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1 Introduction

String compactification is one of the major topics in string theory if one expects it to be
the fundamental theory of our world. One way to understand what four-dimensional (4D)
fields derived from ten-dimensional (10D) superstring theory is the Kaluza-Klein (KK)
decomposition on the extra six-dimensional (6D) space. Then, zero-modes are supposed
to play an important role in 4D spacetime. The existence of 4D supersymmetry (SUSY)
requires the 6D space to equip SU(3) holonomy, and it is proved that Calabi-Yau (CY)
threefolds possess this structure. Hence, CY threefolds and toroidal orbifolds (consid-
ered singular limits of CY threefolds) are of particular interest. The 4D effective theories
arising from string compactifications contain a multitude of massless fields called moduli
fields, reflecting the geometry of the corresponding internal manifold. These moduli fields
appear in 4D Yukawa couplings and gauge couplings such that those free parameters in
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the Standard Model are determined by their vacuum expectation values (VEVs) in string
compactifications. Furthermore, the dynamics of moduli fields are closely related to the
construction of de Sitter (dS) vacua. Although the moduli stabilization and string land-
scape have been studied intensively in the past two decades, there are several developments
from the viewpoint of the swampland program [1–3], stating that the 4D low-energy effec-
tive field theories should satisfy several conjectures to admit an ultra-violet completion to
a consistent theory of quantum gravity. (See for a review, e.g., ref. [4].)

After the moduli stabilization, the vacuum energy behaves as the cosmological constant
Λ. With theoretical and phenomenological motivations, one needs to find the vacuum with
the positive vacuum energy to realize the accelerating universe. However, it was known that
the stable classical de Sitter (dS) vacua are difficult to achieve in string compactifications
as stated in the Maldacena-Nuñez no-go theorem [5]. (For an overview of the construction
of dS vacua in the string theory, see, e.g., ref. [6].) The absence of stable classical dS vacua
motivates us to consider the no-go conjectures of dS vacua, known as the dS swampland
conjecture [7–10]. So far, the dS swampland conjecture is well established in Type IIA
flux compactifications [11, 12], since all the closed string moduli fields can be stabilized
by Ramond-Ramond (RR) and Neveu-Schwarz-Neveu-Schwarz (NS) fluxes. Indeed, the dS
swampland conjecture is satisfied for some examples of Type IIA flux vacua [13] and more
general classes in a parametrically controlled regime [14]. Consequently, the obtained flux
vacua fall Anti-de Sitter (AdS) vacua or dS vacua with tachyonic directions.1 Those AdS
vacua satisfy the AdS/moduli scale separation conjecture [16] and the AdS distance con-
jecture [17] in the supersymmetric case as pointed out in refs. [6, 17, 18]. These conjectures
prohibit the parametric separation between the mass of towers of the lightest states and
the AdS radius.

In Type IIB flux compactifications, Kähler moduli describing the size of the internal
manifold cannot be stabilized by RR and NS three-form fluxes as opposed to the axio-
dilaton and complex structure moduli. (See for a review, ref. [19].) It is then required non-
perturbative effects and/or α′-corrections to stabilize the Kähler moduli as demonstrated
in the Kachru-Kallosh-Linde-Trivedi scenario [20] and large volume scenario [21],2 where
the AdS minima are uplifted to the dS vacua by some mechanism. The validity of the
dS vacua obtained by employing non-perturbative effects and uplifting sources should be
justified from several aspects [16, 24–26]. The rigorous check of swampland conjectures is
still an important open issue to understand what constitutes exact boundaries between the
string landscape and the swampland.

In this paper, we present a different approach in Type IIB flux compactifications to
resolve this issue. We deal with “non-geometric” CY manifold with the Hodge number
being h1,1 = 0,3 i.e., no deformation of the Kähler structure, and the volume is already
fixed by symmetries [27]. The manifold can be described as a mirror of a certain “rigid”
CY manifold with h2,1 = 0 but h1,1 6= 0. The prototypical example of Type IIA flux
compactifications called DeWolfe-Giryavets-Kachru-Taylor (DGKT) model [12] is indeed

1For the recent developments in Type IIA flux compactifications, see, e.g., ref. [15].
2For the perturbative stabilization of Kähler moduli, we refer the reader to, e.g., refs. [22, 23].
3Here and in what follows, we use the term “non-geometric” in this sense.
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based on the rigid CY threefold, namely T 6/(Z3 × Z′3) toroidal orbifold. In this paper,
we examine Type IIB flux compactifications corresponding to a T-dual of the DGKT
model.4 Using the fact that one can stabilize all the closed string moduli by three-form
flux themselves and deal with more general fluxes than the T-dual IIA side,5 it is expected
that this setup captures some crucial properties of flux vacua and string landscape. So
far, this class of manifolds has been studied in refs. [29, 30], but the vacuum structure is
not fully understood. For this reason, we wish to set this manifold as a testing ground for
various swampland conjectures. In particular, we focus on the AdS/moduli scale separation
conjecture, the AdS distance conjecture, and the dS swampland conjecture.

Our findings of the flux vacua on the mirror of rigid CY are summarized as follows:

• We find the SUSY and non-SUSY stable AdS flux vacua6 for a large region of flux
quanta satisfying the tadpole cancellation condition.

• As discussed in detail in section 3, it is found that the tadpole charge is severely
constrained by the stability condition to allow the existence of Minkowski and dS
vacua in addition to the well-known tadpole cancellation condition. It indicates that
the realization of the stable dS vacua would be difficult to be realized in the string
landscape due to the small number of tadpole charges constrained by the tadpole
cancellation condition.

• There exists a new class of dS vacua with tachyonic directions for a limited region
of flux quanta taking into account the tadpole cancellation condition,7 whereas the
perturbatively stable dS vacua appearing in the low-energy effective action violate
the tadpole cancellation condition.8 Furthermore, the structure of AdS vacua de-
pends on the tadpole charge as discussed in the AdS/moduli scale separation and the
AdS distance conjectures. It indicates that the tadpole charge would determine the
boundaries between the string landscape and the swampland.

• Distributions of O(1) parameters arising in expressions of swampland conjectures are
investigated for both SUSY and non-SUSY flux vacua. In particular, our analytical
and numerical results exhibit that these parameters peak around specific values for
the AdS/moduli scale separation conjecture, and a strong version of AdS distance
conjecture holds at the SUSY AdS vacua, irrespective of fluxes.

4See for the Type IIB flux compactification on the rigid T 6/(Z3 × Z′3) orbifold, ref. [28].
5Throughout this paper, we focus on the stabilization of untwisted complex structure moduli.
6In this paper, we call non-SUSY minima appearing from the 4D effective field theory (EFT) the non-

SUSY vacua. Those minima are reasonable under the assumptions that the string coupling constant gS � 1
and the KK mode mass� moduli mass from the viewpoint of the 4D EFT. However, we have not analyzed
effects of possible corrections including the flux backreaction on the non-SUSY minima. Thus, it does not
mean that we have found a fully consistent non-SUSY vacuum in the string compactification.

7Note that the existence of tachyon was observed in a broad class of dS vacua in 10D Type II super-
gravities with Dp-branes and orientifold Op-planes and for more details, we refer to, for instance, ref. [6].

8Hence, the stable dS vacua are not justified even in the 4D EFT. Moreover, it is also possible that
there is a true vacuum with lower energy. Our purpose is to reveal the vacuum (minimum in the 4D EFT)
structure through the tadpole charge.
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This paper is organized as follows: in section 2, we briefly review the flux compactifi-
cations on the mirror of rigid CY manifold, corresponding to a specific Landau-Ginzburg
(LG) model. The complex structure moduli can be identified with deformations of the
superpotential in a traditional way. Since the background geometry is described by the
special geometry on a complex threefold, it enables us to obtain an exact form of the
Gukov-Vafa-Witten (GVW) type superpotential [31]. Then, all the moduli fields can be
stabilized in the context of flux compactifications, taking into account the effects of fixed
Kähler moduli in the Kähler potential. On the basis of the 4D effective action in section 2,
the vacuum structure is analytically examined with an emphasis on the role of tadpole
charge in section 3. In section 4, we investigate three Swampland conjectures. Finally, we
summarize the results of this paper and discuss some remaining issues in section 5.

2 Brief review of Type IIB flux compactifications on the mirror of
rigid CY

In section 2.1, we begin with the construction of the mirror of rigid CY threefold with the
19/Z3 Gepner model, which allows us to study the Type IIA/IIB flux compactifications in a
unified way. After briefly reviewing Type IIB flux compactifications with special geometry
in section 2.2, we derive the effective moduli action in section 2.3, where the dilaton Kähler
potential receives the correction from the effect of fixed Kähler moduli. We refer the details
of the background geometry to refs. [27, 30].

2.1 The Z̃ manifold

Let us consider the 19/Z3 Gepner model, where the LG worldsheet superpotential is
given by

W =
9∑

k=1
y3
k, (2.1)

subject to

Z3 : yk → ωyk, (2.2)

with ω = e
2πi
3 . On the vanishing locus of W , i.e., W = 0, there exist 84 Z3-invariant

polynomials and the background geometry corresponds to P8[3] manifold through the LG-
CY correspondence. Based on this Gepner model, the class of rigid CY Z is constructed,
and correspondingly, the class of mirror CY Z̃ is provided by a quotient of P8[3], namely
Z̃ = P8[3]/G with a certain group G. More precisely, these mirror CYs have seven dimen-
sions and belong to a class called the “generalized CY” (see for details, ref. [27]).

What is important on this sevenfold is that its middle-cohomology structure is the same
as that of usual CY threefolds. Under the Hodge decomposition H7(Z̃ ) =⊕p+q=7H

p,q

∂̄
(Z̃ ),

the corresponding Hodge number is listed as[
h0,7, h1,6, h2,5, h3,4, h4,3, h5,2, h6,1, h7,0

]
= [0, 0, 1, β, β, 1, 0, 0], (2.3)
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with β = 84, as shown in ref. [27]. There is a unique nontrivial element of H5,2 which
would correspond to the three-form Ω3,0 of an ordinary CY threefold. Here, the Ω5,2 can
be constructed by the usual way called Atiyah-Bott-Gårding-Candelas method [32, 33],
but at this time, it is not holomorphic. (See for details, refs. [34, 35].) In addition,
H4,3 corresponds to H2,1 of a CY threefold, which parametrizes the complex structure
deformations. The explicit complex structure moduli will be introduced later.

As we described, it was known that there are other possibilities to divide 19/Z3 Gepner
model. For instance, we can utilize the other Z′3 action as G:

Z′3 : (y1, y2, y3, y4, y5, y6, y7, y8, y9)→
(
ωy1, ωy2, ωy3, ω

2y4, ω
2y5, ω

2y6, y7, y8, y9
)
, (2.4)

leading to the mirror of the rigid CY P8[3]/Z′3. In this case, there exist totally h4,3 =
β = 36 deformations, but the degree of freedom of complex structure corresponds to 30
deformations of the equationW = 0, maintaining the homogeneity ofW and the invariance
under the Z′3 symmetry. Similarly, we can consider the case that the 19/Z3 model is further
divided by an additional Z′′3 symmetry, i.e., P8[3]/(Z′3×Z′′3) with G = Z′3×Z′′3 whose Hodge
number is h4,3 = β = 12.

A geometrical interpretation of non-geometric internal CFT has also been studied.
The structure of toroidal orbifold appears in the mirror Z̃ , and it can be understood by
LG-CY correspondence from the 19/Z3 Gepner model. Indeed, integrating out three of
nine fields in eq. (2.1) restricts us to reside in CP2 × CP2 × CP2. This is equivalent to
the product of three tori T 2 with the SU(3) root lattice [36], although the orbifold group
is non-geometrically acting symmetry [29, 37]. This is a consequence of the fact that the
original rigid CY Z is geometrically represented by a product of three tori T 2 subject to
Z3×Z′3 identification [36]. Hence, it is natural to expect that the effective action can also be
accessed by T-duality from the geometric IIA model on the rigid CY, T 6/(Z3 × Z′3) [12].
Remarkably, for the P8[3] case, the (2,2)-CFT description of the flux compactification
was developed in ref. [29], in which they introduced O-planes with appropriate orientifold
actions besides three-form fluxes and D-branes. These are necessary ingredients to reduce
N = 2 SUSY by half and cancel a positive contribution to the D3-brane charge induced
by SUSY-preserving three-form fluxes and the existence of D3-branes, i.e., the tadpole
cancellation condition. The authors of ref. [29] explicitly demonstrated several orientifold
actions, and it turned out that the maximal value of the tadpole charge is 12.

In this paper, we will focus on the mirror of rigid CY Z̃ = P8[3]/Z3 treated in ref. [29],
and we adopt the orientifold action leading to the tadpole charge 12. It is notable that one
can do the same calculation for the different orientifold actions since they are defined on
P8[3]. As discussed in the next section, the Z̃ equips a symplectic structure which allows
us to employ the technique of flux compactifications on CY manifolds. There exist two
types of closed string moduli, i.e., the untwisted (bulk) moduli and the twisted moduli
from the viewpoint of toroidal orbifolds. The stabilization of the untwisted moduli at
the AdS minima was discussed in the context of flux compactification [29, 30], but the
classification of flux vacua has not been developed yet. Our purpose is to explore the
vacuum structure of untwisted moduli and inspect several swampland conjectures. The
effective action of untwisted moduli is derived by calculating the period vector in ref. [27].
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Finally, we emphasize that this background is not in one-to-one correspondence with the
T-dual of DGKT model due to the different orbifolding and orientifold actions, but it
captures a part of the vacuum structure discussed in Type IIA side.9

2.2 Type IIB flux compactifications with special geometry

In this section, we briefly review Type IIB flux compactifications with special geometry. On
manifolds with special geometry, a unique holomorphic three-form Ω plays an important
role in introducing three-form fluxes in Type IIB string theory. As we mentioned in the
previous section, we can identify the holomorphic three-form Ω of CY threefold with the
(5, 2)-form on Z̃ . In particular, we deal with untwisted cycles on 3-tori whose period
integrals were explicitly calculated in ref. [27].

On CY threefolds M , we can set the three-form basis (Aa, Bb) of H3(M ,C) to be
symplectic because of the existence of special geometry,10 i.e., it satisfies the following
relations:

Aa ∩Bb = δab , Bb ∩Aa = −δab , Aa ∩Ab = 0, Ba ∩Bb = 0, (2.5)

with a, b = 0, 1, . . . , h2,1. The dual cohomology basis (αa, βb) of H3(M ,C) is defined to
satisfy ∫

Aa
αb =

∫
M
αb ∧ βa = δab,

∫
Ba
βb =

∫
M
βb ∧ αa = −δba, (2.6)

from which (αa, βb) are the Poincaré dual with each other. Then, we introduce the (2h2,1 +
2, 1) period vector as

Π ≡
(
Fa
ua

)
≡
(∫

Ba
Ω∫

Aa Ω

)
, (2.7)

where {ua} denotes the projective coordinates of the complex structure moduli space and
each Fa becomes a function of {ua}. This yields the following expansion of Ω:

Ω = uaαa − Faβa. (2.8)

Note that Ω is defined up to a holomorphic multiplication (see for details about the no-
tation, appendix A). Since {ua} is denoted as the projective coordinates with the number
h2,1 + 1, all of them do not correspond to the complex structure deformations. In a usual
way, the flat coordinates are chosen as

za = ua

u0 , (a 6= 0), (2.9)

on the u0 6= 0 patch. Hereafter, we simply set u0 = 1 so that {za} (a = 1, 2, . . . , h2,1)
becomes a set of dynamical fields, namely the complex structure moduli. The Kodaira
theory [39, 41] states that if we variate Ω with the complex structure za, it results in

∂Ω
∂za
∈ H3,0(M ,C)⊕H2,1(M ,C). (2.10)

9As long as we consider only bulk modes, these two systems are exactly dual.
10See for the details about the special geometry, refs. [38, 39] and the relation to the CP symmetry,

ref. [40].
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Hence, we can define

∂Ω
∂za

= kaΩ + χa, (2.11)

with χa ∈ H2,1(M ,C) being a harmonic (2, 1)-form, and the uniqueness of harmonic
(3, 0)-form is employed here. This formula plays an essential role in this framework (see
appendix A in more detail).

Let us discuss Type IIB flux compactifications, where the three-form fluxes F3 and H3
are quantized on each cycle as11

fa ≡
∫
Aa
F3, fa ≡

∫
Ba
F3, (2.12)

ha ≡
∫
Aa
H3, ha ≡

∫
Ba
H3, (2.13)

so that {fa, fa, ha, ha} becomes a set of integers. Here, a runs from 0 to h2,1 again. From
these expressions, F3 and H3 are expanded as

F3 = faαa − faβa, (2.14)
H3 = haαa − haβa. (2.15)

When these quantized three-form fluxes are turned on certain three-cycles, they induce the
GVW superpotential in the 4D effective action [31]

W =
∫

M
G3 ∧ Ω, (2.16)

with G3 ≡ F3−SH3. Here and in what follows, the reduced Planck mass is set to be unity,
and we denote S as the axio-dilaton whose imaginary part (ImS) determines the inverse
of string coupling, i.e., ImS = g−1

S .
We recall that the Kähler potential on the geometric CY threefold is given by

K = Kad +Kcs +Kvol = −kS log
(
−i
(
S − S̄

))
− log

(
−i
∫

M
Ω ∧ Ω̄

)
− 2 logV, (2.17)

with kS = 1 and V being the volume of CY. However, as discussed in ref. [30], all the
Kähler moduli for the non-geometric case in our interest are projected to the invariant
point under the orbifolding on Z̃ . The contributions of fixed Kähler moduli change the
axio-dilaton Kähler potential to

KZ̃ = −4 log
(
−i
(
S − S̄

))
− log

(
−i
∫

Z̃
Ω ∧ Ω̄

)
, (2.18)

that is, kS = 4. As a result, the 4D scalar potential V is expressed by K and W as

V = eK(KIJ̄DIWDJ̄W̄ − 3|W |2), (2.19)

11Here and in what follows, we set the string length ls = 1 for simplicity.
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with I being the index of all the moduli, KIJ̄ ≡ ∂I ∂̄J̄K being the Kähler metric, and
DIW ≡ KIW + ∂IW being the covariant derivative of superpotential W and KI ≡ ∂IK.
∂If means a derivative of f with a variable which the index I denotes. Note that the scalar
potential V does not become no-scale type, since there is no degree of freedom about the
Kähler structure deformations. All the above relevant quantities which we need in the
actual moduli stabilization can be expressed by the period vector Π (or the prepotential
F ) instead of Ω, which is identified with the period vector of Ω5,2 on Z̃ .

We comment on what happens when the coefficient of the axio-dilaton part kS = 4 is
different from the geometric one (kS = 1). Because of the difference, the SL(2,Z) symmetry
of the axio-dilaton

S → aS + b

cS + d
,

(
F3
H3

)
→
(
a b

c d

)(
F3
H3

)
(2.20)

does not exist entirely in the effective action, since eK and W transform as

eK → eK |cS + d|2kS , |W |2 → |cS + d|−2. (2.21)

Hence, only the T -transformation survives.

2.3 Effective action

Here and in what follows, we examine a specific period vector calculated in ref. [27]. In
particular, we deal with three moduli τi (i = 1, 2, 3), which reflects the untwisted complex
structure moduli of the underlying toroidal orbifold. The period vector Π takes the form

Π =
(
Fa
ua

)
=



−τ1τ2τ3
τ2τ3
τ1τ3
τ1τ2

1
τ1
τ2
τ3


. (2.22)

Since the period vector determines the Kähler potential of the complex structure moduli
and the flux-induced superpotential

Kcs = − ln
(
−i
∫

Z̃
Ω ∧ Ω̄

)
= − ln

(
−iΠ† · Σ ·Π

)
,

W =
∫

Z̃
G3 ∧ Ω =

∑
a

[
−(fa − Sha)Fa + (fa − Sha)ua

]
,

their explicit forms are given by

K = −4 ln(−i(S − S̄))− ln(i(τ1 − τ̄1)(τ2 − τ̄2)(τ3 − τ̄3)), (2.23)

W = (f0 − Sh0)τ1τ2τ3 −
[
(f1 − Sh1)τ2τ3 + (f2 − Sh2)τ3τ1 + (f3 − Sh3)τ1τ2

]
+
[
(f1 − Sh1)τ1 + (f2 − Sh2)τ2 + (f3 − Sh3)τ3

]
+(f0 − Sh0), (2.24)
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where {f1,2,3, f1,2,3, h
1,2,3, f1,2,3} denotes the RR- and NSNS-flux quanta. The obtained

scalar potential V is almost the same as that in Type IIB flux compactifications on toroidal
orbifolds, but with the slightly modified coefficient of Kad with kS = 4. When considering
the isotropic toroidal background, all τi are identified with one modulus τ . By rewriting
{f1,2,3, f1,2,3, h

1,2,3, f1,2,3} by {f1, f1, h
1, h1}, the whole flux sets are given by {f0, f1, f0, f1}

and {h0, h1, h0, h1} for RR- and NSNS-fluxes, respectively. The effective action in our
interest reduces to be

K = −4 ln
(
−i(S − S̄)

)
− 3 ln(−i(τ − τ̄)), (2.25)

W = (f0 − Sh0)τ3 − 3(f1 − Sh1)τ2 + 3(f1 − Sh1)τ + (f0 − Sh0). (2.26)

Moduli stabilization in this class of flux compactification was studied already in ref. [30],
but our purpose is to clarify the flux landscape from a statistical viewpoint and explore
the boundaries between the string landscape and the swampland.

Before concluding this section, we discuss the cancellation condition of the D3-brane
charge. Since the three-form fluxes induce the D3-brane charge (tadpole charge)

Nflux =
∫

M
H3 ∧ F3 = −hafa + faha, (2.27)

it should be canceled by the so-called tadpole cancellation condition

Nflux +ND3 −
1
2NO3 = 0. (2.28)

Here ND3 and NO3 denotes the number of D3-branes and O3-planes, respectively. The
exact value of NO3 is determined by the orientifold action as constructed in ref. [29]. In
the following analysis, we fix the orientifold action as σ1 in ref. [29] unless we specify it.
This restricts the maximum Nflux to 12.12 Hence, the Nflux is upper bounded as

Nflux ≤ 12. (2.29)

Note that the tadpole charge Nflux is required to be positive in the supersymmetric com-
pactifications on the geometrical case, but it does not hold in our non-geometric case even
in the supersymmetric fluxes [30].

3 Vacuum structure and role of tadpole charge Nflux

In this section, we analytically examine the characteristic features of the flux vacua to find
out the boundaries between the landscape and the swampland. From a general structure
of the scalar potential shown in section 3.1, we find a strong correlation between the sign
of the cosmological constant Λ and the tadpole charge Nflux due to the fact that the
tadpole charge Nflux emerges in the scalar potential as the coefficient of the axio-dilaton.
Furthermore, the relation between the Nflux and the typical moduli mass is exemplified in
a concrete example in section 3.2.

12Different orientifold actions give different values of maximum Nflux allowed. Since the value 12 for σ1

is determined in a discussion involving twisted cycles [29], we should say that the orbifold limit considered
here is just the case where the twisted moduli are set to be 0 everywhere. The stabilization of the twisted
moduli is left for future work.
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3.1 Sign of the cosmological constant Λ and Nflux

In this section, we focus on the sign of cosmological constant Λ against the tadpole charge
Nflux. Let us define V ≡ eK Ṽ whose expression is useful to analytically study the vacua
structure. It is remarkable that V and ∂X Ṽ at the minima ∂XV = 0 are related as

V = −eK ∂X Ṽ
KX

, (3.1)

where X denotes arbitrary moduli fields. Since KS < 0 holds for the axio-dilaton direction
throughout the discussion below, the sign of the cosmological constant is determined by
∂X Ṽ at the minima, and then it is important to consider the explicit form of ∂X Ṽ . Recall
that V is always a quadratic function of S regardless of the internal background M since
G3 = F3 − SH3 is a linear function for S. For that reason, we concentrate on derivatives
of V with respect to S to extract some necessary conditions of the perturbatively stable
vacua in a subsequent discussion.

The second derivative of V with respect to ImS at the minima (∂ImSV = 0) is given by

e−K∂2
ImSV = 1− kS

ImS ∂ImSṼ + ∂2
ImSṼ , (3.2)

where kS denotes the coefficient of the axio-dilaton Kähler potential Kad = −ks ln(−i(S −
S̄)). As mentioned before, kS = 1 and 4 correspond to geometric CY threefolds and the
non-geometric background Z̃ , respectively. Since

∂ImSṼ = kS
ImS e

−KV (3.3)

holds at the minima, we arrive at the necessary condition to be stable ∂2
ImSV > 0,13

V <
(ImS)2

kS(kS − 1)e
K∂2

ImSṼ (kS 6= 1), (3.4)

0 < ∂2
ImSṼ (kS = 1). (3.5)

We observe that in the kS 6= 1 case of our interest, the signs of V and ∂2
ImSṼ at the minima

are correlated with each other. If there exists a stable dS minimum (V > 0), eq. (3.4) in-
dicates that ∂2

ImSṼ must be positive there. On the other hand, in the kS = 1 case, ∂2
ImSV

and ∂2
ImSṼ have the same sign. In both cases, the explicit form of ∂2

ImSṼ is an important
ingredient in whether the minima are stable.

These fundamental observations motivate us to study the structure of Ṽ , but it is quite
difficult to analyze it without any assumptions. Hence, we assume that there is no mixing
between the axio-dilaton S and complex structure moduli in the Kähler metric, which is
broadly applicable to the effective action in the regime of small string coupling. Hereafter,
we concentrate on the kS = 4 case whose Kähler potential is given in eq. (2.18), but the
following results hold for the kS = 1 case similarly.

13This follows from Sylvester’s criterion. Since the mass matrix is real and symmetric in this case, ∂2
ImSV

has to be positive definite to be stable at Minkowski and dS vacua. The AdS vacua are analyzed in the
next section.
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Let us split Ṽ into the following three pieces under the above assumption;

ṼS = KSS̄DSWDS̄W̄ , (3.6)

Ṽcs =
∑
a,b

Kab̄DaWDb̄W̄ , (3.7)

ṼSG = −3|W |2, (3.8)

where a, b run over the complex structure moduli. Then, we derive the quantity ∂ImSṼ

whose sign is directly related to the sign of the cosmological constant. (For the detailed
calculation, see appendix B.) It turned out that Ṽ is of the form

Ṽ = 1
2∂

2
ImSṼ (ImS)2 − e−KcsNfluxImS + C, (3.9)

for both the kS = 4 and the no-scale type kS = 1. Here, C denotes the positive-definite
function appearing in the zeroth-order part of Ṽ with respect to ImS as in eq. (B.18), and
∂2

ImSṼ is explicitly written in eq. (B.13). The appearance of Nflux in the scalar potential
as the coefficient of ImS = g−1

s is a common feature in the no-scale type kS = 1 and the
non-geometric case kS = 4, but it is a non-trivial check to derive Nflux in kS = 4 case from
the 10D supergravity action on non-geometric background. This expression is important
to understand the 10D consistency condition on the non-geometric background, but we
leave it for future work.

Following these results, we find the strong correlation between the sign of V at the
minimum and Nflux.14 If there exists a Minkowski minimum (V = 0), the VEV of ImS is
given by

〈ImS〉 = + Nflux

∂2
ImSṼ

. (3.10)

Since ∂2
ImSV > 0 is in one-to-one correspondence with ∂2

ImSṼ > 0 at V = 0, Nflux > 0 is
required to obtain stable Minkowski minima. In general, the expectation value of ImS at
an extremum of V is found as

〈ImS〉 = e−Kcs
3Nflux ±

√
(3Nflux)2 − 16Ce2Kcs∂2

ImSṼ

2∂2
ImSṼ

, (3.11)

from which Nflux must satisfy

(e−KcsNflux)2 >
16
9 C∂

2
ImSṼ . (3.12)

The stability condition (3.4) states that ∂2
ImSṼ > 0 is required to obtain stable Minkowski

or dS minima. After some calculation, we find that the negative sign in eq. (3.11) is a
14Although this work was carried out independently, the fact that the Nflux emerges in the scalar potential

in the type IIB non-geometric flux compactification on CY manifolds was pointed out in ref. [42]. However,
we emphasize that this emergence on the mirror of the rigid CY is still non-trivial. Furthermore, we will
explore the explicit landscape on this background in analytic and numerical ways to show that there are
some implications on physical quantities and the swampland conjectures from the structure of eq. (3.9).

– 11 –



J
H
E
P
1
2
(
2
0
2
1
)
0
1
7

solution for the dS minima, and then Nflux > 0 is also required at the stable dS minima in
a similar to the Minkowski minima. Together with eqs. (3.12) and (3.4), the allowed range
of Nflux is further constrained to reside in

16
9 C∂

2
ImSṼ ≤ (e−KcsNflux)2 < 2C∂2

ImSṼ . (3.13)

As pointed out before, it was well known that Nflux is bounded from above since only
O-planes determined by the orientifold action have negative contributions to the tadpole
cancellation condition, but our analyses show that the tadpole charge Nflux is further
constrained by the stability condition to allow the existence of Minkowski and dS vacua.
Hence, it suggests that it would be difficult to realize the stable dS vacua inside the string
landscape due to the small range of Nflux, in particular, the maximum number is 12 in
the orientifold action of our interest. On the other hand, a large Nflux contribution would
allow the stable dS minima, although it is outside the landscape, i.e., the swampland.
These observations will be confirmed in our numerical results in section 4, in which we find
the stable dS vacua in a region Nflux > 12, indicating the strong correlation between the
existence of dS vacua and the upper bound of Nflux.

3.2 Nflux and moduli mass on SUSY AdS/Minkowski vacua

In this section, we analytically examine the structure of SUSY AdS/Minkowski vacua,
paying attention to the relation between the Nflux and the moduli mass. These analyses
are useful to understand the hidden structure of the swampland conjectures as analyzed in
section 4. (For the detail of SUSY AdS vacua, see, ref. [30].)

We begin with the SUSY vacua of the scalar potential V without no-scale structure.
The hermitian mass matrix at DIW = 0 for arbitrary fields φI takes rather a simple
form [30];

∂J̄∂IV = eK
(
DIDKWDJ̄DL̄W̄KKL̄−2KIJ̄ |W |

2
)
, ∂J∂IV =−eK(DJDIW )W̄ , (3.14)

where I, J,K,L run over the axio-dilaton and all the complex structure moduli of our
interest. Since the following expressions hold at SUSY vacua:

DSDSW = kS(1− kS)
(S − S̄)2 W, DSDaW = −DaWNS,

DaDbW = −ieKcsκab
c̄(S̄ − S)Dc̄WNS, (3.15)

they enable us to simplify the mass matrix there. The value of kS affects only DSDSW ,
and it is identically zero in the no-scale scalar potential (kS = 1).

To find the analytical expression of the moduli mass, we focus on the isotropic back-
ground τ = τ1 = τ2 = τ3. At the SUSY AdS vacua, the physical mass matrix becomes

M2
phys,AdS
ΛAdS

=


2
3 −

19
108 |x|

2 2
9 ȳ − x

2
√

3 −
xȳ

9
√

3
x̄

6
√

3
2
9y

2
3 −

19
108 |x|

2 x
6
√

3 − x
2
√

3 −
x̄y

9
√

3
− x

2
√

3 −
x̄y

9
√

3
x̄

6
√

3 −7
3 −

1
36 |x|

2 1
x

6
√

3 − x̄
2
√

3 −
xȳ

9
√

3 1 −7
3 −

1
36 |x|

2

 , (3.16)
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where ΛAdS = −3eK |W |2 = −3eKad+Kcs |W |2, and x, y are defined by

x ≡ (S − S̄)(τ − τ̄)DτWNS
W

, (3.17)

y ≡ (S − S̄)(τ − τ̄)DτWNS
W

, (3.18)

satisfying |x| = |y|. The basis of mass matrix basis is set as {¯̂τ, τ̂ , ¯̂
S, Ŝ} for the row and

{τ̂ , ¯̂τ, Ŝ, ¯̂
S} for the column. Here, Ŝ and τ̂ are canonically normalized as

Ŝ = 1
〈ImS〉∆S, (3.19)

τ̂ =
√

3
2

1
〈Imτ〉∆τ, (3.20)

with S = 〈S〉+ ∆S and τ = 〈τ〉+ ∆τ (in what follows, we omit 〈 〉 that denotes a VEV).
Hence, we can see that the magnitude of the mass matrix is controlled by the parameter
x as stated in ref. [30]. To simplify our analysis, let us assume that the phases of x and y
are 0 and take

r = |x| = |y|. (3.21)

It is found that the mass squared of lightest modulus in the real basis is given by

m2
light = ΛAdS

2× 108

[
12r − 11r2 + 4

(
−9 +

√
(3 + r)2(81− 36r + 7r2)

)]
, (3.22)

whose expression is useful to understand the structure of swampland conjectures in
section 4.

Interestingly, x and y also control the magnitude of Nflux as analyzed in detail below.
Recall that three-forms {F3, H3} and Nflux are expanded as in eqs. (B.10) and (B.14)
respectively, the SUSY conditions enable us to simplify the expression of Nflux. We find
that the Nflux at the SUSY vacua is given in eq. (C.8) in a general complex structure moduli
space leading to the non-diagonal Kähler metric Kab̄. (For more details, see, appendix C.)
When we restrict ourselves to the isotropic complex structure modulus in a similar to the
previous analysis, eq. (C.8) reduces to

Nflux
ΛAdS

= 8(ImS)3

3

(
8− |x|

2

3

)
. (3.23)

In this way, Nflux also depends on |x|, and there should be a relation between the mass
squared of lightest modulus m2

light and Nflux.
To discuss the relation, we rewrite eq. (3.23) as

|x|2 = 24− 9Nflux
8(ImS)2ΛAdS

. (3.24)
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When we assume 8(ImS)2ΛAdS � 9Nflux due to the small contribution from Nflux, the
lightest modulus mass and the AdS scale are related as

m2
light '

ΛAdS
4 , (3.25)

namely

|mlightRAdS| '
√

6
2 ' 1.22. (3.26)

Here, we introduce the AdS scale on the d-dimensional spacetime as

RAdS =
√

(d− 1)(d− 2)
|ΛAdS|

, (3.27)

with d = 4. It suggests that the AdS/moduli mass separation conjecture holds on the
isotropic moduli space with the definite O(1) parameter. The sub-leading term in eq. (3.26)
is determined by Nflux. As will discussed in section 4, the numerical results support
these results.

We move on to the analysis of the SUSY Minkowski vacua. Analogously, it enables us
to analyze the SUSY Minkowski vacua at which the physical mass matrix is evaluated as

M2
phys,Minkowski

eK
=



19
72 |x̂|

2 0 x̂2

6
√

3 0
0 19

72 |x̂|
2 0 ¯̂x2

6
√

3
¯̂x2

6
√

3 0 |x̂|2
24 0

0 x̂2

6
√

3 0 |x̂|2
24

 , (3.28)

with

x̂ ≡ (S − S̄)(τ − τ̄)DτWNS. (3.29)

Here, the basis of the mass matrix is the same as the analysis of AdS vacua. As discussed
below, this expression does not depend on the value of kS ; thereby it is applicable to the
scalar potential with the no-scale structure (kS = 1). The mass squared of lightest modulus
in the real basis is given by

m2
light = 1

144(11− 4
√

7)|x̂|2, (3.30)

which ensures that the SUSY Minkowski vacua are always perturbatively stable when
Nflux > 0.

SinceWNS = 0 = WRR hold at the SUSYMinkowski vacua, Nflux in eq. (C.8) reduces to

Nflux = −ieKcs(S − S̄)Kab̄DaWNSDb̄W̄NS, (3.31)

and it is further simplified on the isotropic background,

Nflux
eK

= 8(ImS)3

3
|x̂|2

3 . (3.32)
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The mass squared of lightest modulus and Nflux are in turn related as

m2
light = 11− 4

√
7

128
Nflux

(ImS)2 . (3.33)

Before concluding this section, let us compare the above results to the no-scale scalar
potential corresponding to the geometric toroidal background with kS = 1. Since the no-
scale structure does not lead to the AdS vacua, we focus on the SUSY Minkowski vacua.
The hermitian mass matrix in the no-scale scalar potential V becomes

∂J̄∂IV = eK
(
DIDKWDJ̄DL̄W̄KKL̄ +KIJ̄ |W |

2
)
, ∂J∂IV = +2eK(DJDIW )W̄ , (3.34)

and in particular, it is of the same form (3.28) at the SUSY Minkowski minima. Note that
the Nflux in the kS = 1 case is given by

Nflux
eK

= + |x̂|
2

3 . (3.35)

Then, we find that the lightest modulus mass (3.30) is determined by Nflux,

m2
light = 11− 4

√
7

48 Nflux. (3.36)

Remarkably, the mass squared of lightest modulus is proportional to Nflux in both the
geometric (kS = 1) and non-geometric (kS = 4) cases. From these expressions, the SUSY
Minkowski vacua are perturbatively stable when Nflux > 0 which is consistent with the
analysis in section 3.1.

4 Inspection of swampland conjectures

We numerically investigate the distributions of flux vacua and compare them with three
types of swampland conjectures; the AdS/moduli scale separation conjecture in section 4.2,
the AdS distance conjecture in section 4.3 and the dS swampland conjecture in section 4.4.

4.1 Distributions of the flux vacua

We numerically searched the flux vacua in two cases; (i) the isotropic moduli whose Kähler
potential and superpotential are given by eqs. (2.25) and (2.26) and (ii) the anisotropic
case whose Kähler potential and superpotential are given by eqs. (2.23) and (2.24), respec-
tively. We directly minimized the scalar potential by utilizing the “FindRoot” function in
Mathematica (v12.0). Although the various toroidal orbifolds have been discussed in the
literature, the value of kS is different from the usual geometric case, as we already men-
tioned. To perform the numerical search in isotropic and anisotropic cases, we randomly
generated 10,129,591 and 17,136,095 set of fluxes within

−20 ≤ {f0, f1, f0, f1, h
0, h1, h0, h1} ≤ 20, (4.1)

taking into account the tadpole cancellation condition

−12 ≤ Nflux ≤ 12, (4.2)
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Type Number of flux vacua (Stable/Unstable)
SUSY AdS vacua 232,800/0

non-SUSY AdS vacua 1,672,413/360,336
SUSY Minkowski vacua 0

non-SUSY Minkowski vacua 0
Unstable dS vacua 0

Table 1. The number of vacua in the isotropic case.

Type Number of flux vacua (Stable/Unstable)
SUSY AdS vacua 390/0

non-SUSY AdS vacua 5,893/4,305
SUSY Minkowski vacua 0/0

non-SUSY Minkowski vacua 0/0
Unstable dS vacua 0/0

Table 2. The number of vacua in the anistropic case.

respectively.15 As summarized in tables 1 and 2, there exist SUSY and non-SUSY AdS
stable vacua. It turns out that the number of SUSY AdS vacua is much smaller than that
of non-SUSY AdS vacua. The benchmark points for SUSY and non-SUSY AdS vacua are
summarized in table 3. Here, the stability of AdS vacuum is perturbatively ensured when
the moduli masses satisfy the Breitenlohner-Freedman (BF) bound. (See for detail, e.g.,
ref. [43].) Note that we cannot exclude Minkowski or dS vacua in our limited numerical
search, but the results we obtained illustrate the tendency in the flux landscape.

4.2 The AdS/moduli scale separation conjecture

We begin with the AdS/moduli scale separation conjecture proposed in ref. [16], stating
that the AdS size RAdS and the mass of lightest modulus mlight satisfy the equality

mlightRAdS ≤ c, (4.3)

in an AdS minimum. The constant c is regarded as O(1) constant. That conjecture is
supported by the Type IIB supergravity solution on AdS5 × S5, on which the mass of the
lightest modulus satisfy mlight ∼ R−1

S5 ∼ R−1
AdS5

. Note that the sizes of AdS5 (RAdS5) and
S5 (RS5) are correlated by the 5-form fluxes supporting the supergravity solution.

In figures 1 and 2, we fist plot the distributions of SUSY and non-SUSY AdS
vacua against

√
m2

lightR
2
AdS in the isotropic moduli space, respectively. Here, we employ

15Theoretically, there is no lower bound on the value of Nflux. Nevertheless, we set it to -12 because of
the amount of memory required to run the numerical calculations. Also, if we increase the value of |Nflux|,
it will become impossible to ignore the effects of corrections, which are left for future studies. Hence, we
believe that the choice is not an irrational setting.
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Properties Vacuum 1 Vacuum 2 Vacuum 3 Vacuum 4
SUSY? Yes Yes No No
f0 -1 -8 -10 7
f1 9 1 -10 -9
f2 7 10 10 -4
f3 1 10 -9 -8
f0 4 -4 2 1
f1 -1 8 -3 0
f2 -2 2 8 9
f3 3 -4 3 -6
h0 1 0 -1 0
h1 -3 4 2 -2
h2 0 5 8 -5
h3 0 4 0 -4
h0 -8 -9 -10 7
h1 3 -9 8 -8
h2 -1 -3 1 4
h3 -9 -1 -3 3
〈ReS〉 -1.998 0.429 3.426 -0.532
〈ImS〉 3.568 5.649 17.954 8.141
〈Reτ1〉 -1.166 -1.797 3.012 0.168
〈Imτ1〉 1.461 2.42 3.053 2.867
〈Reτ2〉 3.568 0.435 -6.872 -2.386
〈Imτ2〉 3.225 3.956 3.557 4.075
〈Reτ3〉 -0.343 0.0645 0.180 -1.728
〈Imτ3〉 3.326 2.744 2.962 6.947
V -0.0929 -0.1083 -0.0054 -0.04525

Nflux 12 -3 1 12

Table 3. The benchmark points for SUSY and non-SUSY AdS vacua in the anisotropic case.

RAdS =
√

(d−1)(d−2)
|ΛAdS| with d = 4. It turns out that

√
m2

lightR
2
AdS is distributed around O(1)

values, but the distribution peaks at specific values, namely O(1.2) at the SUSY vacua
and O(1.6) at the non-SUSY vacua, respectively. The points on which the

√
m2

lightR
2
AdS

peaks are a little bit different between the SUSY and non-SUSY vacua. Similar phenomena
appear in the distributions of the anisotropic moduli space as drawn in figures 3 and 4,
which correspond to the SUSY and non-SUSY AdS vacua, respectively.

To clarify why the O(1) parameter c in the conjecture (4.3) is sharply peaked at the
specific values, we come back to the analytical expressions of section 3.1. On the isotropic
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moduli space, the product of lightest modulus mass and the AdS scale has a specific value√
6/2 ' 1.22 as in eq. (3.26) under the assumption 8(ImS)2ΛAdS � 9Nflux. Hence, this

value is well in accord with the peak value in the numerical analysis, meaning that the
assumption holds in this case. These peculiar phenomena are special to the landscape since
only small Nflux is consistent with the tadpole cancellation condition. It indicates that the
larger Nflux to be possible in the swampland does not lead to such a sharp distribution.

By contrast, the distribution of non-SUSY stable AdS vacua is different from the SUSY
case, although there exist several peaks in figure 2. It suggests several classes of non-
SUSY AdS vacua to be consistent with the tadpole cancellation condition. For illustrative
purposes, let us consider the following superpotential,

W = τ3 + 3qτ2 − 6q2τ − S, (4.4)

leading to the Nflux = 1 without specifying the flux quantum q. This example admits a
dilute flux limit |q| → ∞. By solving the minimum conditions VI = 0 with I = S, τ , we
find the non-SUSY minima

ReS = Reτ = 0, ImS = −16q3, Imτ = −2q, (4.5)

which requires the negative value of q. The vacuum energy is indeed negative

Λ = 1
524288q9 , (4.6)

and in the large |q| limit, the mass squared of the lightest modulus is evaluated as

m2
light ' −

5
54525952q15 . (4.7)

It turns out that the lightest modulus mass and the vacuum energy satisfy the relation

m2
light ' 313|Λ|15/9. (4.8)

In this way, this illustrative example satisfies the AdS/moduli scale separation conjecture
in the limit Λ→ 0. However, the O(1) parameter c in the conjecture (4.3) is not constant,
but the moduli dependent. Such a moduli-dependent c changes the structure of the dis-
tributions of non-SUSY AdS vacua in comparison with the SUSY AdS vacua as shown in
figure 2. It is notable that all the non-SUSY AdS vacua in our dataset satisfy the tadpole
cancellation condition, and there is no counterexample for this conjecture.

On the anisotropic moduli space, the distributions of AdS vacua are similar to the
isotropic case, although they have a peek at a different value. We expect that this is due
to the same reason as stated in the isotropic case. So far, the value of O(1) parameter c in
the conjecture (4.3) was supported by the specific Type IIB supergravity solution, but it
was unclear how the O(1) parameter is distributed in the string landscape. By employing
our method, we would reveal the hidden structure of AdS landscape. Indeed, our results
exhibit that the distributions of O(1) parameter have a characteristic feature in both the
SUSY and non-SUSY vacua. It is interesting to find out the distribution of O(1) parameter
in other corners of the string landscape, which we leave for future work.
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Figure 1. The distributions of
√
m2

lightR
2
AdS at SUSY AdS vacua in the isotropic moduli space.

All vacua here satisfy the BF bound.
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Figure 2. The distributions of
√
m2

lightR
2
AdS at non-SUSY AdS vacua in the isotropic moduli space.

All vacua satisfy the BF bound. Here, we set the increments to be 0.025 to clarify the fine structure
of the distribution.

4.3 The AdS distance conjecture

In this section, we deal with the AdS distance conjecture proposed in ref. [17], stating that
at the zero-limit of the cosmological constant Λ→ 0, there exists an infinite tower of light
states whose masses in Planck mass units behave as

mtower = c|Λ|α, (4.9)

where α is a positive O(1) constant and c = O(1). The conjecture was originally stated
on d-dimensional AdS space and especially, α = 1/2 for supersymmetric AdS vacua in its
stronger version which corresponds to the Maldacena-Nuñez type no-go theorem for the
class of Type II AdS flux vacua without negative tension objects [44]. In the following
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Figure 3. The distributions of
√
m2

lightR
2
AdS at SUSY AdS vacua in the anisotropic moduli space.

All vacua here satisfy the BF bound.
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Figure 4. The distributions of
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lightR
2
AdS at non-SUSY AdS vacua in the anisotropic moduli

space. All vacua here satisfy the BF bound.
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Type Average Median Standard Deviation (SD) Maximum Minimum
iso. 0.319 0.258 0.350 46.3 0.0869
anis. 0.134 0.123 0.0541 0.375 0.0400

Table 4. Statistical Data of c for SUSY AdS vacua with α = 1/2 for the isotropic (iso.) and
anistropic (anis.) case.

analysis, we focus on just the KK tower in our setup and discuss the consequence of that
conjecture.

To clarify our discussion, we adopt the superpotential (4.4) as an illustrative example
again and consider the non-SUSY vacuum (4.5). The expression of mass mtower is taken
from the T-dual picture, i.e., mtower in eq. (60) of ref. [45]. Taking into account the fixed
value of the Kähler moduli on Z̃ , we find

m2
tower = 4

62/3
1

(ImS)2Imτ . (4.10)

By substituting the minima (4.5) into mtower (4.10) together with eq. (4.6), it results in

m2
tower ' |Λ|

7
9 , (4.11)

thereby α = 7/18 holds irrespective of the flux q. This result is consistent with the results
of previous studies in the DGKT model [45].

After the fundamental observation above, we study numerical analysis in both the
isotropic and anisotropic cases. There is a subtlety in determining α from the numerical
results that there are indeed two undefined parameters α and c in the expression of conjec-
ture (4.9). Thus, we have to fix one of them by hand, at first. Let us consider only SUSY
AdS vacua and assume α = 1/2 for a moment to check whether the parameter c takes the
O(1) value. From numerically found 232,800 and 390 SUSY AdS vacua on the isotropic
and anisotropic backgrounds in tables 1 and 2, we statistically analyzed the distributions
of the parameter c as summarized in table 4.16 It turns out that the parameter c takes the
O(1) value for all the SUSY AdS vacua with α = 1/2, in particular, the average value and
the standard deviation (SD) of c are 0.134 and 0.0541 in the anisotropic case, respectively.
However, it is still interesting to ask whether the α = 1/2 is statistically favored in the
string landscape.

Thus, we change α and calculate SD in the same way to show the dispersion of c
for various α. By setting the increments and the range of α as 0.025 and [0.000, 1.000],
respectively, we find that c is always O(1) value around α = 1/2 in both the isotropic
and anisotropic cases. Interestingly, the amount of dispersion exhibits a characteristic
behavior with respect to the value of α. From figures 5 and 6, it can be seen easily that
the SD of c varies over the curve and the minimum in the isotropic and anisotropic cases
is located around α = 0.275 and α = 0.450, at which the value of SD is 1.09 × 10−2 and
5.36 × 10−2, respectively. Although these functional behaviors of c with respect to α are

16We consider only the lightest KK mass associated with the three complex structure moduli.
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Figure 5. The standard deviation of c = mtower/|Λ|α for each α in the case of isotropic SUSY
vacua. The range of α shown in the figure is set as [0.000, 0.600] and the increments are 0.025. In
this figure, α = 0.275 gives the minimum value 1.09× 10−2.
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Figure 6. The standard deviation of c = mtower/|Λ|α for each α in the case of anistropic SUSY
vacua. The range of α shown in the figure is set as [0.000, 1.000] and the increments are 0.025. In
this figure, α = 0.450 gives the minimum value 5.36× 10−2.

different between the isotropic and anisotropic cases, we expect that the anisotropic moduli
space captures the tendency of the string landscape. The origin of this functional behavior
is unclear, but we conclude that α ' 0.5 is preferred in the SUSY AdS landscape. Indeed,
our numerical results exhibit that a strong version of AdS distance conjecture (4.9) with
α = 1/2 holds at the SUSY AdS vacua, independent of fluxes and VEVs. These results
support the validity of the AdS distance conjecture in addition to the previously known
Type IIB supergravity solution.
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Figure 7. The standard deviation of c = mtower/|Λ|α for each α in the case of isotropic non-SUSY
vacua. The range of α shown in the figure is set as [0.000, 0.600] and the increments are 0.025. In
this figure, α = 0.275 gives the minimum value 1.18× 10−2.

For the isotropic case, we can find an upper bound of c analytically which is relevant
to our numerical results. Indeed, with an assumption Imτ > 1 and taking ε = |x|2 − 24 in
eq. (3.24), the upper bound of c2 = m2

tower/|Λ|2α is determined as

c2 ≤ 8
9

16
3

1/3 ε

Nflux
|Λ|1−2α, (4.12)

where the numerical factor has its value ∼ 1.55. Since our discussion in section 4.2 implies
|x|2 ∼ 24 in the landscape, we assume that ε takes a small value and treat it as a constant.
Note that ε/Nflux is always positive. Then, for |Λ| < 1, which is the condition that the
AdS distance conjecture originally imposed, the upper bound decreases below α = 1/2 and
increases above α = 1/2. Although the SD and the upper bound are different quantities,
the upper bound can be expected to capture the behavior of the SD due to the condition
c2 > 0. In fact, the behavior of the upper bound with respect to α is consistent with the
numerical results. In particular, the upper bound does not vanish under the strict limit of
Λ → 0 for the α = 1/2 case. This result is consistent with the strong version of the AdS
distance conjecture. Moreover, the upper bound is controlled by the O(1) tadpole charge
Nflux in that case. Thus the AdS distance conjecture is also correlated with the tadpole
charge or the tadpole cancellation condition.

This analysis can also be applied to the stable non-SUSY AdS vacua shown in tables 1
and 2, although there is no guidance to determine both c and α. After a statistical calcu-
lation, it is found that the same pattern also appears for the non-SUSY cases, as shown in
figures 7 and 8. In particular, in the anisotropic case of figure 8, the minimum exists around
α = 0.400 with the value of SD being 3.92× 10−2. We emphasize that these characteristic
features exist in both SUSY and non-SUSY AdS vacua, but it is difficult to find out the
origin of these functional behaviors in the non-SUSY case. We leave us to clarify this point
in the future.
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Figure 8. The standard deviation of c = mtower/|Λ|α for each α in the case of anisotropic non-
SUSY vacua. The range of α shown in the figure is set as [0.000, 1.000] and the increments are
0.025. In this figure, α = 0.400 gives the minimum value 3.92× 10−2.

4.4 The dS swampland conjecture

At last, we consider the dS swampland conjecture proposed in refs. [7–10], stating that
no (meta-)stable dS vacuum can be obtained in consistent string compactifications. The
original version of the conjecture suggests that the scalar potential V in units of the reduced
Planck mass MPl = 1 satisfies

|∇V | ≥ c · V (4.13)

with c being a positive O(1) constant and |∇V | denoting the norm of the gradient of V .
Hence, no stable dS vacuum is expected to exist in the landscape. Indeed, we could not
find any stable dS vacuum in the landscape with Nflux ≤ 12 as we showed by our numerical
search in section 4.1.

However, what we found in the discussion in section 3.1 is that Nflux > 0 is required
to obtain stable dS or Minkowski vacua. In other words, there remains possibility that
stable dS vacua exist beyond the tadpole cancellation condition: Nflux > 12. We did not
explore such a region in our previous numerical search in section 4.1 since we focused
on the landscape. Therefore, in this section, we extend the search region to find stable
dS/Minkowski vacua by focusing on the isotropic moduli whose Kähler potential K and
superpotential W are given by eqs. (2.25) and (2.26), respectively. The flux quanta are
randomly generated within

−20 ≤ {f0, f1, f0, f1, h
0, h1, h0, h1} ≤ 20, (4.14)

leading to

0 ≤ Nflux ≤ 300. (4.15)

We should emphasize again that the tadpole cancellation condition restricts Nflux ≤ 12 but
we searched the region Nflux > 12 violating the tadpole cancellation condition to clarify
what quantities characterize the existence of dS vacua.
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When we enlarge the range of Nflux, we found 238 stable dS vacua and 1 stable
Minkowski vacua in the region with Nflux > 12. The whole number of independent flux
patterns and vacua containing unstable ones are 785,273,879 and 66,751,429, respectively.
All of the dS vacua we found in the region Nflux ≤ 12 are perturbatively unstable. We
list the benchmark points in table 5. The dS and Minkowski vacua are still rare, but it
is easier to obtain them outside the string landscape, namely violating the tadpole can-
cellation condition. Indeed, we plot the ratio of the number of stable dS vacua to that
of all against Nflux in figure 9 to discuss the mutual relation between the existence of dS
vacua and Nflux. It turns out that the stable vacua begin to appear when Nflux exceeds 12,
which is the maximum value of Nflux allowed by the O-planes. The number of the vacua
increases as Nflux increases. It indicates that Nflux would be the quantity that characterizes
the boundary between the landscape and the swampland.17

To make the structure that Nflux characterizes the boundary between the landscape
and the swampland be more apparent, let us note that there is the refined version of the dS
swampland conjecture [10]. It states that the scalar potential V satisfies either eq. (4.13) or

Min(∇i∇jV ) ≤ −c′ · V, (4.16)

where MPl = 1 and c′ is a positive O(1) constant. Min(∇i∇jV ) denotes the minimum
eigenvalue of the squared physical masses. The difference from the original version is that
this expression allows the existence of unstable dS vacua. Indeed, we observed that the un-
stable dS vacua commonly exist in the region Nflux > 12. Moreover, we analyzed the region
0 ≤ Nflux ≤ 12 intensively, which is part of the landscape that we searched in section 4.1.
We set the flux quanta as in eq. (4.14) again and prepare flux patterns 5.41× 107 leading
to the 6.90×106 the number of vacua. As a result, we found three unstable dS vacua in the
landscape. We refer to one of them as Vacuum 5 in table 5. This fact tells us that there ex-
ist unstable dS vacua in the landscape, and the Nflux bounds the existence of (meta-)stable
dS vacua rather than the unstable dS vacua. Furthermore, we checked the refined dS con-
jecture explicitly by using the unstable dS vacua. The ratio |Min(∇i∇jV )/V | is defined
as an upper bound of c′ and our results are summarized in table 6. As a result, those three
vacua support the refined dS conjecture, which predict c′ to have O(1) value. Although the
number of unstable dS vacua we obtained is small, we numerically find that the perturba-
tively unstable dS vacua are allowed in the landscape with correct O(1) value c′. However,
stable dS vacua are only allowed in the region with Nflux > 12, i.e., the swampland. We
state in section 3 that Nflux plays an important role in distinguishing the landscape from
the swampland in a vague way, These numerical results clarify the vague statement of
section 3 that Nflux characterizes and sharpens the boundaries between the landscape and
the swampland. This phenomenon must be relevant to the emergence of Nflux in the scalar
potential (3.9), but a more careful investigation of this issue is left for future work.

17Moreover, we observed that the number of stable AdS vacua decreases as Nflux increases in theNflux > 12
region.
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Properties Vacuum 1 Vacuum 2 Vacuum 3 Vacuum 4 Vacuum 5
Stable? Yes Yes Yes Yes No
Type Minkowski dS dS dS dS
f0 -18 6 0 3 2
f1 -7 -12 -7 11 -2
f0 7 11 -4 13 1
f1 -15 -19 1 17 3
h0 0 -2 -1 2 2
h1 1 -4 2 -2 -2
h0 -7 18 -11 9 6
h1 1 -8 -4 4 3
〈ReS〉 2.000 1.325 -1.349 1.742 0.967
〈ImS〉 8.660 8.252 4.188 -0.158 1.078
〈Reτ〉 0.500 0.988 -0.538 5.767 -1.247
〈Imτ〉 1.443 1.286 2.104 1.200 1.382
V 0.000 0.000368 0.0000375 0.000928 0.0306

Nflux 150 190 74 235 10

Table 5. The benchmark points for Minkowski and dS vacua with the isotropic complex structure
modulus.
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Figure 9. The ratio of the number of stable dS vacua and that of all vacua against Nflux.
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Properties Unstable dS 1 (Sol. 5) Unstable dS 2 Unstable dS 3
f0 2 1 4
f1 -2 1 8
f0 1 -7 -17
f1 3 2 7
h0 2 2 1
h1 -2 1 1
h0 6 0 -2
h1 3 1 1
V 0.0306 8.62 ×10−4 1.72 ×10−4

Nflux 10 11 12
c′ (O(1) parameter) 5.03 13.30 6.96

Table 6. The O(1) parameter of the refined dS conjecture at three unstable dS vacua.

5 Conclusions and discussions

We extensively studied the vacuum structure of 4D effective field theories arising from
Type IIB flux compactifications on the mirror of the rigid CY threefold. Since all the closed
string moduli can be stabilized by three-form fluxes themselves due to the absence of Kähler
structure deformations, such a class of flux compactifications plays a crucial role in revealing
the vacuum structure of flux vacua and in testing the swampland conjectures. Remarkably,
one can deal with more general fluxes than the T-dual Type IIA flux compactification,
namely the DGKT model [12].

It turned out that the supersymmetric and non-supersymmetric AdS vacua are pertur-
batively stable for a large region of flux quanta, and there exist tachyonic directions for dS
vacua in the string landscape. It motivated us to explore what determines the boundaries
between these stable and unstable flux vacua. In particular, we thoroughly investigated
the relationship between the tadpole charge and the existence of dS/Minkowski vacua. As
analytically discussed in section 3, the tadpole charge is severely constrained by the stabil-
ity condition of the moduli fields in addition to the tadpole cancellation condition. Indeed,
our numerical results exhibit that the stable dS/Minkowski vacua are only allowed in the
swampland, where the tadpole cancellation condition is violated due to the limited range
of flux quanta. Hence, the boundaries between the string landscape and the swampland
would be determined by the tadpole charge. Since we relied on the numerical search to find
such a correlation, it would be interesting to reveal the underlying structure and confirm
this relation in the broader class of string compactifications, which we leave for future work.

We also analyzed the AdS/moduli scale separation and the AdS distance conjec-
tures. Our analytical and numerical results exhibit that O(1) parameters in expressions of
AdS/moduli scale separation conjecture peaked around specific values in both supersym-
metric and non-supersymmetric compactifications. Such sharp distributions are peculiar to
the landscape since only a small tadpole charge is consistent with the tadpole cancellation
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condition. Moreover, the standard deviation of O(1) parameter in the expression of AdS
distance conjecture is minimized around α ' 0.5 with respect to a power of cosmological
constant |Λ|α, although there exists a slight difference between supersymmetric and non-
supersymmetric compactifications. It is remarkable that these phenomena are strongly
correlated with the tadpole charge, which determines the structure of AdS vacua. In this
way, our results show the hidden structure of the string landscape. It would be interesting
to figure out their origin in other corners of the string landscape.
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A Notation of the special geometry

In this section, we summarize the notation of the special geometry in this paper, following
ref. [39] (it was also reviewed in ref. [46]).

First, let us introduce the harmonic basis of H3(M ,C):{Ω, χa, χ̄b̄,Ω} with a, b =
1, . . . , h2,1. As mentioned in eq. (2.11), Ω and χi are connected by a certain differenti-
ation. Since Ω is defined up to a holomorphic multiplication

Ω→ f(u)Ω, (A.1)

the usual differentiation should be replaced with a covariant derivative D. This transfor-
mation is often called the Kähler transformation. More concretely, Ω is a holomorphic
section of H ⊗ L, where H and L denote a Sp(2n + 2,R) vector bundle and a line bun-
dle, respectively. H is attributed to the definition of the real basis of H3(M ,C) given in
eq. (2.6). The Kähler covariant derivative is defined to be covariant on L. In general, we
can consider a quantity ψ that transforms under the Kähler transformation as

ψ(m,n) → fmf̄nψ(m,n), (A.2)

i.e., ψ(m,n) ∈ Lm ⊗ L̄n̄ (we ignored a choice of the basis). Then the covariant derivative is
generalized to act on ψ as

Daψ
(m,n) = (∂a +mKa)ψ(m,n), (A.3)

Db̄ψ
(m,n) = (∂b̄ + nKb̄)ψ

(m,n), (A.4)

so that these transformations are the same as the original ψ(m,n),

Daψ
(m,n) → fmf̄nDaψ

(m,n), Db̄ψ
(m,n) → fmf̄nDb̄ψ

(m,n). (A.5)

When ψ(m,n) is a tensor, we have to use ∇a,∇b̄ instead of ∂a, ∂b̄ with Christoffel symbols
Γabc,Γāb̄c̄ defined on a Kähler manifold. We recall that the Kähler metric is a constant under
the covariant derivative, i.e., Dcgab̄ = 0.
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Let us summarize how these covariant derivatives act on the basis {Ω, χa, χ̄b̄, Ω̄}. First
of all,

DaΩ = χa (A.6)

already follows from eq. (2.11), and DaΩ̄ = 0 holds for a similar reason. Before proceeding
to analyze the transformations {χa, χ̄b̄}, we introduce the Yukawa coupling [39, 47]18

κabc = +i〈Ω, DaDbDcΩ〉 = +
∫

M
Ω ∧DaDbDcΩ, (A.7)

where the inner product 〈α, β〉 is defined as

〈α, β〉 = −i
∫

M
α ∧ β. (A.8)

The expression of κabc reduces to

κabc = i〈Ω, ∂a∂b∂cΩ〉, (A.9)

since only the (0, 3)- part of DaDbDcΩ contributes to the integration, and κabc is thus
totally symmetric with respect to its indices.19

In our notation,
〈

Ω ∧ Ω̄
〉
is equal to

〈Ω ∧ Ω̄〉 = +e−Kcs . (A.10)

This yields another expression of the Kähler metric gab̄

〈χa, χ̄b̄〉 = −gab̄e
−Kcs . (A.11)

Although

[Da, Db̄]Ω = −gab̄Ω (A.12)

follows from the above results, but this just reflects the fact that

c1(L) = [J ], (A.13)

with J being the Kähler form.
Following the lines of ref. [39], it follows that

Daχb = −ieKcsκab
c̄χ̄c̄. (A.14)

By using eq. (A.12) and DāΩ, we also obtain

Daχ̄b̄ = gab̄Ω̄. (A.15)
18There is a subtle difference between this definition of Yukawa coupling and that in ref. [39] that here

a, b, c are indices of {za}, but not of {ua}. However, if we discuss only on the z0 = 0 patch this makes
no difference.

19These Yukawa couplings are of phenomenological interest in the context of heterotic string with standard
embedding as recently discussed in ref. [48].
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B Calculation of the scalar potential

The detailed calculation of the scalar potential is given in this section with an emphasis
on the kS = 4 case. The results, which would be given below, hold for the kS = 1 case
similarly. The Kähler potential we consider is given by

K = −4 log
(
−i
(
S − S̄

))
− log

(
−i
∫

Ω ∧ Ω̄
)
. (B.1)

Let us split Ṽ into the following three pieces under the assumption that the moduli spaces
of the axio-dilaton and complex structure are product;

ṼS = KSS̄DSWDS̄W̄ , (B.2)

Ṽcs =
∑
a,b

Kab̄DaWDb̄W̄ , (B.3)

ṼSG = −3|W |2, (B.4)

where a, b run over the complex structure moduli. In the following, we will derive the
quantity ∂ImSṼ whose sign is directly related to the sign of the cosmological constant. The
derivation is performed by calculating three pieces: ∂ImSṼS , ∂ImSṼcs and ∂ImSṼSG.

• ∂ImSṼS

First, we calculate ∂ImSṼS whose explicit form is given by

∂ImSṼS = 2|WNS|2ImS + 4Im(WNSW̄RR), (B.5)

with WRR =
∫
F3 ∧ Ω, WNS =

∫
H3 ∧ Ω and W = WRR − SWNS.

• ∂ImSṼcs

Next, we consider ∂ImSṼcs. Note that we do not assume that the Kähler metric of
complex structure moduli Kab̄ is diagonal. We recall that Kab̄ can be expressed as

Kab̄ = −
∫
χa ∧ χ̄b̄∫
Ω ∧ Ω , (B.6)

and

DaW =
∫
G3 ∧ χa (B.7)

from the fact that ka = −Ka = −∂aK with ka in eq. (2.11) holds. Hence Ṽcs takes
the form

Ṽcs =
∑
a,b

Kab̄
∫
G3 ∧ χa

∫
Ḡ3 ∧ χ̄b̄, (B.8)

and then the derivative of Ṽcs becomes

∂ImSṼcs = 2ImS
∑
a,b

Kab̄
∫
H3 ∧ χa

∫
H3 ∧ χb̄

+ i
∑
a,b

Kab̄
(∫

F3 ∧ χa
∫
H3 ∧ χ̄b̄ −

∫
H3 ∧ χa

∫
F3 ∧ χ̄b̄

)
. (B.9)
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If we expand real three-forms {F3, H3} in the basis {Ω, χI , χ̄J̄ , Ω̄} of H3(M ,C) as

F3 = AFΩ +
∑
a

BF,aχa +
∑
a

B̄F,āχ̄ā + ĀF Ω̄

H3 = AHΩ +
∑
a

BH,aχa +
∑
a

B̄H,āχ̄ā + ĀHΩ̄,
(B.10)

the zero-th order term in ∂ImSṼcs is provided by

∂ImSṼcs ⊃ −iKab̄
∑
c,d

(
B̄F,c̄BH,d −BF,dB̄H,c̄

) ∫
χa ∧ χ̄c̄

∫
χd ∧ χ̄b̄

= −iKab̄
∑
c,d

(
B̄F,c̄BH,d −BF,dB̄H,c̄

)
Kac̄Kdb̄

(∫
Ω ∧ Ω̄

)2

= −i
(∫

Ω ∧ Ω̄
)2∑

c,d

Kc̄d

(
B̄F,c̄BH,d −BF,dB̄H,c̄

)
, (B.11)

where we used eq. (B.6) from the first line to the second line and summed up with
{a, b̄} to lead the third equality.

• ∂ImSṼSG

Lastly, ∂ImSṼSG is obtained as

∂ImSṼSG = −6Im
(
WNSW̄RR

)
− 6ImS|WNS|2. (B.12)

As a result, we arrive at

∂ImSṼ = ∂ImSṼS + ∂ImSṼcs + ∂ImSṼSG

= 2

−2|WNS|2 +
∑
a,b

Kab̄
∫
H3 ∧ χa

∫
H3 ∧ χ̄b̄

 ImS − 2Im
(
WNSW̄RR

)

− i
(∫

Ω ∧ Ω̄
)2∑

a,b

Kāb

(
B̄F,āBH,b −BF,bB̄H,ā

)
. (B.13)

In fact, the first-order term of Ṽ with respect to ImS is proportional to Nflux. Using the
expansions (B.10), we obtain

Nflux =
∫
H3 ∧ F3

= −2Re
(
ĀHAF

∫
Ω ∧ Ω̄

)
−
(∫

Ω ∧ Ω̄
)∑

a,b

Kab̄

(
BH,aB̄F,b̄ −BF,aB̄H,b̄

)
. (B.14)

Meanwhile, by rewriting the zeroth-order term of (B.13) into

∂ImSṼ
∣∣∣
ImS→0

= 2Im
(∫

Ω ∧ Ω̄
)

Re
(
ĀHAF

∫
Ω ∧ Ω̄

)
+ Im

(∫
Ω ∧ Ω̄

)∑
a,b

Kab̄

(
BH,aB̄F,b̄ −BF,aB̄H,b̄

)
, (B.15)
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with
∫

Ω ∧ Ω̄ being a pure imaginary quantity we conclude that

∂ImSṼ
∣∣∣
ImS→0

= −e−KcsNflux (B.16)

holds for the kS = 4 case. It is remarkable that the same expression can also be obtained
for the kS = 1 corresponding to the no-scale scalar potential.20

It turned out that Ṽ is of the form

Ṽ = 1
2∂

2
ImSṼ (ImS)2 − e−KcsNfluxImS + C (B.17)

with

C = |W |2
∣∣∣
ImS→0

+ Gab̄DaWDb̄W̄
∣∣∣
ImS→0

. (B.18)

C Expression of the tadpole charge at SUSY vacua

In this section, we show the simplified expression of Nflux derived in appendix B. First, we
focus on the SUSY condition for the axio-dilaton direction

DSW = (∂S +KS)W = −WNS − 4 W

S − S̄
= 0, (C.1)

where WNS and WRR are expressed as

WRR = ĀF

∫
Ω̄ ∧ Ω, WNS = ĀH

∫
Ω̄ ∧ Ω. (C.2)

Hence, it allows us to eliminate AF by AH ,

AF = +AH
4
(
S + 3S̄

)
. (C.3)

On the other hand, the SUSY conditions of the complex structure sector DaW = 0 lead to

0 = DaW = Kab̄

(
B̄F,b̄ − SB̄H,b̄

) ∫
Ω ∧ Ω̄. (C.4)

Since
∫

Ω ∧ Ω̄ 6= 0, BF can also be eliminated by BH as

BF,a = SBH,a. (C.5)

By substituting these results into eq. (B.14), we obtain the following expression:

Nflux = ie−Kcs(S − S̄)
(1

2 |AH |
2 −Kab̄BH,aB̄H,b̄

)
= ie+Kcs(S − S̄)

(1
2 |WNS|2 −Kab̄DaWNSDb̄W̄NS

)
(C.6)

at the SUSY vacua, where we used AH = −ieKcsW̄NS and∑
a,b̄

Kab̄BH,aB̄H,b̄ = e2KcsKab̄
∫
H3 ∧ χa

∫
H3 ∧ χ̄b̄. (C.7)

Furthermore, when we use DSW = 0 again, Nflux is correlated with the AdS scale, i.e.,
Nflux
ΛAdS

= 1
3(−i(S − S̄))3

(
8− |S − S̄|2Kab̄DaWNSDb̄W̄NS

|W |2

)
. (C.8)

20We define Ṽ ≡ e−K Ṽ again for the no-scale case, but with K = log
(
−i
(
S − S̄

))
− log

(
−i
∫

Ω ∧ Ω̄
)
−

3 log
(
−i(T − T̄ )

)
with T being a Kähler modulus. Here and what in follows, the kS = 1 case with this

different K and V is called the no-scale type.
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