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1 Introduction and main result

The development of supersymmetric localization [1] has lead to major progress in the
field of holography and the AdS/CFT correspondence in the past decade. There now
exist remarkable calculations of observables in different holographic superconformal field
theories (SCFTs) on various supersymmetric backgrounds, often beyond the leading large N
approximation, see [2] and many references therein and thereof. Much of this progress
further relies on the closely related idea that the partition functions often localize not only
in field space, but also on specific points of the particular supersymmetric background,
giving rise to a factorization in terms of elementary building blocks [3, 4]. Here we will
mostly be interested in 3d SCFTs that were shown to admit factorization in terms of the
so-called holomorphic blocks [5] and/or fibering operators [6].

Perhaps more surprisingly, both concepts of localization in field space and factorization
of the partition function have been shown to make sense in effective theories of supergravity
arising in the low-energy limit of string or M-theory. The concept of supergravity localiza-
tion was first put forward in [7–9] and developed more formally in [10, 11]. More recently,
the classical on-shell action of minimal gauged 4d supergravity was shown to become a

– 1 –



J
H
E
P
1
2
(
2
0
2
1
)
0
3
1

sum1 of specific contributions [12], and a more involved gluing mechanism in terms of grav-
itational building blocks was uncovered in [13] once abelian vector multiplets are included.
It is our goal in this paper to extend these factorization results by proposing a general
formula for the log-corrections to the supergravity on-shell action, captured by a one-loop
determinant calculation. Using holography beyond large N , our results translate into a
prediction for the behavior of logN corrections to the partition functions of a large class
of 3d SCFTs.

In more detail, we systematically analyze the log-corrections in a large set of asymptot-
ically locally Euclidean AdS4 backgrounds2 in 4d N = 2 gauged supergravity. We do so by
using the aforementioned method of supergravity localization, combined with the factor-
ization of the on-shell action in AdS4/CFT3. The authors of [12] showed that the classical
on-shell action (after a careful application of holographic renormalization) can always be
evaluated as a sum based on two types of contributions, depending on the fixed locus of
the canonical isometry ξ generated by the Killing spinors preserved on the asymptotically
locally AdS4 (AlAdS4) background. It turns out that ξ is nowhere vanishing on the asymp-
totic boundary and the fixed point set of ξ lies in the interior of the four-dimensional space
with connected components that are either fixed points (NUTs), or fixed two-manifolds
(Bolts). At the zeroes of ξ the Killing spinors always become chiral or anti-chiral, and we
can denote the NUTs and Bolts with a subscript ± to reflect this. The fixed point set of ξ
for a number of interesting explicit examples is given in table 1 so that the reader can build
an intuition regarding the typical examples we consider here.3

From an off-shell supergravity perspective, we can use the same canonical isometry to
set up a localization calculation. This approach involves the study of one-loop determinants
for arbitrary matter multiplets coupled to gauged supergravity. We will argue in this
work that, for holographic purposes, the logarithmic corrections to the classical on-shell
action receive contributions that also factorize into a sum over the fixed locus of ξ for all
supersymmetric AlAdS4 backgrounds. The most elegant way of evaluating the relevant one-
loop determinants is by computing the index of differential operators acting on quadratic
fluctuations around the localization locus using the Atiyah-Singer index theorem and its
specialization, the Atiyah-Bott formula. See [34, 35] for a comprehensive introduction of
the mathematical background. Our final result is therefore a quantum one-loop analog of
the classical factorization of the on-shell action of [12]. We emphasize that our analysis
here only uses the intermediate result of [12] regarding the fixed point set of the canonical

1We use the term factorization throughout this paper in analogy to field theory literature, i.e. from the
point of view of a full path integral representation as in [76, 91]. The fact that the on-shell action and
the corresponding log-corrections are written as a sum is interpreted as an on-shell factorization of the
gravitational path integral as a product of elementary building blocks.

2In fact the general formula we propose below is valid for all such backgrounds, modulo some cases that
are so far excluded due to some technical assumptions. This will be discussed in due course.

3We stress that the four-dimensional fixed points are always inside the bulk and do not coincide with
the fixed points of the canonical isometry on the boundary. In the cases where the bulk background is a
Lorentzian black hole (BH), we find that the fixed point set of ξ is actually infinitely far away from the
boundary in the throat near the horizon. In the other cases the fixed point set is at a finite but non-zero
distance from the boundary.
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AlAdS4 space fixed point set of ξ 3d boundary refs

Holographic S3 1 pt: centre of H4 S3
b [14–18]

Static twisted BHs Σg: centre of H2 S1 × Σtw
g [19–26]

Rotating twisted BHs 2 pts: NP/SP of S2 × centre of H2 S1 × S2,tw
ω [22, 27]

Kerr-Newman BHs 2 pts: NP/SP of S2 × centre of H2 S1 × S2
ω [28–31]

1/4-BPS Bolts Σg: O(−p)→ Σg in H4 Mg,p [6, 32, 33]

Table 1. The fixed point set of ξ for a number of (non-singular) supersymmetric asymptotically
locally Euclidean AdS4 (i.e. H4) solutions, and the corresponding three-dimensional holographically
dual backgrounds. The first entry generically denotes a family of asymptotically Euclidean AdS4
solutions which consist of various ways one can squash the boundary three-sphere. The suggested
references discuss in detail either the 4d bulk background, the 3d partition function, or both.

isometry ξ which also holds off-shell, and therefore we are able to add arbitrary matter
supermultiplets in our analysis. This is in contrast to the results of [12] regarding the
on-shell action that only holds in minimal supergravity and needs to be supplemented by a
set of gluing rules when extra matter is present, as in the example of matter-coupled black
holes discussed in [13].

We propose the following holographic formula for the one-loop contribution to the
supergravity on-shell action4 on a regular 4d supersymmetric background M4,

− logZsugra
1-loop(M4) = α

(nf
2 +

∑
i

(1− gi)
)

logL+ . . .

= α
χ(M4)

2 logL+ . . . ,

(1.1)

where nf is the number of fixed points of the canonical isometry ξ for the given back-
ground, and the sum runs over the fixed two-manifolds of genus gi.5 The dots denote
terms that are subleading holographically, i.e. they do not scale logarithmically with the
AdS4 length scale L. The part in brackets above is fully determined by the topology of the
background M4 and equals its regularized Euler characteristic χ(M4) as shown in e.g. [36].
In contrast, the dynamical information in (1.1) is entirely contained in the constant pref-
actor α specific to the supergravity theory under consideration. As we will show, it can be
interpreted as counting the various multiplets of the theory with a particular weight.

Let us stress that, to derive (1.1), we do not need to assume anything about the
(massless and massive) field content of the effective supergravity theory, nor do we need to
specialize to a two-derivative theory. Our result is therefore valid in the presence of arbi-

4In the formula below and everywhere else in the text we work in the grand-canonical ensemble of fixed
chemical potentials, even if the boundary conditions for certain backgrounds allow for other options. See
below (2.5) for more details on this point.

5Here we exclude the case of a non-trivial line bundle of degree pi over the fixed two-manifolds corre-
sponding to the last entry of table 1. It leads to additional subtleties for the method we use, as discussed
in more detail in section 3.1 and appendix A.
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trary6 perturbative corrections to the on-shell action of the background M4 (see [37–40]).
We will also show that the form of our one-loop result is valid, at leading order holographi-
cally, for any supersymmetric field content, making our formula applicable to a completely
arbitrary set of supermultiplets that might not even be known at present. Although at first
sight this generality may seem mathematically implausible, we stress once more that we
restrict our analysis to a very specific set of supersymmetric backgrounds M4, constrained
both by supersymmetry and by the AlAdS4 boundary conditions. This restriction ensures
that we only need to apply the index theorem to the cases of zero- and two-dimensional
fixed submanifolds, which in turn substantially simplifies the mathematical problem and
ultimately leads to (1.1).

Holographically, the length scale L of AdS4 (taken to be large with respect to the
higher dimensional length scale lP in order to stay within the supergravity approximation)
is related to the rank N of the gauge group of the dual field theory as

N ∝ (L/lP )s , (1.2)

for some positive integer s that is model-dependent. Our main supergravity formula (1.1)
therefore translates into the following holographic prediction for the logN corrections to
the partition function of any 3d N = 2 SCFT with a supergravity dual,

logZSCFT
∂M4 (a, N) = P(a, N)− α

s

χ(M4)
2 logN + . . . , (1.3)

where a denotes the collection of equivariant parameters pertaining to a given boundary
background ∂M4 together with possible discrete parameters (e.g. Chern-Simons level, topo-
logical charges of the background), P denotes the complete set of perturbative contributions
(in 1/N) in a given partition function, and the dots denote possible non-perturbative (ex-
ponentially suppressed in N) corrections. One concludes that the logN term does not
depend on any of the equivariant parameters of the partition function. The above formula,
based on arguments coming from supergravity localization, is expected to hold for any su-
persymmetric partition function of a given holographic 3d SCFT. It is particularly easy to
infer from (1.3) that the logarithmic correction to the (refined) topologically twisted index
is exactly equal to the one of the superconformal index, and exactly twice as much as the
logarithmic correction for various squashed S3

b partition functions. This follows from the
fact that the latter backgrounds correspond to a single fixed point (χ = 1) while the rotat-
ing black holes7 have two fixed points (χ = 2) from our bulk four-dimensional perspective,
see table 1 and [37]. It is also clear from (1.3) that the constant α, or more precisely the

6As mentioned above, we rely on the fact that the canonical isometry has a fixed point set of NUTs and
Bolts. Strictly speaking, off-shell this has been shown explicitly only after a certain extra assumption on the
form of the auxiliary fields [37, 38] which covers all possible two-derivative theories, but only a subset of the
four- and higher-derivative theories. It is however natural to expect that the fixed-point set of the canonical
isometry remains the same after relaxing this technical assumption and therefore our results should hold
for all higher-derivative theories.

7The rotating black holes with a twist also admit a smooth static limit with a dual description by the
unrefined topologically twisted index. The answer χ = 2 is unchanged, but it comes from a single Bolt
contribution instead of two NUTs, see the discussion below (3.35).
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ratio α/s, should be interpreted as counting in a specific way the degrees of freedom of the
holographic 3d SCFT. It would be very interesting to understand the above formula from
a purely three-dimensional8 field theoretic point of view and find an independent definition
of this coefficient.

At this point we should also stress one major caveat of our approach. We will show
that the different supergravity multiplets will each give some specific contribution to the
constant α in (1.1), but we cannot at present obtain an explicit derivation of the value
of α for string theory compactifications of holographic interest. This is because we are
so far unable to evaluate the contribution to α from all possible supermultiplets. This
also means that we are unable to perform the necessary summation over the full Kaluza-
Klein (KK) tower of multiplets present in the effective 4d description of a given string
theory compactification. On the other hand, the strength of our approach is that once
this single constant α is known, we readily obtain the log-correction to all possible BPS
backgrounds. The explicit value of α can in practice be fixed by a single known log-
correction: a holographic match with logN localization results in the dual field theory;
or from the so-called heat kernel method applied in a careful way in supergravity. Such
supergravity calculations were first presented for asymptotically flat BPS black holes in
4d [41–44],9 and an exemplary 11d supergravity calculation was conducted in [49] for
empty AdS4 uplifted on S7. This approach was more recently revisited in [50] and further
used in [51, 52], and we give a more detailed account of it in appendix B. From our point of
view, these methods provide a complementary calculation of the log-correction that should
agree with our general result, but are practically better suited for determining explicitly
the constant α in a given compactification rather than deriving from first principles the
factorization formula (1.1).

Based on both field theory and 11d calculations available in the literature, we can
present some explicit values for the constant α in several interesting holographic examples,
see table 2. We should note that, in the cases where we can infer the constant α from
multiple independent calculations, we find complete agreement with (1.1). A notable ex-
ception is the last entry (see [53, 54]) where numerical studies of the topologically twisted
index [55] predict α = 7/3 while numerical studies of the S3 partition function [56] predict
α = 8/3. We expect further analysis to reconcile this apparent discrepancy.

The rest of this paper is organized as follows. In the next section we discuss the
general set-up for calculating the one-loop determinant in the framework of supergravity
localization, and state the main assumptions that go in the derivation of the result. In
section 3 we present the calculation of the index governing the one-loop determinant for
abelian vector multiplets. We split the discussion into the two main cases of fixed 2-
manifolds and fixed points in sections 3.1 and 3.2, respectively. In section 4 we present the

8Note that (1.3) at present is not clearly written in terms of three-dimensional data. The holographic
prediction suggests, but it is not obvious to show, that the 3d boundary ∂M4 admits smooth fillings that
always reproduce the same answer for χ(M4).

9Note that the heat kernel method is also well-suited for studying the log-correction in the absence of
supersymmetry as in [45–48] and references therein. In contrast, our approach crucially relies on supersym-
metry.
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3d SCFT 4d SUGRA α s refs

M2 branes on Cone(M7) 11d onM7 3 6 [49, 57–62]
SU(N) 6d (2, 0) onM3 11d on S4 ×M3 3(1− bM3

1 ) 3 [51, 52, 63]
SO(2N) 6d (2, 0) onM3 11d on RP4 ×M3 0 3 [39]

ABJM at level k ∼ N 10d IIA on CP3 1 3 [57, 64]
U(N)2 quiver at level k ∼ 1 10d mIIA on CP3

def 2 6 [65]
SU(N) at level k ∼ 1 10d mIIA on S6

def 7/3 or 8/3 6 [55, 56]

Table 2. The constants α and s in (1.3) for several classes of 3d SCFTs and the corresponding
supergravity compactifications to an effective 4d model, together with the appropriate references.
The first entry covers a range of M2 brane theories including ABJM [66] along with other N = 3
and N = 4 quivers [67–69], and even a few examples where M7 is a Sasaki-Einstein manifold
preserving only N = 2 supersymmetry [57, 62, 70].

general argument leading to the form of the one-loop correction for an arbitrary multiplet,
and more briefly comment on certain supergravity multiplets such as hypermultiplets and
the Weyl multiplet. We conclude with a list of remarks and related open problems in
section 5. Some of the more technical steps used in our analysis are relegated to the
appendices. In appendix A we discuss more carefully the mathematical framework behind
the regularization of the one-loop determinant on non-compact spaces with boundaries. In
appendix B we explain how these results relate to the eleven-dimensional approach used
in the literature. Appendix C contains the details of the computation of the equivariant
index for vector multiplets on Bolt backgrounds using the Atiyah-Singer theorem.

2 The one-loop set-up

Before discussing the computation of one-loop determinants, we briefly review the steps one
needs to perform in order to localize the supergravity path-integral. To a large extent, these
steps coincide with the ones taken in the usual rigid localization algorithm, as reviewed
in e.g. [2]. There are however some crucial differences that were highlighted in [11]. In
particular, in order to deal with the fact that one must integrate over the metric in the
path-integral, the starting point is to prescribe a set of boundary conditions for all the fields
in the theory. This amounts to a choice of background, which we can conveniently take to
be a supersymmetric solution to the supergravity equations of motion. Once this solution
is specified, we can build a suitable background field formalism in which we integrate over
quantum fluctuations that vanish at the asymptotic boundary.

In the case of interest to us, the holographic dictionary further requires us to study
asymptotically locally AdS4 background solutions, for which there exists a well-defined
procedure to extract finite observables [71, 72]. Importantly, we will work in Euclidean sig-
nature throughout, which allows us to include all supersymmetric Lorentzian backgrounds
(after a suitable Wick-rotation) as well as genuinely Euclidean solutions of holographic
interest. As reviewed in [12], based on the original analysis of [73], any asymptotically
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locally AdS4 supersymmetric background in Euclidean signature possesses a U(1) isometry
defined by the Killing vector ξ with the special property

ξµ = ε̄γµε , (2.1)

where ε is a Killing spinor. One can always introduce local coordinates using this isometry
and, as shown in [12] (building on the older ideas in [36]), one can completely determine the
holographically renormalized on-shell action solely from the knowledge of the fixed points
of the Killing vector ξ. It is also straightforward to derive the Killing vector ξ from the
off-shell gravitino variation, see [38], which is explicitly used in our analysis here.

Having specified the background, we can interpret the corresponding Killing spinor ε
as a ghost for the local supersymmetry transformations in the BRST formalism. At the
same time, we also introduce ghost fields for all other local gauge transformations, e.g. due
to the presence of vector or tensor multiplets. Deforming the resulting BRST algebra as
in [11] produces an equivariant supercharge Q whose algebra closes off-shell according to

Q2 = Lξ , (2.2)

where Lξ is the Lie derivative along the Killing vector ξ. Defined in this way, the charge Q
leaves the background fields invariant while acting non-trivially on the quantum fluctu-
ations. It can therefore be used to localize the supergravity path-integral.10 Owing to
the presence of ξ in (2.2), this path-integral localization will be related to the fixed-point
formula [12] for the on-shell action. Below, we will make this relation explicit also at the
level of the one-loop determinants.

To localize the path-integral, we proceed as in the rigid case and deform the supergrav-
ity action by a Q-exact term, Ssugra → Ssugra +λQV. The fermionic functional V is chosen
so that Q2V = 0, and this ensures that the deformed path-integral is in fact λ-independent
by the usual argument.11 In the λ→∞ limit, the supergravity path-integral thus localizes
to the critical points of the deformation. A convenient choice for V is to take

V =
∫
d4x

∑
Ψ

√
g Ψ̄QΨ , (2.3)

where g is the determinant of the background metric and the sum runs over all quantum
fluctuations of the fermion fields (which have vanishing background expectation values).
The bosonic critical locus then consists of fields φ that satisfy QΨ = 0 and asymptote to
the boundary values specified by our choice of background. Note that this locus splits into
a product over loci in each multiplet of the theory owing to the fact that Q descends from
the off-shell local supersymmetry (and BRST) algebra.

With this notation and in the λ→∞ limit, the path-integral reduces to

Zsugra(M4) =
∫

[dφ] exp
(
−Ssugra(φ)

)
Zsugra

1-loop(φ) , (2.4)

10Observe that in the case where the background has many Killing spinors, one can make a choice as to
which Q to use to localize the path-integral.

11We assume here that the supergravity theory is free of local anomalies so that the field space measure
is also invariant under Q.
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where the one-loop contribution comes from integrating over the quadratic fluctuations of
the fields around the localization locus, and one should carefully understand the measure of
the remaining integral, as dictated by consistency of the quantum theory (see [10, 74, 75] for
discussions on this point). On the left-hand side, we indicate explicitly that the localized
path-integral depends on a choice of asymptotically locally AdS4 background, which we
denote by M4.

Our interest in the present paper does not lie in the complete evaluation of the localized
path-integral (2.4) given a supersymmetric background M4, which at present seems out of
reach. Instead, we are specifically interested in the structure of the one-loop factor Zsugra

1-loop
for arbitrary asymptotically locally AdS4 supersymmetric backgrounds. In this context,
we will not need the details of the localization locus specified by the fields φ. Indeed, we
can focus on the evaluation of (2.4) in a saddle-point approximation around the classical
background φ = φ̊(M4), in which case the logarithm of the partition function reads

logZsugra(M4) = −Ssugra(φ̊(M4)
)

+ logZsugra
1-loop

(
φ̊(M4)

)
+ . . . (2.5)

The first term on the right-hand side is the supersymmetric on-shell action, while the
second term will scale as logL with L the length scale associated to the asympotically
locally AdS4 background M4. Holographically, this length scale is related to the rank of
the gauge group as in (1.2), and we can therefore focus solely on the second term in (2.5)
to understand the logN corrections to the planar limit in the dual field theory. Further
corrections to the saddle-point approximation in (2.5) are expected to go as N−n for some
(model-dependent) n ≥ 0 and will not contribute to the log correction. Importantly, note
that the above formula does not include the correction to the saddle-point evaluation of the
classical action, which could potentially produce another logN piece holographically as in
the example of twisted black holes discussed in [76]. Such corrections are not generic and do
not correct the grand-canonical expression for the localized observable, but clearly need to
be kept in mind. In holographic matches of observables in different ensembles one therefore
needs to take extra care in the passage between the gravitational log-corrections (1.1) and
the logN field theory expression (1.3).

Having reviewed the supergravity localization steps, we focus on the one-loop deter-
minant of the quadratic fluctuations around the localization locus. This factor is most
efficiently studied by introducing the so-called cohomological split with respect to the su-
percharge Q. This means that we divide all bosonic and fermionic fields into sets {XX0 ,XX1 }
together with their Q-images, where the index X runs over all supermultiplets in the the-
ory, 0 denotes bosonic fields and 1 fermionic fields. The fermionic deformation V, at
quadratic order around the localization locus, can be written as follows [1]:

V|quad. =
∑
X

(
QXX0 XX1

) (D00 D01
D10 D11

)(
XX0
QXX1

)
. (2.6)

The only quadratic modes that are not automatically paired by supersymmetry are the
ones acted upon by the D10 operator. Therefore, for a given eigenvalue of H := Q2, we are
after the dimensions of the kernel and cokernel of D10. The difference of these dimensions
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is encoded in the equivariant index,

indH(D10)(t) := TrKerD10 e
iHt − TrCokerD10 e

iHt

=
∑
n

(m(0)
n −m(1)

n ) eλnt ,
(2.7)

where m(0)
n and m(1)

n are the dimensions of the kernel and cokernel for a given eigenvalue λn
of the iH operator labeled by a set of parameters n, and t is a formal expansion parameter.
The equivariant index of differential operators is a subject of rich mathematical interest
culminating in the Atiyah-Singer index theorem [77]. Broadly speaking, the theorem relates
the number of solutions of the differential equations D10u = D∗10u = 0 (where ∗ denotes
the formal adjoint) to the topology of the supersymmetric background and allows us to
compute the index rather straightforwardly. Once the latter is known, the one-loop factor
in (2.4) is obtained by making use of the following relation:

Zsugra
1-loop =

∏
n

λn
1
2 mn , mn := m

(1)
n −m(0)

n . (2.8)

Note that the infinite product over the n labels is a priori only a formal expression, and
one may need to introduce a suitable regulator to obtain a finite, sensible answer.

After these general preliminaries, we proceed to the derivation of our main formula (1.1)
for the case of vector multiplets on a number of supersymmetric backgrounds. We then give
arguments for the general case of arbitrary supermultiplets. It is important to stress that
we make three major assumptions in the derivation, together with a few smaller technical
assumptions we discuss along the way:

• we assume a smooth filling for all asymptotic boundaries we consider. We do not
discuss backgrounds with singularities which possibly evade many of the arguments
we present. Supergravity methods in general seem ill-suited for dealing with such
singular spaces, which instead can often be resolved and understood in the framework
of string theory.12

• we assume a choice of boundary conditions for all supergravity fields on the asymp-
totically locally Euclidean AdS4 backgrounds, such that we can use the Atiyah-Singer
index theorem and the Atiyah-Bott fixed point formula as stated for compact spaces.
Such an assumption is intrinsically at the heart of holography beyond large N and
the index theorems we use are well-studied for non-compact spaces with boundaries.
We therefore comment in more detail on the issues of regularization on non-compact
spaces below and in appendix A, based on the analysis of [81].

• we consider only abelian gauge groups in supergravity. Although this is not a major
loss of generality as far as holography is concerned (it means that the underlying

12In particular this means we also discard the supersymmetric black holes with spindle horizons recently
discussed in [78] due to the appearance of conical singularities in the four-dimensional description. The
existence of a gluing/fixed-point formula also for these horizons [79, 80] however strongly hints at a similar
factorization of the one-loop determinant.
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R-symmetry group of the dual field theory can only be U(1) such that we describe
the holographic 3d SCFT in an N = 2 language), it simplifies the gauge-fixing using
BRST as well as the calculation of the equivariant index of differential operators.

From an AdS/CFT point of view these three main assumptions fit in the principles of
standard holography and are certainly not surprising, but it would be interesting to explore
more rigorously their fundamental importance. We leave this question for future studies.

3 Vector multiplets

Here we follow closely the logic and detailed calculations presented in [76] for the example
of supersymmetric black holes in AdS4, extending it in several ways for the purposes of our
general argument. We use the superconformal gravity formulation reviewed e.g. in [82].
The main advantage is that it guarantees off-shell closure of the local symmetry algebra on
the various multiplets, and ensures that the following analysis is independent of the precise
form of the supergravity action, which can for instance include higher-derivative terms.
The minimal gauged supergravity theory in this formalism consists of the gravity (Weyl)
multiplet, one compensating vector multiplet and one compensating hypermultiplet. We
can then add an arbitrary number of vector and hypermultiplets to obtain matter-coupled
N = 2 gauged supergravities. In addition, there are more exotic multiplets available in the
formalism like tensor multiplets and more general linear and chiral multiplets [83], with
various combinations of these also producing massive multiplets.

Let us now consider a number of abelian vector multiplets. The scalars and fermions
are in the adjoint representation so we have no charged fields. Since the superconformal
algebra closes on each multiplet separately, we can focus on the contribution of a single
vector multiplet to the one-loop determinant without loss of generality. A vector multiplet
in Euclidean superconformal gravity [84] consists of two independent real scalar fields X±,
a U(1) gauge field Wµ, a triplet of real scalars Yij , as well as a doublet of chiral and anti-
chiral gaugini Ωi

±. Here and below, i = 1, 2 is an SU(2)R index. As outlined above, we
must gauge-fix the theory by introducing appropriate ghost fields and arrange all fields
according to the cohomological split. To do so, it is convenient to change the basis for
the physical fermion fields to the so-called twisted gaugini λ, λµ, λij as in [76]. Because
the norm of the Killing spinor generating the canonical isometry ξ is non-vanishing, this
change of basis is invertible. Next we can easily gauge-fix the U(1) gauge symmetry by
introducing a set of ghost and anti-ghost fields c and b together with a Lagrange multiplier
field B enforcing the gauge-fixing condition in the path-integral (there will be one of these
for each vector multiplet). Together with the local supersymmetry ghosts, this allows us to
deform the standard BRST operator into an equivariant supercharge Q [11], which closes
off-shell according to (2.2). The cohomological split for a vector multiplet is then given by13

Xvec
0 := {X+ +X− ,Wµ} , Xvec

1 := {λij , c , b} , (3.1)

while the remaining bosonic fields {X+ − X−, Yij , B} and fermionic fields {λ, λµ} sit in
theQ-images of the above sets. Combined with the expression for the fermionic deformation

13See [76] for a discussion of the reality conditions obeyed by the fields.
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functional V, this split allows us to explicitly identify the D10 operator relevant for vector
multiplets according to (2.6). Schematically, its matrix elements take the form

(Dvec
10 )αβ = Kµν

αβ(ξ) ∂µ∂ν +Kµ
αβ(ξ) ∂µ +Kαβ(ξ) , (3.2)

where α, β = 1, . . . , 5 run over the fields of Xvec
0,1 . The derivative coefficients depend on

the choice of supersymmetric background M4, and therefore on the choice of the canonical
isometry ξ. We refer the reader to [76] for explicit expressions in the case of static twisted
black holes mentioned in table 1.

We now want to compute the equivariant index under H = Q2 of the operator Dvec
10 .

An important property of this index is that it is uniquely determined14 by the symbol
of the differential operator. In practice, the symbol σ(Dvec

10 ) is obtained by replacing the
derivatives ∂µ by pµ in (3.2), where pµ are the coordinates on the fibers of the cotangent
bundle T ∗M4 (the momenta). This yields the following matrix representation of the symbol,

σ(Dvec
10 )αβ = Kµν

αβ(ξ) pµpν +Kµ
αβ(ξ) pµ . (3.3)

Using some linear algebra, it is then possible to show that σ(Dvec
10 ) is equivalent to the

symbol of standard differential operators depending on whether the background M4 is a
NUT or a Bolt. For the former, the isometry ξ has isolated fixed points and the symbol
reduces to the symbol of the (anti)-self-dual complex

D± : 0 −→ Ω0 d−→ Ω1 d±
−→ Ω2± −→ 0 , (3.4)

in the R4 neighborhood of each fixed point [1]. For the latter, ξ leaves invariant a two-
dimensional submanifold isomorphic to a Riemann surface and the symbol of Dvec

10 can
be identified with the symbol of D+ in the neighborhood of the fixed locus [76]. The
upshot of this short discussion is that we can access the one-loop determinants of abelian
vector multiplets coupled to gauged supergravity by evaluating the equivariant index of
the standard complex (3.4) in the neighborhood of the fixed locus, both for NUT and Bolt
backgrounds.

3.1 Fixed 2-manifolds (“Bolts”)

We first consider the case of the canonical isometry ξ having a fixed two-dimensional
submanifold, necessarily isomorphic to a Riemann surface Σg of genus g. The case of fixed
two-manifolds instead of fixed points prominently features in the rigid localization of the
topologically twisted index [22, 24, 25], but below we will employ an index theorem instead
of the direct mode analysis used in these references. The neighborhood of the fixed two-
manifold is most generally given by a complex line bundle O(−p)→ Σg with the fibration
having Chern degree p. Locally we write the canonical Killing vector as

ξ = 1
Lb

∂τ , ξµ =: (ε, 0, 0, 0) , (3.5)

14This fact is true for so-called elliptic operators. For more general transversally elliptic operators, the
index is determined by its symbol up to a distribution [34].
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where τ is the polar angle covering the complex line bundle (Euclidean time). We have
inserted the length scale ε−1 = Lb on dimensional grounds, and note that the particular
value of Lb in general depends (i) on the particular background M4 and (ii) on the localiza-
tion locus parametrized by φ in (2.4). In the case of static twisted black holes [19] where
the fibre is trivial and the fixed two-manifold is located at the centre of the H2 factor in
the near-horizon geometry, Lb measures the off-shell length scale of H2 [76]; in the case
of the 1/4-BPS Bolt solutions with a general fibre p [33] or the black saddles with trivial
fibre [85], the fixed two-manifold is embedded in H4 and Lb measures the length scale of
the asymptotic H4. No matter what the particular details are, holographically we are in-
terested in the scale carrying the rank of the gauge group N . We will discuss its relation
to Lb at the end of this subsection.

Non-compactness. We now want to use the Atiyah-Singer theorem to obtain the equiv-
ariant index of the self-dual complex (3.4). The fact that we consider non-compact asymp-
totically locally Euclidean AdS4 backgrounds introduces potential subtleties. To discuss
such subtleties in a simple setting, recall that on an even-dimensional compact manifold M4
with a boundary, Chern’s Gauss-Bonnet index formula states∫

M4
e+

∫
∂M4

Θ = χ(M4) . (3.6)

Above, e is the Euler class of M4 and Θ is a polynomial in the curvature two-form Rab
and the second fundamental form θab. In four dimensions, they are given by the familiar
expressions [86]

e = 1
32π2 εabcdR

ab ∧Rcd , Θ = − 1
32π2 εabcd

(
2 θab ∧Rcd − 4

3 θ
ab ∧ θce ∧ θed

)
. (3.7)

Chern’s formula can be generalized to the case of non-compact manifolds by introducing
suitable regulators for the integrals, in order to deal with the potential divergences. We will
not review this in detail here and simply refer the reader to [81] for a thorough exposition.
Of particular interest to us is the application of such a regularized Gauss-Bonnet formula
to the case where the metric on the background M4 is conformally compact. A conformally
compact metric is one that, in a neighborhood of the boundary located in some coordinate
system at x = 0, can be put in the form

ds2 ≈ dx2

α(x)2x2 + hij(x)dyidyj
x2 as x→ 0 , (3.8)

with α(0) 6= 0. If in addition the boundary metric hij(x) has an expansion around x = 0
involving only even powers of x below x4, then it can be shown that

R
∫
∂M4

Θ = 0 , (3.9)

where R denotes an explicit regularization of the integral [81]. Thus, for such class of
metrics, the Gauss-Bonnet index formula receives no contribution from the boundary and
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takes the form of a simple regularization of the standard Gauss-Bonnet theorem applicable
to closed manifolds,

R
∫
M4

e = χ(M4) . (3.10)

Motivated by this simple example, we will restrict our application of the Atiyah-Singer
index theorem to supersymmetric backgrounds whose metric is of the above class, namely
even conformally compact (ECC). In the case of the de Rham complex responsible for the
Gauss-Bonnet theorem, this restriction addresses the potential issue of boundary contri-
butions to the index, as we just saw. The issue of non-compactness can be dealt with by
regularizing the integrals as in the usual holographic renormalization, namely by introduc-
ing a cut-off x = δ, expanding around small δ and keeping only the constant term [81].
It seems reasonable to expect that the restriction to ECC metrics will also avoid sub-
tle boundary issues for other complexes. We will thus work under the assumption that
the equivariant index of standard complexes is free of boundary contributions and can be
regularized straightforwardly when the metric on M4 is ECC. Clearly, the Atiyah-Singer
theorem may very well apply to backgrounds outside of this class, but we leave this as an
interesting (mathematical) question for the future.

Atiyah-Singer index theorem. For Bolt backgrounds with a general fiber, we show
in appendix A that the metric is conformally compact but not necessarily even. The
failure to be even is controlled by the Chern degree p of the fibration. According to the
above discussion, we will therefore restrict ourselves to the case p = 0 in what follows.15

For such Bolts, the neighborhood of the fixed locus of ξ is simply N ∼= R2 × Σg. Under
the U(1)ε group action generated by ξ in (3.5), the (complexified) self-dual complex (3.4) is
isomorphic to the Dolbeault complex twisted by the holomorphic U(1)-bundle V := O⊕KN

where O is the trivial bundle and KN is the canonical bundle over N [87]. This twisted
Dolbeault complex is given by

∂̄V : 0 −→ Ω0,0(V ) ∂̄V−→ Ω0,1(V ) ∂̄V−→ Ω0,2(V ) −→ 0 . (3.11)

The Atiyah-Singer theorem then gives the equivariant index of the operator ∂̄V as an
integral over the submanifold Mq ⊂ N left fixed by an element q ∈ U(1)ε [35],

indq(∂̄V ) =
∫
Mq

chq(V |Mq) Td(TM +
q )

chq
(
1−NM −

q
) ∣∣∣∣

top
, (3.12)

with TM +
q the holomorphic tangent bundle of Mq, NM −

q the anti-holomorphic normal
bundle of Mq in M , and V |Mq the restriction of the bundle V to Mq. The characteristic
classes of the relevant bundles appearing in the integrand are the Todd class (Td) and
the U(1)-equivariant Chern character (chq). Lastly, the subscript “top” indicates that we
integrate the top-form component of the resulting class over Mq.

In the case at hand,Mq
∼= Σg and we can also distinguish between the orientation of the

normal bundle NΣg which is related to the chirality of the Killing spinors defining ξ. This
15We make some comments about the p 6= 0 case in appendix C.
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leads to two cases which [12] dubbed Bolt±. By the equivalence of symbols discussed above,
the equivariant index (3.12) directly gives the equivariant index of the Dvec

10 operator we
are after. We relegate the evaluation of the relevant characteristic classes in the integrand
to appendix C, and simply quote the final result:

indq(Dvec
10 )(t) = −

( 1
1− q + 1

1− q−1 − 2
) ∫

Σg

1
2 c1(Σg) . (3.13)

Above, q := exp(i ε t) ∈ U(1)ε and the factor of 2 in the first bracket was added by hand to
remove the zero-modes, as explained in details in [76]. We now expand the first geometric
series in (3.13) in powers of q and the second series in powers of q−1. The equivariant index
then reads

indε(Dvec
10 )(t) = −

( ∞∑
n=1

eintε +
∞∑
n=1

e−intε
)∫

Σg

1
2 c1(Σg) = −

∑
n∈Z∗

mn e
intε , (3.14)

where the multiplicity is given by

mn =
∫

Σg

1
2 c1(Σg) = 1− g ∀ n ∈ Z∗ . (3.15)

According to (3.5) we set ε = L−1
b and use (2.8) to write down the one-loop determinant:

Zvec
1-loop(Bolt±) =

∏
n∈Z∗

( in
Lb

)mn/2
. (3.16)

Note that the factor of 2 in (3.13) precisely removed the n = 0 zero-mode. The above
result is in agreement with the direct mode computation in [76] using the explicit form of
the Dvec

10 differential operator and imposing appropriate boundary conditions.

Regularization and length scale. We must now regularize the infinite product (3.16),
and for this we use zeta-function regularization. As mentioned at the beginning of this
subsection, we focus our attention on the scale carrying the rank N of the dual gauge
group. This allows us to drop a number of irrelevant constants and concentrate on the Lb-
dependence alone. With this in mind, we write

logZvec
1-loop(Bolt±) = −1

2
∑
n∈Z∗

(
1− g

)
logLb +pure number = 1

2
(
1− g

)
logLb + . . . , (3.17)

where we have used the analytic continuation ∑n≥1 n
0 = ζ(0) = −1/2. Note that we did

not need the explicit form of the localization locus QV(φ) = 0 to arrive at (3.17). The
genus of the Riemann surface is a topological quantity and does not depend on the details
of the particular supersymmetric background M4, or the associated localization locus. The
one subtle point is that the length scale Lb is in principle a continuous parameter and
can depend on such details. In the example of the static twisted black holes discussed
in [76], it was shown that Lb does vary along the localizing manifold. It is only in a saddle-
point evaluation of the localized path-integral that Lb corresponds to the on-shell length of
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the H2 factor in the near-horizon region, which in turn is related to the asymptotic length
scale of H4 via the black hole magnetic charges. Although it might seem that we cannot go
further without analyzing the details of each specific case, this is not true for the purposes of
analyzing specifically the logarithmic corrections to the partition functions of dual SCFTs.
The idea is that inside the path-integral, the Lb-dependence of the one-loop determinants
gives a non-trivial integrand. However, we are only interested in the part of the one-loop
contributions carrying holographically the rank N of the gauge group. In other words,
we have not committed to fully evaluating any of the factors entering the dots in (1.1)
or (1.3). These terms will come both from constant factors in the one-loop determinant,
such as the pure number part in (3.17), and from the finite dimensional localized integral
over Lb(φ). The latter can in principle generate many subleading terms in N that enter
the perturbative polynomial P in (1.3). Since the logarithm separates such corrections,
we can safely ignore these subtleties and replace the off-shell scale Lb in (3.17) with the
on-shell length scale L that is related to the rank N via the holographic dictionary (1.2).

We can now allow for an arbitrary number (nV + 1) of abelian vector multiplets in a
Bolt± background, corresponding to nV physical vectors together with the conformal com-
pensator introduced in the off-shell conformal supergravity formalism. Each such multiplet
brings its own factor of (3.17) to the total one-loop factor. For completeness, we also allow
for multiple fixed two-manifolds under the canonical isometry ξ, even though all explicit
examples we know of only have a single fixed Σg. This way, we arrive at the final expression

logZvec
1-loop(Bolt±) = nV + 1

2
∑
i

(1− gi) logL+ . . . (3.18)

In the language of (1.1), this shows that each vector multiplet in the gauged supergravity
theory (physical or compensating) contributes −1/2 to the constant α,

αvec
Bolt = −1

2 , (3.19)

which we claimed could be thought of as a measure of the degrees of freedom in the bulk.
We will expand on this point after analyzing the NUT case in the next subsection.

3.2 Fixed points (“NUTs”)

Atiyah-Bott fixed point formula. Let us now look at the situation where the fixed
locus of ξ is a set of isolated points. In this case, the Atiyah-Singer theorem simplifies
further and we can directly use the Atiyah-Bott fixed point formula [34]. We will begin
by discussing the case of a single fixed point, as in the example of H4 with a squashed
3-sphere S3

b boundary, and then discuss the effect of having additional fixed points. For
such a NUT, the neighborhood of the fixed point is just flat space, N ∼= C2. Locally the
canonical Killing vector is given by

ξ = ε1 ∂τ1 + ε2 ∂τ2 = 1
Lb

(
∂τ1 + ω ∂τ2

)
, (3.20)

where τ1,2 are the standard polar angles covering the two C-planes. In the second equality,
we have again explicitly inserted an overall length scale Lb and used the dimensionless
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equivariant parameter ω. The two C-planes are each associated with an SU(2) Lorentz
symmetry, which together make up the full SO(4) symmetry group.

Every NUT background compiled in table 1 has a metric which is even conformally
compact. According to our discussion in the previous subsection, we will therefore proceed
and use the Atiyah-Bott fixed point formula to evaluate the equivariant index of the Dvec

10
operator (3.2) under the G = U(1)ε1 ×U(1)ε2 action generated by ξ. This formula reads

indq1,q2(Dvec
10 )(t) =

∑
x | x̃=x

TrXvec
0 ,Xvec

1
(−1)F etHε1,ε2

det
(
1− ∂x̃/∂x

) , where x̃ = etHε1,ε2 x , (3.21)

where q1,2 := exp(i ε1,2 t) ∈ G, the sum is over the fixed points under the G-action (3.20),
and the trace is taken over the field subspace consisting of the Xvec

0 and Xvec
1 sets that are

not paired by supersymmetry (cf. (3.1)). The eigenvalues of Hε1,ε2 on this subspace are
labeled by pairs of integers n = {n1, n2} ∈ Z2,

Hε1,ε2Xvec
0,1 =

(
iε1n1 + iε2n2

)
Xvec

0,1 . (3.22)

The determinant factor in (3.21) is given by the product

det
(
1− ∂x̃/∂x

)
= (1− q1)(1− q−1

1 )(1− q2)(1− q−1
2 ) . (3.23)

The numerator can be computed by analyzing the representation of the fields in Xvec
0,1 under

the SO(4) group. For the sets (3.1), the bosonic and fermionic traces are [76]:

TrXvec
0

(−1)F etHε1,ε2 = 1 + q−1
1 + q1 + q−1

2 + q2 ,

TrXvec
1

(−1)F etHε1,ε2 = − 2− q−1
1 q−1

2 − 1− q1q2 .
(3.24)

Using this in (3.21), we arrive at the equivariant index

indq1,q2(Dvec
10 )(t) = 1− 1 + q1q2

(1− q1)(1− q2) , (3.25)

where we have added an extra constant to take care of the zero-mode, as in the Bolt case.
Depending on the orientation of the fixed point, i.e. whether we have a NUT+ or a

NUT− in the notation of [12], the Killing spinor at the fixed point has a fixed positive or
negative chirality and one can accordingly think of ω in (3.20) as positive or negative. As a
result, one should set up a consistent expansion for the geometric series in (3.25) in either
positive or negative powers of q2 (without loss of generality we can always take positive
powers in q1). This is explained carefully in [88]. The resulting expansions are as follows:

NUT+ : indq1,q2(Dvec
10 )(t) = 1−

∑
n1,n2≥0

(1 + q1q2) qn1
1 qn2

2

= − 2
∑

n1,n2≥1
qn1

1 qn2
2 −

∑
n1≥1

qn1
1 −

∑
n2≥1

qn2
2 ,

(3.26)

and
NUT− : indq1,q2(Dvec

10 )(t) = 1−
∑

n1,n2≥0
(1 + q1q

−1
2 ) qn1

1 q−n2
2

= − 2
∑

n1,n2≥1
qn1

1 q−n2
2 −

∑
n1≥1

qn1
1 −

∑
n2≥1

q−n2
2 .

(3.27)
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From this, we read off the Dvec
10 eigenvalue multiplicities for the NUT+,

NUT+ : mn =


2 for (n1, n2) > (0, 0)
1 for (n1 > 0, 0) or (0, n2 > 0)
0 otherwise

. (3.28)

The NUT− multiplicities follow analogously after flipping the sign of n2 as expected. Us-
ing (2.8) to obtain the formal one-loop determinant, we can compactly write the result for
both orientations as

Zvec
1-loop(NUT±) =

∏
n1,n2≥1

( in1 ± iω n2
Lb

) ∏
n1≥1

( in1
Lb

)1/2 ∏
n2≥1

(±iω n2
Lb

)1/2
. (3.29)

Once again, we must regularize the infinite products. Taking the logarithm and using
zeta-function regularization, we arrive at

logZvec
1-loop(NUT±) = −

∑
n1,n2≥1

logLb −
1
2
∑
n1≥1

logLb −
1
2
∑
n2≥1

logLb + pure number

= 1
4 logLb + . . . , (3.30)

where we neglected the pure numbers that do not scale with the length scale Lb. Such terms
will contribute a non-trivial function of the equivariant parameter ω at order O(N0) in a
holographic large N expansion. By the same argument as the one given below (3.17), we
can ignore the dependence of Lb on the particular background and localizing manifold since
we are interested in the holographic partition function only at order logN , and directly
relate Lb to the H4 length scale L. Putting together all (nV + 1) abelian vector multiplets
coupled to conformal supergravity, we find the total contribution from a single fixed point
to be given by

logZvec
1-loop(NUT±) = nV + 1

4 logL+ . . . (3.31)

Clearly the information about the orientation of the NUTs and the equivariant parameter ω
is only subleading, in analogy with the information regarding the orientation of the Bolts.
In the language of (1.1), having in mind that so far we only considered a single fixed
point, the above formula shows that each vector multiplet (physical or compensating)
contributes −1/2 to the constant α,

αvec
NUT = −1

2 . (3.32)

This is the same value we found for the contribution of an abelian vector multiplet on a
Bolt background, (3.19). We will come back to this in section 4.

Gluing fixed points. Obtaining the contribution of multiplet fixed points for one-loop
determinants is straightforward since the Atiyah-Bott formula (3.21) contains a sum over
fixed points. One additional subtlety is that different fixed points can be “glued” to each
other in different manners, by identifying their respective equivariant parameters ω accord-
ing to rules dictated by supersymmetry on different backgrounds. The prime example of
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this gluing in supergravity was considered in [13]: in the case of rotating supersymmetric
black holes with spherical horizons, there are two fixed points corresponding to the centre
of H2 and the North and South pole of the S2. Following this, we now discuss two types
of gluing.

• Identity gluing
The identity gluing is used for the case of Kerr-Newman black holes, i.e. solutions
where supersymmetry is preserved without a twist, see [28, 29]. In this case the two
fixed points are both of the same orientation, such that ωNP = ωSP as discussed
in [13]. This gluing corresponds to the superconformal index (SCI) of the dual field
theory, which for the case of a single abelian vector multiplet is then given by

logZvec
1-loop(SCI) = 2 logZvec

1-loop(NUT+) = 1
2 logLb + . . . (3.33)

We find that the detailed information about the gluing is subleading and will not
affect the logN contribution.

• A-gluing
The A-gluing is instead used for the case of rotating twisted black holes, i.e. solutions
where supersymmetry is preserved with a twist and refinement is added, see [27]. In
this case the two fixed points are of opposite orientation, such that ωNP = −ωSP as
discussed in [13]. This gluing corresponds to the refined topologically twisted index
(RTTI) of the dual field theory, and for a single abelian vector multiplet we find

logZvec
1-loop(RTTI) = logZvec

1-loop(NUT+)+logZvec
1-loop(NUT−) = 1

2 logLb+. . . , (3.34)

where again we see that the gluing rules do not affect the logN contribution.

Since the orientation of the NUT is not important for the result (3.30), the way we glue
various fixed points together does not matter at the level of the one-loop determinants. This
will be true not only for the examples discussed above, but in full generality no matter how
many fixed points we have and how the gluing rule identifies their respective equivariant
parameters ω. We therefore arrive at the general contribution of (nV +1) vector multiplets
for an arbitrary number nfp of fixed points,

logZvec
1-loop(NUT±) = nV + 1

2
nf
2 logL+ . . . (3.35)

We end by noting that the A-gluing example is interesting, since it exhibits a connection
between the Bolt and the NUT backgrounds. Indeed, we can take the unrefined limit ω → 0
for the Killing vector ξ in (3.20). This limit is smooth and corresponds to having a full S2

fixed manifold [89], thus reducing to the Bolt case with g = 0. Refining by turning on ω
breaks up the fixed S2 to two antipodal fixed points, but at order logL the result in the
limit ω → 0 is guaranteed to agree with (3.18) since (3.35) does not depend on ω.
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4 The main formula

4.1 The general argument

Following the discussion in the previous section, our general argument explaining why every
possible multiplet contributes to the one-loop determinant as in (1.1) is now straightfor-
ward. We showed how every multiplet contribution can be evaluated via the Atiyah-Singer
index theorem, and therefore we expect that the equivariant index of the DX10 differential
operator relevant for a given multiplet X will only depend on the topological data of the
background (gi for the Bolts, nf for the NUTs) and on the length scale Lb. As discussed,
the latter can be thought of as being equal to the length scale L of H4 at leading order.
Furthermore, we saw that additional equivariant parameters such as ω and the particular
way we decide to glue various fixed points of the canonical isometry ξ are subleading and
do not affect the logL coefficient in the free energy.

Thus, for a NUT background with nf fixed points, the Atiyah-Bott fixed point theorem
shows that the leading contribution of a given multiplet X to the one-loop determinant
takes the generic form

logZX1-loop(NUT±) = −αXNUT
nf
2 logL+ . . . , (4.1)

where the details of the differential operator DX10 determine the particular value of αXNUT.
For a Bolt background M4 with a fixed manifold Mq isomorphic to Σg (or a disjoint

union thereof), we recall the equivariant index of a generic16 differential operator DX10 as
given by the Atiyah-Singer theorem [35],

indq(DX10) =
∫
TMq

chq
(
j∗σ(DX10)

)
Td(TMC

q )
chq
(∧
−1NM

C
q )

∣∣∣
top

, (4.2)

where j : Mq −→M4 is the inclusion mapping, j∗ its pullback, and σ(D) denotes the sym-
bol of D as introduced in section 3. Applying this general formula to ∂̄V gives back (3.12).

The integrand in (4.2) depends on the details of the operator DX10. Without detailed
knowledge of this operator, this remains rather abstract. However, this integrand always
involves characteristic classes that can be written as polynomials in the Chern classes.
Since we are instructed to pick the top-form of such a polynomial and integrate over the
(tangent space of the) fixed manifold, and since Mq is isomorphic to a Riemann surface Σg

or a disjoint union thereof, it follows that the integrand will generically take the form
of F ({q}) c1(TMq) for some function F of the set of equivariant parameters {q}. The
integration therefore always produces a factor of∫

TMq

F ({q}) c1(TMq) = 2F ({q})
∑
i

(1− gi) , (4.3)

where the dependence on the specific operator DX10 is relegated to the function F . As
an example, for the operator relevant for the vector multiplets, the function F can be

16We assume that the operator is elliptic so that the theorem applies, and that the metric of the back-
ground is ECC so that the result is free of boundary contributions as discussed previously.
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read off from (3.13). Translating the result for the equivariant index into the one-loop
determinant using (2.8) and focusing on the leading contribution to logL as before, we
therefore conclude that every multiplet X will contribute a term

logZX1-loop(Bolt±) = −αXBolt
∑
i

(1− gi) logL+ . . . , (4.4)

to the free energy, for some L-independent number αXBolt derived from the F function.
We can actually say more and give two complimentary arguments to further con-

strain the form of the log-corrections. This will show that the coefficients αXNUT and αXBolt
entering (4.1) and (4.4) must be equal, regardless of the specific form that the relevant
differential operators take.

The first argument is based on particular cases of physical interest. As discussed
in section 3.2, there exists a particular limit in which the NUT and Bolt contributions
must agree since one can turn on an omega-deformation and continuously deform the Bolt
solution with g = 0 to a NUT solution with two fixed points. A concrete example is the
case of rotating black holes with a twist. The background has two antipodal fixed points
under ξ, and the unrefined limit ω → 0 leads to a blow up of these fixed points into
a two-sphere, as explained in [22]. Therefore the unrefined limit of a NUT background
with nf = 2 must agree with the result for a single Bolt at genus g = 0. This imposes

αXNUT = αXBolt =: αX ∀ X . (4.5)

This is already manifest in our results for the vector multiplet contribution, (3.19)
and (3.32). The sum of individual contributions αX for all multiplets in the bulk theory
(see also (4.12) below) will then give the general constant α in (1.1) and its holographic
counterpart in (1.3).

A second, more mathematical argument that does not rely on the smooth unrefined
limit of the omega-deformed backgrounds can also be given. As emphasized many times
throughout this paper, the index theorem for abelian gauge groups necessarily relates
the log-corrections to the topological data of the background manifold M4. As reviewed
by Gibbons and Hawking in [36], the Euler characteristic of non-compact manifolds with
boundary involves a particular combination of nf and (1− gi),

χ(M4) = nf + 2
∑
i

(1− gi) , (4.6)

We have used this result in our main formula (1.1), and we can now argue that the con-
tributions from NUTs and Bolts must indeed come in this particular combination, which
again requires that (4.5) holds. Otherwise, one would find an obstruction in rewriting the
final result in terms of a the simple topological invariant χ. There exists of course other
topological invariants for a given manifold M4 (such as the Hirzebruch signature), but in
general these do not involve only a simple sum over fixed points and fixed submanifolds
under a canonical isometry.

– 20 –



J
H
E
P
1
2
(
2
0
2
1
)
0
3
1

4.2 Hypermultiplets, the gravity multiplet and the massive tower

Having presented the details of the one-loop determinant for vector multiplets in both
Bolt and NUT backgrounds and the general argument why analogous expressions hold
for arbitrary multiplets, we move to a more explicit discussion for some of the known
supergravity multiplets. We will mainly highlight the similarities and important differences
compared to vector multiplets.

We begin with hypermultiplets. In the superconformal formalism, one of the com-
pensating multiplet required to gauge-fix the theory to the Poincaré frame can be chosen
to be a hypermultiplet. For this particular multiplet, it was shown in [76] that the Dhyp

10
operator that controls the one-loop determinant actually vanishes at the fixed points of the
canonical isometry ξ. The compensating hypermultiplet therefore gives a trivial contribu-
tion to logZ1-loop, regardless of the particular background. In contrast, the equivariant
index of the differential operator relevant for a physical hypermultiplet was shown to be
equal and opposite to that of a vector multiplet [76]. Following the same logic as for vector
multiplets, we therefore arrive at the conclusion that nH physical hypermultiplets give a
one-loop contribution of

logZhyp
1-loop(Bolt±) = −nH2

∑
i

(1− gi) logL+ . . . , (4.7)

for Bolt backgrounds with disconnected fixed 2-manifolds labeled by i, and of

logZhyp
1-loop(NUT±) = −nH2

nf
2 logL+ . . . , (4.8)

for NUT backgrounds with nf fixed points. In the language of the previous subsection, we
thus find

αhyp
NUT = αhyp

Bolt = 1
2 . (4.9)

This is another instance where the knowledge of the specific operator Dhyp
10 allows for an

explicit computation of the αX numbers, and shows that our expectation (4.5) is indeed
borne out of such an analysis.

The situation with the Weyl multiplet, giving rise to the massless gravity multiplet
on-shell, is considerably more complicated due to the fact that it includes the gauge sym-
metries of gravity and supersymmetry. In order to properly gauge-fix all the symmetries,
one must introduce 51 bosonic ghosts and 54 fermionic ghosts on top of the original 43
bosonic and 40 fermionic degrees of freedom contained in the multiplet [90]. An impressive
implementation of the deformed BRST cohomology approach outlined in section 2 was
conducted in the latter reference, where the authors found that the cohomological split
involves 47 fundamental bosons and 47 fundamental fermions. Based on this, an explicit
expression for the relevant differential operator DWeyl

10 could be given, and its equivariant
index computed. However, because the authors of [90] were interested in one-loop deter-
minants relevant for asymptotically flat black holes, they obtained the result in ungauged
supergravity. There are a number of crucial differences between the localization manifolds
and the quadratic fluctuations in gauged and ungauged supergravities, as has been high-
lighted in [91]. As such, we should be cautious in extrapolating the results of [90] to our
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current setting. Still, the general arguments of section 4.1 can be applied. As a result, for
e.g. NUT backgrounds, we expect the Weyl multiplet contribution to be of the form

logZWeyl
1-loop(NUT±) = −αWeyl nf

2 logL+ . . . , (4.10)

where αWeyl is a pure number. It is this number that requires a careful analysis of the DWeyl
10

differential operator.17 Note that from an on-shell supergravity perspective we recover the
one-loop contribution of the Poincaré gravity multiplet as a combination of the contribu-
tions from the Weyl multiplet and the compensating vector multiplet,

αgrav = αWeyl + αvec . (4.11)

Additional contributions to α in (1.1) may include other off-shell massless and mas-
sive N = 2 multiplets. Indeed, there exist other matter multiplets one can couple to gauged
superconformal gravity, such as tensor, non-linear, or general chiral multiplets. On-shell,
these should relate to the allowed short and long massive gravity, gravitino and vector mul-
tiplets on AdS4 as detailed in e.g. [92]. All these multiplets are known to arise in explicit
Kaluza-Klein compactifications from ten and eleven dimensions. The full answer for the
coefficient α is therefore given by

α = αWeyl + (nV + 1)αvec + nH α
hyp +

′∑
KK modes

αKK , (4.12)

which in principle involves an infinite sum over the KK tower. The latter may need to be
appropriately regularized, which we indicated by a prime in the sum.

5 Discussion

In this work we used supergravity localization to study the log-corrections to the on-shell
action of asymptotically AdS4 supersymmetric backgrounds, generalizing the results of [76]
for static black holes. Our analysis leads to a general formula that factorizes the corrections
in terms of a single dynamical coefficient α and topological data of the background M4.
The formula is given by

− logZsugra
1-loop(M4) = α

(
nf
2 +

∑
i

(1− gi)
)

logL = α
χ(M4)

2 logL , (5.1)

which holds at leading order in the holographic scale L of AdS4. With this result, we
conclude with a few additional remarks and open questions.

• In order to complete our four-dimensional derivation of log-corrections, it is desirable
to obtain all explicit contributions to the coefficient α for all supergravity multiplets,
possibly establishing a relation with the conformal anomalies of individual particles
as suggested in [93].18 This would then allow for the complete four-dimensional

17For reference, in ungauged supergravity, [90] showed that αWeyl = 23/6.
18We thank Nikolay Bobev for bringing this point to our attention.
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derivation of α, including the entire KK tower. In turn, such a result would find
application in many interesting string theory compactifications in which the KK
sector is fully understood, see e.g. [92, 94–96] and references therein.

• A closely related point is that the dynamic nature of the coefficient α is tied to
the four-dimensional perspective taken in this paper. From a full ten- or eleven-
dimensional point of view it is natural to expect that the one-loop result, computed
via an index theorem, captures the topological data of both the asymptotically AdS4
space and the internal compact manifold. In turn it would follow that it is pre-
cisely the coefficient α that carries the topological information of the compact space,
giving an alternative interpretation of our main formula as a direct factorization
of the log-corrections into two independent topological invariants.19 Indeed this is
already known to happen for asymptotically flat black holes, where log-corrections
depend on the Euler characteristic of the internal Calabi-Yau three-fold [97].

• It is of clear interest to relax the assumptions we have made in our derivation. The
possibility of having mildly singular backgrounds M4 in supergravity like the one
of [78] also prompts us to ask how to apply index theorems on such spaces. Ultimately,
we expect (5.1) to remain valid for all supersymmetric backgrounds that asymptote
to (Euclidean) AdS4 and it is therefore also desirable to test this result against usual
supersymmetric localization results for observables in the 3d boundary theories.

• As already stated in the introduction, it is of great holographic interest to rewrite (5.1)
in terms of three-dimensional boundary data, if possible. Such a formulation could
greatly facilitate the microscopic understanding of the coefficient α (or α/s in the
QFT language of (1.3)), and in turn its physical significance.

• A specific observation we can make regarding the black holes solutions we have cov-
ered is that the fixed-point set of the full spacetime in those examples coincides with
the fixed-point set in the near-horizon region. In other words, the log-corrections for
black holes can be derived entirely from the knowledge of the near-horizon region.
Therefore, we find that the existence of hair degrees of freedom, if any, do not affect
the log-corrections studied in this paper.

• We have focused our attention on holographic partition functions, but of course we
are allowed to add various Q-preserving insertions of both local and non-local oper-
ators. We could for instance insert Wilson lines in (2.4) without introducing major
changes in the following localization steps, see e.g. [91]. Thus, we expect our general
one-loop formula to hold for various other supersymmetric observables produced by
such insertions. However, we need to keep in mind the discussion below (2.5), since
additional log-corrections may arise from the saddle-point evaluation of the classical
action that will in general also depend on the extra insertions in the path-integral.

19We thank Alberto Zaffaroni for bringing this point to our attention.
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• Put in a more general perspective, our work gives a better low-dimensional under-
standing of the underlying gravitational structure of log-corrections. Together with
the results of [12, 13] for the classical on-shell action and the results of [37, 39, 40]
for the perturbative corrections arising from higher-derivative terms, our work makes
progress in understanding the bulk structure of the effective four-dimensional the-
ory. It is interesting and desirable to push this program further to higher-order loops
by harvesting the full power of exact holography. Supergravity localization seems a
promising avenue in this direction, where a natural starting point is to extend the
results of [9] and [76, 91] and generalize them to a broader class of AlAdS solutions.

• A natural question is whether one can extend our supergravity analysis to other
dimensions. This is indeed easy to imagine given the factorization results for 4d
and 5d supersymmetric field theories [3, 4], along with similar gravitational block
structure [13] for different black holes solutions in AdS5,6,7. The complete analysis
for arbitrary asymptotically AdS solutions in higher dimensions is still lacking. We
expect the analog of the results in [12] in higher dimensions to include also higher
dimensional fixed loci such as three- and four-dimensional manifolds. One should then
be able to repeat the one-loop analysis here taking into account these generalizations.
While the details will differ, we expect that equivariant index theorems will provide
the proper mathematical framework also in higher dimensions.

• An even more ambitious goal is to use our results in non-supersymmetric settings
to try and gain a better understanding of log-corrections for thermal black holes.
Even if we can no longer rely on the power of localization, it would be interesting if
somehow the rich mathematical literature on indices of differential operators could
prove relevant to this question.

We hope to be able to contribute to these topics in the future.
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A ECC metrics and the fibered Bolt backgrounds

As explained in section 3.1, index theorems for complexes defined on non-compact spaces
with a boundary can receive additional contributions compared to their counterpart on
closed manifolds. An illustrative example is provided by Albin in [81] (Theorem 7.2) for
the de Rahm complex, whose index gives the Euler characteristic. The theorem states

R
∫
M4

e+ FPε=0

∫
x=ε

Θ = χ(M4) . (A.1)
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Both integrals above are regularized to deal with the non-compact nature of the mani-
fold M4. The second term on the left-hand side captures the boundary contribution to χ,
where the boundary ∂M4 is located at some coordinate x = 0. The regularization intro-
duces a cut-off and extracts the Finite Part (FP) as the cut-off is taken to infinity. Recall
that in four dimensions, the Euler class e and the form Θ are given in (3.7) in terms of the
curvature and second fundamental form. It is further shown in [81] that when the metric is
Even Conformally Compact (ECC), the boundary contribution to the Euler characteristic
vanishes. The definition of an ECC metric is given around (3.8) in the main text. There,
we argued that as long as we use index theorems on manifolds admitting an ECC metric,
we can safely ignore the boundary contributions to indices.

Let us now ask whether the Bolt background falls into the ECC class of metrics. For
concreteness, we focus on the case of an S2 base in what follows, although the general Σg

case follows analogously. The Euclidean Bolt metric is given by [33]

ds2 = λ(r)(dτ + 2s cos θ dφ)2 + dr2

λ(r) + (r2 − s2) dΩ2
2 , (A.2)

in coordinates where the boundary is at r → +∞. The radial function λ is given by

λ(r) = (r2 − s2)2 + (1− 4s2)(r2 + s2)− 2Mr + P 2 −Q2

r2 − s2 , (A.3)

and the solution is supported by a one-form gauge field

A = P (r2 + s2)− 2sQ r
r2 − s2

( 1
2sdτ + cos θ dφ

)
. (A.4)

The parameters M , Q and P are related to the mass, the electric charge and the magnetic
charge of the solution, while s characterizes the squashing of the boundary S3. For the
solution to be BPS, we require the parameters to satisfy [33]

P = −1
2(4s2 − 1) , M = 2sQ . (A.5)

We change coordinates as r = x−1 and expand the metric (A.2) near the x = 0 boundary
to obtain

ds2 ≈ dx2

x2 + hij(x)dyidyj
x2 , (A.6)

where the non-zero elements of the boundary metric are given by

hθθ = 1− s2x2 +O(x5) ,
4hττ = 4 + 4(1− 5s2)x2 − 16Qsx3 + (1− 4Q2 − 16s4)x4 +O(x5) ,
hτφ = s cos θ

(
4 + 4(1− 5s2)x2 − 16Qsx3 + (1− 4Q2 − 16s4)x4)+O(x5) ,

hφφ = (1− s2x2) sin2 θ

+ s2 cos2 θ
(
4 + 4(1− 5s2)x2 − 16Qsx3 + (1− 4Q2 − 16s4)x4)+O(x5) .

(A.7)

Note the absence of a linear term in x, and the presence of a cubic term in the expansion
proportional to the combination of parameters Qs. This shows that in the general case
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where Qs 6= 0, the Bolt metric (A.2) is conformally compact but not even. Thus, we
cannot immediately conclude that the Θ contribution in (A.1) vanishes. Indeed, a direct
computation on this space shows that

FPε=0

∫
x=ε

Θ = 2Qs
π

β , (A.8)

where β is the periodicity of the Euclidean time circle. The failure for the metric to be
ECC is controlled by the parameter s which in turn is related to the Chern degree of the
fibration in the topology of the Bolt solution O(−p) → S2. Therefore, a way of ensuring
the absence of boundary contributions to the Euler characteristic of a Bolt background is
to set p = 0 and study the case where the fibration is trivial. This is done in section 3.1.

B Relation to the eleven-dimensional heat kernel approach

For completeness and for the sake of comparison, we give here a very brief summary of the
11d approach to one-loop determinants used previously in [49, 50] and references thereof.
We will outline the main differences and caveats in the higher-dimensional approach with
respect to the one we take in the main part of the paper.

The calculation performed in [49] showed how to correctly account for the log correc-
tions of pure AdS4 with an S3 boundary by way of heat kernel techniques. This framework
(see e.g. [98] for the standard review) is particularly useful in odd dimensions where the
Seeley-de Witt coefficients vanish. As such, only the zero-modes of the various fields con-
tribute to the final answer. Those were correctly accounted for in [49] where the authors
considered the 11d space to be a direct product of the maximally symmetric spaces AdS4
and S7.

An extension of this result to the case of asymptotically AdS4 black holes was pre-
sented in [50], again adopting an eleven-dimensional perspective. However, an important
(and as-of-yet unproven) assumption made in [50] is that the 11d space can once again be
treated as being split between a four- and a seven-dimensional space, even though asymp-
totically AdS4 solutions no longer enjoy a direct product structure in eleven dimensions.
Under the assumption that the fibration between the asymptotically AdS4 solution and the
deformed S7 does not lead to a different topology, [50] showed that the zero-mode calcula-
tion can be reduced to the evaluation of the regularized integral of the Euler class, R

∫
e on

the four-dimensional manifold. Using that the black hole solutions in question do admit
ECC metrics, one then obtains the number of zero modes using (A.1),

n0 = R
∫
M4

e = χ(M4) = 2(1− g) . (B.1)

This result can then be related to one-loop determinant and the log-correction in the
holographically dual field theory prediction, as explained in [50]. From the discussion in
appendix A, it is clear that (B.1) can only be properly understood in the case of ECC
metrics, and indeed it is interesting to suggest that the assumption that the fibration does
not change the topology might be closely related to the issue of extra boundary modes.

Let us end this appendix with a short list of pros and cons when comparing our super-
gravity localization results and the heat kernel method in asymptotically AdS4 spacetimes.
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• The heat kernel approach is particularly useful for odd-dimensional solutions and is
instead rather cumbersome for even-dimensional systems that naturally appear from
type II string compactifications. The reason is that non-zero modes entering the
general calculation are in principle infinite in AdS due to the lack of scale separation
of the KK modes. The similar issue of infinite KK modes complicates also our
analysis by preventing us to explicit calculate the coefficient α in (1.1). However, our
approach makes no particular difference between uplifts to ten and eleven dimensions,
thus keeping the outcome general.

• The technical assumption that one can further break up the calculation in 4 and 7
dimensions is only correct strictly for pure AdS4 and is otherwise a question that
needs to be addressed on a case-by-case basis after a full uplift of the known four-
dimensional solutions. In contrast, our approach circumvents this problem as we are
able to address the one-loop determinant for general supersymmetric backgrounds. It
is however interesting to note that the simplification due to considering ECC metrics
seems technically important in both approaches.

• The upshot of the direct eleven-dimensional approach is in the explicit evaluation of
the dynamical coefficient α in (1.1) without further assumptions at least in the pure
AdS4 case. In this sense one can actually use our general formula (1.3) taking as
an extra input the explicit value of α that, once calculated, holds for the full set of
partition functions of the given holographically dual theory.

These points seem to render the two approaches complementary to each other and
likely very useful in combination for deriving log-corrections in holography.

C The index of the twisted Dolbeault complex

In this appendix, we give some details on the computation of various characteristic classes
entering the computation of the equivariant index of the twisted Dolbeault complex (3.11)
via the Atiyah-Singer theorem. We follow the beautiful exposition given in [35]. Let G be a
compact Lie group acting holomorphically on a compact complex manifold M , letMq ⊂M
be the submanifold of points left fixed by an element q ∈ G and let V be a holomorphic G-
bundle on M . The G-equivariant index of the V -twisted Dolbeault operator is given by an
integral over the fixed locus,

indq(∂̄V ) =
∫
Mq

chq(V |Mq) Td(TM +
q )

chq
(
1−NM −

q
) ∣∣∣∣

top
. (C.1)

As a warm-up, let us consider the case where the bundle V is trivial and the manifold M
is simply R4 = C×C with complex coordinates (z1, z2) upon which G = U(1)×U(1) acts
as (z1, z2) 7→ (q1z1, q2z2). The fixed locus under this action is the origin of R4, Mq = {0}.
The tangent bundle TMq is therefore trivial, and the (complexified) normal bundle is
given by NMq = C × C. The Lie group G acts holomorphically on the two C-factors by
multiplication by q1 and q2. Thus, the G-equivariant Chern character is given by

chq
(
1−NM −

q

)
= (1− q−1

1 )(1− q−1
2 ) . (C.2)

– 27 –



J
H
E
P
1
2
(
2
0
2
1
)
0
3
1

Applying (C.1), we see that the integration over Mq is trivial and that the index is simply

indq(∂̄ ; R4) = 1
(1− q−1

1 )(1− q−1
2 )

. (C.3)

We can further twist the Dolbeault complex by the bundle V := O⊕KM , where KM is the
canonical bundle over M . The formula above picks up a contribution from the equivariant
Chern character of the bundle V restricted to the fixed locus,

chq(V |{0}) = 1 + q−1
1 q−1

2 . (C.4)

To write the above, we have used the fact that KM = ∧2 T ∗M+ is the complex line bundle
of holomorphic two-forms, upon which G acts by multiplication by q−1

1 q−1
2 . So by (C.1),

indq(∂̄V ; R4) = 1 + q1q2
(1− q1)(1− q2) . (C.5)

Since the twisted Dolbeault complex is isomorphic to the (complexified) self-dual com-
plex (3.4) [87], the above should match the equivariant index of D+ on R4. This is indeed
the case, see e.g. [99].

Let us now consider the twisted Dolbeault complex on the 4-sphere S4. In this case,
the action of G = U(1)× U(1) action has two fixed points, located at the North Pole and
at the South Pole. Using (C.5), we obtain the total index

indq(∂̄V ; S4) =
[ 1 + q1q2

(1− q1)(1− q2)

]
NP

+
[ 1 + q1q2

(1− q1)(1− q2)

]
SP

. (C.6)

Although the contributions look equal, the fact that the ∂̄V operator is not elliptic but only
transversally elliptic on the 4-sphere forces us to consider different expansions at the NP
and SP. The above agrees with the equivariant index of D+ as computed in e.g. [1]. For
this comparison, it is important to note the overall minus sign coming from folding the SD
complex: since D+ is a three-term complex (cf. (3.4)), one typically folds it to a standard
two-term complex

δ ⊕ d+ : Ω1 −→ Ω0 ⊕ Ω2+ , (C.7)

where δ is the co-differential. In the folding, the roles of the bosonic and fermionic bundles
are switched, and as a result indq(D+) = −indq(δ ⊕ d+).

Moving to the case of interest in section 3.1, we now study the twisted Dolbeault
complex on M = R2 × S2 with a G = U(1) group acting as (w, z) 7→ (qw, z). The fixed
locus is now Mq = S2. The normal bundle of S2 in R2×S2 is trivial, NS2 = R2×S2. The
group G acts on the first factor by multiplication by q, and therefore

chq
(
1−NM −

q

)
= 1− q−1 . (C.8)

Using c1(KM |S2) = c1(KS2) = −c1(S2), the equivariant Chern character of the bundle V
is given by

chq(V |S2) = 1 + q−1(1− c1(S2)
)
. (C.9)
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Lastly, the Todd class of the tangent bundle is given in terms of the first Chern class
of Mq = S2,

Td(S2) = 1 + 1
2 c1(S2) . (C.10)

Putting these results together in (C.1), we obtain the following equivariant index

indq(∂̄V ; R2 × S2) = 1
1− q−1

∫
S2

(
1 + 1

2 c1(S2)
)(

1 + q−1 − q−1 c1(S2)
)∣∣∣

top

=
∫
S2

1
2 c1(S2) .

(C.11)

Finally, taking into account the minus sign as explained around (C.7), we obtain the
equivariant index of the self-dual complex on R2 × S2,

indq(D+ ; R2 × S2) = −
( 1

1− q + 1
1− q−1

)∫
S2

1
2 c1(S2) . (C.12)

Note that the prefactor is formally one, although the way we write it above is convenient
to compare to the mode analysis in [76] and the terminology in [99]. The generalization to
the case where M = R2 × Σg is straightforward, and the result is given in (3.13).

Finally, we comment on the general case relevant for Bolt backgrounds. We consider
the twisted Dolbeault complex on M ∼= O(−p) → Σg with a G = U(1) group leaving
Mq = Σg fixed. To compute the equivariant Chern character of KM |Σg we used the
adjunction formula KMq = KM |Mq ⊗NMq for Mq ⊂M to obtain

chq(KM |Σg) =
q−1(1− c1(Σg)

)
1 + c1(NΣg)

, (C.13)

where we used that G acts on the normal bundle NΣg by multiplication by q. This leads
to the equivariant Chern character of the twisting V -bundle,

chq(V |Σg) = 1 +
q−1(1− c1(Σg)

)
1 + c1(NΣg)

. (C.14)

On the other hand, since the normal bundle NΣg has non-trivial topology compared to
the p = 0 case, we also have to take into account its equivariant Chern character. We find

chq
(
1−NMq

−) = 1− q−1(1− c1(NΣg)
)
. (C.15)

Note that the above two equations simplify to (C.9) and (C.8), respectively, when the
normal bundle is trivial. Taking into account the Todd class of Σg and extracting the
top-form component, we thus find a contribution to the equivariant index of∫

Σg

1
2 c1(Σg)−

2q
(1− q)2

∫
Σg

c1(NΣg) . (C.16)

As discussed in the main text and the previous appendix, this may not constitute the full
answer for the equivariant index, since there could be non-zero boundary contributions due
to the metric not being ECC. Another hint that the above result may be incomplete comes
from the fact that the second integral in (C.16) leads to an explicit p-dependence in our
formula for the log-corrections (1.1). Such a dependence is absent from the results in [51].
We hope to be able to better understand and resolve these issues in the future.
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