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1 Introduction and summary

Classical symmetries can be anomalous. The possibility that supersymmetry is affected by
quantum anomalies has been investigated, with different methods, for a long time [1–8].
More recently this question has attracted renewed interest, starting from some explicit
computations that described anomalous supersymmetric Ward identities for 4-dimensional
supersymmetric matter quantum field theories (SQFT’s) with anomalous R symmetry [9–13].
The relevance of these computations for supersymmetry anomalies has been discussed
in [14–16].

In this work we reconsider this question in the BRST framework. In this setup
one couples a generic matter SQFT to a classical supergravity background, whose local
supersymmetry transformations close off-shell. Each supergravity field is the classical source
of some matter quantum current. For each symmetry of the theory, one then introduces a
ghost field with opposite statistics. The nilpotent BRST operator is given by the sum of all
symmetry transformations (with the ghost fields replacing the transformation parameters)
and acts on both background supergravity fields and ghosts. In this framework, anomalies
are elements of the non-trivial cohomology class of ghost number 1 of the BRST operator
(i.e., cocyles of ghost number 1), and are local functionals of the supergravity fields and
ghosts. The matter SQFT enters the analysis only via its global symmetries which specify
the background supergravity BRST rules.
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Since our goal is to analyze super-anomalies of SQFT’s with R symmetries, we will
pick N = 1 new minimal supergravity [17, 18] as the background supergravity theory. The
multiplet of N = 1 new minimal supergravity includes the abelian vector field gauging the
U(1)R symmetry. When the matter SQFT has other global (flavor) symmetries beyond R
symmetries, one can study the corresponding anomalies by coupling N = 1 new minimal
supergravity to background super-Yang-Mills (super-YM) multiplets whose fields source the
flavor currents and their superpartners. In this paper we are interested in the supersymmetric
anomalies associated to R symmetries, and thus most of our analysis will focus on pure
N = 1 new minimal supergravity. Nevertheless, the discussion in sections 2 and 3 is general
and applies to any supergravity theory.

The local BRST cohomology of N = 1 new minimal supergravity has been investigated
in the past. As far as we know, the most complete classification of its local cocycles is found
in [8]. In that work, a restricted number of anomaly BRST cocycles are listed, among which
there is the celebrated supersymmetrization of bosonic YM anomalies, previously discovered
in [3, 6]. We will refer to this BRST cocycle as the supersymmetric chiral anomaly cocycle.
The other cocycles listed in [8] do not seem to be relevant to the questions raised by the
works [9–12].

The analysis of [8] employs methods which are very general and powerful, but also
quite abstract. To make this paper self-contained, we present in section 3 a (to the best
of our knowledge) novel derivation of the supersymmetric chiral anomaly cocycle which is
both very simple and geometric in character, and closely parallels the classic derivation
of the bosonic YM anomaly cocycles of [19, 20]. In addition, this derivation also makes
it very clear, in a completely model-independent way, that there exists a supersymmetric
chiral anomaly cocycle for each of the YM symmetries of the background supergravity. In
particular, this BRST cocycle exists also for the U(1) R symmetry whose gauge field sits in
the N = 1 new minimal supergravity multiplet.

There is, however, an important and crucial difference between the U(1)R super-cocycle
and those associated to global “flavor” symmetries of the matter SQFT — YM symmetries
whose gauge fields lie in external super-YM multiplets coupled to supergravity. Although
both kind of cocycles are non-trivial in the space of supergravity (and ghosts) fields, the
supersymmetric cocycle associated to the U(1) R symmetry becomes trivial after one
extends the BRST operator to the larger space of functionals of both supergravity fields
and their antifields.1 This is not the case for the anomaly super-cocycle associated to a
“flavor” U(1) super-YM multiplet, which remains non-trivial and cannot be removed even
after the introduction of antifields.

It should be kept in mind that the transformation rules of N = 1 new minimal
supergravity close off-shell, and therefore its BRST operator is already nilpotent on the
space of fields (including the ghosts), without the need to introduce antifields. Since its
cohomology problem is therefore perfectly well-defined on the space of fields and ghosts only,
the non-triviality of the U(1)R super-anomaly cocycle on this space is a mathematically
well-defined concept.

1For this reason, the U(1)R super-cocycle is not listed among the non-trivial anomaly cocycles in [8]. In
this paper it was already observed that the cocycle in question is trivial in the full BV formalism.
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When one considers a dynamical theory one expects that radiative corrections may, in
general, renormalize not just the action but also the BRST transformations. For this reason,
the general consensus is that anomalies which trivialize when one introduces antifields are
not “true” anomalies (at least for a dynamical theory). Indeed, one can convince oneself that
this kind of anomaly cocycles can be removed by adding local counterterms not just to the
local action, but also to the BRST transformations. Nevertheless, to actually remove such
anomalies in practice, one needs to know how to explicitly write down the anomaly cocycle
as the BRST variation of a local functional of both fields and antifields: it is this functional
that contains the information about the renormalization of both the action and the BRST
rules. To our knowledge, the fully explicit trivialization of the U(1)R super-cocycle of N = 1
new minimal supergravity has not been determined yet — neither in [8]2 nor in following
works. What we do in the present article amounts to solving this problem.

Moreover, when one is dealing with a theory of classical sources whose local symmetries
close off-shell, as we are doing here, one might be skeptical about the actual necessity of
introducing antifields, which are sources for the BRST variations of the (classical) sources.
In other words, one may wonder if it is possible — and maybe more practical — to
characterize anomaly cocycles which are non-trivial in field space but become trivial in the
enlarged space of fields and antifields without resorting to the full power of the antifield
(Batalin-Vilkovisky, BV) formalism. In section 6 we will do precisely that: we will describe
these kind of anomalies and their removal in the standard BRST framework, without
introducing antifields.

The anomalies in question vanish “on-shell”, i.e., they are proportional to the “equations
of motion” of some BRST-invariant functional of the fields — for example the classical
supergravity action. For lack of a better name, we will call these anomalies evanescent.
However, it is worth reiterating that we are considering here a theory of classical, non-
dynamical sources:3 therefore the expression “equations of motion” does not refer to any
kind of dynamics, it is merely a shorthand for functional derivatives of local functionals.

We will explain that by writing down evanescent anomalies in terms of the equations
of motion, one can read off candidate deformations of the original BRST transformations,
up to certain ambiguities which one can try to resolve by imposing that the deformation
anticommutes with the original BRST transformations. If this can be achieved, the deformed
BRST transformations leave a deformed effective action invariant (to first order in the
anomaly coefficient): the latter one equals the sum of the original — non-local and anomalous
— effective action and of the local invariant action which defines the equations of motion.
This double deformation — both of the action and of the transformation laws — removes
the original anomaly super-cocycle, and the resulting theory has no anomalies at all (to
first order) — neither supersymmetry anomalies nor U(1)R gauge anomalies.

To extend this procedure to all orders in the coefficient of the anomaly, certain integra-
bility conditions have to be met, which we will spell out in detail in section 6. In short,

2In eq. (6.10) of [8] some parts of the trivialization of the anomaly super-coycle in the BV framework
are given.

3Being non-renormalizable, new minimal N = 1 supergravity is of course not believed to be consistent
as a dynamical theory at the quantum level. The fact that its anomalies are removable leaves open the
possibility that it admits a consistent ultraviolet completion.
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the anomaly can be removed if there is no operator of ghost number higher than 1 which
(anti-)commutes with the original BRST operator and which is not an (anti-)commutator
of the original BRST operator with some functional derivative. In other words, a sufficient
condition for the removal of the anomaly is the vanishing of higher ghost number coho-
mologies of the original BRST operator on the space of (local) functional derivatives, on
which the BRST operator acts by (anti-)commutators. The deformation at first order in
the anomaly coefficient is instead a non-trivial element of the same cohomology at ghost
number 1.

These same conditions can be phrased in the language of antifields. In the BV
formalism, deformations of the BRST operator which remove the anomaly are associated
to the cohomology at ghost number 0 of the original BRST operator, acting now on
the space of functionals of fields and antifields, and obstructions to integrate them are
associated to cohomologies at higher ghost number. However, there is an important caveat
that distinguishes the problem of anomaly removal, which we are describing here, from
the superficially similar one of finding the deformations of the BV master equation, as
described for example in [21]. In the latter context, the relevant concept is the one of
local cohomologies on the space of functionals of fields and antifields. In the supergravity
case, it was shown in [8] that the deformations that change the symmetry transformations
always involve other external supermultiplets in addition to the supergravity one. On the
other hand, deformations of the BRST operator which remove evanescent anomalies are
associated to the effective action obtained by integrating out some SQFT. This effective
action is a non-local functional of the supergravity fields. Therefore the results in [8]
regarding the local cohomology at ghost number 0 of new minimal N = 1 supergravity do
not contradict the existence of a deformation of the BRST operator removing the U(1)R
supersymmetric anomaly.

We will compute explicitly such a deformation, at first order in the anomaly coefficient,
in section 7: the deformation is given in eqs. (7.15), and represents our most important
new result. It turns out that to remove the anomaly one needs to deform the BRST
transformations of both the gravitino and the auxiliary fields of N = 1 new minimal
supergravity, which are the two-index antisymmetric gauge field Bµν and the U(1)R gauge
field. Since supergravity is non-renormalizable, the deformation is described by operators
of higher dimension. For this reason we also expect that the deformation necessary to
remove the anomaly at all orders in the anomaly cofficient will include terms of all orders
in the derivative expansion. We leave to the future the problem of computing higher order
corrections (and possible obstructions) to the BRST transformations necessary to remove
the evanescent U(1)R superanomaly.

The rest of the article is organized as follows: in section 2 we review the BRST
formulation of supergravity and the notion of equivariant BRST operator [22], which we
employ instead of the full BRST operator to keep the computations manageable. This
BRST operator, equivariant with respect to diffeomorphisms and to the other bosonic gauge
symmetries of supergravity, involves only the commuting ghost of local supersymmetry
ζ. Nevertheless, the cohomology of the standard nilpotent BRST supergravity operator
on forms modulo the exterior differential d, i.e., the cohomology of the standard BRST
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operator acting on integrated local functionals, is completely equivalent to the cohomology
of the equivariant BRST operator modulo both d and iγ . Here, iγ is the nilpotent operator
that contracts forms with the commuting vector field γµ, the universal bilinear of the
supersymmetry ghost ζ given in eq. (2.3).

In section 3 we present a derivation of the supersymmetric chiral anomaly cocycle
which involves the super-Chern classes built out of the super-connection, the sum of YM
gauge fields and their ghosts that was introduced in [20]. The crucial difference between
supergravity and bosonic gauge theories is that the supergravity super-Chern classes have
non-vanishing components of higher ghost number. For this reason, one cannot simply
identify the supergravity anomaly cocycle with the Chern-Simons super-form, as one does
in the bosonic case. We will explain that when the component of the super-Chern class of
higher ghost number is iγ-trivial — as it is the case for N = 1 new minimal supergravity
— it is nevertheless possible to complete the Chern-Simons superform to produce a BRST
cocycle, the supersymmetric chiral anomaly. We will show how the existence of this cocycle
can be neatly understood in terms of the cohomology of iγ .

In section 4 we describe the (possibly not very familiar) equivariant BRST structure of
the antisymmetric gauge field Bµν sector of N = 1 new minimal supergravity.

In section 5 we present the BRST rules of the model and the form of the U(1)R
supersymmetric anomaly cocycle.

Section 6 contains a general discussion of “evanescent” BRST anomaly cocycles in the
framework which does not involve antifields. We spell out the conditions for these cocycle
to be removable.

In section 7 we finally evaluate the deformation of the BRST operator of N = 1 new
minimal supergravity which removes the supersymmetric U(1)R anomaly at first order in
the coefficient of the anomaly, using the FieldsX extension package [23] for the xAct
tensor algebra suite [24].

In section 8 we discuss how the deformation affects the constraints connecting the
super-torsion to the super-Chern classes of the Lorentz and U(1)R local symmetries.

In the conclusions, section 9, we summarize our findings and briefly discuss their relation
with the recent works [10, 14, 15] on the same topic.

Lastly, in appendix A the integrability conditions for S1 that were described in section 6
are reformulated in the BV language involving antifields, and in appendix B we give some
details on the computation using FieldsX.

2 The equivariant BRST operator of supergravity

In the BRST framework one introduces ghost fields of ghost number +1 in correspondence
to each of the local symmetries. Among the bosonic local symmetries of supergravity there
are diffeomorphisms and YM gauge symmetries. N = 1 new minimal supergravity is also
invariant under local vector-like gauge transformations whose gauge field is an antisymmetric
tensor Bµν . We will postpone dealing with those to section 4: they will modify the algebraic
structures that we will describe in this section in some relatively obvious way. We will
denote by ξµ the anticommuting vector ghost field associated to diffeomorphisms, and by c
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the anticommuting ghost associated to the YM gauge symmetry which takes values in the
adjoint representation of the YM algebra. The YM gauge symmetries always include local
Lorentz transformations. Beyond local Lorentz gauge symmetry, we will also allow for
additional YM gauge symmetries: among those the one corresponding to the R symmetries
of the SQFT whose coupling to supergravity one is considering.

In correspondence with N local supersymmetries, one introduces commuting supergrav-
ity spinorial Majorana ghosts ζi with i = 1, . . . ,N , whose BRST transformation rules have
the form

s ζi = iγ(ψi) + diffeos + gauge transformations . (2.1)

In this equation s is the nilpotent BRST operator

s2 = 0 , (2.2)

ψi = ψiµ dxµ are the Majorana gravitinos, and γµ is the following vector bilinear of the
commuting ghosts4

γµ ≡
∑
i

ζ̄i Γa ζi eaµ , (2.3)

where eaµ are the inverse of the vierbein ea ≡ eaµ dxµ. The vector γµ has ghost number
+2. Both the Majorana ghosts ζi and gravitinos ψi carry a label i = 1, . . . ,N on which the
O(N ) subgroup of the R symmetry group acts. However, the full R symmetry group can
be as large as U(N ). In the following we will restrict ourselves to the N = 1 case, and
consequently omit the index i.

The BRST transformations of the vierbein are universal, i.e., valid for any supergravity
theory:

s ea = −ζ̄ Γa ψ + diffeos + gauge transformations . (2.4)

We will denote the action of diffeomorphisms with Lξ, the Lie derivative associated with
the vector field ξµ. Let us also denote the YM gauge transformations with odd parameter c
by δYM

c . The BRST transformations of the diffeomorphism ghost are

s ξµ = −1
2Lξξ

µ + γµ . (2.5)

The BRST transformations (2.1) and (2.4) imply [25] that the transformation rule for the
vector ghost bilinear γµ is also universal:

s γµ = −Lξγµ . (2.6)

It is then convenient to introduce the fermionic ghost number 1 operator

S ≡ s+ Lξ + δYM
c , (2.7)

which we will call the equivariant BRST operator. S is not nilpotent: nilpotency of the full
BRST operator s is equivalent to the relation [22]

S2 = Lγ + δiγ(A)+φ (2.8)
4To avoid confusions, we will denote with γµ the ghost bilinear and with Γa the Dirac matrices.
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where γµ is defined in eq. (2.3),
iγ(A) ≡ γµAµ (2.9)

is the contraction of the YM field 1-form with the vector γµ, and φ is a bilinear of ζ with
values in the YM gauge algebra which we will comment on in a moment.

It is important to note that the equivariant algebra (2.8) holds on all fields except
the anticommuting ghosts ξµ and c associated to the bosonic local symmetries. On the
ghosts ξµ and c, only the action of the nilpotent s — but not that of the equivariant S —
is meaningfully defined. The action of s on the diffeomorphism ghost ξµ has been written
above in eq. (2.5); the BRST transformation of the gauge ghost c turns out to involve the
bilinear φ that appears in the equivariant algebra (2.8):

s c = −c2 + Lξc+ iγ(A) + φ . (2.10)

The relevance of the equivariant BRST operator S is as follows: the cohomology of the
nilpotent BRST operator s modulo the exterior differential d on local forms that depend
on both fields and ghosts ξ, c and ζ, i.e., on integrated local functions of fields and ghosts
— the object of interest in local quantum field theories — is isomorphic to the cohomology
of the equivariant S modulo both d and iγ on invariant forms which depend on the fields
and ζ. In other words, the benefit of introducing S is to work on the smaller space of fields
and ζ, forgetting about c and ξ, which greatly simplifies the analysis.

The universal BRST transformation rules (2.6) imply that γµ is S-invariant:

S γµ = 0 . (2.11)

The bilinear φ, however, is model-dependent: different supergravity theories are characterized
by different φ’s. In general, we can only assert that φ must satisfy a consistency condition
which comes from the nilpotency of s:

S φ = iγ(λ) , (2.12)

where λ is the S-variation of the gauge field

S A ≡ λ , (2.13)

a one-form of ghost number 1 with values in the YM algebra, which will be referred to as
the topological gaugino. The equivariant relation (2.8) implies that A, λ and φ all sit in a
BRST multiplet with values in the adjoint of the gauge algebra:

S A = λ , (2.14a)
S λ = iγ(F )−Dφ = iγ(F )− dφ− [A, φ] , (2.14b)
S φ = iγ(λ) . (2.14c)

These relations are again universal, i.e., valid for generic supergravities, and only the
concrete form of φ depends on the specific theory. They are structurally identical to the
BRST rules for topological YM theory coupled to topological gravity [22, 26].
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3 The supersymmetry anomaly revisited

The equivariant BRST framework for generic N = 1 supergravity just reviewed in the
previous section allows for a transparent and geometric description of the celebrated
supersymmetric chiral anomaly BRST cocycle.

Anomalies are best described by introducing generalized forms (or “super-forms”) with
fixed total fermionic degree, which is the sum of form and ghost number degrees. For
example, the generalized connection defined as

A ≡ c+A (3.1)

is a generalized form of total fermionic degree 1. Let us also define a coboundary operator
which extends the BRST action to generalized forms: for supergravity theories this is

δ ≡ s+ d + Lξ − iγ = S − δYM
c + d− iγ . (3.2)

The equivariant BRST algebra (2.8) ensures that δ is nilpotent:

δ2 = 0 . (3.3)

On then defines the generalized curvature of the super-connection (3.1)

F ≡ δA + A2 = F + λ+ φ , (3.4)

which satisfies the generalized or super-Bianchi identity

δ F + [A,F] = 0 . (3.5)

It is important to remark that the same identical construction also works for the BRST
formulation of non-supersymmetric gauge theories. In this case however, the generalized
curvature and the ordinary curvature coincide, F = F , which follows from eq. (3.4) by
putting the supersymmetry ghost ζ to zero such that λ = 0 = φ.

The super-Bianchi identity (3.5) implies that the super-Chern classes built with F are
δ cocycles, and in particular one has

δTrF3 = 0 . (3.6)

One shows also in the standard way that such classes are δ-exact:

TrF3 = δ Γ5(A,F) , (3.7)

where Γ5(A,F), the celebrated Chern-Simons functional, is a polynomial in A and F. It is a
generalized form of total fermionic degree 5:

Γ5(A,F) = Tr
[
F2A− 1

2FA
3 − 1

10A
5
]
. (3.8)

The relevance of this construction to anomalies is as follows: the anomaly is the BRST
variation of the effective action, and consequently its BRST variation vanishes.5 In 4

5This is the analog of the Wess-Zumino consistency condition in the BRST formalism.
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dimensions, the anomaly can therefore be obtained from a generalized form of total fermionic
degree 5 which is a δ cocycle.

To show how one can obtain the anomaly from such a generalized form, let us first
consider non-supersymmetric bosonic YM gauge (and local Lorentz) symmetries. As
mentioned above, in this case we have

F = F . (3.9)

Since F is an ordinary two-form, for bosonic gauge symmetries the super-Chern class of
degree 6 (3.6) is an ordinary 6-form and vanishes in 4 dimensions:

TrF3 = TrF 3 = 0 . (3.10)

It follows from eq. (3.7) that the Chern-Simons super form Γ5(A,F) is δ-closed:

δ Γ5(A,F) = 0 , (3.11)

Hence the 4-form component of Γ5(A,F), which has ghost number 1, is s-closed modulo d:
it is the anomaly of YM gauge and local Lorentz symmetries. Its explicit form is readily
obtained from (3.8) by inserting the definition (3.1) for the generalized connection A.

In the supergravity case this story requires modifications. Indeed, as can be seen in
eq. (3.4), the super-curvature F of supergravity has both 1-form and 0-form components λ
and φ which, in general, do not vanish. Therefore the Chern class TrF3 does not vanish in
4 dimensions, and the super Chern-Simons functional is not δ-closed and thus not a cocycle.
However, not all is lost. To start with, let us remark that S and iγ anticommute

{S, iγ} = 0 (3.12)

thanks to eq. (2.11). Moreover, the BRST variation of the 0-form component φ of the
super-curvature F is always iγ-exact (2.12). Now, in a certain class of supergravity theories,
φ itself is iγ-exact:

φ = −iγ(H) , (3.13)

where H is a 1-form of ghost number 0. For these theories one can define a new connection

A− ≡ A−H (3.14)

and rewrite the equivariant BRST algebra (2.8) with a vanishing φ:

S2 = Lγ + δiγ(A−) . (3.15)

Hence the super curvature F− associated to the super-connection

A− ≡ c+A− (3.16)

has vanishing 0-form component
F− = F− + λ− , (3.17)

– 9 –
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where

F− ≡ dA− +A2
− , (3.18a)

λ− ≡ S A− . (3.18b)

Moreover, the equivariant BRST algebra (2.14) ensures that the topological gaugino associ-
ated to the connection A− is iγ-closed:

iγ(λ−) = 0 . (3.19)

The super-Chern class built with F− still does not vanish in 4 dimension, but we have

TrF3
− = 3 TrF− λ2

− + Trλ3
− . (3.20)

Its δ-closedness (3.6) implies that its component with lowest form degree is iγ-closed:

iγ
(
Trλ3

−) = 0 , (3.21)

which indeed follows directly from eq. (3.19). As we have already said, iγ is nilpotent:

i2γ = 0 , (3.22)

and it is therefore sensible — and useful — to consider the cohomology of iγ on the space
of generalized gauge-invariant forms. The crucial question, to understand supersymmetric
anomalies, is to establish if the gauge-invariant, iγ-closed 3-form Trλ3

− of ghost number 3 is
a trivial element of the iγ-cohomology on gauge-invariant forms. Suppose, for the moment,
that this is the case:

Trλ3
− = −iγ

(
Ω(4)

1
)
, (3.23)

where Ω(4)
1 is a gauge-invariant 4-form of ghost number 1. It then follows that the 4-form

component of the super Chern class is S-exact:

3 TrF− λ2
− = S Ω(4)

1 , (3.24)

and that the super-Chern class is δ-exact

TrF3
− = δΩ(4)

1 . (3.25)

Plugging this back into eq. (3.7), we obtain

δ
[
Γ5(A,F)− Ω(4)

1

]
= 0 . (3.26)

Hence the candidate supersymmetry anomaly is

A5 = Γ5(A,F)− Ω(4)
1 , (3.27)

which is indeed the “supersymmetrization” of the bosonic gauge anomaly.
Summarizing, if the invariant Trλ3

− is iγ-exact, then the supersymmetric extension (3.27)
of the Chern-Simons functional is an anomaly supergravity cocycle. Let us therefore discuss
briefly the structure of the iγ-cohomology.
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The topological gaugino λ− has ghost number 1, and thus it is certainly not iγ-exact on
the space of fields, which does not include negative ghost numbers. It is however iγ-closed
thanks to the Fierz identity involving 3 supersymmetry Majorana ghosts:(

ζ̄ Γµζ
)
ζ̄ Γµ = 0 , (3.28)

where we recall that we denote the (4-dimensional) Dirac matrices by Γµ. The general
solution of the consistency condition (3.19) has thus the form

λ− = ζ̄ Γµχ dxµ , (3.29)

where χ is a Majorana spinor field of ghost number 0 with values in the YM gauge Lie
algebra. We will call χ the “spinorial gaugino”, and generally it might or might not be
an elementary field. If A belongs to a super-Yang-Mills multiplet, χ is precisely the usual
“physical” gaugino. However, if A belongs to the supergravity multiplet, then χ is a composite
field. For example, N = 1 new minimal supergravity contains both a U(1)R axial gauge
field A− which gauges the R symmetry and a SO(1, 3)-valued spin connection ω−: their
BRST transformations define spinorial gauginos χ which are composites of the gravitino,
its derivatives and other bosonic fields. In all cases, whenever φ is iγ-trivial, the topological
gaugino must have the form (3.29) in order to satisfy the consistency condition (3.19).

Invariant traces Trλn− are all iγ-closed. For n = 2 they might be non-trivial, since the
Fierz identity (3.28) and the analogous one involving Γµν ensure the existence of non-trivial
iγ-classes at ghost number 2:

k(1) ≡ −1
2
(
ζ̄ Γµζ

)
dxµ , (3.30a)

k(2) ≡ 1
2
(
ζ̄ Γµνζ

)
dxµ dxν . (3.30b)

However there is no invariant iγ-cohomology at ghost number +3, and thus Trλ3
− is

necessarily iγ-exact: it turns out that

Trλ3
− = iγ Tr

[ i
4
(
ζ̄ Γµχ

)(
χ̄ΓµΓ5χ

)√
−g d4x

]
. (3.31)

Hence
Ω(1)

4 = i
4 Tr

[(
ζ̄ Γµχ

)(
χ̄ΓµΓ5χ

)√
−g d4x

]
, (3.32)

and the supersymmetric anomaly cocycle is

A5 = Γ5(A,F)− i
4 Tr

[(
ζ̄ Γµχ

)(
χ̄ΓµΓ5χ

)√
−g d4x

]
. (3.33)

Let us summarize this discussion. A supergravity theory is characterized by a bilinear
φ of ghost number 2. Its S variation is always iγ-exact, but φ itself might or might not be
iγ-exact. In all the examples we worked out explicitly, in any dimensions φ is iγ-exact for
simple N = 1 supergravities and non-trivial for extended supergravities — although we do
not know of an a priori argument for this to be so. In any case, for 4-dimensional N = 1
new minimal supergravity φ is iγ-exact, and it can therefore be absorbed in a redefined YM
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connection (3.14). From the S variation of the redefined connection, one then obtains a
topological gaugino λ− (3.18b) which is iγ-closed. iγ-triviality of Trλ3

− in turn ensures that
there exists a supersymmetrization of the familiar Chern-Simons anomaly functional (3.33)
which is a BRST anomaly cocycle.

The supersymmetry anomaly cocycle is expressed in terms of the “spinorial” component
χ (3.29) of the topological gaugino. When the YM field A is the connection component of
a super-YM multiplet coupled to supergravity, the spinorial gaugino is the usual gaugino,
and the anomaly (3.33) is the well-known supersymmetric chiral anomaly. It describes the
anomalies of matter supersymmetric theories whose flavor symmetries are gauged by the
classical external super-YM multiplet. In contrast, when the YM connection A belongs
to different supergravity multiplets, the “spinorial gaugino” is a composite field. In this
case the BRST cocycle (3.33) is, apparently, something different than the standard chiral
supersymmetric anomaly.

In the following sections we will focus on N = 1 new minimal supergravity [18].
It turns out that the spinorial gaugino χ for this model is proportional to the classical
equations of motions for the gravitino. One might therefore suspect that for this theory the
BRST cocycle (3.33) trivializes if one enlarges the space of fields of supergravity to include
antifields, and that the anomaly is thus removable. We will verify that this is indeed the
case: however this means that in order to remove such an anomaly, suitable deformations
of the supersymmetry variations of the supergravity fields are required. Describing these
deformations will be our goal.

4 The BRST algebra in the B-field sector

The local bosonic symmetries of N = 1 new minimal supergravity include — beyond
diffeomorphisms and YM symmetries — also a vectorial gauge symmetry. This requires a
slight generalization of the BRST equivariant formulation of supergravity that we outlined
in section 2. Let

V = Vµ dxµ (4.1)

be the anticommuting ghost field of ghost number 1 associated to the vector gauge symmetry,
and

B = 1
2Bµν dxµ dxν (4.2)

the corresponding commuting gauge field of ghost number 0. Since the vectorial gauge
symmetry is reducible, the BRST formulation requires also a scalar ghost-for-ghost field q
of ghost number 2. The BRST rules of the B sector are

sB = −LξB − dV − ζ̄ Γψ , (4.3a)

s V = −LξV − dq + iγ(B)− 1
2 ζ̄ Γζ , (4.3b)

s q = −Lξq + iγ(V ) , (4.3c)

where we introduced the gravitino 1-form ψ ≡ ψµ dxµ and defined the matrix-valued 1-form
Γ ≡ Γµ dxµ.
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We have therefore two alternatives to extend the action of the equivariant BRST
operator S to the B field. We could define S equivariant with respect to all local bosonic
symmetries: diffeomorphisms, YM gauge transformations and vector gauge transformations
with ghosts V µ, resulting in

S B = −ζ̄ Γψ . (4.4)

If we denote by δ′V the vector gauge transformation with parameter V , the equivariant
BRST algebra relation

S2 = Lγ + δYM
iγ(A)+φ + δ′iγ(B)+k(1) (4.5)

holds with this choice on all fields, except the ghosts associated to bosonic gauge symmetries,
i.e. ξ, c, V and q. Beyond the conditions (2.11) and (2.12), consistency of (4.5) requires also

S
(
iγ(B) + k(1)) = 0 . (4.6)

Alternatively, we could as well define a BRST operator S̃ equivariant only with respect to
diffeomorphisms and YM symmetries:

S̃ B = − dV − ζ̄ Γψ , (4.7a)

S̃ V = − dq + iγ(B)− 1
2 ζ̄ Γζ , (4.7b)

in which case the BRST algebra would be

S̃2 = Lγ + δYM
iγ(A)+φ , (4.8)

which would hold on all fields — including B and V — with the exception of the ghosts ξ
and c. In the following, we will find more convenient to use the fully equivariant S.

The BRST action in the B sector becomes more transparent if we collect the various
fields q, V and B in a single generalized form of total fermionic number 2:

B = B + V + q . (4.9)

Then the BRST variations (4.3) are equivalent to

δ B + 1
2Ψ̄ Γ Ψ = H , (4.10)

where
H ≡ dB + 1

2 ψ̄Γψ , (4.11)

and we have introduced, in a way analogous to eq. (3.1), the generalized commuting
super-gravitino form of ghost number 1

Ψ ≡ ζ + ψ . (4.12)

The 3-form H transforms nicely under supersymmetry. To see this, it is instructive to
start from the BRST properties of the vierbein. Let us introduce the gauge covariant
coboundary operator

δ̂ ≡ s+ Lξ +D − iγ , (4.13)
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where D = d+[A, ·] is the exterior derivative covariant with respect to local YM symmetries.
We have

δ̂ea = −Ψ̄ Γa Ψ . (4.14)
The covariant coboundary operator squares to a YM gauge transformation:

δ̂2 = δYM
F . (4.15)

Hence
δ̂2ea = Rab eb , (4.16)

where Rab is the Lorentz component of the super-curvature F. Therefore we obtain
Rab ea eb = −ea δ̂ Ψ̄ Γa Ψ = δ

(
ea Ψ̄ Γa Ψ

)
−
(
Ψ̄ Γa Ψ

)(
Ψ̄ Γa Ψ

)
= δ

(
ea Ψ̄ Γa Ψ

)
,

(4.17)

where we made use of the super-Fierz identity which generalizes (3.28):(
Ψ̄ Γa Ψ

)(
Ψ̄ Γa Ψ

)
= 0 . (4.18)

Eq. (4.17) can be considered as the analog of the first Bianchi identity for the generalized
curvature: the ghost number 0 component of this equation it is just the familiar relation
connecting the derivative of the torsion to the cyclic sum of the curvature tensor components.
In this sense

T ≡ 1
2Ψ̄ Γ Ψ (4.19)

is the generalized torsion, and the first super-Bianchi identity reads
1
2Rab e

a eb = δ T . (4.20)

The BRST rules for B (4.10) imply that the generalized torsion is cohomologous to a 3-form
of ghost number 0:

δ T = δH , (4.21)
so that the first super-Bianchi identity takes the final form

δH = 1
2Rab e

a eb . (4.22)

5 The supersymmetry BRST anomaly cocycle for new minimal N = 1
supergravity

Let us now summarize the equivariant BRST rules of the new minimal N = 1 supergravity
multiplet [18]:

S ζ = iγ(ψ) , (5.1a)
S ea = −2ζ̄ Γaψ , (5.1b)
S ψ = −D+ζ , (5.1c)
S B = −ζ̄ Γψ , (5.1d)
S A− = i ζ̄ Γ5 Γ Γµνψ̃µν , (5.1e)
S ωab− = 2ζ̄ Γ ψ̃ab , (5.1f)
S H = ζ̄ Γ ψ̃ , (5.1g)
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where the Lorentz-covariant derivative D acts on spinors according to

D ζ ≡ dζ − 1
4ω

ab Γab ζ −
i
2AΓ5 ζ , (5.2)

and the following combinations are useful:

H ≡ dB − 1
2 ψ̄Γψ , Hλ = 1

6ε
λµνρHµνρ , (5.3a)

A−µ ≡ Aµ − 3Hµ , A+
µ ≡ Aµ −Hµ , (5.3b)

ω±µ
ab = ωµ

ab ±Hµ
ab , (5.3c)

ψ̃ ≡ D+ψ , ψ̃ab ≡ eaµebνψ̃µν . (5.3d)

The Lorentz-covariant derivatives D± are defined in analogy to (5.2), but using the spin
connection ω±µ ab and the gauge field A±µ .

Comparing eqs. (5.1) with eq. (3.29), we conclude that the components of the “spinorial”
composite gaugino associated to the U(1)R and the Lorentz gauge algebras are, respectively

χU(1)R = 2 Γµνψ̃µν and χab = 2ψ̃ab . (5.4)

The Lorentz components of the spinorial composite gaugino do not contribute to the
supersymmetric anomaly cocycle (3.33) for group theoretical reasons: the completely sym-
metric primitive invariant (symmetric 3-index symbol) dabc vanishes for SO(1, 3). However,
the axial U(1)R component gives a non-vanishing contribution to the supersymmetric
anomaly cocycle:

A = c (F−)2 + 2A−λ−F− + i
24λ

−(χ̄Γν Γ5 χ)ενρσλ
√
−g dxρ dxσ dxλ (5.5)

where we have identified χ and λ− with their U(1)R components in order to simplify
the notation.

The BRST operator (5.1) of new minimal N = 1 supergravity is nilpotent on the space
of fields, without the need to introduce antifields, and therefore the BRST cohomology
problem on the space of fields is well defined. The anomaly cocycle associated to the U(1)R
axial gauge field is a non-trivial element of this cohomology modulo the exterior differential:

sA = − d
[
iξ A+ 2 c F−λ− +A−(λ−)2] . (5.6)

However, as we will explain in the following sections, it becomes trivial when we enlarge
the field space to include antifields.

6 “Evanescent” anomalies

Consider a supersymmetric “matter” quantum field theory whose currents are coupled to
the (classical) fields of supergravity. Let φi denote the collections of supergravity fields,
and let Γeff[φ] be the effective action of the matter theory, i.e., the generating functional of
correlation functions of the currents that are coupled to the φi. In this section, we denote
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by s0 the full BRST operator of N = 1 new minimal supergravity, which in the previous
sections was denoted by s. s0 is nilpotent on the space of supergravity and ghost fields. We
will call this space the “small” field space, to distinguish it from the “big” space involving
both fields and antifields. We assume that Γeff[φ] is anomalous:

s0 Γeff[φ] = t

∫
A[φ] , (6.1)

where A[φ] is a non-trivial element of the s0 cohomology (modulo the exterior differential)
on the “small” field space. We introduced a formal parameter t, which in the case at hand
is O(~) since the matter SQFT is assumed to be classically supersymmetric. It should be
kept in mind that we also take Γeff[φ] to be of order O(t).

Let us also assume that A[φ] vanishes on the subspace of the equations of motion
associated to some local, s0-invariant action Γ0[φ] of the supergravity fields φi. In this
situation we will say that the anomaly A[φ] is “evanescent”. We further assume that Γ0[φ]
does not depend on the ghost fields, or in other words that Γ0[φ] can be identified with
(any) classical supergravity action. Being both s0-invariant and ghost-independent, Γ0[φ]
is also invariant under the bosonic gauge symmetries encoded in s0 — in the context of
N = 1 new minimal supergravity this means that Γ0[φ] is invariant under diffeomorphisms,
local YM symmetries and vectorial symmetries associated to B. We can therefore write∫

A[φ] = −t S1 Γ0[φ] , s0 Γ0[φ] = 0 , (6.2)

where S1 is an odd ghost number 1 operator acting locally on φi, and Γ0[φ] is O(t0). Since
Γ0[φ] is gauge invariant, S1 is gauge covariant:

{S1,Lξ} = LS1ξ , {S1, δ
YM
c } = δYM

S1 c , {S1, δ
′
V } = δ′S1V . (6.3)

Let us observe that since Γ0[φ] is ghost independent, the action of S1 on the ghost is not
determined by eq. (6.2): it will have to be fixed by consistency. Putting eqs. (6.2) and (6.1)
together, we obtain

s0 Γeff[φ] = −t S1 Γ0[φ] . (6.4)

Because of the nilpotency of s0 and s0-invariance of Γ0[φ], we also have

{s0, S1}Γ0[φ] = 0 . (6.5)

Hence s0 and S1 must anticommute — up to bosonic gauge symmetries of the action Γ0[φ].
If we introduce the equivariant S0 by

s0 = −Lξ − δYM
c − δ′V + S0 , (6.6)

then the consistency equation (6.5) reads

{S0, S1} = Lγ1 + δYM
φ1 + δ′k1 , (6.7)
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where γ1, φ1 and k1 are, respectively, a ghost number 2 vector, a YM Lie algebra-valued
scalar, and a one-form. Let us now introduce the deformed equivariant BRST operator,
depending on the formal parameter t:

St ≡ S0 + tS1 + t2S2 + . . . . (6.8)

The consistency equation (6.7) reads, up to O(t2)

S2
t = Lγt + δYM

iγt (A)+φt + δ′iγt (B)+kt , (6.9)

where

γt ≡ γ + tγ1 +O(t2) , (6.10a)
φt ≡ φ+ tφ1 +O(t2) , (6.10b)
kt ≡ k + tk1 +O(t2) . (6.10c)

Moreover, the total effective action

Γ[φ] = Γ0[φ] + Γeff[φ] +O(t2) (6.11)

differs from the original one by a local term Γ0[φ] and is St invariant up to this order:

St Γ[φ] = O(t2) . (6.12)

If we can continue this procedure to all orders in t, by adding terms Sn to St of higher order
in t, and local terms of higher order in t to the effective action

Γ[φ] = Γ0[φ] + Γeff[φ] + t2Γ2[φ] + . . . , (6.13)

we have then removed the original — “evanescent” — anomaly. We end up with an effective
action Γ[φ], which differs from the original one only by the addition of local terms and
which is invariant, that is non-anomalous, under the new deformed supergravity BRST
operator St.

Let us discuss what kind of restrictions nilpotency and other physical requirements
put on the deformed algebra (6.9). As we discussed in section 2, nilpotency of the BRST
operator requires that

St γt = 0 , St [φt + iγt(A)] = 0 , St [kt + iγt(B)] = 0 . (6.14)

We also established that the BRST rules for the supersymmetry ghost and the vierbein are
universal, i.e., they should be valid for any supergravity theory. Hence we should require
that the BRST rules for ζ and ea be unchanged by the deformation:

St ζ = S0 ζ = iγ(ψ) , St e
a = S0 e

a = −2ζ̄ Γaψ . (6.15)

Consequently the ghost number 2 vector bilinear that appears in the algebra of the deformed
supergravity BRST operator St should also be unaffected by the deformation:

γµt = γµ . (6.16)
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The other 2 bilinears, φt and kt, are instead not universal: therefore they might be deformed,
subject to the constraints (6.15). In conclusion, the deformed algebra of the equivariant
BRST operator will read

S2
t = Lγ + δYM

iγ(A)+φt + δ′iγ(B)+kt . (6.17)

At first order in t, we have seen that this is equivalent to the existence of an operator S1 of
ghost number 1, which anticommutes with S0 up to gauge transformations:

{S1, S0} = δYM
φ1 + δ′k1 . (6.18)

On the other hand, if S1 were given by a S0-commutator

S1 = {S0, L1} (6.19)

for some local operator L1 of ghost number 0, then we would obtain

0 = S0 Γeff[φ] + tS1 Γ0[φ] = S0
(
Γeff[φ] + tL1 Γ0[φ]

)
. (6.20)

In other words, S1 operators which are given by S0-commutators trigger trivial deformations
of the original S0: they correspond to anomalies which are trivial in the “small” field space
and to S0-invariant effective actions differing from the original one only by local terms.
Hence, if the anomaly is a non-trivial element of the S0 cohomology in the “small’ field
space, then S1 is certainly not a S0-commutator.

It is therefore useful to introduce the notion of S0-cohomology on the space of operators
acting as local derivatives on field space. The action of S0 on local functional derivatives
is given by the commutator (respectively, anticommutator) for even (respectively, odd)
derivatives. Closed operators are operators which (anti-)commute with S0 up to gauge
transformations, and trivial ones are those which are S0-(anti-)commutators up to gauge
transformations. We will refer to this cohomology as the S0-operatorial cohomology. We
have just seen that consistent, non-trivial deformations St require the existence of a S1
which is a non-trivial element of ghost number +1 of this operatorial S0-cohomology.

At higher order in t, the consistency condition (6.17) imposes restrictions on the
operators Sn with n > 1. For example, at order 2 in t, eq. (6.17) gives

S2
1 + {S0, S2} = δYM

φ2 + δ′k2 . (6.21)

This equation says that the ghost number 2 operator S2
1 is a trivial element of the S0

operatorial cohomology at ghost number 2. On the other hand, the first-order condition (6.7)
ensures that the commutator [S0, S

2
1 ] vanishes up to gauge transformations:[

S0, S
2
1

]
= −δYM

S1 φ1 − δ
′
S1 k1 . (6.22)

In other words, if S1 exists, then its square S2
1 is S0-closed. A consistent deformation St

at the next order requires that S2
1 be a trivial element of the S0 operatorial cohomology

at ghost number +2. One can check that all the higher-order conditions are analogous
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statements on S0 operatorial cohomologies at higher ghost numbers. For example, the
consistency condition at third order in t amounts to the requirement that the S0-closed
operator {S1, S2} of ghost number 3 be S0-trivial.

Summing up, a sufficient condition for the existence of a consistent deformation St that
removes the original “evanescent” anomaly is the validity of the following two facts:

a) the existence of a non-trivial element of the S0-operatorial cohomology at ghost
number 1, and

b) the emptiness of the same cohomology at all higher ghost numbers.

7 The deformation

We are now finally in the position to determine the first-order deformation of the equivariant
BRST operator of N = 1 new minimal supergravity that removes the original “evanescent”
anomaly. The supergravity Lagrangian density invariant under S0 is [18]

L = |e|
[
R(ω)− 4ψ̄µΓµνρDν(ω)ψρ − 6HµHµ + 4AµHµ] , (7.1)

where we recall that

D(ω) = dxνDν(ω) = dxν
(
∂ν + 1

4ων
abΓab

)
(7.2)

is the Lorentz-covariant derivative and

Hµ = 1
2|e|ε

µνρσ(∂νBρσ + ψ̄νΓρ ψσ
)

(7.3)

is the vector dual of the 3-form H . The spin connection ωµab = ωµ
ab(e, ψ) is determined by

its equation of motion that follows from the Lagrangian (7.1), and given by

D(ω)ea + 1
2 ψ̄ Γaψ = 0 , (7.4)

which is the 2-form component of the super-torsion constraint (4.14).
Taking Aµ, Bµν , eaµ and ψµ as independent fields, the equations of motion other than

the Einstein equations are

1
|e|

δL
δAµ

= 4Hµ , (7.5a)

1
|e|

δL
δBµν

= εµνρσF−ρσ , (7.5b)

1
|e|

δL
δψ̄µ

= −8
[
ΓµνρD+

ν ψρ + 1
2Hν ε

µνρσΓσψρ + iHµ Γρ Γ5ψρ − iHρ Γµ Γ5ψρ
]
, (7.5c)

where we recall that the Lorentz-covariant derivative D+ is defined in analogy to (5.2), but
using the spin connection ω±µ ab and the gauge field A±µ defined in eqs. (5.3).

– 19 –



J
H
E
P
1
2
(
2
0
2
1
)
0
0
9

The generalized form

A5 = Γ5(A,F) + i
24λ

−(χ̄Γν Γ5 χ)ενρσλ
√
−g dxρ dxσ dxλ (7.6)

describes the U(1)R component of the anomaly (3.33) of N = 1 new minimal supergravity.
In this formula, λ− = λ−µ dxµ is the U(1)R component of the topological gaugino6

λ−µ = ζ̄ Γµχ , (7.7)

and χ is the spinorial gaugino

χ = −2i Γ5 ΓρσD+
ρ ψσ = i

8Γ5 Γρ
δL
δψ̄ρ

+ 3Hρ ψρ

= i
8Γ5 Γρ

δL
δψ̄ρ

+ 3
4
δL
δAµ

ψµ ,

(7.8)

which is proportional to the equations of motion for ψµ and Aµ.
The 4-form component of the anomaly polyform A5 gives the anomaly density (5.5)

A = |e|4
[(
c F−µν − 2A−[µ λ

−
ν]
)
F−ρσ ε

µνρσ − 2A−µ λ−ν F−ρσ εµνρσ + 3i (χ̄Γµ Γ5χ)λ−µ
]
. (7.9)

Comparing with eq. (7.5c), it is clear that this anomaly is “evanescent”: it vanishes when
the equations of motion of ψµ, Bµν and Aµ are satisfied. We can schematically write7

A = ai1[φ]δΓ0[φ]
δφi

+ aij2 [φ]δΓ0[φ]
δφi

δΓ0[φ]
δφj

+ aijk3 [φ]δΓ0[φ]
δφi

δΓ0[φ]
δφj

δΓ0[φ]
δφk

, (7.10)

where no terms of higher order than cubic appear. There is a certain degree of ambiguity
in reading off from this formula the action of the deformation S1 φ

i: let us briefly pause to
discuss it.

Let us first observe that we can define the functionals aij2 [φ] and aijk3 [φ] in eq. (7.10)
to be either symmetric or antisymmetric with respect to the exchange of any pair (i, j) of
two indices: antisymmetric if i and j both correspond to fermionic fields, symmetric in the
other cases. We could therefore take S1 to be

− S1 φ
i = ai1[φ] + aij2 [φ]δΓ0[φ]

δφj
+ aijk3 [φ]δΓ0[φ]

δφj
δΓ0[φ]
δφk

(7.11)

with aij2 [φ] and aijk3 [φ] completely (anti-)symmetric under exchange of field indices. Such a
S1 would certainly satisfy the defining equation (6.4).

However, S1 is only defined up to invariances of Γ0[φ]. These include of course local
symmetries of Γ0: diffeomorphisms and YM gauge symmetries. But if we allow in S1 for

6In this section A−, λ−, F− and φ refer to the U(1)R components of the YM topological multiplet. The
corresponding Lorentz components will be denoted by ωab− , λab− , Rab− and φab. Of course at zeroth order in t
we have φ = φab = 0.

7To avoid cluttering, we drop all the space-time indices, including the integration.
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terms bi- and trilinear in the equations of motion as in eq. (7.10), then we can add to S1
“trivial” symmetries of Γ0 of the form:8

Strivial
1 φi = bij2 [φ]δΓ0[φ]

δφj
+ bijk3 [φ]δΓ0[φ]

δφj
δΓ0[φ]
δφk

, (7.12)

where bij2 [φ] and bijk3 [φ] are functionals with the wrong kind of symmetry under the exchange
of any pair of two indices i and j, i.e., with bij2 [φ] and bijk3 [φ] symmetric under the exchange
of any two indices i and j corresponding to fermionic fields, and antisymmetric in all other
cases. For example, any bij2 satisfying

bij2 [φ] = −(−1)ninj bji2 [φ] (7.13)

where ni = 0 (ni = 1) for bosonic (fermionic) fields, corresponds to a “trivial” symmetry,
and analogously for bijk3 [φ].

The anticommutator of S0 with any such “trivial” contribution to S1 is also a “trivial”
symmetry of Γ0. We have seen that the removal of the anomaly requires that the anticom-
mutator of S0 with S1 only contains genuine symmetries of the action Γ0 — that is, gauge
symmetries and diffeomorphisms. One can therefore expect that, for this to be the case,
S1 should not contain any “trivial” terms of the type (7.12). This is indeed the case: we
have verified explicitly that the ambiguity in the definition of S1 is completely fixed by
requiring the anticommutator of S0 and S1 to satisfy eq. (6.7), and the resulting S1 has the
form (7.11) with aij2 and aijk3 completely (anti-)symmetric.

In conclusion, we can write∫
A = −

∫
(S1Bµν) δΓ0

δBµν
+ (S1 ψµ) δΓ0

δψµ
+ (S1Aµ) δΓ0

δAµ
(7.14)

with

S1Bµν = −1
4
[
c F−µν − 2A−[µλ

−
ν]
]
, (7.15a)

S1 ψµ = − i
2ΘαΓµ Γα Γ5 ζ + 1

16(χ̄χ)Γµ ζ −
1
16(χ̄Γ5χ)Γµ Γ5 ζ , (7.15b)

S1Aµ = 3Θαζ̄ Γαψµ + 3
8 i
[
(χ̄χ)ζ̄ Γ5ψµ − (χ̄Γ5χ)ζ̄ ψµ

]
, (7.15c)

where
Θ ≡ Θα dxα = −1

8
[
A−ν F

−
ρσ εα

νρσ + i (χ̄Γα Γ5χ)
]

dxα . (7.16)

This deformation S1 satisfies the integrability condition (6.17) resp. (6.18): the first-order
deformation of the YM bilinear φ1 is non-trivial along the U(1)R and the Lorentz directions,
and the corresponding deformations φ(R)

1 and φab1 read

φ
(R)
1 = 3iγ(Θ) , (7.17a)

φab1 = iγ
(
εabµν Θν dxµ

)
− 1

8(χ̄χ)ζ̄ Γabζ + 1
8(χ̄Γ5χ)ζ̄ Γab Γ5ζ . (7.17b)

8“Trivial” symmetries of this kind are sometimes called zilch symmetries. Of course this kind of triviality
has nothing to do with cohomological BRST triviality.

– 21 –



J
H
E
P
1
2
(
2
0
2
1
)
0
0
9

The deformation of the bilinear associated to the gauge transformations of the antisymmetric
B field is instead

k1 = −1
4c λ

− . (7.18)

8 The torsion constraint

The generalized first Bianchi identity (4.17), (4.20)

Rab ea eb = δ
(
Ψ̄ Γ Ψ

)
= δ T (8.1)

relies on the “universal” BRST rules, those for ζ and ea. Therefore this equation must hold
also for the deformed St.

At zeroth order in t, we also have the equation

1
2Ψ̄ Γ Ψ = H − δ0 B , (8.2)

which implies the undeformed BRST rule for H (4.22)

1
2Rab e

a eb = δ0H . (8.3)

When we deform S, we have at first order in t

δ0 → δ = δ0 + tS1 +O(t2) (8.4)

with
S1 B = −1

4(c F− +A− λ− + c λ−) = −1
4(A− F− −A− F−) . (8.5)

Hence we obtain
δ B + T + t

4A− F− = H + t

4A− F− +O(t2) (8.6)

and
1
2Rab e

a eb + t

4F
2
− = δ

(
H + t

4A− F−
)

+O(t2) . (8.7)

Eq. (8.6) states that, after we have deformed δ, the supertorsion T ceases to be cohomologous
to a 3-form of ghost number 0. However the “improved” torsion, which is obtained by adding
the super-Chern-Simons invariant AF to the torsion, is still BRST-equivalent to a 3-form
of ghost number 0. Consequently, there exists a super-invariant — a linear combination
of the curvature and YM super-invariants — which is the δ variation of a 3-form of ghost
number 0, as shown in eq. (8.7).

9 Conclusions

We adopted the BRST framework to discuss supersymmetry anomalies of 4-dimensional
N = 1 SQFT’s whose U(1)R symmetry is anomalous. We considered therefore the coupling
of SQFT’s to N = 1 new minimal supergravity. We pointed out that a supersymmetry
BRST cocycle associated to the U(1)R field exists for this supergravity. This cocycle has
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a form identical to the chiral supersymmetry anomaly associated to flavor symmetries
(different from the R symmetries), once we replace the elementary gaugino with a certain
composite of the gravitino which we explicitely computed.

The supersymmetric U(1)R BRST cocycle is non-trivial in the space of supergravity
fields (and ghosts). However, it becomes BRST-exact in the functional space which includes
antifields. Equivalently, this cocycle vanishes “on-shell”. It is therefore removable. However,
to remove it — precisely because it is not BRST-trivial in the smaller space of fields — one
needs to deform the supergravity BRST operator S0. This deformation is triggered, at
first order in the anomaly coefficient, by a local operator S1 of ghost number 1 which we
computed in full detail and which — to our knowledge — was not known earlier. We also
gave a cohomological, hence intrinsic, characterization of the deformation S1: S1 is the only
ghost number 1 local functional derivative that anticommutes with S0, but is not itself an
S0-commutator.

For the supersymmetry anomaly to be removable at higher orders in the anomaly
coefficient, the deformation triggered by S1 must meet further integrability conditions,
which we wrote down. These also can be expressed cohomologically: the cohomology of S0
acting by (anti)-commutators on the space of local functional derivatives must be empty at
ghost numbers greater than 1. We did not verify this explicitely, although we expect it to
be the case. In any case, since supergravity is not renormalizable, we also expect — barring
some unexpected “miracle” — that deformations of the BRST rules receive non-vanishing
contributions at all orders in the anomaly coefficient.

Finally, let us conclude by commenting on the relationship between our results and
other recent works on the same topic.

In ref. [10], where anomalous supersymmetric Ward identities associated to the U(1)R
anomaly were presented, the question was asked — in a footnote — if and how supersymme-
try transformations could consistently be deformed by adding to the transformation of the
2-form field Bµν a term proportional to cFµν . In the same footnote, the author also wonders
about the effect of this modification on quantum anomalies. Our eq. (7.15) describes
precisely such a consistent deformation: as we have shown this removes all the anomalies of
the theory, the supersymmetry anomaly together with the bosonic U(1)R anomaly.

Refs. [14, 15] study the issue of the supersymmetry anomaly and of its removal in the
language of currents and Wess-Zumino consistency conditions. These works deal both with
the supersymmetry anomalies associated to external “flavor” symmetries of SQFT’s, which
we did not discuss here, and with those associated with the R symmetries, the focus of
the present paper. The authors of [14, 15] analyze the super-algebra of supersymmetry
and gauge transformations to derive Wess-Zumino consistency conditions for the various
currents. They emphasize the importance that this superalgebra close off-shell. To this
end, they introduce compensator fields belonging to relevant superfields, and for external
“flavor” symmetries, these compensators belong to vector superfields. On the other hand,
the compensators relevant to anomalies related to R symmetries come from superconformal
multiplets, as supergravity is obtained in these works by gauge-fixing conformal supergravity.
The conclusion of this line of work is that by introducing suitable compensators the anomaly
can be “moved away” from the supersymmetry sector to the gauge sector.
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In the BRST framework, one does not separate “gauge” and “supersymmetry” anomalies:
they are all captured by a single BRST cocycle, which depends on all ghosts — both
commuting and anticommuting. Of course, different representatives of the same cocycle
are possible: “moving” the anomaly from one symmetry to another would mean finding a
representative of the anomaly cocycle depending on some, but not all, (super-)ghosts, if
such a representative exists.

Regarding the anomaly associated to R symmetry — the focus of the present paper —
it should be kept in mind that a perfectly nilpotent BRST operator acting on the fields of
new minimal N = 1 supergravity does exist. Thus, analyzing this theory requires neither
superfields nor compensators. We have shown that in this case one can, by deforming the
BRST rules, completely remove the anomaly, not just “move” it from one symmetry to
another. Moreover, this can be done with the fields of the supergravity multiplet alone,
without introducing any compensator fields.

It is also worth pointing out that our results hold at all orders in the number of
gravitinos. In other words, from our deformed BRST rules one can derive one-loop Ward
identities involving any number of supercurrents. This is unlike the results of [10, 14, 15],
which seem to be restricted to a fixed number of gravitinos or supercurrents, at least with
the explicitly given expressions. Of course, at higher loop orders one needs to determine
higher-order deformations of the BRST operator as we have explained.

In this paper, we have not specifically discussed supersymmetry anomalies associated
to external “flavor” symmetries. We leave a BRST analysis of the issue raised by [9–13]
in this context to the future. Nonetheless, let us briefly comment on this case as well. A
BRST formulation of super-Yang-Mills theory coupled to new minimal supergravity does
exist, and this formulation includes only the fields of the super-Yang-Mills multiplet in
the Wess-Zumino gauge. The equivariant BRST algebra closes without the need for any
compensators or antifields, see for example [8].9 The crucial step to obtain this closure is to
include a supersymmetry transformation in the BRST transformation rules for the gauge
ghost, see our eq. (2.10). In this formulation, the chiral superanomaly cocycle relative to
the external super-Yang-Mills multiplet is not removable even if one includes antifields. The
results of [14, 15] suggest that, by adding compensating multiplets, it might be possible
to construct a representative for this cocycle that does not involve the supersymmetry
ghost. It is not clear to us if this remains true in the more economical equivariant BRST
formulation that does not include compensators.
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A Relation with the BV formalism

One could rephrase the discussion of section 6 in the BV language. Our starting equa-
tions (6.4)

S0 Γeff[φ] + tS1 Γ0[φ] = 0 , (A.1a)
S0 Γ0[φ] = 0 (A.1b)

can be written as

S0 ΓBV
0 [φ, φ∗] = 0 , (A.2a)

S0 ΓBV
1 [φ, φ∗] = 0 (A.2b)

for the antifield-dependent BV actions

ΓBV
0 [φ, φ∗] = Γ0[φ] +

∑
i

φ∗i S0 φ
i , (A.3a)

ΓBV
1 [φ, φ∗] = Γ1[φ] +

∑
i

φ∗i S1 φ
i . (A.3b)

Therefore, ΓBV
1 [φ, φ∗] is a ghost number 0 element of the cohomology of S0 acting on the

“big” space of both fields and antifields. It is well known [21] that local elements of this
cohomology as associated to deformations of the original classical action Γ0. For new
minimal N = 1 supergravity, it has been shown [8] that the deformations that change the
symmetry transformations always involve other external supermultiplets in addition to the
supergravity one. However, the BV cohomology problem which is relevant for the removal of
anomalies, and which is equivalent to the problem that we solved in the BRST framework,
is different from the one considered in [8]: in our context Γ1[φ] is a non-local functional of
the fields. Hence the BV local cohomology of ghost number 0 computed in [8] is not related
to deformations of the BRST operator St which remove the “evanescent” anomaly, and
which we computed in this paper.

B Details on the computation with FieldsX

We include with the paper a Mathematica notebook containing the computations that we did
using FieldsX. The notebook is heavily commented and should be mostly self-explanatory:
in section 1 of the notebook, the FieldsX package and other xAct packages are loaded.
In section 2, we define the manifold, the fields of N = 1 new minimal supergravity, and
the Lorentz-covariant derivatives D (5.2) and D± that are needed, as well as some helper
functions to convert between different covariant derivatives and combinations of fields (5.3).
In section 3, we give the equivariant BRST transformations (5.1), the Bianchi identities
for the Riemann tensor of the spin connection ωµab with the torsion expressed using the
gravitino (the ghost number 0 component of eq. (4.19)), and the vector constraint obtained
by acting with the exterior differential on eq. (4.11). In section 4, we verify the equivariant
BRST algebra (4.5) on the basic fields ζ, eµa, ψµ, Bµν and A−ν , and in section 5 we
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verify the BRST transformations of the combinations ω−µ ab and Hµ. Section 6 verfies the
BRST invariance of the action (7.1) and that the spin connection satisfies its equation of
motion (7.4), and in section 7 we verify the invariance of the transformation parameters
γµ (2.11), the Lorentz and U(1) components of φ and the B field gauge parameter (4.6).

The anomaly density (7.9) is shown to fulfill the relation (5.6) in section 8, where we
also define the spinorial and topological gaugino and their BRST transformations, as well
as some helper functions to ensure that dF− = d2A− = 0. Note that compared to the
normalization that we use in the paper, the anomaly density in the Mathematica notebook
has an extra factor of (−4), which also rescales the first-order deformation S1 (7.15) by the
same factor, to ensure that the anomaly is cancelled (7.14). In the last section 9, we then
define the deformation S1 as well as the U(1) gauge transformation part of δYM

c , and verify
the deformed BRST algebra (6.18) on all the basic fields ζ, eµa, ψµ, Bµν and A−ν . Note
that also the normalization of the vector Θµ (7.16) differs by a factor (−4) between the
paper and the Mathematica notebook.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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