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1 Introduction

It has been known for a long time that maximally supersymmetric theories lack a man-
ifestly Lorentz covariant Lagrangian formulation in ordinary superspace [1-3], making it
more difficult to exploit supersymmetry in amplitudes computations. However, things
change when superspace is extended [4]. Indeed, non-minimal pure spinor variables have
been used in [5-8] for constructing manifestly supersymmetric actions for several maxi-
mally supersymmetric theories like 10D super-Yang-Mills, 10D super-Born-Infeld and 11D
supergravity. This makes pure spinor quantum field theory a promising approach for eval-
uating scattering amplitudes in an elegant way. This should not be a surprise at all. In
fact, the pure spinor formalism for superstrings [9] is nowadays arguably the most powerful
and efficient framework for computing string scattering amplitudes as compared to the
traditional Ramond-Neveu-Schwarz and Green-Schwarz formalisms [10-14].

Such pure spinor field theory actions have been constructed from a single pure
spinor superfield, which exhibits the field-antifield symmetry of the corresponding Batalin-
Vilkovisky descriptions of the theories in study. Since standard gauge-fixing fermions are



incompatible with this symmetry, alternative gauge-fixing conditions are necessary for the
computation of scattering amplitudes. Using inspiration from string field theory, the Siegel
gauge condition byl = 0 [15, 16], has been proposed in [8, 17] as a natural gauge choice.
Although no explicit computations have been done so far in this pure field theory set-
ting, power counting arguments have been used to discuss the ultraviolet behaviour of 10D
super-Yang-Mills and 11D supergravity [18-21].

On the other hand, recent progress in the study of scattering amplitudes has revealed
new structures previously hidden from Lagrangian formulations of field theories. The BCJ
duality between color-and kinematics [22—-24] states that given an amplitude formulated as
a sum over cubic diagrams,

cin;
A=) 5. (1.1)
i€l v

it is possible to find [25, 26] representations of the kinematic numerators such that they
obey the same relations as the color factors

ci+cj—|—ck:O:>ni—|—nj—|—nk:0. (1.2)

Having obtained such numerators, it is possible to “double-copy” them by replacing ¢; — n;,
obtaining amplitudes from a theory of gravity, dramatically simplifying the computation of
gravity observables [27, 28]. Since the identities obeyed by the color factors are inherited
from the Jacobi identity of the color algebra, it is tempting to ask if a similar algebra exists
for kinematics. Indeed, algebraic origins of this duality have been observed in certain
sectors of Yang-Mills theory [29-32], but the general case is still not fully understood,
appearing to require an infinite number of auxiliary fields [33—-37] whose job is to modify
the numerators by generalized gauge transformations.

In this paper we study the 10D super-Yang-Mills pure spinor action subject to two
different gauge-fixing conditions. The first gauge choice is a relaxation of the standard
Siegel gauge condition, namely, bgV = QZ=, where by is the quantum-mechanical operator
version of the pure spinor b-ghost, and Z is some superfield. The usual unintegrated vertex
operators V = A\* A, widely used in superstring scattering amplitudes, are explicitly shown
to satisfy such a condition. We then compute the corresponding equations of motion in
pure spinor superspace, and apply the perturbiner method to compute tree-level scattering
amplitudes from simple contractions of Berends-Giele currents. Our numerators take the
form of nested b-ghosts acting on external states, for example the half-ladder numerator at
five points is (bo(bo(V1V2)V3)V4Vs). We explicitly calculate such expressions for 4-point and
5-point amplitudes by making use of the so-called physical operators introduced in [7]. The
amplitudes thus obtained are shown to coincide with those found from open pure spinor
superstrings in the particle-limit [10, 48, 49]. We also study the Siegel gauge, byV = 0,
in which the vertex operators are dependant on non-minimal variables. In this scenario,
nilpotency of the b-ghost is shown to imply color-kinematics duality off-shell. The nested
b-ghosts define a Poisson bracket, whose Jacobi identity is the kinematic Jacobi identity.
The dual Lie algebra to this Poisson algebra is an algebra of diffeomorphisms that preserve



the Siegel gauge. Such a gauge appears to be the only one that allows for both manifest
crossing symmetry and color-kinematics duality.

The paper is organized as follows. In section 2, we discuss the 10D pure spinor super-
particle and its BRST-cohomology. Non-minimal pure spinors are then introduced in order
to construct both well-defined action principles, and the b-ghost which satisfies {Q, b} = %2.
In section 3, we discuss two approaches for computing tree amplitudes, namely, Feynman
diagrams and Berends-Giele recursion relations. In section 4, we apply the systematics
of the latter and compute N-point scattering amplitudes in 10D super-Yang-Mills when
external states satisfy bgV = QZ=. The stronger condition byV = 0 is then discussed and
shown to manifestly reproduce color-kinematics duality. Calculations of different expres-
sions involving nested b-ghosts are explicitly carried out in the appendix. Finally, we close
with discussions and further research directions in section 5.

2 Pure spinor action Of 10D super-Yang-Mills

In this section we review the minimal 10D pure spinor superparticle. After introducing non-
minimal variables, a well-defined pure spinor measure is constructed as well as a composite
operator b, the so-called b-ghost, satisfying {Q, b} = %2.

2.1 10D pure spinor superparticle
The 10D pure spinor superparticle [38] is defined by the action

1
S:/me@xm+m&m+%@v—2ﬂ, (2.1)

and the BRST operator
Q = \"d,, (2.2)

where we are using letters from the beginning/middle of the Greek/Latin alphabet to
denote SO(1,9) spinor/vector indices. Furthermore, (X™,0%) stand for the superspace
coordinates, and (P, p) denote their respective conjugate momenta. The variable A® is
a pure spinor satisfying Ay A = 0, and w, is its respective conjugate momentum, which
is defined up to the gauge transformation dw, = (Y"A)apm, for any p,,. The Green-
Schwarz fermionic constraint d, in (2.2) is defined as usual: d, = po + %(’me)aPm, and
it commutes with the supersymmetry generators: ¢, = pa — %(VWQ)QPm. Finally, (v")as,
(v™)*? denote the familiar SO(1,9) Pauli matrices satisfying (7(™)a5(y™)% = n™"83.

The action (2.1) is invariant under Super-Poincare transformations as well as under
the global symmetry generated by J = —A%w,. The charge associated to the current J will
be referred to as ghost number, and thus A%, w, carry ghost numbers 1, —1, respectively.
As is well known, the Hilbert space of the superparticle (2.1) will be described by the
cohomology of the BRST operator (2.2), which can be conveniently separated into different
ghost number sectors. Indeed, it has been computed from different methods that there only
exists non-trivial cohomology up to ghost number 3. Schematically,

(2,0, = O (2,0, ) + 0D (2,0, \) + U@ (2,0, \) + ¥ (2,0, )), (2.3)



where the superscript in ¥ stands for the ghost number sector which ¥ belongs to. In
this manner, the pure spinor superfields ¥, ¢ @ G were found to describe the
gauge symmetry ghosts, physical fields, antifields, and ghost antifields of 10D super-Yang-
Mills, respectively. Let us illustrate this with the ghost number one sector ¥ (z,0,\) =
A*A,(z,0). This superfield is subject to the physical state conditions

QUM =0, s =QA, (2.4)
where A is an arbitrary gauge superfield. The implications of (2.4) on A, (z,0) read
(v B D, Ag = 0, §A, = DA, (2.5)

where D, = aa+%(ym0)aam is the usual supersymmetric derivative. Egs. (2.5) are nothing
but the superspace equations of motion of linearized 10D super-Yang-Mills. They can easily
be solved in the so-called Harnad-Shnider gauge [39], which imposes §*A, = 0. In this
gauge, A, (z, ) takes the form [40]

1 1 1
Ao(z,0) = 5(7m9)aam(x) - g(’me)a(H’ymx(x)) - E(Vpe)a(‘ngnpg)aman(m>
1
o () (67™78) Oy dnx () + (26)
where ... stands for higher derivative terms of a,,, x®. The field a,, in (2.6) satisfies the

relations 0™a,, = 0, da,, = Ops for any s, and x® satisfies the equation ('ym)aﬁamxﬁ =
0, so that a,,, x* are identified with the 10D super-Yang-Mills gluon and gluino fields,
respectively. Similar arguments apply to the other ghost sectors, and so (2.3) indeed
describes the Batalin-Vilkovisky formulation of linearized 10D super-Yang-Mills.

The top scalar cohomology of @) can be used to define manifestly supersymmetric
correlators [9]. Such a measure has played a fundamental role in the computation of
superstring scattering amplitudes. Its explicit form reads

((A™0) (A" 0) (X7 0) (6Yimnpl)) = 1 - (2.7)

One might then naively use this measure for construcing a manifestly supersymmetric
action reproducing eqs. (2.4). However, the measure (2.7) is degenerate [8, 41] and so it is
not adequate for such a purpose. This problem is solved by introducing non-minimal pure
spinor variables. This is what we do next.

2.2 Non-minimal variables

The pair of conjugate variables (Mg, w®), (Tq,5%), where )\, is a pure spinor satisfying
M\ = 0 and 7, is a fermionic variable satisfying Ay™r = 0, can be introduced into the
model (2.1) through the quartet argument, that is

- 1
S = /dT {Pmﬁme + Pa0:-0% + Wa O AY + W0 A + 5%0rT0 — §P2 , (2.8)

and,

Q = Qo+ row®, (2.9)



so that the BRST-cohomology does not change [42]. Indeed, it is not hard to see it is always
possible to find a representative element in the cohomology of (2.9) which is independent of
the non-minimal variables. These variables allow us to write down a well-defined measure
for formulating action principles in pure spinor superspace. Such a measure takes the form
[dZ] = [d)\][d\][dr], where

[ANNNONY = (771507 | Xt dxon, (2.10)
[ANAsAs Ay = (€T) 35 " gy - - - dAayy (2.11)
< Tt 0 0
dr] = (7)Y X5 s\ ()( > 2.12
] = @ Adhs (5 ) oo () (212)
and the Lorentz invariant tensors (eI~1)57° | (eT )5hs 't are symmetric and gamma-
traceless in (3,0,7) and antisymmetric in [aq,...,a11]. Their explicit forms can be found

in [9, 42, 43]. For instance, up to an overall normalization factor
(GT)E%'QH = €M (Y )1 (V") arse (V) ararn (Ymnp)arsars

e L o
X[é?ﬁéw% = 2006+ (1) } : (2.13)

The linearized 10D super-Yang-Mills action then reads
1
S — / dloxd160[dZ]N<2\I/Q\If), (2.14)

where N = e~ {@Q€} with € = M\, is a regularization factor which prevents the appearance of
undetermined expressions as a result of the zero mode integrations of non-compact bosonic
and fermionic variables, and W is a pure spinor superfield which generically depends on non-

minimal variables. Due to the existence of the operator £ = A;\)fr 5 satisfying Q€ = 1, pure
spinor integrands as that in (2.14) will be restricted to diverge slower than A=8A~1! [42].

Integrands diverging faster than A™8A~!! require a different regularization scheme [44],
which will not be discussed in this paper. It is straightforward to show that the pure spinor
action (2.14) indeed reproduces eqs. (2.4). In order to introduce interactions, the field-
antifield structure, inherently described by the pure spinor superfield ¥, can be exploited

by introducing the so-called pure spinor antibracket, defined via

ORrA 0B

(4,B) = sU(2) 5w (2)

[dZ] (2.15)

where L, R denote left, right derivatives, respectively. Then, a pure spinor master action
must satisfy

(5,8)=0. (2.16)

As can easily be demonstrated, the action (2.14) satisfies the master equation (2.16). The
simplest deformation of (2.14) which does not explicitly involve non-minimal variables and
satisfies (2.16) reads

S = / d2d*®0[dZIN Tr<;\I!Q\I/ - gw\p) : (2.17)



where Tr is the trace taken over gauge group generator matrices, and g is the coupling
constant. The equations of motion and gauge transformations following from (2.17) can
readily be computed to be

QU+ gUW =0, 60 = QA+ g[T,A], (2.18)

where A is an arbitrary gauge superfield. Egs. (2.18) imply that the ghost number one
sector U1 = \* A, satisfies

("B (D, Ag + gAaAg) = 0, 0Aq = Do A + g[Aa, A] . (2.19)

These equations are nothing but the superspace constraints describing 10D non-abelian
super-Yang-Mills. Therefore, (2.18) can be viewed as the superspace equations of motion
describing full 10D super-Yang-Mills in its antifield formulation.

2.3 The b-ghost

In the non-minimal pure spinor worldline formalism, there exists a composite operator b,
also known as the b-ghost, which obeys the relation

P2
Qb=+ . (2.20)
Its explicit form reads
_ (X*y”id) (/_\'Ymnpr>[_(d7mnp_‘i) + 24N Py _ (T"Ymnpr)(/_\_'Ym@an
200) " 192(AN)2 16(AN)3
mnp Y ( \~Par Ny Ny
_(7’7 r)(Ay _T) v (2.21)
128(AN)*

where N™" = %()\vmnw). This operator has been notably simplified in [45] to a quadratic
polynomial in a fermionic vector I'™, which is linear in d, and N™". Although this sim-
plified form is useful to check several properties satisfied by the b-ghost, we will use an
alternative expression which makes use of the so-called physical operators, introduced in [7]
in the search for deformations of the 10D super-Yang-Mills action. These operators are
defined by the relations

Q,Aq] = —da+ (V" NaAm , (2.22)
{Q, Am} =P+ (AMmW), (2.23)
QW = (") Ay (224
{Q,Frn} = —2(MY 0y W), (2.25)
which are reminiscent of the standard 10D super-Yang-Mills equations of motion
DoAg + DgAa = (V")apAm Dy Ap, = 0mAa + (vmW)a,
D W8 = i(ymn)aﬁan, Do Frnn = =20 W)a - (2.26)



Since the physical operators carry negative ghost number, the solution to egs. (2.22)—(2.25)
will necessarily make use of non-minimal variables. Such a solution is given by

1

Ay = —— [N (vunNa + JAa| 2.27
100 (YmnA) (2.27)
A, = ()"Ynzd) 4 ()"meLpT)an’ (2.28)
2(AN) 8(AN)?2
wo = 0N, (2.29)
2(AN)
\ p
2(AN) 4(AN)
where,
Am = —Pyp 4 DOmd) | Pnng?) (2.31)

2(AN) 8(AN)2

After a few algebraic manipulations, one can show these operators act on the on-shell ghost
number one superfield U = \* A, as follows

AU = AL+ (M) aom (2.32)
Am‘lj(l) = Am - ()\’ymp) + nga (2'33)
Woqu(l) - W — Qpa + (,}/mn}\)asmn + )\0487 (234)
ﬁmn\lj(l) = Fon — 4Q8mn + (>\7[mgn]) + ()"ang) ) (2'35)
where,
(MmA) (PN~
S 4 a _ V(A + ’ a_ e — o
2000 P 200\ (A4p +Qop), & Qp
Smnzwy s:@, Tmn:_an+4Q3mn7
8SON) 400
('Ymnj\)a j\a feY (,ynj\)a
o = N mn — = ; = = nm s 2.36
9= 7800 200 Im =0 (2.36)

and we are using hatted symbols to denote the operator version of their corresponding
unhatted symbols, that is, (Aa,Am,Wa,f‘mn) are obtained from (A., A, W Fp)
after performing the replacements:

Py, — 0m, do— Do, weg— —0ha . (2.37)

Using the physical operators (2.27)—(2.30), the b-ghost (2.21) can then be rewritten in
the form

1 1
b= 5 P"A,, — d ;W — iNm”an ) (2.38)
as can easily be demonstrated by directly expanding the right-hand side of (2.38). As a

check, the use of egs. (2.22)—(2.25) allows us to show that (2.38) indeed obeys {Q, b} = %2,



as expected. Next, writing the b-ghost as a first order differential operator we observe the
identity

. 1 1
P" A~ DaWo = SN™" By = 0" Ay = da W + L (000 Fn s (2:39)

which is a direct consequence of egs. (2.27)-(2.30). Then, egs. (2.32)-(2.35) allow us to
show that

1
{b,vM} = PTA, — D W — SN Fon + Q3 (2.40)
where ¥ is given by
Y = Py — dop® + (A" W) Smn — (Aw)s, (2.41)

which is consistent with the particle-limit of the stringy relation {b,V'} = U, where U is
the usual ghost number zero vertex operator.

3 Amplitudes in pure spinor superspace

In this section we review Feynman rules in pure spinor superspace, discussing the gauge-
fixing needed to invert the propagator. We then show that these Feynman rules are
equivalent to Berends-Giele currents and use the latter to compute tree-level scattering
amplitudes. Since Feynman rules are derived from an action, they are manifestly crossing-
symmetric, while Berends-Giele currents follow from equations of motion and permit mod-
ifications that may break manifest crossing symmetry.

3.1 Feynman rules

Since the pure spinor superfield ¥ in (2.17) contains both fields and antifields in its defi-
nition, we have to employ a non-standard gauge-fixing procedure. Using inspiration from
string field theory, the so-called Siegel gauge byWU = 0 has been proposed [8, 17] as a candi-
date for such a purpose, where by can be viewed as the second order differential operator
obtained from (2.38) after using the correspondence principle (2.37). In this section, we
will be less restrictive and require that bg¥ = Q= instead, where = is a ghost number -1
superfield depending on non-minimal variables. As we will see, such a weaker gauge fixing
is enough for defining propagators. The gauge-fixed action (2.17) then takes the form

1
S = / d"0zd'0[dZ|N Tr FVQU + %\II\D\IJ +e(bg¥ — QE) |, (3.1)

where e is a Lagrange multiplier enforcing the gauge condition. The off-shell fields are Lie-
algebra valued, defined as ¥ = W*T* where T are the generators of the color group. We
take these generators to satisfy [T'%, T%] = f®°T¢, where f%¢ are the totally antisymmetric
structure constants and the generators are normalized such that Tr(7%T?) = §%. Note
that the usual unintegrated vertex operator U™ (z,0, \) = \*A,(z, ), satisfies the weaker
gauge condition

bo0!) = Q[0™ 0, — Dap™ = (MY )sn + T3] , (3.2)



as shown in appendix A.1. For the purpose of obtaining the color-dressed Feynman
rules, (3.1) can be written as

1
S = / dzd"9[dZIN 5\1:“@1:%% fRTITOTE 4 (bW — QEY) |,  (3.3)

by evaluating the trace. The Feynman rules following from (3.3) are then given by

The propagator. One can invert ) using the relation 2{Q, by} = O for U%that satisfy
bo¥* = Q= so the propagator is defined by

GPz,7") = 5ab%b°5(z - 7). (3.4)

The 3-point vertex. The Chern-Simons like term in (3.3) gives rises to the 3-point
vertex

yabe _ g pabe / d02d"S0[dZIN . (3.5)

The full amplitude is then obtained by a sum over all Feynman graphs,

A, = > el cbyil ) (3.6)

where the color-factors c; are given by contractions of structure constants, the denomina-
tors D; are products of Mandelstam variables, and n; are the numerators and encode the
remaining kinematic dependence, including pure spinor integrations.

The color factors of the amplitudes can be expanded in sums over traces of generator
matrices T%, and the full amplitude can then be written as

An = es, 1 Aoty n—1)n/ To(T70 ... TIn=1T™) (3.7)

where Sy, is the set of permutations of k external-state labels, and the objects A are called
color-ordered amplitudes, each contributing to one trace structure in the full amplitude.
They can be obtained directly from the color-ordered Feynman rules which are given by:

The propagator.

2

g(Za Z,) - E

VAR (3.8)

The color-ordered 3-point vertex. It is given by the part of the color-dressed three-
point vertex that is proportional to Tr(T°T°T*),

V=g / dOzd'®0[dZIN . (3.9)

The color-ordered amplitudes are then computed by sums over all planar Feynman dia-
grams. Throughout this work we focus on the color-ordered amplitudes due to their relative
computational simplicity.



3.2 Berends-Giele currents

The color-ordered amplitudes can equivalently be obtained from Berends-Giele cur-
rents [46]. Starting from eq. (3.1), the equations of motion are

QU + W — gby(e) =0, (3.10)

bo¥ — Q= =0, (3.11)

v

where we have rescaled U — I Applying by on both sides of (3.10), and using the

nilpotency of the b-ghost, one finds that
1
§D‘If +bo(¥W) =0, (3.12)

where one has to use eq. (3.11), which renders the kinetic term invertible. We now introduce
the n-particle perturbiner expansion [47, 48]

U= UpTler™ =N W% k™ + N Wy 74T b (3.13)
P i i,j
where ¢ = 1,...,n and P stands for non-empty words in particle labels. Lie algebra

generators and momenta carrying multi-indices are defined as TF = T ... T%  and kp =
k1+...+k,. Mandelstam variables are defined by sp = %k]% After plugging (3.13) into the
equation of motion (3.12), and collecting all terms with the same Lie generator products,
one obtains

1 -
QVi=0, VUp=—— > b(VUgr), bV;=QZ. (3.14)
5P Qr=p
where =; is the single-particle superfield in the perturbiner expansion of =, V; = ¥,
for ¢ = 1,...,n, and the sum runs over all the possible deconcatenations of P into the

non-empty ordered words @, R. For example, the deconcatenation of 12345 is (1234, 5),
(123,45), (12,345) and (1,2345). The n-point color-ordered amplitude then reads

Al =(=D" > (TpUoVy), (3.15)
PQ=(1..n-1)

where Wy, is given by the recursive formula (3.14), see [49] for a similar construction. The
product ¥pWg is just ¥y _,_1 with the outer propagator stripped off. The prescription to
remove the last propagator can be seen as the LSZ reduction in pure spinor superspace; the
BRST operator is to be applied from the left in order to cancel the external propagator,
then the limit of on-shell momentum is taken. The angle brackets (...) represent the
application of the pure spinor measure studied in section 2.2. Integration over z then
imposes the momentum conserving delta function, which we ignore in what follows, while
the integration over pure spinors and 6 is responsible for imposing various contractions
between on-shell states.

The Berends-Giele currents precisely reproduce the amplitudes from the color-ordered
Feynman rules. This follows from evaluating the pure spinor integrals in the latter until all
delta functions from propagators are localized, and then observing that terms in the sum
over deconcatenations in (3.15) are in one-to-one correspondence with the planar diagrams
Feynman diagrams.

~10 -



3.3 Examples

In what follows we compute a few lower-point amplitudes and show that they reproduce
those obtained in [49-51]. We start from the three-point amplitude, using eq. (3.15) we have

Aoz = (V1VaV3), (3.16)

which is exactly the three-particle amplitude in pure spinor superspace. Notice that we
implicitly used the prescription in (3.15), and removed the outer propagator from Wis.
For the four-point amplitude it is convenient to introduce a diagrammatic representa-

W93 = /%\ + />\
12 3 10 2 3

b
= —70(‘1112‘/3 + V1 Wa3)
5123

tion of the currents,

b b b
= ()(()(VHVE)V% +—Vﬁ()(V§V%)> ; (3.17)
5123 \ S12 523

where each diagram has a natural Feynman-rule interpretation as compared to those in [52].
After removing the last propagator bg/s123 and multiplying with an external state Vi,
we have

(bo(ViVa)VaVi) + — (Vibo(VaVa)Va) - (3.18)

1
Algzg = —
812 523

As discussed in appendix A.2, the action of by on two single-particle superfields can be
demonstrated to take the form

bo(V1V2) = Viz + QA12, (3.19)

where Via = \*A12,, and Aja, is the 2-particle superfield introduced in [52]. After drop-
ping BRST-exact terms, eq. (3.18) becomes

1 1
Arzs = — (Vi2V3Vi) + —(ViVasVay) , (3.20)
812 523

giving the expected result.
The five point amplitude can be obtained along similar lines. The four-particle current

is given by five planar diagrams,

Wi234 = A*/ﬁ\\*A*A*&\
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

_ b [bo(bo(‘/l‘/é)‘/z)))‘@+bo(Vlbo(V2V3))V4+bo(‘/1‘/é)bo(‘/é‘/4)

51234 5123512 5123523 512834
V1bo (Vb (V3V; V1bo(bo(VoV3) Vi
Wh 0(Vabo(V3Vy)) wn 0(bo(V2V3) 4)} _ (3.21)
5234534 5234523

- 11 -



And from this, the five point amplitude reads
(Vibo(Va(bo(V3Va))Vs) — (Vibo(bo(VaV3)Va)Vs) — (bo(ViVa)bo(V3Va)Vs)

A -
12545 5234534 5234523 512534
 (bo(Vi(bo(VaV3))VaVs) — (bo(bo(ViV2)V3)VaVs) (3.22)
5123523 5123512 ‘ .

As shown in appendix A.3, the expressions involving two nested by can be calculated to be

bo(bo(‘/ﬂ/j)vk) = Vijk -+ Sz‘jTijk + SijkAiij + Q(A[ij]k) , (3.23)

where Vijk = )\aflijka is the 3-particle lowest dimensional superfield studied in [52], Tijx is
given by

T%jk = AZV}Vk - Aiij =+ CyCliC(ijk) , (3.24)
and Ay, can be found in (A.46) The amplitude (3.22) then takes the form

([Vaaz + 834 T340 + 5342A34Vo]ViV5)  ([Vasa + s23T34 + 5123 M03V4] V1 Vi)

Alg345 = -
5234534 5234523
L {(Vie + Qi) (Vaa + QA30)V5)  ([Vagt + 523 Toy1 + s Aaa Vi VaVs)
$12834 $123823
% T A
n (Vizs + s12Th23 + s123A12V5]VaVs) . (3.25)
8123812

Cancellations between terms in this expression must happen over common poles, since all
objects appearing in the numerator are local. For example, we can focus on terms with the
propagator 517213. There are two such contributions

A12345 = (T123VaVs) — (T231ViV5s) . (3.26)

517213

But the T;j; have a cyclic symmetry, and hence these terms do not contribute to the
amplitude. Let us also examine the terms with the propagator s34, once again there are
exactly two such contributions,

(Vizg + QA12)QA34V5)
512

_ (AVAViVs) + (A34Q(Viz + QA12)V5)
512

= (A34V2V1V5) + (A34V1 V2 V) (3.27)

A12345

= (AgaVoV1V5) +

S34

where in the last equality we used that Qbo(V1Va) = s12V1Va, or equivalently that QVis =
s12V1Vo. A similar analysis follows for the other terms, giving the expected result

Aiozas = (ViMa3aVs) + (MiaMs4Vs) + (Mi23VaVs) , (3.28)
where
ij 1 (Vijge  Viki
Mij = &, and Mijk = (Jk - ]k) . (329)
Sij Sijk \ Sij  Sjk
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Note that in [10] the M;j, are written in terms of a different multi-particle superfield, Vijp,
which differs to the one above by a BRST exact term. In the following section we will
argue that our formalism generates the correct Berends-Giele currents at any multiplicity
by relating our numerators to those in [10]. Once the non-minimal variables are decou-
pled as above, it is straightforward to evaluate the pure spinor integrals remaining in the
expressions [53].

4 Properties of the numerators

The operators used in the previous sections were required to satisfy bV = Q=. We saw in
eq. (3.2) that the usual unintegrated vertex operator V = A\*A,, which only depends on
minimal variables, satisfies such a gauge condition. In this section we study the properties
of the numerators in such a gauge as well as in the Siegel gauge byV = 0. Unlike the
former, the latter implies that V is a function of non-minimal variables with singularities
in A\. Interestingly though, this gauge will be shown to realize color-kinematics duality,
via a mechanism reminiscent of the one in [37]. We will restrict our study to the algebraic
properties of such a gauge choice, and leave the task of explicit calculations for future work.

4.1 Generalized BRST blocks and gauge invariance

We will first consider the action of the BRST operator on a generic numerator. Each time
(@ anti-commutes with a by we are left with a Mandelstam invariant. In general we have

Qbo(bo(\l’a\llg)\l/w) = Sag«/bo(\lla\yﬁ)\lky — Sagbo(\lfa\llg\lf,y) + ... s (4.1)

where the Greek letters label some tree diagram, and the ellipses stand for additional terms
obtained by propagating the BRST operator through more b-ghosts. Focusing on the s,z
part only, we can represent this diagrammatically,

Q =...+ + ... (4_2)

where the blobs are place-holders for the unspecified incoming states ¥,, Vg, .. The
right-hand-side is proportional to s,g, hence the corresponding propagator has been con-
tracted in the diagram. In the full amplitude, this term can cancel only with other Feynman
diagrams that have the same propagator structure, meaning there must be some other di-
agram whose BRST variation matches the right-hand-side of the equation above. Indeed,
this is
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where the minus sign comes form commuting the BRST operator past the o leg. We
notice that diagrams cancel in pairs, where each pair of diagrams differ by exactly one
propagator. This observation holds even if we embed our o+ sub-diagram in any other
larger diagram. Let us see an example of this, take the BRST variation of the four-particle
half-ladder numerator,

Qbo(bo(bo(ViVa)V3) Vi) = s1234b0(bo(ViV2)V3)Vy — s123b0(bo(ViV2) V3 Vy)
+512b0(bo(V1V2V3) V) (4.4)

Clearly the s part has a cyclic symmetry in (1, 2, 3) which is needed for the cancellation of
this term with the so3 part coming from the BRST operator acting on by (bo(V1bo(V2V3))Vy).
Similarly, the term proportional to sj23 has a cyclic symmetry in (12, 3,4), where labels 12
are treated as a single unit. This is again needed in order to cancel the s34 contribution
from the variation of by (by(V1V2)bo(V3Vy)).

The transformations of the numerators add up and give the expected equation of
motion for Berends-Giele currents [49]

QUz =— > UxUy. (4.5)
Xy=2
without the gauge-fixing terms. From this it follows that the amplitudes are BRST-closed,

and gauge invariant under transformations of the last leg 6V,, = Qw. To see this, consider
a gauge transformation of the particle n in an n—point amplitude, V,, — Quw, it can be

written as
§Ai.n = Y, (Ix¥yQuw)

XY=(1..n-1)

= > (Q(IxTy)w)
XY=(1..n-1)

= Z <— Z <\I/A\I/B\11yw> + Z <\IJX\IJA‘1/BW>>
XY=(1..n—1) AB=X AB=Y

=0. (4.6)

Notice that a similar argument has been worked out for superstring amplitudes in [54]. To
see that the amplitude is invariant under gauge transformations of any external leg, we first
discuss the four-particle numerator as an example. Under the BRST variation V; — Quw,
the same method of anti-commuting the BRST operator with b-ghosts gives

bo(bo(bo(QwV2)Va) Vi) = s1234b0(bo(wV2)V3) Vi — s123b0(bo(wV2)VaVy)
+512b0 (b (wWVaV3)Vy) , (4.7)

up to BRST-exact terms. Once again the s1o part above cancels with the so3 contribution
form bo(bo(V1bo(V2V3))Vy). The variation of (4.7) is identical to (4.4) under the replacement
V1 — w. In this manner, it is not hard to see that under one replacement of V; — Qw in a
numerator, the general transformation rule is

bo(bo(- - )Va)ly, 0 = £[Qb0(Bo(- WVl ly, . (4.8)
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where the overall sign is determined by the location of the leg being transformed. Gauge
invariance of the full amplitude can now be shown by substituting this transformation rule
into the variation of the amplitude, in a similar fashion to (4.6).

Our discussion here mirrors the discussion for the cancellation of contact terms
in (3.23), and for good reason; they are both related to gauge invariance. So far we only
dealt with linearized gauge invariance of external states, but we actually learned that if we
modify our numerators by contact terms that have the same symmetry properties as the
ones we discovered in the gauge transformations, they will decouple in the amplitude. For
example, one could add to all numerators containing bo(bo(V;V;)Vi) a term proportional
to s;; so long as it is cyclic in (ijk). These kinds of modifications are known as general-
ized gauge transformations in the amplitudes literature [24], and reflect the fact that the
numerators, which are gauge dependent, are not unique.’

In [10, 52], gauge invariance of the amplitudes followed from a multi-particle equation
of motion,

QVL..n:ZSL..j( > Vig-naVig—at+ Y. Vi.ga j+1(ﬁ(j1>—a)>7 (4.9)
§=2 acP(B;) aeP(Bj+1))

where f3; is the range (j+1,...,n) and P(f;) is its power set. In the four-particle example
we have

QVi234 = s1234Vi23Va — s123(ViazVi — ViaVay — ViggV3)
+519(ViVazg — ViaVag + VizVag + VigVaz — VioaVa 4+ VizaVa) . (4.10)

The important observation for us is that the term proportional to s12 has a cyclic symmetry
in (1,2, 3), just as we observed was necessary for gauge invariance. Similar symmetries exist
for the other labels ({12}, 3,4) and at higher multiplicity too. Now the fact that both our
numerators and those in [52] compute the same amplitudes implies that they should be
related by some generalized gauge transformation. To argue that this is the case at higher
multiplicity, we make use of appendices A.2-A.3, where we explicitly show that by(V;V52)
and by (bg(V1V2)V3) differ from Vo and Vias by such generalized gauge transformations.
Next we assume that this same pattern holds up to some multiplicity n, that is

bo(bo(- - )Va) = Viz.n + Ca, (4.11)

where C, is a combination of contact terms possessing the right symmetry to decouple
from the Berends-Giele currents at multiplicity n (or BRST exact terms that decouple
irrespective of their symmetry properties). Given that C, decouples at multiplicity n
immediately implies it decouples from all higher multiplicities due to the recursive definition
of the Berends-Giele currents: bg(C,V;,41) still has the right symmetries to decouple since

Tt is also possible to apply generalized gauge transformations that are polynomial in Mandelstams.
These may have cancellations between more than just pairs of diagrams, but they do not play a major role
in our analysis.
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wrapping contact terms by an additional by does not affect their cancellations. Therefore
we simply have to show that

bo(Vig..nVis1) = Viz.mi1 + Dny1, (4.12)

where D,,11 decouples from currents of order n+1, effectively defining Cp,+1 = bo(Cp, V1) +
Dp+1. This follows from observing that the multi-particle equations of motion of [52], for
example (4.9), are equivalent to the single particle equations of motion up to contact terms
which have the right symmetries to decouple from amplitudes. Therefore, using these
equations in an analogous manner to the computation of by(V;V2) = Vi + QAq2, one finds
that equation (4.12) holds.

Under the operation of (), our numerators transform into a sum of cubic diagrams with
one quartic vertex, corresponding to a cancelled propagator. Naively this seems different to
the transformation rules in eq. (4.9), but in fact they are related, with ours generalizing (4.9)
by the addition of terms that are nonlinear in Mandelstam variables. We will return to
this at the end of the next subsection, after we develop a better understanding of how the
b-ghost acts on products of fields.

4.2 Color-kinematics duality

To start with, it is convenient to write down the b-ghost in the simplified form

(M)

b= |Pm4
4(MN)

Al A, (4.13)

where Ay, was defined in (2.28). Up to shift-symmetry terms, the expression inside the
square brackets is nothing but —A,,, defined in (2.31). Eq. (4.13) can then be compactly
written as

b=—-A"A,, . (4.14)
In this manner, when by acts on the general vertices Vi, V5, one gets
bo(ViVe) = (boVi)Va + A™V1A,, Vo — A™ViA,, Vo — Vi(boVa) (4.15)

where, as before, we are using hatted symbols to represent the operator version of the
corresponding fields. Similarly, using the Leibniz rule, one can show the action of by on
three general superfields Vi, Vo, V3 is given by

bo(ViVaVi) = bo(ViVa)Va + bo(VaVa) Vi + bo(VaVi)Va
—(boV1)VaVs + Vi(boV2) Vs — ViVa(boVa) (4.16)

When the Siegel gauge condition is imposed on external vertex operators, eqgs. (4.15), (4.16)
take the simple form

bo(V1 Vo) = A™VIA, Vo — AMVIA, D, (4.17)
bo(V1V2V3) = bo(V1V2) Vs + bo(VaV3) Vi + by (Vs V1) Va (4.18)
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where we are using calligraphic letters to denote Siegel gauge operators. The definition of
the Poisson bracket

{X,Y} = A"XA,Y — A"XA,Y , (4.19)
allows us to rewrite eq. (4.17) in the suggestive form
bo(ViVo) = {V1,V2} . (4.20)
In addition, the application of by on both sides of (4.18) gives
bo(bo(V1V2)V3) + bo(bo(V2V3) V1) + bo(bo(V3Vi)Va) = 0 . (4.21)

This cancellation is precisely all that is needed in order to prove that the Siegel gauge
numerators obey the color-kinematics duality.? For external states the identity follows
from the Siegel gauge, while internal states are always dressed with a b-ghost, and due to
the fact that b3 = 0, they are effectively in the Siegel gauge too. Let us show this by an
example, and also explain how integration by parts within the pure spinor measure allows
to deal with the case when one of the particles is the root leg of the diagram. Consider the
six-point ladder numerator

= (bo(bo(bo(V1V2)V3)Va)V5Vs) - (4.22)

The Jacobi identity surrounding the sjo propagator, that is, the cyclic sum on particles
{1,2,3} has already been discussed. The Jacobi identity on the sj23 propagator follows
from the cyclic sum on (multi-)particle labels {(12), 3,4}, where by(V1V2) is treated as a
single particle, which is clearly in the Siegel gauge. Finally, we may also take the cyclic sum
over the labels {4,5,6}. It is possible, by use of integration by parts of the b-ghost, to show
that this is equivalent by relabelling to the Jacobi identity on legs {1,2,3}. Alternatively,
one can use eq. (4.18) followed by integration by parts to see that this is indeed zero.
That integration by parts is possible follows from the fact that by commutes with the

~A=r0  which can be shown by observing that [A,,, A\ =

regularization factor N' = e
[A,,,70] = 0.3 All together this implies that the six point numerators obey the identities
of a contraction of four structure constants.

The kinematic Jacobi identity is related to the Jacobi identity of the Poisson alge-

bra (4.19),
{Vi, 2}, Va} + {{V2, V3}, Vi) + {{V3,V1},)02} = 0. (4.23)

2Some subtleties might arise after applying the regularization scheme developed in [44]. We elaborate

more on this in the Discussions section.
3We thank Carlos Mafra for pointing out a different argument, based on representation theory, which
also establishes the validity of this property.
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That this bracket to obey a Jacobi identity not only on functions in the Siegel gauge it is
required that [A™ A" = {A,,,A,,} = [A", A,,] = 0, which indeed hold. Note that these
are also the constraints needed to show that b2 = 0. This Poisson algebra has a dual Lie
algebra with generators

A~ ~

Ly: = Am()A,, — A, ()A™ (4.24)
which obey

[Ly Lol = Lig (o) - (4.25)

For generators defined from functions v that satisfy bgy = 0, this becomes an algebra of
infinitesimal diffeomorphisms in pure spinor superspace that preserve the Siegel gauge.

For numerators with particles in the Siegel gauge, there is no difference if one replaces
bp — {, }. But Siegel gauge external states must be related to any other external states by
BRST-exact deformations, V =V 4+ Q((), with ¢ being some superfield depending on non-
minimal variables. Since Q(() is a gauge transformation it decouples from amplitudes, see
section 4.1, and we find that the numerators obtained by nested Poisson brackets generate
the correct amplitudes with any external states. However, what is lost by this procedure is
crossing symmetry, since we cannot integrate by parts the Poisson brackets. Therefore we
learn that the Siegel gauge is special in that it allows for both manifest color-kinematics
duality and crossing symmetry at the level of individual numerators.

We have one last observation to make regarding the multi-particle equations of motion.
We noted earlier in the section that our numerators obey slightly different equations of
motion than (4.9), yet still had all the right transformation properties to ensure that
amplitudes are gauge invariant. It can be shown that taking a half-ladder numerator
bo((...)Vn) and operating with @ on the left would reproduce the equation of motion (4.9)
if the external states are in the Siegel gauge. For this, one needs to use the identity (4.21),
and identify V; ;. with the nested b-ghost numerators, bg((...)Vs). So if external states
are not in the Siegel gauge we find that (4.9) is contaminated by terms with by(V;) which
contribute more Mandelstam variables. These generalize eq. (4.9) by adding to the right-
hand side terms that are polynomial in Mandelstams and are functions of A; as well as V;.

5 Discussions and future research directions

In this work we studied amplitudes obtained directly from the 10D pure spinor action for
super-Yang-Mills theory. We employed Berends-Giele currents, which streamline compu-
tations for tree-level amplitudes, and showed that they are equivalent to the amplitudes
obtained from the particle-limit of pure spinor open superstrings. We have made exten-
sive use of physical operators, finding that they dramatically simplify computations. In
the study of properties of individual numerators we found that the color-kinematics duality
emerged from the second-order Leibniz rule obeyed by the b-ghost, which is the propagator-
numerator for our Feynman rules. Therefore color-kinematics duality emerges directly from
the Feynman rules. This is in contrast to other constructions where an explicit connection
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to an action principle is not completely clear [55-60], or where the color-kinematics duality
is enforced by taking gauge-transformations of the kinematic numerators [26, 37, 52, 61].

Individual numerators are harder to obtain in this formalism than complete amplitudes,
since each numerator is given by a pure spinor superspace integral of nested b-ghosts
acting on on-shell states, and one cannot decouple the non-minimal variables from it. As
discussed in section 2.2, when the numerator’s integrand diverges slower than A=S\=11,
the integral is well-defined. Since b-ghosts carry poles in A\, the poles of the numerators
grow with multiplicity and eventually exceed A~8A~1!. Fortunately, these divergences
do not contribute to amplitudes, meaning they completely decouple. However, to define
individual numerators these divergences need to be regularized. It was shown in [44]
that in principle the b-ghost can be regularized in a BRST-invariant manner, so that
b'(z) = b(z) + {Q, xe(2)}, for some x¢(z) which depends on the regularization parameter
e. If such a x can be shown to satisfy x(z) = {bo,K(z)}, for some conformal weight
zero K(z), then bjy(z) = e 19X py(2)el@X} and thus nilpotency of by is preserved after
regularization. Such an idea has been used in [21] for instance. This idea has been used
in [21] for studying the UV behavior of 11D supergravity scattering amplitudes. In such a
scenario, the color-kinematics duality realized by the Siegel gauge operators is maintained
after regularization, even though explicit computations of the numerators might still be a
challenging problem.

There are many additional avenues for further exploration. Color-kinematics duality
followed directly from the second order nature of the b-ghost, without kinematic structure
constants appearing in the action, so it would be interesting to find other theories with
a similar action and propagator-numerator. Since it has been observed that the color-
kinematics duality has connections to supersymmetry [62], exploring pure spinor type for-
mulations of theories in lower dimensions [5, 63, 64] seems promising. Perhaps in lower
dimensions numerators would be more tractable for direct computations. In fact, an anal-
ogous discussion has been carried out for Chern-Simons theory [65], which has an action
formulation similar to the pure spinor action (2.17).

On the other hand, it would also be interesting to apply the ideas developed in this
work to other pure spinor field theories. For instance, the abelian Born-Infeld action in
pure spinor superspace [7] involves the operator A, defined in eq. (2.31), so the perturbiner
method implies that tree-level Born-Infeld scattering amplitudes are determined from the
knowledge of the algebraic properties of the b-ghost and A,,, and their respective actions
on single-particle superfields V. Likewise, the 11D supergravity pure spinor action [6]
contains 11D physical operators whose actions on single-particle superfields have recently
been calculated in [66, 67]. The perturbiner method then tells us that tree-level 11D
supergravity scattering amplitudes can be directly obtained from the properties satisfied
by these operators and the 11D b-ghost. We plan to investigate this in the near future.

Finally, the pure spinor Feynman rules of section 3.1 can, in principle, be used for
computing loop-level amplitudes. Since loop-level Feynman diagrams involve ghost parti-
cles running in the loop, the calculation of loop-level processes seems to require the use of
the other ghost sectors of the pure spinor superfield ¥. It would be interesting to under-
stand such a mechanism in a more transparent way, as well as exploring the realization of
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on-shell techniques in pure spinor superspace, which might dramatically simplify loop-level
computations.
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A The b-ghost as a second-order differential operator

A.1 The b-ghost on a single superfield

The action of the b-ghost on the physical sector of the pure spinor superfield V= \“A,,
displayed in (3.2), can be computed by using eq. (2.38) after implementing the usual
correspondence principle, namely P, — O, do — Da, Wq — —0jxa. In this manner,
one has

~ a 1 N
bV = (8’”Am — D, W* + 4()\fym"8>\)an>V (A.1)
Using egs. (2.32)-(2.35), eq. (A.1) becomes

9 1
bV =Q [8mam — Dy p® — ()\fym"@\)smn} — (AD)s + Z()\fy”gn) + EAO‘()\fym)gaAagﬁl

45 5
_= — 22a\BHy.
5 (A9) = 5A A Oragp
5 5
= Q[amom — Dyp® — ()\’ym"@\)smn} — (AD)s +2(M"gn) — 20(A\g) + Z(AD)S — ZQS
(A7) (AR
VAT )\D mn N mn A2
o) AD)smn + AT Qs (#-2)
where we used the identities
Ao 4(y" )P Ao
Dragl, = — 22y - {Damn_ m] A3
o = 9 gy Pt~ Q) (A3)
R " As ]
Oragg = ———=—gg — —= |Dgs — Q(—=
XI5 = T 0% Z(AA){ s = QG0
(Y™ A)? { s }
——=—\|D mn — NN, omn A4
o [Pasmn = @y om) (A4)
Likewise, the use of egs. (2.36) allows us to state that
(M) (M™X)
200" gn) —20(Ag) = ~———Fpp — 2-———>QSmn + 10 A5
(AM"gn) — 20(Ag) 200 o) Qsmn +10Qs (A.5)
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Therefore,

bV = Q {8mam — Dop™ — ()\ym"(‘?,\)smn] + i()\D)S — %Qs + (;7(:1:))\) mn
(M A) (A" X) L,

This expression can be simplified further by making use of the pure spinor constraints.
Indeed, one can show that

(A™"A) _ ¢
WQsmn BESY + Qs (A7)

and so, eq. (A.6) takes the form
bV = Q[0 0w — Dap®™ — (M"™ 0 )5y | + i(AD)s _ ZQS +8(AD)s — Z()\D)s
—7(\D)s — ZQS +10Qs
= Q[0 0w — Dap® = (\y™0x)mn + 75| (A.8)

After plugging (2.36) into (A.8), the expression inside the square brackets can be written
in the more compact way
0" (MmA) | ,AW)  (\M™D)

= - 2 S+ R e (A.9)

As a check, one can easily show this result yields the same expression found by using
the Y-formalism b-ghost in the minimal pure spinor framework (r = 0), defined as by =
(Y4™D)0y,, with Y, — &—3)

A.2 The b-ghost on two superfields

The action of the b-ghost on two single-particle superfields, say Vi = A*A14, Vo = A*As,,
can be calculated from the following ansatz

bo(ViV2) = Viz + QA12, (A.10)

where Vis = A*Aj24, and Aja, is given by
1
A2 = 3 [(7@ cA1) Az — (k1 - A2)Ara + (WP W) A2p — (VPVVz)aAlp] (A.11)

which, interestingly, matches the lowest-dimensional multiparticle superfield introduced
in [52]. Notice that the proposal (A.10) is reasonable since both sides of the equality
behave in the same way under the action of the BRST charge. Indeed, Q(bo(ViV2)) =
s12V1Vo = QVia. To compute Ajs, one can let the b-ghost act on both-sides of (A.10)
to get

bo(Vi2)
512

Ay = — (A.12)
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Thus, A1z is defined by eq. (A.12) up to BRST-exact terms. Let us compute then byVia.
For this purpose, it is convenient to first list the equations of motion satisfied by the
two-particle superfields

DoAr2g+ DgAiaa = (V")agAizm + (k1 - k2)(A1aA2s + A153A24) (A.13)
DoAram = (mWi2)a + kiamAi2a + (k1 - k2)(A1aAom — A2aA1m) (A.14)

1
DaWiy = 2(0™)a” Framn + (k1 - k2)(A1aWy — A2aWT) (A.15)

DoF1amn = k12m(mmWi2)a — k12n(ymWi2)a + (k1 - k2) {AlaFan — A2 F1mn
+A1 n(erWZ)a - A2n(7mW1)oz - Alm(VnWZ)oz
+A2m(7nW1)a:| (Alﬁ)

1
Atom = 3 {A2m(k2 cAy) — A (k1 - Ag)

—I—(kQ — k‘l)m(Al . AQ) =+ 2(W1’)/mW2)} (A17)

1 1
Wiy = Z(anwz)aFl mn + W3'(k2 - A1) — Z(Wmnwl)aﬂmn — Wi (k- A2)  (A.18)
Fromn = kiamAian — k12nAioam — (k1 - k2) (A1 mAan — A1nAam) (A.19)

In this manner, the action of A, given in (2.27) is readily computed to be

Aa‘/IQ = A12a + ()\’Ym)oc0'12m (AQO)
with,
Am A
T12m = _ (N A1a) —12) (A.21)
200

The action of A, in (2.28) can be written as

(7" AN

2()\5\) [DaAlgﬁ + DﬁAlga} +

AmVlz = M [_ (/\’YPAH)] (A.22)

2(AN) 2(AN)
which, after using eq. (A.13), becomes

(ki - ko)
2(AN)

AnVio = At — Mmpi2) + Q(o12m) + {(%(5\7771142) — VQ(/_\’YmAl)ﬂ (A.23)

where p; is defined by

(PN
2(AN)

Likewise, the action of W< in (2.29) takes the form

Pla = [Alzp + Q(O-IQp):| (A.24)

WeVpy = (;g)%\); [ — O Vi2 + QA12m — (AYmQp12)
k)| g5 (M ) — Vo) | (4.25)
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The use of eq. (A.14) allows us to write (A.25) in the form

~ (,me)oz
WoVia = €8 + (7™ A)s12mn + A%s1 + (k1 - & [ V. (Vidgg — Vaim
12 = &9 + (V" A) Y512 s12 + (k1 - ko) 200 ( 14 H A1 )
L (= Va(rym4s) + VQ(mmAl)ﬂ (A.26)
4(AN)?
where
(Mmnéi2) (A12)
« — WOt _ (87 , mn = —— = — A27
&1o 19 — QT S12 8(\N) S12 400 ( )
Furthermore, the action F,,, in (2.30) can be calculated to be
~ _ (kl . k;2) _
an‘/IZ == F12 mn 4=Q512 mn ()‘7[m912 n]) + ()"Ymngm) + Q(AS\) Vl()"YmnWQ)
. Oy
VoAV W1) + ——=>(V1 Ao, — VoAim
2( Ay 1) 200 (V1A 2A1m)
(Ay™Pr)
W( — Vl (T"}/pAQ)} + VQ(T’YmAl))] y (A28)
where eq. (A.16) was used, and
('anj‘)a 5‘04
mn:_F mn+4 mn a = T v mn T . ov
12 12 Q512 912 SO0 T12 2()\)\)(»2912
("N
a A i A.29
Therefore, one finds that
A= bo(Vi2)
812
2 - - ks - -
= —(AW2— AW — —— [VIOWa) = Va(AW) | + —22— Vi (MymAz) — Va(Aym A
(AW 42W!) = 555 ViAW) = Va(AW)| + 2555 [ Vi (Wi A) = VWi )
(M\y™D) (My™D)
— — 2 ViAo — VaAim| — —- | = Vi(rymA2) + Va(rym A
200 [ 142 2 A1 ] 1002 { 1(rymAz) + Va(ry 1)}
1 1 _ _ (j\ﬁ/min)
— (AN | ——= (V1 (MY Wa) — Vo (A Y W- ~— (V1 Ay,— VoA
+4( Y /\){2(»\)( (M 2)—Va(Ay 1))+ SSE ( 1A2p—V2 1p)
(S"Ymnpr) D )
+W( — VI(T’Y A2) + ‘/2(7”')/ Al)):| (A?)O)

where we have ignored BRST-exact terms. This expression can be put in a simpler form
through the use of pure spinor identities. Indeed, the r-independent part of (A.30) can be

cast as
_ _ _ _ 1 _
A2 = k12 Vi(AY™ A2) —k12m Va(Ay™ A1) +2V1(AW2) —2Va(AW7) — 7/—\)()\7"”7)\)141 mAzp
1 - _
+ — (MY A1) Ao — (AYTA Am}ﬁ—O A3l
Q| 5 [0 A A2 — G0 A ]|+ 00) (A31)
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where we used that

o= (D) [Vidz — Vo] =

2(AN)
Q| 5737 [0 A1) Ao — G ) 41|
+§(1i;) ™ALV, — ;(1;;) (™A Vi + (AZX;A)AI,,AM +5Vi(AWa) — 5Va(AW;)
+ (A;(T:;)l) Ay W) — (Zgﬁf) Ay W1) (A.32)
and also,

i(mm”ax){ (i)\) (Vl()\’}/mnWQ) VQ(;\%nWﬂ)} _

3 [VaOW) = ViAW))| 4+ [\ W2) A1) — (A" W) (M Ao) |

(A)\) ()\)\)

1 _ _
o VA AW2) = V(AW + AW — 49 (A.33)

400N

On the other hand, the r-dependent part can be computed from the following results:

(5\ mnpy.
1(?()\)\)2 [()\’YmnAl)AQp - ()\’YmnAg)Alp} -
1 D o ()\T‘) I p B ; . , )
20 A = R AT A Az = R T AN ) Az

1 B 1 . )
_W( P Ag) A1y + 2 MP(WAQ)AM + W(M A MPymr) A, (A34)
()\’}/min)
32(AN)2
_ (mPA)
4(AN)?
(ryPAz)
4(AN)2

{ — (MY A1) (7P Ag) + (MYmn Ag) (1P Al)] —

(AMy™Ay)
8(AN)3
(M A)
8(AN)3

(Ar)

(rypA2) +

5 (AP AL (rpAs) — (Aym ) (rpAz)

\V)

(AN)
(A7)
(AN)

SNE (A" D) [Vl (rymAz) — Vz(mmAl)} _

Q-

+

(T’YpAl)

5 (WP A2) (rpAr) + (Aymy"r) (rypAi) (A.35)

[\~

(M™A1) (Ay™Ay) (ry™D)
ooz mA2) TR 1002

1 [« _
F———— [ Y™ AD) (P N Az s — ™ A2) (rymy* N) A s
4()\>\)2[( VA (rym A Azs — (M A2) (rymy°A) Ax

+O0™ Y N A1 o(rmA) — (9™ V) Az o(rym Ar)] (A.36)

(mmAl)] + [Va(MmA) = Vi (A 4s) |
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In this manner, one learns that

(A™PA)

Arg = k12 Vi(M" A2) = kiamVa(My™ A1) + 2Vi(AWa) — 2Vo(AW7) — (AN)

1m<2p

MYl 5 AVPYmr) (5 m Mm YT Sy
+M(>\7 Al)AQP_w(M AQ)Alp'i‘w(/\’Y Ay (rypAz)

4(AN)2 4(AN)2 8(AN)3
(AYmPr) < 1 - -
2 (M A (ryp A1) + ——=—=(ryY" D) |Vao(Aym A1) — Vi(Ay A
SO (A" Az)(rpAs) 4(M)Q( YD) [Va(mAr) = Vi (A A2) |
1 _ _
+ _)\mAAm—)\mAAm} A .37
Q[Q(M)[m DAz — (" A2) At (A.37)
As before, one can check this expression coincides with that one obtained by using the
Y-formalism b-ghost in the minimal pure spinor framework (r = 0), with Y, — (i‘\‘i).

A.3 Two b-ghosts on three superfields

The simplest and non-trival expression involving nested b-ghost is that one containing two
b-ghosts and three superfields, which was relevant for the 5-point amplitude computa-
tion (3.22). Such an expression reads

bo(bo(V1V2)V3) (A.38)

One way of computing (A.38) is by using the Y-formalism b-ghost, which also satisfies
{Q,by} = %D. Then, the r-dependent piece is computed by requiring consistency under
the action of the BRST charge on both sides of the equality. This computation makes
a heavy use of pure spinor and gamma-matrix identities, as well as the 10D super-Yang-
Mills equations of motion (2.26), (A.13)-(A.16), and thus we will not reproduce it here.
An alternative and more elegant way to calculate (A.38), which can then be generalized to
higher-points, is via the 3-particle equation of motions

DaAi35 + DgAtaza = (V) apAi2zm + (k1 - ko)[A1aAsz g + Asa Az g + (a < B)]
+(k12 - k3)[A120A38 — (12 < 3)] (A.39)

where Ajg3, is the 3-particle superfield of [52], defined as

A~

A123a = %[(ks ~A12)Aza — (k12 - A3)A12a + (VW Wi2)aAdsp — (prs)aAup} (A.40)
After contracting with pure spinor variables, eq. (A.39) becomes

QVizs = s123V12V3 + s12 [V1V23 + VaVa1 + V3V12} ; (A.41)
Applying by on both sides of (A.41) yields

s123Vi23 — Q(bo(Vi3)) = s123b0(Vi2V3) + s12bo [V1V23 + VoVz + V3V12} (A.42)
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One can now use eq. (A.10) to get

5123Vi23 — Q(bo(Via3)) = s123 [bo(bo(vl%)v?,) + s12 <V1A23 + VaAsz + V3A12) — 8123A12V3}
+51200(Vibo(V2V3)) + s12b0(Vabo(Va V1)) + s12b0(Vabo (V1 V2))
+Q [512350(/\12‘/33) — 512 (bo(V1A23) + bo(VaAsy) + bo(V:aAlz))}

(A.43)
The use of the identity then tells us that
Vigg = {bo(bo(Vlvz)Vg) + 512 <V1A23 + VaAz1 + V3A12) - 81231\12‘/3]
512
—S12 (A1V2V3 + ViAoV3 + V1V2A3) +Q [bo(A12V3) . {bo (V1A23
bo(V123)
+VoA31 + VAo — A VaV3 — ViAR V3 — V1V2A3)] t— (A.44)
123
Therefore,
bo(bo(V1V2)V3) = Viag + s12T123 + s123A12V3 + QA19)3, (A.45)
where T123 was defined in (3.24), and Ajjg)3 is given by
A _ 52 Vias
1213 = —bo| ——Th2s + —— + A12V3 (A.46)
5123 5123

Although this expression appears to not be manifestly local, we have explicitly checked
that the 1/s193 pole cancels in the r-independent sector, and A[12)3 just reduces to the
multi-particle generalization of Ajs.
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