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Abstract: This paper systematically treats the evolving quantum state for two-
dimensional black holes, with particular focus on the CGHS model, but also elucidating
features generalizing to higher dimensions. This is done in Schrödinger picture(s), to ex-
hibit the dynamic evolution of the state at intermediate times. After a review of classical
solutions, also connecting to descriptions of higher-dimensional black holes, it overviews
the canonical quantum treatment of the full evolution, including gravitational dynamics.
Derived in an approximation to this, following conversion to “perturbation picture”, is the
evolution of the quantum matter on the background geometry. Features of the evolving
matter state are described, based on choice of a time slicing to put the evolution into
ADM form. The choices of slicing as well as coordinates on the slices result in different
quantum “pictures” for treating the evolution. If such a description is based on smooth
trans-horizon slices, that avoids explicit reference to ultra-planckian modes familiar from
traditional treatments, and exhibits the Hawking excitations as emerging from a “quantum
atmosphere” with thickness comparable to the inverse temperature. Detailed study of the
state exhibits the entanglement structure between Hawking quanta and the partner exci-
tations inside the black hole, and the corresponding “missing information”. This explicit
description also allows direct study of the evolution and features, e.g. as seen by infalling
observers, of these partner excitations, helping to address various puzzles with them. Ex-
plicit treatment of the evolving state, and its extension to higher dimensions, provides
further connections to information theory and a starting point for study of corrections that
can unitarize evolution, arising from new quantum gravity effects — whether wormholes
or something entirely different.
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1 Introduction

Black holes appear to be the most mysterious objects in the cosmos, and a primary reason
for this is the predicted phenomenon of Hawking evaporation [1] and the associated question
of the fate of information that they capture.

A useful way to study the information content of a black hole (BH) is through the
entanglement of its quantum states with outside degrees of freedom. A BH can build up
this entanglement either by absorbing entangled matter, or it naturally builds up such
entanglement via the Hawking process. Transfer of this entanglement back to the BH envi-
ronment is forbidden in a description based on local quantum field theory (LQFT), by its
property of locality. So, as is well known, if the BH disappears at the end of evaporation,
this entanglement will be lost, contradicting the unitarity of quantum mechanics; the vio-
lation can be parameterized by the increase in the microscopic von Neumann entropy. The
alternative of a microscopic BH remnant remaining, preserving the entanglement, leads to
even worse trouble [2–4]. So, in short, BH decay appears to present a conflict among the
most basic physical principles, which underpin LQFT.

Search for the correct resolution to this conflict has lead to significant synergies with
more general studies of quantum information. Key questions in the BH problem, and
more generally, are those of the localization and flow of quantum information, and of the
quantum amplitudes describing its evolution.

Since understanding localization and flow of information is key in this connection, and
likely in understanding the ultimate resolution to the problem, a useful starting point is
to understand the original Hawking evolution from this perspective. While the outlines
of such a story are well-understood, the original Hawking calculation [1], and its many
rederivations, has more of an S-matrix character, calculating amplitudes for asymptotic
states rather than the real-time evolution of the process.

For a more complete understanding and connection with quantum information con-
cepts, it seems desirable to have a description of the dynamical, real-time, evolution of the
quantum state. Within the LQFT framework we don’t expect any big surprises here, and so
this evolution is expected to still lead to ultimate unitarity violation. But this also provides
a foundation for addressing the central question: where and how does the true unitary quan-
tum evolution depart from the LQFT description? We do expect that a description of con-
sistent unitary evolution can also be studied from the S-matrix perspective, e.g. by tracking
amplitudes for and arrival times of excitations at infinity, and investigating ultimate unitar-
ity of these amplitudes. But, for deeper insight, it seems important to “open the box” and
understand the evolution, whatever form it takes, at a more microscopic and local level.

One purpose of this paper is to further develop such a real-time description of the
LQFT evolution originally discussed by Hawking. This is most naturally done by working
in a Schrödinger picture, to describe the evolving quantum state. The basic features of such
evolution are also most easily exhibited in the context of evolution of a two-dimensional
BH, such as those of dilaton gravity models, though clear connections to higher-dimensional
behavior can also be seen.1

1Earlier investigation in this direction appeared in [5, 6]. Explicit treatment of additional aspects of
higher-dimensional evolution will be presented separately [7]. Other discussion of such evolution in-
cludes [8–13].
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Describing the real-time evolution of amplitudes can also help give clearer answer to
various questions that have arisen in the original S-matrix derivation. One is the possible
role of transplanckian effects, arising from a picture of tracing excitations back to the
horizon in Hawking’s original derivation. Another is the question of how to generalize
Hawking’s derivation to the case of interacting theories, where such a trace-back procedure
doesn’t work. One more is the question of the role and physical behavior of internal
“Hawking partner” excitations, which in a certain sense have negative energy.

Addressing the first question, one can see explicitly that the transplanckian features of
Hawking’s original derivation arise from basis dependence that is an artifact of his deriva-
tion. It is important to understand this, since Hawking’s original description has suggested
to some that Hawking radiation originates in a microscopic region surrounding the hori-
zon. A contrary viewpoint, in which it originates in a thicker “quantum atmosphere”, has
been advocated in [14] (see [15–17] for earlier related arguments), and is supported by the
real-time evolution described in a more regular basis.

In short, it seems desirable to improve our standard of understanding of Hawking
evolution; this also provides a more precise starting point from which to ask the question
where true physical evolution departs from his description, and how. One approach to this
question is to parameterize unitary evolution as a departure from Hawking’s evolution,
assuming for example that it arises from corrections that are in a certain sense small.2

Indeed, features of the original Hawking derivation may be important clues in such a
parameterization. For example, the assumption that Hawking radiation “is produced” in a
microscopic near-horizon region suggests that its modifications also appear in this region,
and that in turn predicts that infalling observers see high-energy excitations there [19–21],
called a “firewall” in [21]. A more complete picture of Hawking evolution suggests this is
oversimplified. If, on the other hand, the Hawking radiation emerges from a thicker quan-
tum atmosphere, that is one motivation for suggesting that its modifications are operative
in that broader region, as in [22–24].

Providing such a foundation for parameterization of new effects could be helpful, what-
ever these new effects are; candidates include modifications suggested by ’t Hooft [25],
wormholes [26–29], or other intrinsically quantum gravity effects e.g. resulting from inex-
actness of a spacetime description [30]. Various such effects might be parameterized in an
effective description, such as given in [31], [18], in terms of modifications to the quantum
hamiltonian. For example, it may be possible to give an effective description of wormholes
this way, similarly to [32, 33].

Another key question regards the possible observability of such new effects. The BH
conundrum appears to indicate that LQFT must be modified on the scale of the event hori-
zon radius R. If these modifications extend over a region of thickness O(R), as suggested
both by the preceding argument and by naturalness considerations, then they can extend
into a region where observational signals — either electromagnetic or gravitational wave —
are being produced. This suggests search for signatures of such modifications [34–37], [18],
as an observational guide to their physics.

2For a brief review, see [18].
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In outline, this paper begins with a description of 2d dilaton gravity theories, par-
ticularly that of [38], and reviews classical dynamic BH solutions of the latter, also im-
proving connections to more familiar higher-dimensional descriptions of BHs. Section 3
then overviews canonical quantization of the full theory, including gravitational dynamics,
to yield the evolving quantum wavefunction. Section 4 describes how a perturbative ap-
proximation to this then gives evolution on a classical background; this involves a change
of quantum picture, analogous to that to interaction picture, but here to what is called
“perturbation picture”.

Section 5 begins the in-depth treatment of the evolving quantum state of matter on
the classical BH background. It first overviews different BH coordinatizations, as well as
slicings needed to give an ADM description of the dynamics. This is followed by treatment
of the evolution of the state. This is done in a Schrödinger picture; different slicings
and coordinatizations in fact yield what amount to different such pictures. In a regular
description, based on a smooth trans-horizon slicing, one can find the explicit form of the
hamiltonian, and see both the smooth structure of the quantum atmosphere as well as the
connection to the more singular energy eigenstate basis. This leads to an explicit treatment
of the Hawking evolution which supports many of the features which have been generally
appreciated, but in a more complete description, which is also readily generalized to the
interacting case. In particular, comparison of different descriptions clearly exhibits the
development of entanglement between Hawking radiation and BH states. The description
of these states is connected to the properties of internal Hawking partners, which are
explicitly studied in section 6, for example from the viewpoint of an infalling observer. This
provides helpful perspective on puzzles involving these excitations. Section 7 concludes,
and also discusses connections with further directions, such as parameterizing unitarizing
deviations from Hawking evolution.

Appendices give a brief overview of useful ADM expressions, as well as an introduction
to “perturbation picture”.

Sections three and four can be skipped by those readers only interested in the descrip-
tion of evolution of the quantum state on a fixed BH geometry.

2 Classical theories and black hole solutions

2.1 Dilaton gravity

Two-dimensional dilaton gravity provides a model for investigating many (though not nec-
essarily all) aspects of black hole evolution. One motivation for it is to consider the radially-
symmetric truncation of four-dimensional Einstein gravity, assuming a metric of the form

ds2 = gµν(t, r)dxµdxν + 1
λ2 e

−2φ(t,r)dΩ2
2 ; (2.1)

here xµ = (t, r), dΩ2
2 is the line element on S2, and λ is a constant with dimension of

inverse length. The Einstein action then reduces to

SE = 1
4Gλ2

∫
d2x

√
|g|e−2φ

[
R+ 2(∇φ)2 + 2λ2e2φ

]
. (2.2)
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A more general class of dilaton gravity theories has action

S = − 1
2π

∫
d2x

√
|g|
[
K(φ)(∇φ)2 + 1

2Φ(φ)R+ U(φ)
]

(2.3)

and has been investigated beginning in the 1990s (see [39] and references therein).
A particularly tractable model is motivated by the 2d reduction of the string action,

together with one (or more) minimally coupled scalar fields [38],

S = 1
2π

∫
d2x

√
|g|e−2φ

[
R+ 4(∇φ)2 + 4λ2

]
− 1

4π

∫
d2x

√
|g|(∇F )2 + S∂ , (2.4)

where λ is again a constant with dimensions of inverse length.3 The surface term in (2.4)
can be fixed by the requirement [40] that the action only depend on first derivatives of the
metric, ensuring a good variational principle with vanishing metric perturbation on the
boundary. This gives4

S∂ = 1
π

∫
∂
dl e−2φK∂ , (2.5)

where dl is the boundary length element, and K∂ the extrinsic curvature of the boundary.
The action (2.4), commonly called the CGHS model, has a general class of exact

solutions describing 2d black hole formation, and their evaporation can also be simply
treated.

2.2 General classical solution

The equations of motion arising from varying the metric and dilaton in (2.4) are

2
{
∇µ∇νφ− gµν

[
�φ− (∇φ)2 + λ2

]}
= e2φTµν (2.6)

and
�φ− (∇φ)2 + λ2 + R

4 = 0 , (2.7)

where
Tµν = 1

2

[
∇µF∇νF −

1
2gµν(∇F )2

]
(2.8)

is the matter stress tensor.5 One sees that e2φ is an effective coupling analogous to Newton’s
constant. These have a vacuum solution

gµν = ηµν , φ = −λr , (2.9)

with spatial coordinate r, known as the linear dilaton vacuum.
More general solutions are most easily analyzed by using a diffeomorphism to put the

metric in conformal gauge,
ds2 = −e2ρdx+dx− , (2.10)

3Here we use the traditional normalization [38] of the action, which matches certain conventions in study
of 2d theories; this results in factors of 2π relative to standard 4d conventions. For example, a canonically
normalized scalar field, such as φ in appendix A, is related as F =

√
2πφ.

4For recent discussion of other boundary conditions in the context of Jackiw-Teitelboim gravity, see [41].
5The traditional normalization used here differs from the usual canonical definition, TCanon

µν =
−(2/

√
|g|)δS/δgµν . They are related by TCanon

µν = TCGHS
µν /π.
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with x± = t± x. Using the relation
√
|g|R = −2�ρ, the gravitational action becomes

Sgφ = 1
2π

∫
d2x

[
2∇(ρ− φ) · ∇e−2φ + 4λ2e2(ρ−φ)

]
. (2.11)

Varying e−2φ shows that ρ− φ behaves as a free field, with general solution6

ρ− φ = 1
2
[
w+(x+) + w−(x−)

]
. (2.12)

Clearly w± are shifted by a conformal diffeomorphism, which changes the gauge. Varying
ρ− φ then gives an equation for φ, with general solution

e−2φ = u+(x+) + u−(x−)− λ2
∫ x+

dx+ew+

∫ x−

dx−ew− . (2.13)

The remaining ++ and −− equations of (2.6) determine u± in terms of the matter
distribution. They take the form

−(4∂+ρ∂+φ− 2∂2
+φ) = e2φ T++

−(4∂−ρ∂−φ− 2∂2
−φ) = e2φ T−− (2.14)

and have solution
u± = M±

λ
−
∫
dx±ew±

∫
dx±e−w±T±± (2.15)

where M± are integration constants. A useful simplification is to work in units with λ = 1.
With vanishing Tµν and M± = 0, we have u± = 0 and the choice of gauge w+ = x+,
w− = −x− reproduces the linear dilaton vacuum (2.9).

2.3 Black hole spacetimes

A black hole is formed by a left moving wave F = F0(x+) incident on the linear dilaton
vacuum. Specifically, with the preceding choice of gauge, (2.15) then gives

u+ = M(x+)− ex+∆(x+) , (2.16)

where
M(x+) =

∫ x+

−∞
dx+T++ , ∆(x+) =

∫ x+

−∞
dx+e−x

+
T++ , (2.17)

resulting in dilaton
e−2φ = M(x+) + ex

+ [
e−x

− −∆(x+)
]

(2.18)

and metric
ds2 = − dx+dx−

1 +M(x+)ex−−x+ −∆(x+)ex−
. (2.19)

The special case of a delta-function shock wave T++ = Mδ(x+ − x+
0 ) gives ∆ = Me−x

+
0 .

A Penrose diagram for the solution (2.19) is shown in figure 1. To understand the
interpretation of the metric (2.19) as a black hole, one can choose a gauge preserving the

6Formally, this simplification arises from the symmetry e−2φ → e−2φ + ε, ρ − φ → ρ − φ. The action
also has classical conformal symmetry.
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Figure 1. A Penrose diagram for the black hole (2.19) formed from F matter incident on the linear
dilaton vacuum. The incident field turns off at advanced time x+

f , and the subsequent solution is a
vacuum black hole. Also shown are the horizon in red, a set of spatial slices in green, and the line
r = φ = 0, which can be thought of as an approximate boundary for the strong-coupling region.

spatial coordinate definition r = −φ. Then a coordinate transformation to the coordinates
(r, x+) yields the metric

ds2 = −
[
1−M(x+)e−2r

]
dx+2 + 2dx+dr . (2.20)

which is a black hole metric in Vaidya form [42]. Define

f(x+, r) = 1−M(x+)e−2r (2.21)

and suppose that Tµν vanishes after advanced time x+
f , so thatM(x+) = M is subsequently

constant. Then, if for x+ > x+
f we define the “tortoise coordinate”

r∗ =
∫

dr

f(r) = 1
2 ln

∣∣∣e2r −M
∣∣∣ , (2.22)

the substitution x+ = t+ r∗ puts the x+ > x+
f metric in standard Schwarzschild form,

ds2 = −f(r)dt2 + dr2

f(r) , (2.23)

with horizon at r = R = lnM/2.
The function f in (2.21) for x+ > x+

f is the 2d version of the dimension D > 3
function f = 1 − (R/r)D−3. The metric (2.19) provides a good global description of the
spacetime, which has a singularity at r = −∞, rather than at r = 0 for higher D. However,
as r = −φ approaches zero, the effective coupling e2φ becomes O(1), and so that might
correspondingly be interpreted as placing an endpoint on the semiclassical spacetime. An
Eddington-Finkelstein diagram for the spacetime is shown in figure 2.

– 7 –



J
H
E
P
1
2
(
2
0
2
1
)
0
2
5


























































F Matter 

Figure 2. An Eddington-Finkelstein diagram for the same spacetime as figure 1. Spatial slices
are taken to be the “straight” slices described in 5.1.2, with time coordinate denoted tst. The line
r = φ = 0 and horizon at r = R are shown, as are representative light cones in light blue.

3 Full canonical evolution of the wavefunction

A general approach to investigate the quantum evolution of a spacetime is to work with
a time slicing (which ultimately is part of a choice of gauge), and describe the evolution
with respect to that slicing. Before turning to quantum evolution for black holes, we next
give a general description of the evolving wavefunction in dilaton gravity. In a general time
slicing the metric takes the ADM form [43]

ds2 = −N2dt2 + q(dx+Nxdt)(dx+Nxdt) (3.1)

where q = qxx = gxx is the spatial metric component. Description of the canonical evolution
begins by identifying the momenta and hamiltonian.

We first review this for the matter action, which in ADM variables is

SF = 1
4π

∫
dtdx
√
qN

[ 1
N2

(
Ḟ −Nx∂xF

)2
− q−1(∂xF )2

]
; (3.2)

this and other useful formulas in ADM variables are summarized in appendix A. We define
the canonical momentum as

Π = 1
√
q

δS

δḞ
= 1

2πN
(
Ḟ −Nx∂xF

)
= 1

2π ∂nF (3.3)

where
nµ = (1,−Nx)/N (3.4)

is the normal to a constant-t slice. The canonical commutation relations are

[Π(x, t), F (x′, t)] = − i
√
q
δ(x− x′) . (3.5)
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In canonical variables, the action then becomes

SF =
∫
dtdx
√
q
(
ΠḞ −HF

)
, (3.6)

with hamiltonian density

HF = N

4π

[
(2πΠ)2 + (∂xF )2

q

]
+NxΠ∂xF . (3.7)

The Schrödinger evolution of an initial state |ψ0〉 is then of the form

|ψ, t〉 = exp
{
−i
∫
dtdx
√
qHF

}
|ψ0〉 . (3.8)

Generalization to include evolution of the metric and dilaton requires reexpressing the
gravitational action (2.4) in canonical form.7 The general expression for the Ricci scalar
in ADM variables (see appendix A) simplifies in two dimensions to a total derivative,√

|g|R = −2∂x

(
∂xN −KNx√

q

)
− 2∂t (√qK) (3.9)

where K is the scalar extrinsic curvature of constant-t slices,

K = qxxKxx = − 1
2qN (q̇ − 2DxNx) = − 1

2q∂nq + ∂xN
x

N
. (3.10)

Inserting (3.9) in the action (2.4) and integrating by parts, the surface terms cancel S∂ ,
and the gravidilaton action becomes

Sgφ = 2
π

∫
d2x
√
qNe−2φ

[
−K∂nφ− (∂nφ)2 − ∂xN∂xφ

qN
+ (∂xφ)2

q
+ λ2

]
. (3.11)

The canonical momenta are then

Πq = 1
√
q

δS

δq̇
= 1
πq
e−2φ∂nφ (3.12)

Πφ = 1
√
q

δS

δφ̇
= − 2

π
e−2φ(K + 2∂nφ) . (3.13)

These together with (3.11) then give us the canonical form of the action,

Sgφ =
∫
d2x
√
q
(
Πq q̇ + Πφφ̇−Hgφ

)
(3.14)

with hamiltonian density

Hgφ = N

{
πe2φqΠq (Πφ + 2qΠq) + 2

π
e−2φ

[1
q

(∂xφ)2 − λ2 −D2φ

]}
+Nx [Πφ∂xφ− 2∂x(qΠq)]

−Dx

(
N

πq
∂xe
−2φ − 2qΠqN

x
)

(3.15)

7For a related canonical analysis, see [44].
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The full hamiltonian takes the form

H =
∫
dx
√
q (Hgφ +HF ) =

∫
dx
√
q (NCN +NxCx) +H∂ (3.16)

where

CN = − 2
π
e−2φ

(
D2φ− 1

q
(∂xφ)2 + λ2

)
+ πe2φqΠq (Πφ + 2qΠq) + 1

4π

[
(2πΠ)2 + 1

q
(∂xF )2

]
(3.17)

and
Cx = Πφ∂xφ− 2∂x(qΠq) + Π∂xF (3.18)

are the constraints, and
H∂ =

(
−N
π
∂xe
−2φ + 2qΠqNx

)
∞

(3.19)

is the boundary contribution to the hamiltonian. For the black hole solution (2.23), this
gives the value

H∂ = M

π
− infinite constant . (3.20)

The equations of motion for N and Nx give the constraint equations

CN = Cx = 0 . (3.21)

If and only if these vanish, the hamiltonian (3.16) is given by this surface term. On the other
hand, for a generic state, the hamiltonian (3.16) can be written using its first expression
as the integral over a constant-t slice. The term HF can be rewritten in terms of the stress
tensor,8

HF = 1
π
Tnt (3.22)

suggesting that Hgφ likewise be interpreted as due to an effective gravidilaton stress tensor.
The full state evolves as

|ψ, t〉 = exp
{
−i
∫
dtH

}
|ψ0〉 , (3.23)

and so is governed by H∂ for states annihilated by the constraints. Of course, determin-
ing the full evolution requires gauge-fixing conditions, relating N and Nx and the other
variables.

The classical equations of the preceding section are equivalent to the equations derived
from the canonical action (3.6), (3.14). These include the constraints (3.21) and the equa-
tions arising from varying Πq and Πφ, which reproduce (3.12) and (3.13). Varying q and φ
gives the remaining equations in the gravidilaton sector.

The gravitational backreaction induced by matter, and specifically the gravitational
dressing of matter excitations, can be found by solving the constraints. As with (2.6), we
see that this backreaction is small with the coupling e2φ. For configurations where this pa-
rameter is small, we may work to leading perturbative order in which matter fluctuations

8The unusual normalization in this and (3.20) arises from historical 2d conventions; see footnotes 3
and 5.
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propagate on a classical background. Going beyond this order, one may also encounter ad-
ditional counterterm contributions (see, e.g., [39]). We will leave more complete treatment
of the quantum gravitational field and dynamics for future work,9 and largely focus on this
approximation for the remainder of this paper.

4 Perturbative treatment of evolution; perturbation picture

For example, one may consider the quantum state corresponding to an F -wave incident
from infinity on the state corresponding to the linear dilaton vacuum. The state can be
written

|F0〉 = e−
i
π

∫
dxF0(x+T )∂+F (x,T )|0,LDV〉 (4.1)

in the asymptotic limit of vanishing coupling, achieved by taking time T large and nega-
tive. Here F0(x+) gives the profile of the wave; one can readily check that 〈F0|F (x)|F0〉 =
F0(x+). As the wave propagates into finite values of the dilaton background, the con-
straints (3.21) must be solved to determine the gravidilaton part of the wavefunction.

The quantum evolution may be studied as a perturbation about the classical solu-
tion that F0 produces. Specifically, let g0 and φ0 be the corresponding solution, given
by (2.18), (2.19). Then, the quantum variables may be expanded as F = F0 +f , g = g0 +h,
and φ = φ0 + ϕ. If the fields and momenta are collectively denoted ΦI , ΠI , and their per-
turbations Φ̃I , Π̃I , the hamiltonian has the corresponding expansion

H = H0 + Φ̃I
∂H

∂ΦI
|0 + Π̃I

∂H

∂ΠI
|0 + H̃

= H0 − Φ̃IΠ̇0I + Π̃IΦ̇0I + H̃ , (4.2)

where H0 is the hamiltonian for the classical solution, H̃ has all contributions of second
and higher order in the perturbations, and Hamilton’s equations have been used in the
second line.

The evolving state (3.23) has an overall phase exp{−iH0t}, together with evolution
by the perturbation hamiltonian H̃. For time-dependent backgrounds, the linear terms
in (4.2) can be seen to induce a change of picture, analogous to that between Schrödinger
and interaction pictures; this is explained further in appendix B.10 We refer to the new
picture as “perturbation picture”. In the original Schrödinger picture, the operators ΦI are
time independent, and the state evolves according to (3.23). In perturbation picture the
perturbation operators Φ̃I are time independent, and the state evolves as

|ψ, t〉 = exp
{
−i
∫
dtH̃

}
|ψ0〉 . (4.3)

An easy way to understand the need for the change of picture is the inconsistency of
time-independence of ΦI and Φ̃I if ΦI = Φ0I(t) + Φ̃I .

9For related treatment of JT gravity, see [45].
10For previous discussion, see also [46].
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If we perturb about the classical collapse solution of (2.19), or about the linear dilaton
vacuum, the constraints (3.17), (3.18), (3.21), together with the gauge conditions, deter-
mine the metric and dilaton fluctuations h, ϕ in terms of the matter fluctuation f . One
sees directly that the result is that h and ϕ are of order e2φ0 . In turn, this means that
for small effective coupling e2φ0 , the leading order contribution to H̃ is simply that of the
matter field, namely (3.7) with F → f and evaluated in the background metric. One can
investigate higher-order contributions to the evolution (which includes backreaction of the
f perturbations on the metric and dilaton), but for now will focus on this leading-order
evolution.

5 Leading-order evolution: matter on background

We now turn to the leading order perturbative evolution. We have argued that this evo-
lution is governed by an ADM matter hamiltonian (3.7), defined given a slicing of the
background spacetime of the classical BH solution, (2.19). Some initial investigation of
this evolution appeared in [6], and the present discussion will expand on that, further
elucidating some of its features.

5.1 Classical black hole background

We begin by recapping and extending the description of the classical BH background, and
then discussing foliations of it that can be used to describe hamiltonian evolution.

5.1.1 Coordinate descriptions

The collapsing BH solution was given by (2.19) in (x+, x−) coordinates, or by (2.20) in
Vaidya coordinates (x+, r). Notice that the dilaton solution (2.18) and the coordinate
choice r = −φ implies the coordinate relation

e2r = M(x+) + ex
+ [
e−x

− −∆(x+)
]
. (5.1)

Both of these coordinate descriptions are smooth across the horizon. In the coordinates
x±, the event horizon corresponds to

e−x
− = ∆ , (5.2)

where ∆ = ∆(x+
f ), and the singularity is at r = −∞, or infinite φ, corresponding to

e−x
−
s = ∆(x+)−M(x+)e−x+

. (5.3)

In the post-formation vacuum region x+ > x+
f , the horizon was found to be alternately

described as lying at r = R = lnM/2.
Other coordinate descriptions are also useful. For x+ > x+

f the Schwarzschild form of
the metric (2.23) was found with time defined by x+ = t+ r∗(r). The corresponding chiral
coordinate y− = t − r∗(r) then describes the region outside the horizon. This exterior
coordinate may equivalently be defined via

e−y
− = e−x

− −∆, (5.4)
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and this definition can be extended to x+ < x+
f as well. An analogous expression

eŷ
− = ∆− e−x− (5.5)

describes the interior. In the vacuum region x+ > x+
f the metric then takes the form

ds2 = −dx+dy−(1−Me−2r) = −dx+dŷ−(Me−2r − 1) (5.6)

which is asymptotically flat as r → ∞. The coordinates y− and ŷ− are singular at the
horizon.

Another choice of smooth coordinates at the horizon is that of Kruskal,

X+ = ex
+
, X− = ∆− e−x− = −e−y− , (5.7)

in terms of which the final BH metric becomes

ds2 = − dX−dX+

M −X+X−
. (5.8)

5.1.2 Slices and ADM parameterizations

The description of dynamical evolution in this BH spacetime depends on a choice of time
slices. In general, these can be parameterized as

xµ = X µ(t, x) (5.9)

where t labels the slices and x is a spatial coordinate along the slices. Working in the
background of the BH (2.19) and eliminating x, one can alternately write

x+ = S(t, x−) (5.10)

to specify the general slicing. Once the BH has formed, at x+ > x+
f , the solution (2.20)

has translation symmetry under shifts of x+. We expect the evolution to simplify if we
choose slices respecting this symmetry, and these are determined by [5, 6]

x+ = t+ S(r) (5.11)

for a given “slice function” S(r). We refer to this type of slicing as a stationary slicing.
The formula (5.11) unifies various different descriptions of the spacetime [6]. Using

x+ as time corresponds to S = 0. Schwarzschild time slices correspond to S(r) = r∗(r).
Another simple choice is that of “straight slices”, with S(r) = r. A useful case intermediate
between these is to take S(r) to be a monotonic function that asymptotes to minus infinity
for some finite value r = Rn < R; for sufficiently large Rn > 0, these are “nice” in that
they avoid strong coupling [47, 48]. The straight slice parameterization and others with
S → −∞ as r → −∞ can be extended into the preformation vacuum region to provide
Cauchy slices for the full spacetime, as shown for example in figure 2. While the nice slices
provide Cauchy slices for the post-formation vacuum BH, they in contrast do not provide
Cauchy slices for the earlier vacuum region. But, one can match these nice slices to another
slicing at earlier times to find corresponding Cauchy slices, as shown in figure 3.

– 13 –
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Figure 3. A slicing of the 2d BH spacetime which in the post-formation region utilizes nice slices.
These asymptote to the radius Rn < R, shown in light green. However, in the pre-formation
region these would not give Cauchy slices; Cauchy slices can be constructed by extending the slices
differently into the early region, as shown in light blue.

Notice that higher-dimensional spacetimes behave differently; for example higher-
dimensional Schwarzschild terminates at r = 0. This means that in higher dimensions
straight slices and other similar choices which intersect r = 0 do not give Cauchy slices
for the spacetime, as shown in figure 4. So, in higher dimensions one needs nice slice like
behavior if one wants to describe evolution on Cauchy slices, or alternately one needs some
other completion of the Hilbert space to describe the “missing states” at r = 0.

With a general time translation invariant slicing (5.11), the BH metric (2.20) takes the
ADM form (3.1), with [5]

q = qrr = S′[2− f(x+, r)S′] = 1
N2 , Nr = 1− f(x+, r)S′ (5.12)

and f(x+, r) given in (2.21). One may alternately use a more general spatial parameter
x(r) as a coordinate along the slices, and transform these expressions accordingly.

5.2 Schrödinger evolution of the state

5.2.1 Schrödinger description of the state

One goal of this paper is to provide an explicit description of some features of the evolving
quantum state, in a Schrödinger picture. The evolution can be described with respect to
a particular basis for the Hilbert space, which arises from making some choices.11 First is
a choice of time slicing, as for example in the preceding discussion. Second is a choice of

11In the end physical quantities should be independent of such choices. We will leave more complete
discussion of this statement, which is closely related to the gauge invariance of gravity, for future work.
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Figure 4. Slices in a four (or higher) dimensional Schwarzschild BH spacetime. Straight slices end
at r = 0, and so do not provide good Cauchy slices; for example, data corresponding to the infalling
excitation shown does not register on later straight slices, unless additional degrees of freedom are
included “at r = 0”. Slices that have nice behavior, in that they avoid the singularity, as shown, do
in contrast provide Cauchy slices.

coordinates along the slices. Third, one needs to choose a basis of modes, with different
choices useful in different contexts. In a Schrödinger description, a mode basis can be
defined by specifying a complete set of pairs of functions γi(x) = (fi(x), πi(x)) on a general
time slice, with a complex structure [49–51] that separates these into the “positive fre-
quency” modes γA(x) = (fA(x), πA(x)) and conjugate “negative frequency” modes γ∗A(x).
On a t =constant slice, one then expands the field operators as

F (x) =
∑
A

[
aAfA(x) + a†Af

∗
A(x)

]
, Π(x) =

∑
A

[
aAπA(x) + a†Aπ

∗
A(x)

]
. (5.13)

If the mode basis is normalized such that

(γA, γB) = δAB , (γA, γ∗B) = 0 , (5.14)

with the norm
(γ1, γ2) = i

∫
dx
√
q(f∗1π2 − π∗1f2) (5.15)

then, from the canonical commutators (3.5), the operators aA, a†B satisfy

[aA, a†B] = δAB , [aA, aB] = [a†A, a
†
B] = 0 . (5.16)

Basis states for the Hilbert space follow from the standard Fock construction, with creation
operators a†A acting on a vacuum |0〉 annihilated by the aA.

Different choices of time slicings, spatial coordinates, and modes yield different bases
for the Hilbert space. For example, as discussed in 5.1.1, once a time slicing is chosen,
the coordinates −x−, −X−, r, or a more general regular x(t, r), are all regular across the
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horizon. With a general such regular coordinate x, one useful choice of modes follows by
taking

fk = eikx , f̃k = e−ikx , (5.17)

for arbitrary k, and then defining πk, π̃k by requiring that fk and f̃k extend to right and
left moving solutions, annihilated by ∂±, respectively. Due to the regularity of x at the
horizon, such bases are naturally referred to as regular bases[6]. The field operator can
then be taken to have expansion

F (x) =
∫ ∞

0

dk√
2π2k

(akeikx + ãke
−ikx + h.c.) , (5.18)

and similarly for Π(x), where ak, ãk are right/left moving operators with commutator
normalization

[ak, a†k′ ] = 4πkδ(k − k′) = [ãk, ã†k′ ] . (5.19)

In such a Schrödinger picture description, the operators F (x) and Π(x) of (5.13) are
time independent, and evolution is that of the state, as in (3.23). The initial state for
the BH (excluding the infalling matter) is most simply described in terms of the modes
exp{±ikr} in the asymptotic past. If we use straight slices, with x+ = t+ r, in this region,
the initial state is just the vacuum |0〉− for these modes. The description of the subsequent
post-formation evolution of the state then depends on the choices we have made of slicing,
coordinates, and basis.

5.2.2 Hamiltonians, pictures, and evolution

We have found that, for a general choice of slices, with coordinates (t, x), the leading-order
evolution between slices is given by the ADM matter hamiltonian, from (3.7),

H = 1
4π

∫
dx
√
q

{
N

[
(2πΠ)2 + (∂xF )2

q

]
+ 4πNxΠ∂xF

}
, (5.20)

with canonical commutators (3.5). Notice that this is readily extended to include interac-
tion terms. This hamiltonian depends on the lapse N and shift Nx, which are specified by
giving the vector

ξ = (∂/∂t)x ↔ ξµ = (∂xµ/∂t)x (5.21)

connecting corresponding points on nearby slices (here the subscript denotes the variable
held fixed under differentiation). It is also useful to rewrite H, using the expressions (3.3)
and (3.4) for Π and the unit normal nµ, as

H = Hξ = 1
4π

∫
dx
√
q

[
(∂tF )2

2N + N

2 g
xx∂xF∂xF

]
= 1
π

∫
dx
√
q nµξνTµν . (5.22)

Here we introduce the notation Hξ to emphasize the dependence of the hamiltonian
not only on the slicing but also on the choice of coordinate along the slices: the vector ξ
is defined with fixed x, and so depends on the choice of x.12 A key point is that different

12This dependence is also directly seen in alternate approaches, such as the covariant canonical quanti-
zation; see e.g. [52] for a brief overview and further references, or [53].
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choices of slices and coordinate lead to different hamiltonians. One might say that these
choices define different Schrödinger pictures.

In the special case where ξµ is a Killing vector, like in the post-formation region with
coordinate x taken to be a function only of r, conservation of Tµν then implies that Hξ is
conserved.

In terms of chiral components, using T+− = 0, the hamiltonian (5.22) can be ex-
pressed as

Hξ = 1
π

∫
dx
√
q
(
n−ξ−T−− + n+ξ+T++

)
, (5.23)

For example if we consider a stationary slicing given by (5.11), for some S(r), that def-
inition, and the coordinate relation (5.1), give the relations of the chiral coordinates x±

to t, r.
Focussing first on left (ingoing) movers, one easily finds from the normal (3.4) and the

ADM expressions (5.12) that n+ = S′/
√
qrr. For a spatial coordinate x(r) with no extra

time dependence, ξ+ = 1, and the left-moving hamiltonian becomes

HL
ξ = 1

2π

∫
dx

(∂x+/∂x)t
∂xF∂xF (5.24)

Specifically, with straight slices S(r) = r and spatial coordinate x = r, the evolution is the
same as in a flat background,

HL
ξ =

∫ ∞
0

dk

4πkk ã
†
kãk + constant . (5.25)

The right (outgoing) movers behave more nontrivially. With a general choice of spatial
coordinate x(r, t) or x(x+, x−), one finds from a short calculation using (5.1) the needed
expressions

√
qxxn

− = −
(
∂x−

∂x

)
t

(5.26)

and ξ− = (∂x−/∂t)x. Substituting the right-moving part of the evolving solution
from (5.18) into the hamiltonian (5.23) then gives

HR
ξ = 1

2π

∫
dx γ(t, x)∂xF∂xF =

∫ ∞
0

dk

4π
dk′

4π
[
A(k, k′)a†kak′ +B(k, k′)a†ka

†
k′ + h.c.

]
, (5.27)

with the function
γ(t, x) = −

(
∂x−

∂t

)
x

/(∂x−
∂x

)
t

(5.28)

determined by the slice parameterization, and with time-dependent coefficients

A(k, k′) =
∫
dxγ(t, x)e−i(k−k′)x , B(k, k′) = −

∫
dxγ(t, x)e−i(k+k′)x . (5.29)

The hamiltonian (5.27) governs the evolution in a regular basis (5.18). The presence of
the coefficients B(k, k′) describes particle creation in this basis. If one instead begins with
an interacting theory, one also expects terms that are cubic or higher-order in the ladder
operators.
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For examples of this general evolution, consider a slicing defined by the stationary
definition (5.11), extended into the pre-formation region. For coordinate along (within)
the slices, one choice is to use x−, and it is then natural to use the “conformal” modes
fk = e−ikx

− for the right-moving basis. Then in the (t, x−) coordinates ξµ = (1, 0), so
γ ≡ 0, the hamiltonian HR

ξ = 0, and in this picture evolution is trivial. The same follows
if the spatial coordinate is the Kruskal X− of (5.7).

In contrast, for evolution in a picture with spatial coordinate x = r, we instead find,
from the coordinate relations (5.1), (5.11),

γ(t, r) = f(x+, r)
2− f(x+, r)S′ , (5.30)

with f(x+, r) given by (2.21), generalizing a result in [6]. For a given slicing determined
by S(r), the initial state |0〉− evolves to a nontrivial excited state, with a basis-dependent
description in each of these cases determined by these expressions and evolution by the
hamiltonian (5.27).

The differences between the nontrivial Hξ in this case and the preceding Hξ = 0
illustrates the significant role of the choice of spatial coordinates in determining Hξ, and
the different pictures.

Some properties of the state are more clearly exhibited by expanding the field in a
different basis, defined in terms of the coordinates y−, ŷ− of (5.4), (5.5):

fω = e−iωy
−
, f̂ω = e−iωŷ

−
. (5.31)

In the static post-formation region, these are eigenstates of the translation operator ∂+. If
one considers evolution defined using coordinates y−, ŷ− along the slices, the hamiltonian
vanishes, as above. However, the mode basis (5.31) may also be used to describe the
evolution with respect to spatial coordinate x = r, so that ξ = ∂/∂t|r. The modes (5.31) are
rewritten in the r, t coordinates using the definitions (5.4), (5.5) of y−, ŷ−, the coordinate
relation (5.1), and the slice definition (5.11). Alternately, the corresponding hamiltonian
may be reexpressed as

HR
ξ = 1

2π

∫ ∞
−∞

dy−
(
−γ ∂y

−

∂r

)
(∂−F )2 + 1

2π

∫ Y −

−∞
dŷ−

(
−γ ∂ŷ

−

∂r

)(
∂̂−F

)2
. (5.32)

where Y − is the value of ŷ− corresponding to r = −∞, and where one easily shows

−γ ∂y
−

∂r
= ∂y−

∂t
= 1+[∆−∆(x+)]ey− , −γ ∂ŷ

−

∂r
= ∂ŷ−

∂t
= −1+[∆−∆(x+)]e−ŷ− . (5.33)

From these last expressions one sees that in the post formation region x+ > x+
f , where

∆(x+) = ∆, the hamiltonian is of the standard form for flat space modes, with an extra
minus sign for the internal modes, generalizing the corresponding result in [6].

While in the post-formation regime, the modes (5.31) conveniently diagonalize the
hamiltonian, they are of course singular; moreover, their singular behavior is “teleological”
in that it depends on the final location of the event horizon. Aspects of this singular
behavior are sometimes taken literally, but we see that it is more plausible to regard such
aspects as basis-dependent artifacts, particularly in view of the corresponding description
in regular bases.
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5.2.3 Evolution of the Hawking state: transitory behavior

We now turn to describing behavior of the evolving state. We assume that in the pre-
formation region the state is the Minkowski vacuum. Once the BH forms, the state develops
nontrivial time dependence and we refer to it as the Hawking state.

In the region before the incoming shock, this state is obviously most easily described
using the slicing (5.11) with S(r) = r. For spatial coordinate, one may use either r or
x−. The incoming vacuum state is |0〉−, which behaves identically to |0〉r inside the shock;
these states are the vacua annihilated by the corresponding positive frequency operators.

As above, the different choices of spatial coordinate lead to different formulas for the
hamiltonian in this region, giving a very simple illustration of the different pictures. With
spatial coordinate r, evolution is via a hamiltonian of standard flat-space form. With
picture based on spatial coordinate x−, we have ξ− = 0, and by (5.23) the hamiltonian for
outgoing modes vanishes.

If, alternately, nontrivial slices given by a more general S(r) are chosen, the evolution
of the state looks more complicated, as follows from the general form of the hamilto-
nian (5.27), (5.29), and (5.30). For a general choice of slices and coordinates, the time
dependence of the Hawking state is given by

|ΨH(t, ξ)〉 = e
−i
∫ t
−∞ dt′Hξ(t′)|0〉− , (5.34)

where the hamiltonian for right movers is as in (5.27).
As the infalling matter creates the BH, outside observers will see Hawking radiation

produced. As we have described, slicings of the stationary form (5.11) simplify the de-
scription in the post-formation region. Here, too, one may use modes based on spatial
coordinate x− or r, or make another choice, and determine the evolution from the hamil-
tonian (5.27). A particularly simple choice is to maintain the straight slicing, S(r) = r,
into this region, and use spatial coordinate r. Such a slicing is pictured in figure 5. With
f(x+, r) given in (2.21), and with the definition

R(x+) = 1
2 logM(x+) , (5.35)

we find
γ(t, r) = f

2− f = tanh[r −R(x+)] . (5.36)

This transitions smoothly from the initial value γ = 1 (flat hamiltonian) to that of the
final BH solution (2.20) with constant R.

Much of the behavior of the evolving state can also be inferred from the rela-
tionship between the different coordinates. The coordinate relations become, combin-
ing (5.1), (5.4), (5.5), (5.7), and using the straight slicing13 x+ = t+ r,

2 sinh[r−R(x+)]e−[t−R(x+)]+∆(x+) = e−x
− = −X−+∆ =

e−y
− + ∆ , r > R

−eŷ− + ∆ , r < R .
(5.37)

13For more general slices, the left hand side of this expression is replaced by 2 sinh[r −
R(x+)]e−[t−R(x+)]+r−S(r) + ∆(x+).
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Figure 5. A depiction of the evolving state in the background geometry induced by an incoming
F -wave, which produces a BH. A straight time slicing is shown. In the region after the incoming
wave turns off, the classical solution is static. The induced quantum state of the matter, with initial
vacuum state, has a transitional region, resulting from the time-dependence of the collapse. This
time-dependent radiation escapes to infinity or falls into the strong-coupling region, after which the
state asymptotically settles down to a stationary state. This late-time state is approximated by the
Unruh vacuum. The outgoing Hawking excitations, and their inside partners, can be thought of as
produced in an atmosphere region |r −R| <∼ 1.

In the picture based on spatial coordinate x−, the state remains simply |0〉−. In a
picture based on spatial coordinate r, the infalling matter produces nontrivial excitations.
If one considers a time slice just after the infalling matter has crossed the horizon, as in
figure 5, there will be transitional excitations that escape to r = ∞ or travel towards the
singularity at r = −φ = −∞. As the state evolves forward in time, Hawking quanta
will then continue to be produced by the dynamics of the hamiltonian (5.27). As we will
describe further, the long-time evolution is governed by the near-horizon behavior of the
state, which is vacuum-like at short distances. Near the horizon, at |r − R| � 1, this
vacuum-like behavior may be described by specifying the vacuum for the r modes, the
x− modes, or the X− modes, since they are linearly related in this limit. The difference
between these states, and their difference with the Hawking state, is in excited radiating
modes in the regions |r − R| & 1. This description, and the additional discussion of this
paper, lends further support to earlier arguments [14] that the quanta of Hawking radiation
emerge from a “quantum atmosphere”, rather than a much thinner region near the horizon;
in the 2d context this is the region with |r−R| <∼ 1 and has a thickness comparable to the
wavelength of the Hawking modes.
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5.2.4 Evolution of the Hawking state: long-time behavior

For simplicity, we can choose the end of the collapse to be x+
f = 0. To describe the long-

time behavior of the radiation, consider a slice with t � R. On this slice, the transitory
radiation has escaped to far from the BH or fallen deep into the strong-coupling region, as
shown in figure 5, and will be ignored. In this limit, the BH metric, e.g. (2.20), has the time
translation symmetry x+ → x+ + const; the coordinate relations (5.37) correspondingly
simplify, with R(x+) = R and ∆(x+) = ∆. In particular notice that the sinh leads to a
nice interpolation where the r coordinate is proportional to Kruskal X− near the horizon,
and linear in the good asymptotic coordinates −y− or ŷ− far from the horizon.

Initial data to determine the state may be specified on a slice at a t0 just after horizon
crossing. For the purposes of discussing the long-time radiation in a finite region near the
BH, different regular initial states may be chosen on this slice. These include the Hawking
state, the Unruh vacuum, which is the vacuum |0〉X− associated with the modes e−iωX− ,
or the vacuum |0〉r associated with the modes eikr. While these differ in their excitations
for |r − R| & 1 at time t0, these differences dissipate leaving the same long-time local
behavior of the states in an expanding region near the BH, shown as the region above the
transitional regions in figure 5.

The evolution of such a regular state in a picture and basis (5.17) given by spatial
coordinate x = r is governed by the hamiltonian (5.27), with γ given by (5.36) with
constant R; this limit gives the coefficients [6]

B(k, k′) = iπ

sinh[π(k + k′)/2]e
−i(k+k′)R . (5.38)

As pointed out in [6], these both exhibits the expected thermal spectrum, B(k, k′) ∝
exp{−π(k+k′)/2}, with temperature T = 1/(2π), and show that excitations are produced
at wavelengths with k = O(1), rather than at much shorter wavelengths.

While the evolution with hamiltonian (5.27) is regular and exhibits these key features,
it is rather complicated. This suggests a change of basis to analyze other features of the
evolving state. Specifically, we found that the hamiltonian can be diagonalized by using
the mode basis e−iωy− and e−iωŷ− , which in r, t coordinates become, from (5.37),

e−iωy
− = [2 sinh(r −R)]iωe−iω(t−R) , r > R

e−iωŷ
− = [2 sinh(R− r)]−iωeiω(t−R) , r < R , (5.39)

and will be taken to have associated annihilation operators bω, b̂ω (see e.g. the expan-
sion (C.1)). In the long-time limit, which sets Y − = ∞ in (5.32), that hamiltonian then
takes the simple form

HR
ξ =

∫ ∞
0

dω

4πωω(b†ωbω − b̂†ω b̂ω) (5.40)

(up to a normal-ordering constant, which formally cancels). Of course, the simplicity of
this expression is belied somewhat by the singular behavior of the mode basis, and its
teleological behavior near the horizon.

To exhibit the evolving state in this b, b̂ basis, we need to rewrite the initial state at
t0 in this basis. For simplicity, begin by considering the evolution of the state |0〉r from
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some initial time t0 � R, to ignore the transitional region. The necessary Bogolubov
transformation between bases is found by equating the expansion (5.18) of F in r modes
to the corresponding expansion in y−, ŷ− modes (see appendix C), and the Bogolubov
coefficients are simply the Fourier coefficients of the latter mode functions,

θ(r −R)e−iωy− =
∫ ∞

0
dk(α+

ωke
ikr + α−ωke

−ikr)

θ(R− r)e−iωŷ− =
∫ ∞

0
dk(α̂+

ωke
ikr + α̂−ωke

−ikr) . (5.41)

These give

α±ωk = 1
2π

∫ ∞
R

dre−iωy
−∓ikr = e−iω(t−R)∓ikR

2π

∫ ∞
0

dxeiω ln(2 sinhx)∓ikx (5.42)

and

α̂±ωk = 1
2π

∫ R

−∞
dre−iωŷ

−∓ikr = eiω(t−R)∓ikR

2π

∫ ∞
0

dxe−iω ln(2 sinhx)±ikx , (5.43)

where the coordinate relations (5.37) and simple changes of variables x = ±(r − R) have
been used. These can be explicitly computed (see appendix C) in terms of beta functions,
but some of their features are most apparent from these integral expressions.

The state |0〉r may then be formally written [54]

|0〉r “∝” exp
{
−1

2(b† b̂†)B∗A−1
(
b†

b̂†

)}
|0̂, 0〉 . (5.44)

where |0̂, 0〉 denotes the product vacuum |0̂〉 ⊗ |0〉 and where A and B are the (infinite
dimensional) matrices14

A =
(
α+
ωk

α̂+
ωk

)
, B =

(
α−ωk
α̂−ωk

)
. (5.45)

This expression is only formal, due to the infinite product over modes at arbitrarily large
ω; the state |0〉r does not actually lie in the Fock space built by exciting |0̂〉 ⊗ |0〉.15 In
particular, the hamiltonian Hξ of (5.22), (5.40) is infinite on this expression for |0〉r. A
finite hamiltonian is defined by subtracting a normal ordering constant.

Since there is different behavior in the regions |r −R| � 1 and |r −R| � 1, studying
this behavior requires localization, which is not directly achieved in plane wave bases.
One approach is to instead use a wavepacket basis, by introducing a basis of functions
fi(x) =

∫
dkfi(k)eikx that for example have compact support in x (or r). A somewhat

simpler basis is the wavepacket basis used in [1, 54], with mode functions

fjn(x) = ε−1/2
∫ (j+1)ε

jε

dk√
2k
eik(x−2πn/ε) , (5.46)

14The matrix multiplication convention is exemplified by the expression[
(b† b̂†)B∗

]
k

=
∫

dω
4πω

(
b†ωα

−∗
ωk + b̂†ωα̂

−∗
ωk

)
.

15This, in turn, is associated with the Type-III property of operator algebras in QFT; see, e.g., [55].
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for some small ε, and with integer j, n and j ≥ 0. Though these modes do not have compact
support in position, they do have rapid falloff with distance, and capture important aspects
of the localization. We will focus on some general aspects that are expected to result from
these or other localization procedures. In particular, the expression (5.44) may be extended
to such a basis.

From (5.44), we see that the Bogolubov coefficients α−ωk, α̂
−
ωk describe excitations in

the b, b̂ basis. In the regions with |r −R| � 1, the coordinate relation (5.37) becomes

y− = t−r+O
(
e−2(r−R)

)
, r−R� 1 ; ŷ− = 2R−r−t+O

(
e2(r−R)

)
, R−r � 1 , (5.47)

showing that the r modes and the y−, ŷ− modes are identical, up to exponentially small
terms in R − r, and so these coefficients are effectively vanishing in these regions. This
means that for excitations in regions far from the horizon, the initial t = t0 state |0〉r
behaves as the vacuum |0̂, 0〉.

On the other hand, the state |0〉r near the horizon is nontrivially excited in the b, b̂
basis, as follows from the near horizon limit of (5.42), (5.43). A simple illustration of this
arises from using the fact that in the near-horizon limit, r and X− are linearly related, so
the near-horizon structure of the vacuum |0〉r and the Unruh vacuum |0〉X− are the same.16

Evolution of the initial state |0〉X− , from t = t0 is particularly simple. While at t = t0 it
differs nontrivially from |0〉r for |r − R| & 1, the boundary of the region where they differ
goes to r = ±∞, analogously to figure 5, so at later times they have the same behavior in
a large region containing the horizon.

The simplification for |0〉X− arises from an analyticity argument [15, 54, 56] relating
the vacuum |0〉X− to that of the energy eigenmodes. Through analytic continuation we
find from the coordinate relations (5.37)

y− = − ln(−X−) = −ŷ− ± iπ . (5.48)

If we place the branch cut in the upper half X− complex plane, to maintain analyticity
in the lower half plane, that describes a positive frequency prescription for the function
(−X−)iω, which then limits to the positive frequency expression

u1
ω ∝ (−X−)iω → e−iωy

−
θ(−X−) + e−πωeiωŷ

−
θ(X−) (5.49)

on the real axis. The same analytic/positive frequency prescription for (X−)−iω results in

u2
ω ∝ (X−)−iω → e−iωŷ

−
θ(X−) + e−πωeiωy

−
θ(−X−) . (5.50)

The field F may be expanded in the modes u1
ω, u2

ω and their conjugates, analogously
to (5.13). Since the modes u1

ω, u2
ω are positive frequency, the corresponding operators

annihilate |0〉X− ,

a1
ω|0〉X− = bω − e−πω b̂†ω√

1− e−2πω
|0〉X− = 0 , a2

ω|0〉X− = b̂ω − e−πωb†ω√
1− e−2πω

|0〉X− = 0 . (5.51)

16This may be made more precise by arguments using the wavepackets we have described [54].
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This implies that

0 = (a1†
ω a

1
ω − a2†

ω a
2
ω)|0〉X− = (b†ωbω − b̂†ω b̂ω)|0〉X− , (5.52)

and so there is a precise pairing between occupation of internal and external excitations.
This, together with (5.51), can then be solved (see, e.g., [54]) to find the formal expression

|0〉X− “=” C
∑
{nω}

e−π
∫
dωωnω |{n̂ω}〉|{nω}〉 . (5.53)

in terms of occupation number states |{nω}〉, |{n̂ω}〉 for the bω, b̂ω operators, with C a
constant.

This provides a simple example of the more general expression (5.44). Once again it
is only formal, due to the infinite product over modes at arbitrarily large ω; the states
|0〉r or |0〉X− do not actually lie in the Fock space build by exciting |0̂〉|0〉. In particular,
the hamiltonian Hξ of (5.22) is infinite on this expression for |0〉X− and is only finite
after subtracting a normal ordering constant. The expressions may also be regulated by
imposing a cutoff on the frequency ω.

The expression (5.53) may be extended to an analogous one for localized wavepack-
ets [54], and then captures the behavior of |0〉r or |0〉X− for the near-horizon modes in the
region |r − R| � 1. As noted above, with |0〉r the modes b, b̂ in the region |r − R| � 1
are approximately in their vacuum. Also as noted, other regular states will have the same
pairing property of their ultraviolet excitations, but will differ in their excitation in this
far region.

The different descriptions of the initial state at t = t0 then evolve in time. In view
of the simple form of the hamiltonian (5.40), the evolution is simplest to give in the b, b̂
basis. While an exact description of the initial state and its evolution involves the detailed
form of the Bogolubov coefficients, one can see the basic structure from the preceding
discussion. As t increases, the paired excitations of (5.53) (or its wavepacket version) in
the near horizon region evolve into the far regions, while maintaining their correlation
and thermal spectrum. And, once a localized excitation reaches |r − R| � 1, due to the
asymptotic linear relation (5.47) between y− or ŷ− and r, it is to a good approximation
equally well-described as a correspondingly localized a†k excitation on the vacuum |0〉r.

So, in summary, we can describe the long-time evolution by converting an initial vac-
uum |0〉r into the energy eigenbasis, using the simplicity of the latter to evolve for finite
time, and then converting back into the regular basis, with mode functions eikr. The re-
sulting state has a thermal spectrum for the excitations, and also has the entanglement
structure between internal and external excitations exihibited in (5.53). Tracing over in-
ternal excitations then explicitly leads to an external density matrix [54], which has a von
Neumann entropy that grows in the expected linear fashion with time, as Hawking quanta
are emitted.

The Hawking radiation — and corresponding excitations inside the BH — also make
a contribution to the stress tensor; for a given state |ψ〉 of the Hawking radiation, we
may for example calculate 〈ψ|T−−|ψ〉. If we are interested in the asymptotic flux, then
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Tµν is normal ordered with respect to the asymptotic coordinate y−. For example, with
the initial vacuum state |0〉−, the expectation value of the stress tensor may be found by
comparing to Tµν normal ordered with respect to the x− coordinates, as shown explicitly
in [19]. This gives

−〈0| : T−− :y |0〉− = 1
48

[
1− 1

(1 + ∆ey−)2

]
. (5.54)

One may alternately arrive at this result by using the formula for the conformal
anomaly [38, 57] (for an overview, see [14]). The expression (5.54) exhibits evolution from
the transitional, time-dependent, regime, to the stationary regime with constant flux. Of
course, the flux also implies that the BH shrinks, altering the time-dependent background
geometry. However, this effect, studied for example in [38],17 is small over moderate times
for large BHs. Specifically, the backreaction of the flux on the geometry is suppressed in
the small parameter e2φ evaluated at the horizon, as can be seen from the equations of
motion (2.6).

5.2.5 Evolution and “freezing” on nice slices

While the straight slices, with S(r) = r, simplify aspects of the description, they do not give
a complete description of the Hilbert space in four and higher dimensions, as is illustrated
in figure 4, since they intersect r = 0. In order to maintain a complete description of the
state, one needs the slices to avoid r = 0; sufficiently smooth such slices have been called
nice slices [47, 48]. So, we also need to understand evolution on this kind of slicing. In our
description (5.11) of stationary slices, this behavior is achieved by choosing a slice function
S(r) that asymptotes to −∞ at some finite r = Rn.

Given such a slicing, one can once again consider different pictures based on different
coordinates along the slices. The coordinate r can be used, but gives a nearly degenerate
description near r = Rn. This behavior may be avoided by instead using the coordinate
ρ = S(r).

The accumulation of slices at r = Rn, illustrated in figure 4, suggests that in a nice-slice
description the wavefunction describing infalling excitations freezes at large times [59, 60].
However, this does depend on the picture that is chosen. For a picture based on the
coordinates r or ρ = S(r), an infalling excitation exp{−iωx+} has nonvanishing t derivative
at constant r or ρ, and correspondingly the hamiltonian Hξ doesn’t vanish; this is of course
implied by conservation of the hamiltonian, and is also true for right-movers. One way to
understand this is from behavior of the lapse and shift: while, from (5.12), N → 0 at
r = Rn, the norm squared of the shift doesn’t vanish. This encodes the fact that while the
slices accumulate, in these coordinates evolution shifts an excitation along the slices.

The freezing behavior can however be illustrated in a picture based on a different choice
of coordinate. A class of such coordinates along the slices takes the form18

x = x+ + g(r) , (5.55)
17For a review with further references, see e.g. [58].
18I thank J. Perkins for discussions on this class of coordinates.
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with a general function g(r). In this case, the time derivative of an ingoing solution
exp{−iωx+} at constant x vanishes as r → Rn. This is one example of the freezing
behavior, which follows more generally from the form of the lapse and shift. With the
coordinate (5.55) these become

N2 = 1
S′(2− fS′) , Nx = g′ − S′ − fS′g′

S′(2− fS′) (5.56)

and so vanish as the slices accumulate at r = Rn, where S′ →∞.
As a result, in such a picture the part of the wavefunction that falls into the BH

ultimately does become time independent, or freeze, as can be seen for example from
asymptotic vanishing of the hamiltonian (5.20). This type of picture therefore has the
additional advantage of giving a particularly simple way to keep track of the excitations
(and their information) inside of the BH — they become static. However, the choice of
coordinates (5.55) does not match the standard t, r coordinates at large r, leading to a more
complicated description there, unless one instead uses a time-dependent function g(r, t),
which then produces more complicated behavior. Further treatment of evolution on nice
slices will be left for future work.

6 Evolution of internal excitations

A slice-based Schrödinger description also offers a way to understand better the evolution
of excitations inside a BH. This is true not just for infalling excitations, but also for
the internal partners of the Hawking quanta, about which various past questions have
been raised.

Here we will focus on characterizing some aspects of the latter “Hawking partners”, and
their relation to the different quantum states of the BH. We expect to be able to do so, since
given a slicing and a choice of spatial coordinates, we have found a complete description
of the evolution of the state (at leading perturbative level) through a hamiltonian (5.20)
or (5.22).

6.1 Description of the state

Consider the state at a long time after BH formation; again refer to figure 5, where we
focus on the nearer region which the transitional radiation has left. In this region, as
discussed above, the state is well-approximated as |0〉X− . To describe its local properties,
one can work with localized wavepackets formed by superposing the modes eikr, or with
the energy eigenmodes (5.31). It is convenient to describe the resulting state, for example,
as built on the regular vacuum |0〉r. As noted above, far from the horizon, |r − R| � 1,
the asymptotic linear coordinate relations (5.47) imply that the energy eigenmodes are to
a good approximation identified with these regular modes. This means that for purposes
of studying excitations in these regions, the vacua |0〉r and |0̂, 0〉 have nearly the same
behavior, and the excitations a†k are approximately identified with b†k or b̂†k, depending on
whether one is outside or inside the horizon.19

19Here, again, to make these statements precise, one should consider wavepacket superpositions of these
operators in order to spatially localize.
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This also means that, well outside the BH atmosphere region at |r−R| <∼ 1, the state
has the same form as (5.53),

|Ψ, T 〉 ' |0〉X− ∼ C
∑
{nk}

e−π
∫
dkknk |{n̂k}, {nk}〉 , (6.1)

where the states |{n̂k}, {nk}〉 are built on the regular vacuum |0〉r by acting with the oper-
ators a†k to create excitations inside or outside the horizon, and where strictly speaking one
should therefore use wavepackets to localize. So, in short, we see the Hawking excitations,
with correlated partners created by (wavepacket superpositions of) a†k acting on |0〉r, inside
the horizon.

One way to better understand the nature of this state and these partner excitations is
to describe their appearance to an infalling observer.

6.2 Infalling observers

Bearing in mind the ultimate goal to better understand the D-dimensional case, we can
investigate aspects of the state and excitations as seen by an inertially infalling observer
moving in two dimensions, following a timelike geodesic. The static BH metric

ds2 = −fdx+2 + 2dx+dr (6.2)

has Killing vector ξµ = (1, 0), implying conservation of e = −ξ · u, with velocity uµ =
dxµ/dτ . For an observer starting at rest at infinity, this results in the equation of motion(

dr

dτ

)2
= 1− f(r) (6.3)

which is valid for radial infall in the general D-dimensional case. In 2d this gives

ur = dr

dτ
= −eR−r (6.4)

with solution
r −R = ln(τa − τ) . (6.5)

The observer reaches r = −∞ at finite proper time τ = τa. The component u+ is easily
found,

u+ = τa − τ
1 + τa − τ

= er−R

1 + er−R
, (6.6)

and integrates to give trajectory

x+ = τ − τa + ln(1 + τa − τ) + x+
a = −er−R + ln

(
1 + er−R

)
+ x+

a , (6.7)

asymptoting to finite x+ = x+
a as r → −∞. The diverging radial velocity ur at r = −∞

occurs instead at r = 0 in the higher-dimensional case, but the present study is a useful
warmup exercise for that case. It will also be useful to have the trajectory in the ŷ− and
X− coordinates, related through (5.1), (5.5), and (5.7),

ŷ− = τa − τ − x+
a + 2R+ ln(1− τa + τ) , (6.8)

X− = (1− τa + τ)e2R−x+
a −(τ−τa) , (6.9)
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and giving velocity components in (x+, ŷ−) coordinates

uµ =
( 1
eR−r + 1 ,

1
eR−r − 1

)
. (6.10)

6.3 Infalling observations

From the preceding section, recall that the state is well-approximated as the Unruh state
|0〉X− in the stationary region. The relation (6.9) shows that definite frequency X− modes
are not definite frequency in the observer’s proper time τ , and in the strong-coupling limit
τ → τa, r → −∞,

dX−

dτ
→ 0 , d2X−

dτ2 → −e2R−x+
a . (6.11)

This implies that the Unruh vacuum |0〉X− appears excited to the infalling observer. Like-
wise, in this limit

dŷ−

dτ
→ 0 , d2ŷ−

dτ2 → −1 , (6.12)

and so the vacuum |0〉r, which looks like |0̂, 0〉 for |r −R| � 1, also appears excited to the
infalling observer.

From the form of the state (6.1) we see that the physical state ' |0〉X− has a†k ' b̂†k
excitations above |0〉r in the internal region R−r � 1. To characterize their appearance to
the infalling observer, we can find their energy and momentum seen by such an observer,
by taking inner products with the dyad carried by that observer. The observed energy of
one of these a†k ' b̂

†
k excitations is given by

ωobs = −kµuµ = k
1

eR−r − 1 , (6.13)

and so is positive and vanishes as the observer asymptotes to strong coupling. The observed
momentum, found from taking the product with the unit spatial vector satisfying eµuµ = 0,
which has x+, ŷ− components

eµ = 1
2(1 + eR−r, 1− eR−r) = 1

2

(
1 + 1

τa − τ
, 1− 1

τa − τ

)
, (6.14)

is likewise kobs = eµk
µ = ωobs.

6.4 Properties and creation of internal excitations

While the internal a†k ' b̂†k excitations have positive energy as seen by a local infalling
observer, we saw they have negative energy for the global hamiltonian (5.40) governing
evolution along the Killing vector ξ. This contrast adds emphasis to the role of different
hamiltonians, corresponding to different pictures. Their negative global energy is important
in the production of the Hawking radiation, but does raise some potential puzzles regarding
the nature of the states of the BH.

In particular, the existence of negative energy excitations suggests the possibility of
an unphysical spectrum with an unbounded number of BH states of finite energy, which
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would certainly exceed a number of states given by exponentiating the Bekenstein-Hawking
entropy. Specifically, given a BH state |ψ〉, consider

|ψ〉 →
∏
ij

ã†i b̂
†
j |ψ〉 , (6.15)

where ã†i and b̂
†
j are internal wavepacket superpositions of the operators ã†k and b̂†k, respec-

tively. The form of the hamiltonian (5.25) and (5.40) suggests that it is possible to construct
an infinite number of states of this kind that are degenerate with |ψ〉 in the definite en-
ergy/plane wave limit, by matching energies of the excitations ã†k and b̂†k. This, in turn,
could result in unphysical phenomena, such as infinite pair production of BHs [3]. More-
over, this suggests that there is a large number of low-energy states that are near-horizon,
short wavelength states [61]; if it is assumed that these are excited by the mechanism that
corrects the Hawking process to restore unitarity, that leads to singular behavior near the
horizon [19–21], called “firewalls” in [21].

Key questions, however, are how such states might be produced, and whether they are
truly physically realizable states.

We have seen clearly, e.g. from the hamiltonian (5.27) or state (6.1), that internal
a†k ' b̂†k excitations are produced in the Hawking process, but always in correlated pairs
with the outgoing Hawking particles. Global energy conservation is satisfied since the
outgoing particle and internal excitation are positive and negative energy, respectively.
The internal excitation can be interpreted as lowering the energy of the BH.

This then raises the question of the role of such BH states without their correlated
outside partners. For example, consider the state that, at a given time, is described as
an internal wavepacket superposition of a†k ' b̂†k acting on |0〉X− . At earlier times, this
corresponds to a state with arbitrarily high wavenumbers k, very close to the horizon, as
can be seen for example by considering the evolution of the mode φk = eik(r−R) backward
in time from T0; in the straight slicing one finds [6]

φk(T, r) = eik sinh−1[eT0−T sinh(r−R)] . (6.16)

Only if specific collections of such modes, like in (6.1), merge with a corresponding col-
lection outside the horizon does one find a regular state in the far past; in this case, one
can alternately understand this by examining cancellations in the stress tensor, and for
example test these cancellations in gravitational scattering of an infalling object [62]. This
is what happens with the evolution of the Hawking state and related non-singular states,
as has been even more explicitly demonstrated by the evolution described in this paper:
outside Hawking excitations and internal partners merge into a regular state when the evo-
lution is run backwards. But in a different state, without such pairing, the state becomes
ultraplanckian, and so does not clearly correspond to a physical state.

This suggests invoking a general principle that “history matters” in determining
whether or not a state is physical; a physical state must be producible by a physical
process. If so, for example, a state that when evolved backward yields an unphysical sin-
gularity, cannot be a physical state. Put differently, hamiltonian evolution is not obligated
to produce all states. (Similar proposals were made in [63] and [64].)

– 29 –



J
H
E
P
1
2
(
2
0
2
1
)
0
2
5

Of course, there are alternate ways to produce b̂†k excitations, such as through emission
by an infalling observer. For a simple model, one can describe decay of an infalling mass
m particle into right and left moving massless excitations at r = r0 inside the horizon. In
the local inertial frame of the infalling mass, the decay produces excitations with momenta

pµ1 = (m/2,m/2) , pµ2 = (m/2,−m/2) , (6.17)

which, in (x+, ŷ−) coordinates correspond to

pµ1 =
(

m

eR−r0 + 1 , 0
)
, pµ2 =

(
0, m

eR−r0 − 1

)
. (6.18)

respectively. The first of these is a b̂†k excitation with k = m(eR−r0 − 1)/2, with corre-
spondingly negative global energy −ξ · p1. The global energies are

E0 = m, E1 = m

2
(
1− eR−r0

)
, E2 = m

2
(
1 + eR−r0

)
, (6.19)

and are conserved, as expected.
Thus while such decay or emission processes excite the b̂†k modes, they do not provide a

new way to construct an arbitrarily large number of BH states with finite energy; the global
BH energy increases by the energy of whatever infalling matter produces the excitation,
and energy conservation implies correspondingly higher energy ã†k excitations are produced
inside the BH.

To summarize the discussion so far, in such internal emission processes, b̂†k excitations
are paired with higher energy ã†k excitations, so do not necessarily lead to the large degen-
eracy of (6.15), and the Hawking process only leads to production of b̂†k excitations paired
with external b†k excitations, and not independently to states (6.15). This discussion is also
expected to extend to higher dimensions.

One might consider other processes, for example thermal excitation, where b̂†k excita-
tions are produced entangled with a thermal bath. However, such a thermal state must
ultimately arise via evolution through underlying microphysical processes, such as we have
described. For example, a state like (6.15) can be created by a process in which one parti-
cle falls in, one particle is Hawking emitted, and then the process repeats. This sequence
only builds up ∼ exp{SBH} states after a very long time t ∝ SBH . Another alternative,
in the higher-dimensional context, is to produce states such as (6.15) through BH pair
production [65–68].

In either of the later cases, one also expects that we need to go beyond the approxi-
mation we have considered of neglecting the gravitational backreaction, and possibly other
effects. Once the emitted quanta are an appreciable fraction of the BH mass, and certainly
by the time the BH has emitted O(SBH) quanta, we expect to need to include such effects,
whose leading contribution is the perturbative gravitational dressing. And, once these
effects are considered, that raises the possibility that they eliminate the naïvely infinite
degeneracy of states (6.15) that we have found by neglecting them. In short, these states
may not even exist to be consistently excited through thermal or pair production processes,
or, there may not be a consistent physical channel to produce them. At the least, a full
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treatment of these would seem to require including effects that go beyond the leading per-
turbative description of (6.15), and in particular the full non-perturbative quantum theory
may place additional limits on what states exist in the true Hilbert space.20

One can of course describe such states at the perturbative level in a nice-slice de-
scription. The excitations, e.g. due to successive Hawking emission, can be thought of as
distributed sequentially along the slice. Moreover, in a picture like that described in 5.2.5,
the internal part of the state can be taken to be time-independent, or freeze. However,
once again, we expect a complete treatment of these states requires a full accounting of
gravitational backreaction, as well as other quantum-gravitational effects that go beyond
this perturbative description.

7 Conclusion and directions

This paper has described the evolving quantum state of a black hole, in the dilaton gravity
model of [38], beginning with the full gravitational theory and then considering the leading
perturbative approximation neglecting gravitational backreaction. We expect many aspects
of this treatment to apply to higher-dimensional black holes, with modifications that are
relatively minor [7], at least in the perturbative approximation.

The present treatment has the virtue of being extendable also to the case of interact-
ing field theories, at least in principle. Whereas Hawking’s original treatment [1] involved
tracing back a particular mode to near the horizon, by following its free propagation,
the slice-based evolving state that we have described can in principle incorporate interac-
tions. Specifically, there could also be interaction terms in the expressions for the hamil-
tonian (5.20) or (5.22), which would be incorporated into the description of the evolving
state. That would of course result in more complicated expressions than the quadratic
hamiltonian (5.27), with higher-order terms encapsulating the interactions.

In the present analysis, in particular we have seen explicitly both the leading pertur-
bative treatment of the internal states of the BH, and their excitation in a state entangled
with the Hawking modes in the process of the time evolution via the Hawking effect.

This of course only makes more concrete the basic conundrum of Hawking radiation.
One builds up large entanglement between the internal excitations of the BH and the
Hawking radiation. If this picture persists once gravitational backreaction is included, and
the BH disappears at the end of evolution, that is inconsistent with unitarity.

A central question, then, is how Hawking evolution is modified. The treatment of this
paper leads to a more complete foundation on which to base description of effects that
go beyond this evolution, to give evolution consistent with unitarity. Key questions are
when we cease to believe the time evolution that we have described, and due to what new
effects. For example, with such an explicit description of the “standard” quantum field
theory evolution, one can ask how precisely new proposals, such as those of ’t Hooft [25], of
replica wormholes [26–29], or those of nonviolent unitarization [5, 18] alter that evolution.

20One might also consider the role of b̂†k excitations in loops [61], but ultimately this is also a question of
which states consistently exist in the theory.
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A traditional field-based quantization apparently cannot unitarize the evolution, so one
expects these new effects to be truly quantum gravitational in nature.

Taking a step back, one can characterize the problem in a more general fashion. Specif-
ically, if a BH can be described as a quantum subsystem, and builds up a large amount
of entanglement with the complementary environment subsystem, and then disappears,
that is inconsistent with unitarity. The leading perturbative description given in this pa-
per exhibits BHs as such quantum subsystems, described in the usual fashion for QFT.
Specifically, beginning with a chosen BH vacuum state |0〉, one can consider independent
excitations of internal and external modes, e.g.∏

ij

b̂†ib
†
j |0〉 (7.1)

associated for example to wavepackets with support purely inside or outside the horizon,
and likewise for left-moving excitations built from ã†k. The hamiltonian, (5.20) or (5.22),
can likewise decomposed into a piece with support inside the BH, a piece outside, and a
piece supported at the horizon that provides an interaction between the two.

Of course, inclusion of even the leading gravitational backreaction modifies this struc-
ture [52, 69] (see also [70]), since the gravitational dressing associated to an internal exci-
tation extends outside the horizon [71]. However, the arguments of [72] suggest that there
is still a subsystem structure, since the gravitational degrees of freedom may be taken to
be in a state where the external structure of the dressing depends only the total Poincaré
charges of the internal matter, and not on other features of the internal state. (This could
also be more concretely explored in an extension to this paper.)

Then, if this subsystem structure persists in the perturbative theory, along with the
entanglement built up by the Hawking effect, the contradiction with unitarity remains.
New quantum-gravitational effects, outside of this perturbative description, are apparently
needed to restore unitary evolution. These effects need to either modify this subsystem
structure, or to transfer information (more specifically, entanglement) from the BH sub-
system to the environment.

A key question for any proposed unitarization of BH evolution is thus to describe these
new effects, as a departure from the standard perturbative evolution like that described in
this paper. For example, this test could be applied to the proposal of ’t Hooft [25], to ask
how his proposed evolution differs from the standard LQFT evolution described above.21

Alternately, a newer development is the proposal that replica wormhole effects lead to an
ultimately unitary description, as suggested by an argument that a calculated entropy falls
to zero at the end of evolution [26–29]. An important question is to understand this claim
at the level of quantum amplitudes, and their modification to the standard evolution.

More specifically, the LQFT evolution with hamiltonian (5.20) or (5.22) leads to
buildup of entanglement between the BH and environment, and allows transfer of infor-
mation from the environment to the BH, but due to the underlying local/causal nature of
its evolution does not transfer entanglement from the BH to the environment. If the BH

21In particular, while some of the discussion of [25] takes more of a particle focus, the present treatment
emphasizes the role of a QFT-based field focus on the evolution of the quantum state.
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is thought of, in an appropriate approximation, as a subsystem, unitarity requires modifi-
cations to this hamiltonian that can transfer entanglement from BH to environment. One
can ask how these modifications are described, in a given proposal.

We might anticipate that such new quantum gravity effects are “small”, and if they
are a small departure from the conventional LQFT description, we expect to be able
to parameterize them as a deviation from that description. This is the basic approach
of [5, 18, 23, 24, 31, 60, 73]. Specifically, if there must be additional interactions between
the BH quantum state and the environment of the BH, one can parameterize them in terms
of an additional contribution to the hamiltonian that transfers entanglement. The simplest
such structure that does so bilinearly couples operators that act on the BH state to oper-
ators that act on the environment. The natural scale for these operators to act is that of
the horizon radius, O(R), rather than on a highly tuned scale R+O(lPlanck) or on a much
longer scale� R.22 These statements, plus a motivated assumption of universality of these
couplings, greatly simplify the problem of parameterizing these interactions, and one can
investigate the extent to which the necessary entanglement transfer can be accomplished
by small interactions [5, 18, 74].

This approach may in fact give an effective description of different underlying mecha-
nisms for unitarization. For example, if the mechanism is related to baby universe emission,
as argued in connection with work on replica wormholes by [29], then a possible structure
for corrections to the hamiltonian is of the form

∆H = A†iOi + h.c. , (7.2)

where Oi is the operator describing the effect of baby universe emission and A†i creates
a baby universe, as in [32, 33]. If this is an important effect for baby universes of size
comparable to the BH scale R, then the operators Oi are expected to be nonlocal on
this scale. Then, for example, in a baby universe state that diagonalizes the creation and
annihilation operators, as in [32, 33], one has induced couplings to such nonlocal operators
present in the evolution.

Or, possibly the information transferring interactions are due to other quantum-
gravitational effects modifying spacetime structure, e.g. as in [30]. Whatever the origin of
such quantum gravity interactions, the description of the (approximate) LQFT evolution
given in this paper provides a concrete foundation for parameterization of such departures
from that evolution, capable of the necessary transfer of entanglement and restoration of
unitarity.
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A Useful ADM expressions

This appendix will collect some useful formulas for the ADM approach to gravity, in D

dimensions. The ADM form of the metric is

ds2 = −N2dt2 + qij(dxi +N idt)(dxj +N jdt) , (A.1)

with lapse N , shift N i, and spatial metric qij , and the inverse metric is

gµν =
(
−1/N2 N i/N2

N i/N2 qij −N iN j/N2

)
. (A.2)

With the definition q = det qij , the volume element is√
|g| = N

√
q . (A.3)

The unit normal to the constant-t slices is

nµ = (1,−N i)/N . (A.4)

To find the gravitational action, we need the Ricci scalar, which takes the form [44, 75]√
|g|R = N

√
q
[
KijK

ij −K2 +R(q)
]
− 2√qD2N + 2∂i

(√
qKN i

)
− 2∂t (√qK) . (A.5)

Here spatial indices are raised and lowered with qij , Di is the spatial covariant deriva-
tive computed using qij , and the extrinsic curvature of the constant-t slices is, with dot
denoting ∂t,

Kij = − 1
2N (q̇ij −DiNj −DjNi) . (A.6)

The gravitational action resulting from these expressions is investigated in the main text.
We also need to express scalar field actions in ADM variables, which is done via

(∇φ)2 = − 1
N2

(
φ̇−N i∂iφ

)2
+ qij∂iφ∂jφ = −(∂nφ)2 + qij∂iφ∂jφ (A.7)

which we have rewritten in terms of the normal derivative,

∂nφ = nµ∂µφ = ∂tφ−N i∂iφ

N
⇔ ∂tφ = N∂nφ+N i∂iφ . (A.8)

This gives a massless scalar action

Sφ = −1
2

∫
dDx

√
|g|(∇φ)2 = 1

2

∫
dtdD−1x

√
qN

[
(∂nφ)2 − qij∂iφ∂jφ

]
, (A.9)

where here we use the standard normalization (a different normalization is used in the
main text).

The canonical momentum is

πφ = 1
√
q

δSφ

δφ̇
= 1
N

(
φ̇−N i∂iφ

)
= ∂nφ , (A.10)
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from which we find the canonical form of the action,

Sφ =
∫
dtdD−1x

√
q
(
πφφ̇−Hφ

)
, (A.11)

with hamiltonian density

Hφ = N

2
(
π2
φ + qij∂iφ∂jφ

)
+ πφN

i∂iφ . (A.12)

The hamiltonian is then

H=
∫
dD−1x

√
q

[
N

2
(
π2
φ + qij∂iφ∂jφ

)
+ πφN

i∂iφ

]
= 1

2

∫
dD−1x

√
qN

[
φ̇2

N2 + gij∂iφ∂jφ

]
.

(A.13)

B Time dependent backgrounds and perturbation picture

This appendix provides a simple description of quantum evolution that is a perturbation
of a dynamic background, and of the resulting transformation to what can be called “per-
turbation picture”.

For a simple example to illustrate the basic idea of perturbation picture, consider the
hamiltonian of a particle in a potential,

H = p2

2 + V (q) , (B.1)

and suppose that the equations of motion

p = q̇ , ṗ = −V ′(q) (B.2)

have a dynamic solution p0(t), q0(t). We would like to consider quantization of fluctuations
that are perturbations of this classical solution,

p = p0 + p̃ , q = q0 + q̃ . (B.3)

The hamiltonian can be expanded as

H = H0 + q̇0p̃− ṗ0q̃ + H̃(p̃, q̃) (B.4)

where we use the equations of motion (B.2) and where

H̃(p̃, q̃) = p̃2

2 +
∞∑
n=2

1
n! q̃

nV (n)(q0) . (B.5)

In the standard Heisenberg picture, the equations of motion (B.2) become the Heisen-
berg equations,

∂tqH = i[H, qH ] = i[H, q̃H ] = q̇0 + i[H̃, q̃H ] ⇒ ∂tq̃H = i[H̃, q̃H ] , (B.6)
∂tpH = i[H, pH ] = i[H, p̃H ] = ṗ0 + i[H̃, p̃H ] ⇒ ∂tp̃H = i[H̃, p̃H ] , (B.7)
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where the subscript “H” denotes the Heisenberg picture. In the Heisenberg picture, the
state is time-independent, |ψ(t)〉H = |ψ(0)〉H and so the expectation value of a general
operator Ã(p̃, q̃) evolves as

〈ψ|Ã|ψ〉 = 〈ψ(0)|ÃH(t)|ψ(0)〉 = 〈ψ(0)|Ũ−1(t)ÃH(0)Ũ(t)|ψ(0)〉 (B.8)

where Ũ(t) is the unitary evolution operator satisfying

∂tŨ(t) = i[H̃, Ũ(t)] . (B.9)

Perturbation picture can now be defined analogously to the standard Schrödinger
picture, as a picture in which the operator Ã does not evolve but all evolution is in the
state. Specifically, define the perturbation picture state and operators as

|ψ̃(t)〉P = Ũ(t)|ψ(0)〉 , ÃP = ÃH(0) = Ũ(t)ÃH(t)Ũ−1(t) , (B.10)

which clearly reproduce the evolution (B.8). These satisfy

i∂t|ψ̃(t)〉P = H̃|ψ̃(t)〉P , ∂tÃP = 0 (B.11)

so evolution of the state is governed by H̃. This picture can be contrasted with the standard
Schrödinger picture, in which the state instead evolves as

|ψ(t)〉S = U(t)|ψ(0)〉 , (B.12)

with the evolution operator U determined by the full hamiltonian H. Perturbation and
Schrödinger pictures are clearly identical for time-independent backgrounds. For time-
dependent backgrounds, another way to see their distinction is to notice that in Schrödinger
picture, time-independence of qS , pS implies that

∂tq̃S = −q̇0 , ∂tp̃S = −ṗ0 , (B.13)

as contrasted with the time-independent operators of perturbation picture. In the classical
context, the difference can be understood in terms of a canonical transformation [46].

This general structure can clearly be continued to more complicated systems, e.g.
involving evolution of quantum fields as perturbations of a time-dependent background, as
in the main text.

C Bogolubov transformation — straight slicing

This appendix describes an example of the Bogolubov transformation that relates the
energy eigenmodes to regular modes, in the special case of regular modes defined using the
straight slicing, S(r) = r.

On a fixed t slice, with slicing given by x+ = t + r, the right-moving field operator
can be expanded either in terms of the regular basis eikr or the energy eigenbasis e−iωy− ,
e−iωŷ

− :

F =
∫ ∞

0

dk√
2π2k

(akeikr + a†ke
−ikr) (C.1)

= θ(r−R)
∫ ∞

0

dω√
2π2ω

(bωe−iωy
− + b†ωe

iωy−) + θ(R− r)
∫ ∞

0

dω√
2π2ω

(b̂ωe−iωŷ
− + b̂†ωe

iωŷ−) .
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The Bogolubov coefficients relating the modes can be defined by

θ(r −R)e−iωy− =
∫ ∞

0
dk(α+

ωke
ikr + α−ωke

−ikr)

θ(R− r)e−iωŷ− =
∫ ∞

0
dk(α̂+

ωke
ikr + α̂−ωke

−ikr) . (C.2)

From these we find

α±ωk = 1
2π

∫ ∞
R

dre−iωy
−∓ikr = e−iω(t−R)∓ikR

2π

∫ ∞
0

dxeiω ln(2 sinhx)∓ikx (C.3)

and
α̂±ωk = 1

2π

∫ R

−∞
dre−iωŷ

−∓ikr = eiω(t−R)∓ikR

2π

∫ ∞
0

dxe−iω ln(2 sinhx)±ikx , (C.4)

where the coordinate relations (5.37) and simple changes of variables have been used. These
can be evaluted to give

α±ωk = e−iω(t−R)∓ikR

4π
Γ(1 + iω)Γ [−i(ω ∓ k)/2 + ε]

Γ [1 + i(ω ± k)/2] (C.5)

and
α̂±ωk = eiω(t−R)∓ikR

4π
Γ(1− iω)Γ [i(ω ∓ k)/2 + ε]

Γ [1− i(ω ± k)/2] (C.6)

where ε > 0 is a small convergence factor (which gives the pole prescription); also note
that these may be rewritten in terms of a beta function. This leads to a relation

ak =
∫ ∞

0
dω

k

ω

(
bωα

+
ωk + b†ωα

−∗
ωk + b̂ωα̂

+
ωk + b̂†ωα̂

−∗
ωk

)
. (C.7)

and likewise for creation operators, between the ladder operators.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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