µ|B′ � 1, we may
integrate the Laplace-type integral (4.6) using asymptotic methods [85] to realize that the
flux density of neutral fermion pairs created is exponentially small

ncr = %2

4π4
(
|µ|B′

)5/2( |µ|B′
m2

)
e−πm

2/|µ|B′
[
ln
(
πm2

|µ|B′

)
+ln4−ψ (1)+O

(( |µ|B′
πm2

)2)]

= mU2

16π4

( |µ|B′
m2

)3/2
e−πm

2/|µ|B′
[
ln
(
πm2

|µ|B′

)
+ln4−ψ (1)+O

(( |µ|B′
πm2

)2)]
,

m2

|µ|B′
� 1 , (4.10)

where ψ (1) = −γ ≈ −0.577 is Euler’s constant and ψ (s) is the Psi (or DiGamma) func-
tion [86],

ψ (s) = Γ′ (s)
Γ (s) = 1

Γ (s)

∫ ∞
0

dxxs−1e−x ln x .

At last, one may use the identity ln (1−N cr
n ) = −

∑∞
l=1 (N cr

n )l /l and perform integra-
tions similar to the ones discussed before to discover that the vacuum-vacuum transition
probability admits the final form

Pv = exp (−βVyTncr) , β =
∞∑
l=0

εl+1

(l + 1)3/2 exp
(
− lπm

2

|µ|B′

)
, εl = Ib′l

Ib′
, (4.11)

with ncr given by eq. (4.6).
It is noteworthy mentioning that relation (3.17) — which is well-known for strong-

field QED with external electromagnetic fields — holds for the case under consideration
9Eq. (4.9) follows from eq. (60) in [20] after summing over all spin polarizations s = ±1 and setting

U = |µ|B′Ly.
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as well. However, a direct similarity of total quantities for both cases is absent due to the
phase space difference. We see that the flux density of created neutral fermion pairs and
the quantity lnP−1

v are quadratic in the magnitude of the step while the flux density of
created charged-particle by the electric step is linear. This is a consequence of the fact that
the number of states with all possible ω and pz excited by the magnetic-field inhomogeneity
is quadratic in the increment of the kinetic momentum. This is also the reason why the
flux density of created pairs and lnP−1

v per unit of the length are not uniform. If the total
numbers VyTncr , given by eqs. (4.6) and (4.9), are small, one can use approximation (3.18).

4.2 “Sharply”-varying field configuration

We now turn the attention to the second configuration of interest, when the field (2.24)
“sharply” steeps near the origin. Such a configuration is specified by the conditions:

1�
√
%U/2 &

m√
|µ|B′

. (4.12)

The first inequality indicates that the gradient ∂yBz (y) sharply peaks about the origin,
while the second implicates that the Klein zone is relatively small. This configuration is
particularly important due to a close analogy to charged pair production by the Klein
step, see ref. [21] for the review. For electric fields whose spatial inhomogeneity meets
conditions equivalent to (4.12), it was demonstrated that the imaginary part of the QED
effective action features properties similar to those of continuous phase transitions [87, 88].
Recently [77], we have demonstrated for the inverse-square electric field that this peculiar-
ity also follows from the behavior of total quantities when the Klein zone is relatively small.
Because of the condition (4.12), not only the parameter %U/2 is small but all parameters
involving the quantum numbers px, pz, and ω are small as well on account of the inequali-
ties (3.2). As a result, the arguments of the hyperbolic functions in (3.14) are small, which
means that we may expand the hyperbolic functions in ascending powers and truncate
the corresponding series to first-order to demonstrate that the mean numbers admit the
approximate form:

N cr
n ≈

4
∣∣∣pR
∣∣∣ ∣∣∣pL

∣∣∣
U2 − (|pL| − |pR|)2 . (4.13)

It is exactly the form of the Klein effect [21]. Note that unlike the case of “gradually”-
varying field configuration, exponentially suppressing factors are absent in (4.13). Thus,
nontrivial fluxes of neutral fermions created by the “sharply”-varying magnetic step can
also be observed. This justifies the study of total quantities when the field sharply varies
along the inhomogeneity direction.

To implement the conditions (4.12), we conveniently introduce the Keldysh parameter
γ = 2m/U and observe that it obeys the condition 1− γ2 � 1 on account of (4.12). Next,
we perform the change of variables

ω

m
= 1

2
(
1− γ2

)
(1− v) , p2

x

m2 =
(
1− γ2

)
r , (4.14)
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and expand the asymptotic momenta
∣∣∣pL/R

∣∣∣ in ascending powers of 1 − γ2 to learn

that
∣∣∣pR
∣∣∣ /m =

(
1− γ2)1/2√v − r + O

((
1− γ2)3/2), ∣∣∣pL

∣∣∣ /m =
(
1− γ2)1/2√2− v − r +

O
((

1− γ2)3/2). Substituting these approximations into (4.13) we obtain

N cr
n =

(
1− γ2

)√
(1− r)2 − (1− v)2 +O

((
1− γ2

)2
)
. (4.15)

We now wish to estimate the total number of pairs created from the vacuum by
a sharply varying external field. In this case, it is convenient to first integrate over
pz, which is allowed as long as we swap the integration limits indicated in (4.5), i.e.
pmax
z =

√
(U/2)2 −m2 − p2

x and pmax
x =

√
(U/2)2 −m2. Calculating the integral and

performing the change of variables proposed in (4.14), we expand the result in power
series of 1− γ2 to find∫ pmax

z

0

dpz√
ω2 + p2

z

= −1
2 ln

(
1− γ2

)
+2 ln 2+ln

√
1− r−ln

√
(1− v)2+O

(
1− γ2

)
. (4.16)

The most significant contribution to total quantities in this regime comes from the
logarithm ln

(
1− γ2), as 1 − γ2 � 1. Neglecting higher-order terms in 1 − γ2, the flux

density of the particles created is approximately given by

ncr ≈
(
1− γ2

)7/2 ∣∣∣ln (1− γ2
)∣∣∣ m3

(2π)3

∫ rmax

0

dr√
r

∫ vmax

vmin
dv (1− v)

√
(1− r)2 − (1− v)2 ,

(4.17)
where vmin ≈ r and vmax ≈ rmax ≈ 1. After straightforward integrations, the flux density
of the particles created from the vacuum by a sharply varying Sauter-like magnetic step
takes the approximate form

ncr ≈ 4
105π3m

3
(
1− γ2

)7/2 ∣∣∣ln (1− γ2
)∣∣∣ . (4.18)

Finally, it is important to point out that the behavior of flux densities, concerning
their scaling with parameter

(
1− γ2)7/2, can be extended to other types of magnetic steps

due to universal forms for differential quantities in situations where the Klein zone is
small. More precisely, it was found a few years ago [87, 88] that the imaginary part of
the effective action of QED (both scalar as spinor) scales with 1 − γ2 in a universal way,
irrespective of the asymptotic behavior of the electric field. Recently [77], we arrived at the
same conclusion studying the problem for an specific electric field and discovered that this
compatibility results from the universal behavior of mean numbers when the Klein zone
is small. Inspired by the close analogy with pure QED and according to peculiarities of
differential mean numbers for sharply varying magnetic steps, we have reasons to believe
the differential mean number of pairs created from the vacuum behaves universally as
eq. (4.15). For these reasons, we suggest that the imaginary part of the effective action
exhibits the universal form given by eqs. (3.18), (4.18), provided the field “sharply” varies
along the inhomogeneity direction.
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4.3 Numerical estimates to the critical field

The mechanism here described raises the question about the critical magnetic field intensity,
near which the phenomenon could be observed. It is possible to estimate such a value based
on fermion’s mass and its magnetic moment. Since maxBz (y) = Bz (+∞) = %B′ ≡ Bmax,
the nontriviality of the Klein zone (3.2) yields the following condition

U = 2 |µ| %B′ > 2m⇒ Bmax > Bcr , Bcr ≡
m

|µ|
≈ 1.73× 108 ×

(
m

1 eV

)(
µB
|µ|

)
G , (4.19)

where µB = e/2me ≈ 5.8 × 10−9 eV/G is the Bohr magneton [24]. For neutrons, whose
mass and magnetic moment are mN ≈ 939.6× 106 eV, µN ≈ −1.042× 10−3µB, the critical
magnetic field (4.19) is Bcr ≈ 1.56 × 1020 G. More optimistic values can be estimated for
neutrinos because of their light masses and small magnetic moments. For example, consid-
ering recent constraints for neutrinos effective magnetic moment µν ≈ 2.9 × 10−11µB [26]
and mass mν ≈ 10−1 eV [38], we find Bcr ≈ 5.97 × 1017 G. Evidently, this value changes
considering different values to neutrinos’ magnetic moment and mass. Taking, for instance,
the experimental estimate to the tau-neutrino magnetic moment µτ ≈ 3.9 × 10−7µB [25]
and assuming its mass mντ ≈ 10−1 eV we obtain a value to Bcr near QED critical field
BQED = m2/e ≈ 4.4 × 1013 G, namely Bcr ≈ 4.44 × 1013 G. On the other hand, assuming
the lower bound found in ref. [33] µν ≈ 10−14µB and the same mass mν ≈ 10−1 eV we ob-
tain a value to Bcr orders of magnitude larger than BQED, Bcr ≈ 1.73×1021 G. The critical
magnetic field surprisingly increases if one considers the magnetic moment predicted by
the SM, µν ≈ 3.2 × 10−19µB × (mν/1 eV) [35, 38]. Substituting this value into (4.19) and
considering mν ≈ 1 eV we find Bcr ≈ 5.41× 1026 G.

Sterile neutrinos with masses M of several keV are dark matter candidates [40, 41].
Taking into account weak observational constraints on their magnetic moment µ [42, 43],
one can see that pairs of sterile neutrinos and antineutrinos could be produced from
their coupling to an inhomogeneous magnetic field. For example, if M = me/100, where
me ≈ 0.5 MeV is the electron mass [24], then |µ| . 10−4µB due to precision electroweak
measurements; see e.g. [43]. Hence, we find an estimate to Bcr that is relevant for dark
matter, Bcr ∼ 1016 G. These constraints can be weakened by the mechanism of com-
positeness and a variety of astrophysical constraints can be significantly weakened by the
candidate particle’s mass. For example, the direct limits on |µ|, which would follow from
the nonobservance of Faraday rotation at a given sensitivity, could be |µ| . µB [43]. Such
a weak limit implies Bcr ∼ 1012 G.

Besides strong field amplitudes, neutral fermion pair production requires inhomoge-
neous magnetic fields over a certain space area. As discussed in section 4, the optimal
scenario for pair production corresponds to the case when the field evolves “gradually”
over space. For this configuration, we may provide a reference value for the field inhomo-
geneity intensity B′ based on the properties discussed above. Such a value can be extracted
from condition |µ|B′ > m2, as it supplies an increase of neutral fermion pair production
according to the analytical estimate (4.6), for instance. From this condition, we may set
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the following reference value B′ref

|µ|B′ > m2 ⇒ B′ > B′ref , B′ref = m2

|µ|
≈ 8.77× 1014 ×

(
m

1 eV

)2 (µB
|µ|

) G
m . (4.20)

Considering active neutrinos with mass mν ≈ 10−1 eV and magnetic moment µν ≈ 2.9 ×
10−11µB, we obtain B′ref ≈ 3 × 1023 G/m. This estimate can be decreased by about five
orders of magnitude assuming smaller values to neutrino mass and larger values to its
magnetic moment, say mν ≈ 10−3 eV and µν ≈ 1.1 × 10−9µB [89]. In the case of sterile
neutrinos with masses M of several keV, we obtain B′ref ∼ 1021 G/m.

Lastly, it should be noted that it is also possible to derive an upper bound to neutrino
mass from the same condition given above by assuming a fixed value to the inhomogeneity
size %. It was argued in [38] that active neutrino masses should be mν . 10−6 eV in
order to be created in astrophysical environments filled with magnetic fields of magnitude
1018 G and whose inhomogeneity stretches about one kilometer. As pointed out in [38],
this estimate suggests a profound consideration of theories beyond the SM.

5 Vacuum fluxes produced

Procedures of renormalization and volume regularization recently presented in ref. [23] for
strong-field QED with a step potential allows one to calculate and distinguish physical parts
of matrix elements of physical quantities given by field operators. Using the technique to
map the problem under consideration onto the problem of charged-particle creation by an
electric step, we can apply these procedures to find vacuum fluxes of energy and magnetic
moment produced by a magnetic-field inhomogeneity.

One can see from eq. (3.5) that t(L) and t(R) are macroscopic times of motion of particles
and antiparticles in the remote areas on the left and on the right of the inhomogeneity,
respectively and they are equal,

t(L) = t(R) = tmot. (5.1)

It allows one to introduce an unique time of motion tmot for all the particles in the system
under consideration. This time can be interpreted as a time of observation of the evolution
of the system under consideration. The renormalization procedure [23] allows one to link
quasilocal quantities with observable physical quantities specifying the vacuum instability.
In the general case, the matrix elements of energy-momentum and magnetic momentum
operators contain local contributions due to the vacuum polarization and contributions due
to the vacuum instability caused by the external field for all the time T of his action. We
believe that under the condition that t(L) and t(R) are macroscopical, all local contributions
due to the existence of the magnetic-field inhomogeneity can be neglected. Therefore, it
is enough to know the longitudinal fluxes of energy and magnetic moment through the
surfaces y = yL → −∞ and y = yR → ∞ to construct the initial and final states, link
them, and then calculate characteristics of the vacuum instability.

It is clear that such fluxes of created pairs depend on the parameter of the volume
regularization tmot due to the presence of the normalization factor M−1/2

n in the field
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operator decomposition (3.10). Thus, we can find their relation to observable physical
quantities and obtain a relation between the parameter tmot and the whole time T . Such a
relation fixes the proposed renormalization procedure.

We suppose that all the measurements are performed during a macroscopic time T
when the magnetic field can be considered as constant. In this case, for example, we believe
that the longitudinal flux of the magnetic moment of particles created with a given s is
equal to the flux density ncr

s of the particles times the modulus of a magnetic moment |µ|,

Mcr
s = |µ|ncr

s (5.2)

under the condition that the times tmot and T coincide, i.e., tmot = T . Such a relation
fixes the proposed renormalization procedure.

For the longitudinal energy flux of particles created with a given s we find

T 20
cr (L) = −

∑
n∈Ω3

|πs (L)|N cr
n , y = yL → −∞,

T 20
cr (R) =

∑
n∈Ω3

|πs (R)|N cr
n , y = yR →∞. (5.3)

The flux density of the particles created with a given s are equal ncr
+1 = ncr

−1. However, the
composition of these fluxes are different. The magnetic-field inhomogeneity, ∂yB (y) ≥ 0,
accelerates particles with s = −1 and antiparticles with s = +1 along the y axis. At the
same time, antiparticles with s = −1 and particles with s = +1 are accelerated by the
field in the opposite direction. Thus, we have particles with s = −1 and antiparticles with
s = +1 at y = yR →∞ while antiparticles with s = −1 and particles with s = +1 appear
at y = yL → −∞. The vacuum flux aimed in one of the directions is formed from fluxes of
particles and antiparticles of equal intensity and with the same magnetic moments parallel
to the magnetic field. In such a flux, particle and antiparticle velocities that are perpen-
dicular to the plane of the magnetic moment and flux direction are essentially depressed.
Backreaction to the vacuum flux leads to a smoothing of the magnetic-field inhomogeneity.
Such mechanism has to be taken into account in astrophysics and cosmology.

6 Concluding remarks

In this work, we study a mechanism that explains the creation of neutral fermion pairs
with anomalous magnetic moments from the vacuum by inhomogeneous magnetic fields.
We show that solutions of the DP equation with magnetic-field inhomogeneity can be
given in terms of states with well-defined spin polarization. Such states are localizable
and can form wave packets in a given asymptotic region. In this case, the effect is similar
to the Schwinger effect for charged particles in an electric field and the problem can be
technically reduced to the problem of charged-particle creation by an electric step for which
the nonperturbative formulation of strong-field QED [22, 23] can be used.

To study the effects of vacuum instability due to magnetic-field inhomogeneities, we
consider a magnetic step that allows solving the DP equation and calculating pertinent
quantities when the field lies in particular configurations. We find exact solutions of the
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DP equation with such a field and study nonperturbative characteristics of neutral fermion
pair production from the vacuum by the step. We also find vacuum fluxes of energy and
magnetic moments.

The vacuum flux aimed in one of the directions is formed by fluxes of particles and
antiparticles of equal intensity and with the same magnetic moments parallel to the mag-
netic field. In such fluxes, particle and antiparticle velocities that are perpendicular to the
plane of the magnetic moment and the flux direction are essentially depressed. This is
a typical property that can be used to observe their behavior in astrophysical situations.
The backreaction to the vacuum fluxes leads to a smoothing of the magnetic-field inhomo-
geneity. Such mechanism has to be taken into account in astrophysics and cosmology. In
particular, it may be relevant to studies on dark matter studies.

Our calculations reveal two peculiar features of neutral fermion pair production by
inhomogeneous magnetic fields compared to charged pair production by inhomogeneous
electric fields. The first one is that the flux density of created neutral fermion pairs is
quadratic in the magnitude of the step while the flux density of charged-particles created
by an electric step is linear. This peculiarity derives from the non-cartesian geometry
of the parameter space formed by the quantum numbers and this feature is inherent to
the dynamics of neutral fermions with anomalous magnetic moments in inhomogeneous
magnetic fields. This also explains why the flux density of created pairs per unit of the
length are not uniform.

The second feature worth discussing is the behavior of total quantities when the
field “sharply” varies. It is exactly the form of the Klein effect [21]. Unlike the case
of “gradually”-varying field configuration, exponentially suppressing factors are absent in
this case. Thus, nontrivial fluxes of neutral fermions created by the “sharply” -varying
magnetic step can also be observed. For example, if one compares the flux density of cre-
ated neutral fermion pairs with the total number of electron-positron pairs created from
the vacuum by inhomogeneous electric fields (given, for example, by eq. (88) with d = 4
in [77]), we observe two major differences: the first is the presence of a logarithmic coeffi-
cient

∣∣ln (1− γ2)∣∣, that can be traced back to the integration over pz (4.16) and therefore
does not depend on the external field. To our knowledge, this term has no precedents
in QED (although a logarithmic coefficient of this type may appear in scalar QED). The
second, and more important, is the value of the scaling (or critical) exponent seen in (4.18).
In contrast to QED in 3 + 1 dimensions, in which N cr ∼

(
1− γ2)3 [77, 87, 88], the total

number of neutral fermions pairs created from the vacuum features a larger exponent, 7/2.
Aside from minor numerical differences, this means that the total number (4.18) has an
extra term

√
1− γ2

∣∣ln (1− γ2)∣∣, which is always less than unity in the range of values to
γ within the interval 0 ≤ γ < 1. Formally, this indicates that backreaction effects caused
by neutral fermions produced by sharply-evolving inhomogeneous magnetic fields may be
significantly smaller than backreaction effects expected to occur for QED under equivalent
conditions.

Last but not least, it is necessary to comment on the role of a constant and homoge-
neous magnetic field B0 when added to the external field (2.24). This corresponds to a
“shift” of the Klein zone (3.2) and of the distribution (3.14) (with respect to the ω-axis)

– 23 –



J
H
E
P
1
2
(
2
0
2
1
)
0
4
6

to the left or to the right, depending on the sign of B0. Because the step magnitude U is
invariant, the integration domains in eqs. (3.16), (3.17), (4.5) remains unchanged, meaning
that the flux density of created pairs ncr and the vacuum-vacuum transition probability
Pv do not depend on B0. This is consistent with the heuristic interpretation that a con-
stant and homogeneous magnetic field does not produce work on particles with magnetic
dipole moment and, therefore, cannot produce pairs from the vacuum. Evidently, the
situation is different for particles having a magnetic charge because constant and homo-
geneous magnetic fields produce work on such particles and may create pairs from the
vacuum as discussed in many references, e.g. [47–50]. We hope that the mechanism dis-
cussed in this study might offer important insights to the understanding of neutral fermion
pair production, both in astrophysical environments as well as by dense matters, which,
despite being genuinely different, shares similarities with the present case if the matter is
time-independent and inhomogeneous.
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A Time-independent Sauter-like magnetic step

Inserting the external field (2.24) into eq. (2.9) and performing a simultaneous change of
variables

ϕn,χ (y) = ξρ (1− ξ)σ f (ξ) , ξ (y) = 1
2 [1 + tanh (y/%)] , (A.1)

we may convert eq. (2.9) to the same form as the differential equation for the Gauss
Hypergeometric Function [84]

ξ (1− ξ) f ′′ + [c− (a+ b+ 1) ξ] f ′ − abf = 0 , (A.2)

provided the parameters ρ, σ, a, b, and c are:

a = 1
2 (1− χ)− i%

2
(
U +

∣∣∣pL
∣∣∣− ∣∣∣pR

∣∣∣) ,
b = 1

2 (1 + χ) + i%

2
(
U +

∣∣∣pR
∣∣∣− ∣∣∣pL

∣∣∣) ,
c = 1− i%

∣∣∣pL
∣∣∣ , ρ = − i%2

∣∣∣pL
∣∣∣ , σ = i%

2

∣∣∣pR
∣∣∣ . (A.3)

Among the 24 Hypergeometric functions satisfying eq. (A.2) [84], we select those that
tend to unity as y → ∓∞. Solutions meeting this property are proportional to Hypergeo-
metric functions of type F (a′, b′; c′; ξ) and F (a′′, b′′; c′′; 1− ξ). For example, a possible set
of solutions to eq. (2.9) behaving asymptotically like eqs. (2.14) is

ζϕn,χ (y) = ζN exp
(
iζ
∣∣∣pL
∣∣∣ y) [1 + exp (2y/%)]−i%(ζ|p

L|+|pR|)/2
ζu (ξ) ,

ζϕn,χ (y) = ζN exp
(
iζ
∣∣∣pR
∣∣∣ y) [1 + exp (−2y/%)]i%(|p

L|+ζ|pR|)/2 ζu (ξ) , (A.4)
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where

−u (ξ) = F (a, b; c; ξ) , +u (ξ) = F (a+ 1− c, b+ 1− c; 2− c; ξ) , (A.5)
−u (ξ) = F (a, b; a+ b+ 1− c; 1− ξ) , +u (ξ) = F (c− a, c− b; c+ 1− a− b; 1− ξ) .

With the aid of these solutions, we may finally introduce the sets of DP spinors

ζψn (X) = e−i(p0t−pxx−pzz) (I + sR) [π̂z + I (− |µ|Bz (y) + sω)] ζϕn,χ (y) υ(χ)
κ ,

ζψn (X) = e−i(p0t−pxx−pzz) (I + sR) [π̂z + I (− |µ|Bz (y) + sω)] ζϕn,χ (y) υ(χ)
κ , (A.6)

provided the quantum numbers n obey the restrictions given by eq. (2.18). Under these
conditions, we may calculate the normalization constants ζN , ζN and present the final
form of DP spinors. Since the inner product (2.19) is y-independent, we may calculate
the normalization constants at remote regions y → ∓∞, where the DP spinors admit the
asymptotic forms (2.16). Evaluating the inner product (2.19) and imposing the normaliza-
tion conditions (2.20), we finally obtain:

| ζN| =
[TVyΥ (1− sκχΥ)]−1/2

2
√
|pL| |πs (L)− sχζ |pL||

,
∣∣∣ ζN ∣∣∣ = [TVyΥ (1− sκχΥ)]−1/2

2
√
|pR| |πs (R)− sχζ |pR||

. (A.7)
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