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1 Introduction

Is every consistent theory of quantum gravity a ‘string theory’? There are many ways to
attempt to ask this question (or even just to define the terms). Since string theory involves
non-perturbative higher-dimensional objects or branes, in the context of AdS/CFT one
way of asking this question is to study whether, given a holographic conformal field theory
(CFT), defect operators in the CFT are described by gravitational branes in the dual bulk.
That is, does every holographic CFT have a well-behaved spectrum of branes? As a step in
this general direction, in this paper we ask if, given a holographic CFT, every conformal
boundary condition is properly described by the bulk gravitational effective field theory,
allowing for the addition of a semi-classical ‘end-of-the-World (ETW)’ brane.1

A closely related — but more concrete — ambition is to sharpen the holographic
dictionary for boundary conformal field theories (BCFT). That is, given a holographic
CFT, what additional assumptions — if any — must be made for an associated BCFT to
be described by the bulk gravitational effective field theory (again allowing for the addition
of semi-classical branes)? And can we explicitly write the mapping between solutions of the
boundary bootstrap and semi-classical bulk+brane actions?

Sharpening the holographic dictionary for BCFTs is timely. Recent works [2–12] have
employed a BCFT as a model of a lower-dimensional gravitational system coupled to an
auxiliary CFT. A BCFT is then a concrete and calculable model for studying Euclidean
wormholes and islands. In these works, it has been assumed that the BCFT has a good
holographic dual with an ETW brane. Furthermore, it has been suggested that one might
be able to minimally UV-complete coarse-grained gravitational theories by adding ETW
branes to the theory [13, 14]. But just how realistic or typical are well-behaved ETW branes
in a theory of gravity?

A similar program for sharpening the duality between CFTs and bulk gravitational
effective field theory was initiated in [15]. There, the conformal bootstrap was used to argue
that any CFT such that
(i) simple correlators factorize in a 1/c expansion; and

(ii) the spectrum is gapped such that below some large ∆gap the only operators are simple
light operators and their multi-trace composites

is dual to a bulk theory of semi-classical Einstein gravity. A great deal of subsequent work
on the holographic bootstrap has strengthened and refined this claim, for example [16–27].

To begin the parallel program for BCFTs, we first note that the holographic CFT
bootstrap typically begins with the assumption that the bootstrap can be studied in a 1/c
expansion about a universal mean field theory solution (MFT) determined by the CFT
two-point function. For example, a scalar four-point function would have the schematic form

〈φφφφ〉 =
∑
〈φφ〉2Univ +O(1/c) , (1.1)

where 〈φφ〉Univ is the universal CFT two-point function.
1In the literature, the term “end-of-the-world brane” is sometimes also applied to higher-dimensional

duals of holographic BCFTs in which the spacetime caps off smoothly over large distances due to shrinking
internal space directions; see e.g. [1]. In this work, we will use this term to connote a localized, semi-classical
gravitating brane which constitutes a boundary for a given spacetime.
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Figure 1. (a) A light ray leaving the boundary and returning to the boundary at a later time (in
this example reflecting off an ETW brane); (b) The bulk causal structure then implies new ‘bulk
brane’ singularities in the BCFT to the future of a BCFT operator; (c) The bulk brane singularities
require a careful alignment of operator dimensions appearing on the boundary of the BCFT.

In contrast to a CFT, the BCFT two-point function is not universal and kinematically
behaves similarly to a CFT four-point function [28–30]. Moreover, unlike for the holographic
CFT, there is no restriction from the BCFT or its gravitational dual that this two-point func-
tion should be perturbatively close to a known universal solution like the MFT. Thus, before
attempting to understand an analogous correspondence between bulk+brane interactions
and perturbative solutions to the BCFT bootstrap, we must first understand the leading
order, non-perturbative backreaction of the boundary on the bulk gravitational solution.

To understand what is special about the leading order solution for a BCFT with a
simple bulk dual, we will argue that it is useful to rotate to Lorentzian signature, since
the Lorentzian BCFT two-point function can probe the bulk causal structure. When the
BCFT has a semi-classical gravitational dual, the bulk causal structure often implies the
existence of new approximate singularities in the BCFT2 (see figure 1). Similar singularities
for scattering at bulk points in a CFT have been noted before, and their CFT origins were
discussed in detail in [31].3

On the BCFT side, these new bulk singularities can only be obtained through the
careful alignment of boundary operator dimensions over some large range of dimensions
up to a ‘boundary gap’ ∆̂gap. The careful alignment of these operators makes such a bulk
causal structure fragile. We find no constraints from the CFT being holographic that fix
these specific dimensions.

2We don’t expect these to be true singularities of the BCFT. Rather, much like the semi-classical
singularities predicted by scattering at a bulk point, these will be flattened out at the scale of the gap when
the gravitational theory becomes non-local [31]. A similar phenomenon is observed in the two-point function
of a holographic CFT at finite temperature; singularities due to null geodesics which wrap the photon sphere
of the bulk black hole are resolved by tidal effects in string theory [32].

3Lorentzian CFT correlation functions and the singularities from bulk points have been used as a powerful
diagnostic of bulk geometry [33–35].
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From the fragility of the bulk causal structure, we suggest that holographic boundary
conditions are sparse in the space of all boundary conditions for a holographic CFT. On
top of the assumptions already necessary for our CFT to be holographic, we must further
make a new set of assumptions about the boundary condition itself. Namely, we would like
to conjecture that a holographic CFT with a boundary condition whose

(i) correlators factorize in an expansion about a (non-universal) free bulk solution; and

(ii) boundary operator spectrum is gapped such that below some large ∆̂gap the only
operators are simple light operators and their multi-trace composites;

is dual to a bulk theory of semi-classical gravity with the possible addition of an ETW
brane with a local action. It is the first of these conditions that this paper suggests is
not generic and must be assumed, although there are subtleties related to this point that
appear when we study more complicated top-down constructions of holographic BCFTs.
The second condition, and the necessity and sufficiency of these two conditions together,
will not be addressed in this paper.

This paper is structured as follows. We begin with a review of BCFTs and their
holographic duals in section 2, as well as establishing notation to be used in the rest of
the paper. A reader familiar with BCFTs can easily skip this section or reference it when
the notation we use is not obvious. To understand what a holographic BCFT looks like in
terms of its spectrum of boundary operators, in section 3 we examine the simplest possible
model: empty AdS cut off by an ETW brane. We take the operator spectrum found in our
simple model and explain its meaning in section 4 by studying the bulk causal structure
and the Lorentzian continuation of BCFT two-point functions. We establish a general
correspondence between the boundary operator spectrum and the bulk causal structure
in section 5; this leads to our conjecture about necessary and sufficient conditions for a
holographic BCFT. We examine our conjecture in top-down models and introduce some
necessary caution regarding the strongest version of our claims in section 6. We conclude
with a discussion in section 7.

2 Review of BCFT

Critical phenomena involving a boundary are described by boundary conformal field theories,
which involve generalizations of the many familiar concepts and tools of conformal field
theories. To arrive at a BCFT, one typically introduces a boundary to a known CFT (i.e.
we have a finite slab of material). One may also introduce additional degrees of freedom
living on the boundary, which can be coupled to the CFT degrees of freedom. A complete
specification of the theory then involves imposing boundary conditions for the bulk degrees
of freedom, as well as dynamics for the boundary excitations. If this can be done in a
manner that maximally preserves conformal invariance, or by flowing to a conformal fixed
point, the resulting theory is a BCFT. For a given CFT, there may be many different
possible choices of conformally-invariant boundary conditions (or conformal fixed points),
each of which is described by a different BCFT.
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Figure 2. A BCFT on a half-plane Rd−1 × R+. Here, x0 and ~x are coordinates parallel to the
boundary; x⊥ is a coordinates perpendicular to the planar boundary, which sits at x⊥ = 0.

Symmetries. The most basic tool in studying a BCFT is conformal representation
theory: the excitations of the theory organize themselves into representations of a reduced
conformal symmetry group that is left unbroken by the new boundary. When the BCFT
lives on the half-plane Rd−1 × R+ with a planar boundary, the unbroken symmetry is
SO(d, 1) ⊂ SO(d+ 1, 1), which is the set of transformations that maps the half-plane back
to itself. We will use coordinates on this space given by x = (x0, ~x, x⊥), where x0, ~x are
Euclidean coordinates parallel to the boundary and x⊥ is our coordinate orthogonal to the
planar boundary. We depict these coordinates in figure 2.

CFT operators and boundary operators. Because a BCFT only modifies the CFT
along the boundary, the spectrum of CFT operators and their algebra remains unchanged.
Localized on the boundary, however, we have new boundary operators, ÔI . These operators
are organized into representations of SO(d, 1), which are partially labeled by a boundary
conformal dimension ∆̂I . The boundary conformal dimension is just the usual eigenvalue
of the unbroken d-dimensional dilation operator (which dilates both along and away from
a point on the boundary). As is familiar, any such representation has a primary and
descendants and we use this structure to organize our description of the BCFT in much the
same way as we do for CFTs.

State-boundary operator map. By the usual logic of the state-operator mapping,
there is a one-to-one map between boundary operators of the BCFT and states of the
theory quantized on a half-sphere Dd−1. This follows from the half-plane picture by using
an infinite dilation to map back to a point on the boundary. Alongside the state-boundary
operator map, we still also have the regular CFT state-operator map when we quantize the
theory on a sphere Sd−1 which does not intersect the boundary.

The state-boundary operator map allows us to write a boundary operator expansion
(BOE), whereby any CFT operator can be written as a sum over boundary operators

Oi(x) = AO
(2x⊥)∆ +

∑
J

BiJ
(2x⊥)∆i−∆J

Ĉ[x⊥, ∂~x]ÔJ(x0, ~x) , (2.1)

where the sum over J is over boundary primary operators and the differential operator
Ĉ which contributes the contributions of descendants is fixed by conformal invariance.
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Likewise, the BCFT inherits the regular OPE from the CFT without a boundary:

Oi(x)Oj(y) =
∑
k

Ckij
|x− y|∆i+∆j−∆k

C[x− y, ∂y]Ok(y) . (2.2)

Correlation functions. Because of the reduced symmetry, BCFT correlation functions
involving CFT operators away from the boundary are less constrained than those of a CFT
without a boundary. A useful ‘trick’ for characterizing the kinematic constraints on a BCFT
correlator is to view the correlator as doubled with operator insertions mirrored across the
boundary (each copy carrying half the conformal weight of the original operator).

Following the logic of doubling, one can easily see that a scalar CFT operator has a
one-point function that behaves kinematically like a CFT two-point function

〈O(x)〉 = AO
(2x⊥)∆ , (2.3)

where the coefficient AO which determines the size of the vacuum expectation value is
a free parameter of the theory, unlike in a CFT, because we choose not to change the
normalization of our CFT operators.

Likewise, the two-point function of scalar operators in a BCFT behaves much like a
CFT four-point function and thus no longer fixed by conformal invariance. It can be written
in terms of an undetermined function of a single conformally-invariant cross-ratio,

〈O(x)O(y)〉 = 1
|4x⊥y⊥|∆

G(ξ) , (2.4)

where the cross-ratio can be defined as

ξ = (x− y)2

4x⊥y⊥
= (x0 − y0)2 + (~x− ~y)2 + (x⊥ − y⊥)2

4x⊥y⊥
. (2.5)

2.1 Boundary bootstrap

The function G(ξ) that appears in (2.4) must decompose into irreducible representations of
the conformal symmetry. There are two ways to perform this decomposition. We can take
the operators near to each other, ξ → 0, and use the CFT OPE to fuse the two operators
into a sum of bulk operators. We can then evaluate the sum over local operators in the
BCFT. The result is an expansion in terms of bulk conformal blocks gB [29, 30, 36]:

Bulk Channel : G(ξ) =
∑
i

ai g
B
∆i

(ξ) , (2.6)

where i labels CFT bulk primaries and the coefficients ai are the product of the bulk OPE
coefficient and one-point function coefficient of Oi,

ai = CiAi. (2.7)

Alternatively, we can take the operators to the boundary, ξ → ∞, and use the BOE to
expand each operator as a sum of boundary operators. We then evaluate the two-point
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Figure 3. Pictorial representation of (2.10). The thick line represents the boundary; thin lines
represent fusion of external operators into bulk or boundary operators; dotted lines represent
correlators.

functions of the resulting summed boundary operators, which are fixed by conformal
invariance. The result is an expansion in terms of boundary blocks gb [29, 30, 36]:

Boundary Channel : G(ξ) =
∑
I

bI g
b

∆̂I
(ξ) , (2.8)

where I labels boundary primary operators and bI is the square of their BOE coefficients

bI = BI2 . (2.9)

The equivalence of the expansions in terms of either the boundary conformal blocks or
bulk conformal blocks, ∑

O′
aig

B
∆i

(ξ) =
∑
I

bIg
b

∆̂I
(ξ) , (2.10)

is a BCFT version of crossing symmetry and gives bootstrap equations that can be studied
with analogous tools as in the CFT case [30, 36]. We depict the crossing symmetry visually
in figure 3.

Scalar blocks. As shown in [29], the scalar conformal blocks, obtained by solving the
Casimir equation for the full and reduced conformal symmetry, are

gB∆(ξ) = ξ∆/2−∆ext2F1

(∆
2 ,

∆
2 ; ∆− d

2 + 1;−ξ
)

(2.11)

gb
∆̂

(ξ) = ξ−∆̂
2F1

(
∆̂, ∆̂− d

2 ; 2∆̂ + 2− d;−ξ−1
)
, (2.12)

where ∆ext is the dimension of the external operators.
There are branch point singularities in G(ξ) at ξ → 0,∞. As in [36], we take the

branch cut to run from (−∞, 0), so that the Lorentzian continuation ξ lives on the cut
plane C\(−∞, 0).

Radial coordinates. We can also introduce radial coordinates [37, 38], which will simplify
some of our expressions:

ξ = (1− ρ)2

4ρ . (2.13)

– 6 –



J
H
E
P
1
2
(
2
0
2
1
)
0
0
2

This takes the cut ξ-plane to the unit disk |ρ| < 1, with ξ ∈ (0,∞) mapped to ρ ∈ (0, 1).
The boundary block is then

gb
∆̂

(ρ) =
[ 4ρ

(1− ρ)2

]∆̂
2F1

(
∆̂, ∆̂− d

2 + 1; 2∆̂ + 2− d; −4ρ
(1− ρ)2

)
(2.14)

= (4ρ)∆̂
2F1

(
∆̂, d− 1

2 ; ∆̂− d

2 + 3
2; ρ2

)
, (2.15)

where on the second line, we used a quadratic transformation.

2.2 Holographic BCFT

2.2.1 Bottom-up models

In [39, 40] (following [41, 42]) it was proposed that the holographic dual of a BCFT should
be a bulk geometry, M, terminated by an ETW brane, B, that acts as an additional
infrared boundary for the gravitational theory. The new boundary B meets the standard
asymptotically AdS boundary at the location of the BCFT boundary (see figure 4). The
gravitational sector of the bulk+brane theory is proposed to have an action that now
includes a standard Gibbons-Hawking boundary term on the brane

SG = 1
16πGN

∫
M

√
−g(R− 2Λ) + 1

8πGN

∫
B

√
−h(K − T ) , (2.16)

where h is the induced metric on the brane, K is the trace of the extrinsic curvature, and T
is the tension of the ETW brane. One also expects the same bulk AdS matter action as the
original CFT without a boundary as well a new matter action living on the ETW brane:

S = SG +
∫
M
SmAdS +

∫
B
SmETW . (2.17)

The residual SO(d, 1) symmetry of the BCFT fixes the bulk geometry to take the
highly-constrained form

ds2 = dr2 + e2A(r)ds2
AdSd , (2.18)

where a lower-dimensional AdSd is warped over a radial direction with some warp factor A(r).
The warp factor is determined by whatever vacuum expectation values are sourced by the
ETW matter action SmETW, but must asymptotically approach that of empty AdSd+1 where
A(r) = ln cosh(r) as r → −∞. (We will work in coordinates where the AdS radius L = 1.)
The ETW brane will sit on some constant radial slice r = r0, fixed by the combination of
the tension T and the particular warp factor A(r).

2.2.2 Top-down models

The bottom-up proposal of [39, 40] is known to be too simple to fully describe some explicit
top-down constructions of holographic duals that have been derived for ‘microscopic’ BCFTs.
In these cases, there is a more complicated bulk geometry with a non-trivial internal space.
The internal space allows the bulk geometry to cap off smoothly in the infrared instead of
ending on a brane. A few known top-down constructions of holographic BCFT are worth
noting here:

– 7 –
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• In [43, 44], the authors present general half-BPS solutions of 6-dimensional type 4b
supergravity, including those with a single AdS3 × S3 asymptotic region, expected
to be dual to BCFT2. The geometric ansatz for these solutions is a warped product
AdS2 × S2 fibred over a Riemann surface Σ. The solutions constructed in [43] are
referred to as the AdS2-cap and AdS2-funnel; a more general class of solutions is found
in [44], involving Riemann surfaces Σ with additional boundary components and
handles. It is conjectured that these solutions should correspond to supersymmetric
configurations of self-dual strings and 3-branes, though this identification and the
corresponding class of BCFTs is not well-understood.

• Half-BPS solutions of 11-dimensional supergravity with a single AdS4 × S7 region,
corresponding to stacks of semi-infinite M2-branes ending on M5-branes, have been
constructed in [45, 46].

• In [47–49], half-BPS solutions of type IIB supergravity, corresponding to configurations
of D3-branes ending on D5-branes and NS5-branes, were constructed. Solutions with a
single asymptotic AdS5×S5 region furnish a holographic description of the U(N)N = 4
super Yang-Mills theory with OSp(4|4)-preserving boundary conditions, classified by
Gaiotto and Witten in [50, 51].

We discuss explicit top-down models in more detail in section 6.2.

2.2.3 Holographic BCFT dictionary

Here we review the holographic dictionary for a scalar bulk field in a BCFT. We explain how
to construct bulk operators in bottom-up models and how to extract their corresponding
boundary operator expansion data. We follow closely the treatment in [52], although we
will use slightly different conventions.

Consider a bulk scalar field operator φ(~y, u, r) of mass M . By the standard AdS/CFT
dictionary, this field is dual to a CFT operator O∆ of dimension

∆ = 1
2
(
d+

√
d2 + 4M2

)
. (2.19)

At leading order, the bulk field satisfies the free wave equation on the warped background(
�M −M2

)
φ = 0 . (2.20)

We can write a solution of this wave equation in the form∑
n

ψ̄n(r)φ̂n(~y, w), (2.21)

where the φ̂n are fields of mass mn which satisfy the Klein-Gordon equation �dφ̂n = m2
nφ̂n

in AdSd. Substituting the mode expansion into (2.20) we find that the radial modes ψ̄n(r)
must solve

ψ̄′′n(r) + dA′(r)ψ̄′n(r) + e−2A(r)m2
nψ̄n(r)−M2ψ̄n(r) = 0. (2.22)

– 8 –
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To completely determine the mode expansion, we must also specify a complete set of
boundary conditions. As we are looking for the bulk operator, we require that our solution
be normalizable as we approach the AdS boundary

ψ̄n(r) =
r→∞

e−r∆ (1 + . . .) (2.23)

and furthermore choose that the leading term is unit normalized. A second boundary
condition is specified on the bulk brane, where the specific condition is determined by the
terms appearing in the brane action. Together, these two boundary conditions determine
the correct modes ψn and eigenvalues mn, giving the bulk scalar operator

φ(~y, u, r) =
∑
n

ψn(r)φ̂n(~y, w) . (2.24)

The last step in writing down (2.24) is to fix the correct rescaling of the mode functions
ψn = cnψ̄n. The rescaling is determined by enforcing the canonical commutation relations
for the bulk field (see appendix A). Note that with this proper normalization in place, the
mode functions have the asymptotic form ψn(r) = cne

−r∆ + . . ..
Having derived the bulk scalar operator, we can now take the boundary limit to obtain

the dual CFT operator. The mode expansion in terms of the AdSd operators directly gives
the dual boundary operator expansion [52]. However, it is even cleaner to relate the bulk
modes to boundary operators by considering the bulk and boundary two-point functions,
which we will do in the following.

Holographic two-point function. Consider the bulk two-point function in our mode
expansion:

〈φ(x1)φ(x2)〉 =
∑
n,m

ψn(r1)ψm(r2)
〈
φ̂n(x1, u1)φ̂n(x2, u2)

〉
=
∑
n,m

ψn(r1)ψm(r2)G(AdSd)
∆n

(x1, u1;x2, u2). (2.25)

Using the known form of the AdSd two-point function (see e.g. [53],

G
(AdSd)
∆ (ξ) = C∆,d−12−2∆ξ−∆

2F1(∆,∆− d/2 + 1, 2∆− d+ 2,−1/ξ) (2.26)

where
C∆,d−1 = Γ(∆)

2π d−1
2 Γ(∆− d/2 + 3/2)

, (2.27)

one can compute the CFT two-point function in the standard way:

〈O1O2〉 = lim
r1,r2→∞

cosh2∆(r) 1
C∆,d

〈φ(X1)φ(X2)〉 . (2.28)

Because the AdSd bulk-to-bulk propagator (2.26) and boundary conformal block (2.12) are
identical (up to a constant), we immediately find

〈O1O2〉 = 1
C∆,d

∑
n

(
lim

r1,r2→∞
cosh2∆(r)ψn(r1)ψn(r2)

)
C∆n,d−12−2∆gb∆n

(ξ), (2.29)

– 9 –
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Figure 4. Our simple model in which the bulk is locally AdSd+1, but is terminated by an ETW
brane. We depict here the AdSd foliation of AdSd+1.

which we can rewrite as

〈O1O2〉 = 1
C∆,d

∑
n

c2
nC∆n,d−12−2∆ngb∆n

(ξ). (2.30)

From comparing this expression to (2.8), we conclude two things:

1. The spectrum of boundary operators appearing in the BOE of O∆ is given by{
∆n = 1

2

(
d− 1−

√
(d− 1)2 + 4m2

n

)}
. (2.31)

2. The BOE coefficients are given by

Bn = 1
2∆n

√
C∆n,d−1
C∆,d

cn . (2.32)

3 Simplest bulk model

To understand the leading-order free two-point function in a holographic theory, we begin
by studying the simplest possible bottom-up model: empty AdS terminated by an ETW
brane. In our radial coordinates (2.18), the AdSd foliation of AdSd+1 takes the form

ds2 = dr2 + cosh2(r)
(
d~y2 + du2

u2

)
. (3.1)

The location of the brane is given by some r = r0, determined by the tension. See figure 4. It
will also sometimes be useful to change to an ‘angular’ coordinate using tanh(−r) = cos(ϕ)
so that

ds2 = csc2 ϕ

[
dϕ2 +

(
d~y2 + du2

u2

)]
, (3.2)

simplifying the conformal structure of the metric.
We consider a free scalar field, φ, whose dual CFT operator has dimension ∆. We will

need to impose boundary conditions at the location of the brane. As a simple choice, we

– 10 –



J
H
E
P
1
2
(
2
0
2
1
)
0
0
2

choose Neumann boundary conditions on the field, ∂rφ(r0) = 0, although the qualitative
features of our results will not depend on this specific choice. Using the mode expansion
explained in section 2.2.3,

φ(~y, u, r) =
∑
n

cnψ̄n(r)φ̂n(~y, u) , (3.3)

we find the two independent radial solutions of the EOM to be

ψn(1)(r) = sind/2(ϕ)Pµν (cosϕ), (3.4)

ψn(2)(r) = sind/2(ϕ)
(1− cosϕ

1 + cosϕ

)µ
2

2F1

(
ν + 1,−ν, µ+ 1, 1− cosϕ

2

)
, (3.5)

where we have chosen to use our angular coordinate ϕ, while ν and µ are

ν = ∆n −
d

2 , (3.6)

µ = ∆− d

2 . (3.7)

The asymptotic behaviour of these solutions as r →∞ is

ψn(1) ∼ e−r(d−∆), ψn(2) ∼ e−r∆, (3.8)

which is what we expect from the non-normalizable and normalizable solutions of the wave
equation, respectively.

Taking into account our boundary condition on the brane, only the modes ψn(1) which
satisfy ψ′n(1)(r0) = 0 are admissible. Since each radial function ψn(1)(r) is related to a
corresponding co-dimension 1 field φn(~y, w), with a dimension ∆n given by eq. (2.31), we
expect that the condition ψ′n(1)(r0) = 0 will restrict the spectrum of ∆ns to take on only a
discrete set of values.

In the limit of large ∆n, we can explicitly solve the equation ψ′n(1)(r0) = 0 for ∆n

to obtain

∆n = d− 1
2 +

(
n+ 1

2

(
∆− d

2

)
+ 1

4

)
π

arccos(tanh(r0)) n ∈ Z (large ∆n). (3.9)

In our angular coordinates, where the brane sits at ϕ0, this simplifies to

∆n = d− 1
2 +

(
n+ 1

2

(
∆− d

2

)
+ 1

4

)
π

ϕ0
n ∈ Z . (3.10)

Note that, in d = 2, the position r0 of the brane is understood to be related to the defect
entropy log g of the CFT by [40]

log g = r0
4G, (3.11)

which gives

∆d=2
n = 1

2 +

(
n+ ∆

2 −
1
4

)
π

arccos(tanh(2G log g)) n ∈ Z. (3.12)
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It remains to calculate the scaling coefficients cn appearing in (2.24) by enforcing the
equal time canonical commutation relations. Following appendix A, we compute cn from
the mode normalization ∫ ∞

r0
dr coshd−2(r)ψn(r)ψm(r) = 1

c2
n

δnm . (3.13)

Using the explicit expressions for ψn(r) in eq. (3.5), we can solve for cn in the asymptotic
limit of large n, which is the same limit in which we evaluated the scaling dimensions ∆n of
the operators φn. This gives the expression

cn ≈
π1/4√(1 + µ)

2

√
Γ(µ+ 1/2)

Γ(µ+ 2)Γ(2µ+ 1)

( 2
arccos(tanh r0)

)µ+1 (π
4 (4n+ 2µ+ 1)

)µ+1/2
,

(3.14)
with µ = ∆− d/2, as before.

From eq. (2.32), we can then compute the BOE coefficients by plugging in the above
cn into the expression

Bn = 1
2∆n

√
C∆n,d−1
C∆,d

cn . (3.15)

In the large n limit, we can write this as

Bn = 2−
n
ϕ0 n∆− d+1

4 B + . . . (3.16)

with B a constant independent of n:

B = e
3
4−

d
4π−

d
4 +∆+ 1

2 2
π(d−2∆−1)

4ϕ − d−1
2 ϕ

d−1
4 −∆ [Γ(∆)Γ(−d/2 + ∆ + 1)]−1/2 (3.17)

We conclude from this simple model that the information about the bulk geometry,
namely — given our restricted assumptions — the location of ETW brane at ϕ0, appears
in two places:

1. The asymptotic spacing of boundary operator dimensions γ= limn→∞∆n+1−∆n = π
ϕ0

.

2. The asymptotic growth of the BOE coefficients Bn∼ exp
(
n
ϕ0

ln2
)
.

What is not yet clear is why the information about the brane is encoded in this particular
way and how it generalizes to a lesson about all BCFTs with good bulk duals. To make this
next step, we must turn to the Lorentzian structure of two-point functions in a (holographic)
BCFT.

4 Lorentzian BCFT singularities

In this section, we will consider the singularities associated with a scalar two-point function
in a Lorentzian BCFT. We start by discussing the field theory setup and the expected
structure of kinematic singularities. For BCFTs with a simple holographic dual, we consider
the apparent singularities that arise from the bulk causal structure. In particular, we
consider the bulk null rays that are reflected off the brane, and compute the cross-ratio of
the return locus for these rays.
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Figure 5. We depict various regions of the Lorentzian interval for a BCFT in terms of various
cross-ratios. Importantly we note that the causal diamond bounded by the lightcone of the operator
O(x) and its reflection off the boundary is described by the radial cross-ratio ρ living on the unit
circle. It interpolates between the initial lightcone at ρ = ei0 and the reflected ligthcone at ρ = eiπ.

4.1 BCFT singularities

In Euclidean signature, a CFT correlator has singularities whenever two operators become
coincident (and is analytic otherwise). Similarly, a Euclidean BCFT correlation function
will have singularities only when operators approach each other, or when they approach the
boundary. (We can think of this as an operator approaching their mirrored double across
the boundary.)

In terms of a scalar BCFT two-point function, and our cross ratio ξ defined in (2.5),
the singularity when the two operators approach each other corresponds to the limit ξ → 0.
In this limit, the correlator will diverge like

〈O(x)O(y)〉 = 1
|x− y|2∆ + . . . (4.1)

or, correspondingly, G(ξ) ∼ ξ−∆. When the operators approach the boundary, in the limit
ξ →∞, the correlator diverges like

〈O(x)O(y)〉 = A2

|4x⊥y⊥|∆
+ . . . (4.2)

or, correspondingly, G(ξ) ∼ A2. Unlike the CFT case, there is no third Euclidean singularity,
which could be thought to correspond to the operator O(y) approaching the mirror of O(x).

In Lorentzian signature, we similarly expect a singularity when O(y) approaches the
lightcone of O(x) at the cross-ratio ξ = 0. We can also continue the Lorentzian two-point
function around the branch point at ξ = 0 to the timelike region ξ < 0. Here there is
another possible singularity where the O(y) approaches the reflection of the lightcone of
O(x) off the boundary at ξ = −1. This is known as the Regge Limit of the BCFT [36] and it
has been shown that the BCFT diverges here at worst as G(ξ) ∼ (ξ + 1)−∆. This is exactly
the singularity one would expect from approaching the lightcone of the ‘mirror’ of O(x).
We depict the Lorentzian causal structure and the corresponding cross-ratios in figure 5.
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Figure 6. Relation between the radial ρ variable and the new coordinate q.

When we change to radial coordinates, placing O(y) in the timelike region to the future
of O(x), but before the reflected lightcone, corresponds to ρ = eiϕ for ϕ ∈ [0, π]. At one
end ρ = 1 (ϕ = 0) is the lightcone of O(x) at ξ = 0 and at the other end ρ = −1 (ϕ = π) is
the reflected lightcone of O(x) at ξ = −1. We also indicate the ρ-regions in figure 5.

It has been argued that a CFT correlation function should only have singularities at
points corresponding to Landau diagrams [31] where null particles interact at local vertices.
By the same logic, we expect the only singularities of a BCFT two-point function to be that
on the lightcone and its reflection. We do not attempt to prove this statement in general,
but we can follow [31], and show that it holds in a 2D BCFT.

BCFT singularities in 2D. In two dimensions one can perform a conformal transforma-
tion to map the unit ρ disk into the interior of the unit disk in a new coordinate q, hitting
the boundary only at q = ±1. We depict the region in figure 6. One can then show that the
two-point function converges everywhere in the interior of the unit q disk; the convergent
region includes the region where the two-operators are timelike separated, except the point
q = ±1 corresponding to the expected BCFT lightcone. We give a more complete derivation
of this result in appendix C.

4.2 Bulk singularities

The location of the BCFT singularities we have just listed are universal and kinematic, in the
sense they can be read off the behaviour of individual conformal blocks without consulting
the spectrum. But for a BCFT with a simple holographic dual, a new type of singularity
can emerge: an insertion now generates a lightcone in the gravitational bulk as well as the
boundary. Bulk light-rays can head into the infrared gravitational geometry and return
some time later to the boundary, indicating new singularities in the BCFT. When the bulk
geometry is ‘shallow’ (for example, when the geometry ends on a brane with a large negative
tension), these singularities may even occur before the boundary light ray has returned.

To illustrate this behaviour, we begin by examining our simple toy model where empty
AdS is terminated by an ETW brane. We can re-write our angular metric (3.2) in the form

ds2
Euc = 1

sin2 θ sin2 ϕ

(
dτ2 + cos2 θdΩ2

d−2 + dθ2 + sin2 θ dϕ2
)
, (4.3)
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by turning the AdSd-radial coordinate on the slices into a second angular coordinate θ.4
The angular radial coordinate θ on the slices takes values θ ∈ [0, π/2] with 0 being the
boundary of AdS. Recall that the other coordinate φ takes values in the range ϕ ∈ [0, ϕb]
and is found from the coordinate change cosϕ = tanh(−r). dΩ2

d−2 is the line element on
the Sd−2 that parametrizes the rest of the AdSd slice. Ignoring the conformal factor, we
can see that the angular coordinates (θ, ϕ) together form part of an S2. By continuing to
Lorentzian time, we arrive at the metric

ds2
Lor = 1

sin2 θ sin2 ϕ

(
−dt2 + cos2 θdΩ2

d−2 + dθ2 + sin2 θ dϕ2
)
. (4.4)

We will perform our bulk causal calculations in these coordinates.
To begin, we restrict ourselves to consider null rays travelling on the 2-sphere at a

fixed position on the Sd−2 in (4.4). This is a straightforward affair. Consider a null ray
xµ(λ) = (t(λ), θ(λ), ϕ(λ))), with affine parameter λ. The conformal factor drops out, leaving
a simple null geodesic equation

− ṫ2 + θ̇2 + sin2 θ ϕ̇2 = 0 . (4.5)

We are free to take ṫ = 1, so that affine time elapsed simply measures distance along the
sphere, and the calculation of the return locus reduces to a problem of spherical trigonometry.
Without loss of generality, we take the initial insertion to lie at xµ = (0, θ0, 0). The null ray
will head off into the bulk with some initial direction θ̇0 = θ̇(0), bounce off the brane at
ϕ = ϕb, and return to the boundary ϕ = 0 at some angle θ1 and time ∆t = d measured by
the distance travelled.

To simplify the kinematics further, we can double the width of the wedge to 2ϕb. There
is now no need to consider the reflection off the brane, since the light ray sails smoothly
through the mirror and arrives at the reflected boundary. It follows immediately from
spherical trigonometry5 that the initial position θ0, direction θ̇0, return angle θ1 and elapsed
time ∆t = d are related by

cos d = cos θ0 cos θ1 + sin θ0 sin θ1 cosϕb . (4.6)

We show the spatial path of one of these null geodesics in figure 7.
To compute the cross-ratio, ξ, for this locus, note that the flat BCFT coordinates are

related to our polar coordinates x1 = eit cos θ and x⊥ = eit sin θ. Plugging in (4.6), the
analytically continued cross-ratio is

ξ = (ei∆t cos θ1 − cos θ0)2 + (ei∆t sin θ1 − sin θ0)2

4ei∆t sin θ1 sin θ0
= − sin2 ϕb . (4.7)

This is pleasingly simple. In terms of our radial cross-ratio (2.13), it is even simpler:

ρ = ei2ϕb . (4.8)

We show the return locus for varying ϕb in figure 8.
4By radial coordinate, we mean the global AdSd-radial coordinate on the slices. These global AdS

coordinates can be obtained simply by switching to polar coordinates on the slice, with an origin on
the boundary.

5Specifically, the spherical law of cosines.
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Figure 7. (a) A 2D spatial-slice of AdS3 cutoff by an ETW brane. (b) The same spatial slice
conformally mapped to part of the two-sphere. The path of a null geodesic is marked in red.

Figure 8. An illustration of two example return loci for branes of different tension/causal depth.
When the brane tension is positive, ϕb is greater than π/2 and null geodesics return to the boundary
along a curve in the upper causal diamond. When the brane tension is negative, ϕb is less than π/2
and null geodesics return to the boundary along a curve in the lower causal diamond.

We conclude that the bulk causal structure of our simple ETW brane model predicts
a singularity in the BCFT at the cross-ratio (4.8). This occurs away from the expected
BCFT singularities at ρ = 1, 0,−1.

General warp factor. We can repeat the same argument with minor modifications for
a more general warped background plus ETW brane as in (2.18). In this case, one only
needs to find the appropriate angular coordinate to put the metric in the form

ds2
Lor = 1

sin2 θf(ϕ)
(
−dt2 + cos2 θdΩ2

d−2 + dθ2 + sin2 θ dϕ2
)
, (4.9)

for some function f(ϕ) determined by the warp factor A(r). Because the causal structure
does not depend on this unknown conformal factor, we again find the return locus to be

ρ = ei2ϕb , (4.10)
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where ϕb =
∫ rb
−∞ e

−A(r)dr. We note, in particular, that the causal structure of the bulk and
of the return locus to the boundary is independent of the Euclidean distance to the brane.
In contrast to this work, the Euclidean distance is what appears in holographic calculation of
boundary entropy in 2D CFTs, for example, and many calculations of entanglement entropy.

General geodesics. While calculating null geodesics which are not at a fixed position
on the Sd−2 would be slightly more challenging, there is no need to go to the trouble. The
BCFT two-point function is a function only of a single cross-ratio, up to a conformally-
covariant pre-factor. Thus, having mapped part of the null cone to the locus ρ = ei2ϕb , we
can conclude that null geodesics with non-zero momentum on the sphere must also return
at another point on the sphere with the same cross-ratio. Or, in other words, we can map
any two unit vectors on the AdSd slices into each other by a conformal transformation and
so all of the null rays are equivalent.

5 Looking for a bulk brane

In section 3 we showed how the bulk geometry of a simple ETW brane model is encoded in
the spectrum and BOE coefficients of the dual BCFT. And in section 4 we showed that the
bulk causal structure also predicts new Lorentzian singularities in the BCFT from null rays
that reflect off the bulk ETW brane. We now put these two sides of the coin together and
explain how one entails the other.6

The boundary conformal block, written in terms of our radial cross-ratio (2.15), has a
simple large dimension limit

lim
∆̂→∞

gb
∆̂

(ρ) = (4ρ)∆̂ 1
(1− ρ2)(d−1)/2 . (5.1)

We consider this large-dimension limit at the return time of the bulk null cone, (4.8), to see
that

lim
∆̂→∞

gb
∆̂

(ei2ϕb) = 4∆̂ei2∆̂ϕb 1
(1− ei4ϕb)(d−1)/2 . (5.2)

When we plug in the asymptotic spacing of boundary operator dimensions in our simple
model, (3.10),

∆̂ = ∆̂0 + n
π

ϕb
(5.3)

we see that the block takes the form

lim
n→∞

gb
∆̂n

(ρ) = ei2∆̂0ϕb4∆̂n
1

(1− ei4ϕb)(d−1)/2 . . (5.4)

Thus the spacing of the boundary operator dimensions has exactly cancelled the n-
dependence of the phase precisely at the return time of bulk null cone. These conformal
blocks will then all add coherently at this point so that the sum over conformal blocks takes
the form

ei2∆̂0ϕb4∆̂0 1
(1− ei4ϕb)(d−1)/2

∑
n

22n π
ϕb bn (5.5)

6Or heads from one to the other. Pun obviously intended.
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Consequently, this sum can potentially diverge. To see that this is in fact the case, we plug
in the large-n BOE coefficients from (3.16). Dropping the prefactor, near the return time
at ρ = exp [i2ϕb(1 + ε)] the sum over n gives∑

n

e2πinεn2∆− d+1
2 . (5.6)

This is just a Fourier transform of the BOE coefficients. Doing the Fourier transform
and extracting the singular contributions, we find Lorentzian singularities in the two-point
function proportional to

G(ρ) ∼ 1
(ρb − ρ)2∆− d−1

2

1
(−1− ρ) d−1

2
. (5.7)

We conclude that the bulk causal structure has been mapped into a particular regular
asymptotic spacing of the boundary operators that appear in the BOE.

From bulk points to bulk branes. Our story is a very close analogue, both in spirit
and technically, to the story in [31]. There the authors explained how the causal structure
of the dual AdS vacuum leads to new singularities in CFT four-point functions. These
result from local interactions that happen at a point in the AdS bulk geometry. The bulk
point isn’t expected to be a true singularity of the four-point function — these are believed
to occur only where predicted by Landau diagrams in the boundary theory. Rather it is
a resonance in the correlator that is smoothed out at the scale of the cut-off where bulk
locality breaks down.

Similarly, we don’t expect to find true new singularities in the BCFT two-point function.
On the bulk side, we don’t expect the brane to be exactly local. It will have some intrinsic
width at which it will smear out bulk signals that reflect off the brane. On the boundary side,
we only expect singularities where allowed by BCFT Landau diagrams. Thus, above some
cutoff scale ∆̂gap that determines the width of the brane we expect the careful alignment of
boundary operator dimensions to break down. Above this dimension, operators contribute
with incoherent phases, truncating the divergent sum in (5.6)

5.1 No bulk branes (at least generically)

We argued that we don’t expect the bulk brane singularity to be a true singularity of
the BCFT. Nevertheless, the validity of our semiclassical description, a bulk geometry
terminated by an ETW brane, over a large range of scales requires the careful alignment of
boundary operator dimensions up to some large ∆̂gap.

We conjecture that this careful alignment is not a generic feature of BCFTs, even when
the underlying CFT has a good gravitational description. Thus, an operator spectrum and
BOE coefficients consistent with a bulk ETW brane geometry must be another input or
assumption about the particular boundary condition of the CFT, much in the way we have
to assume features of the spectrum of a large c CFT such that it has a good semiclassical
gravitational description.

We do know that the correlation functions of a BCFT become those of the underlying
CFT when all insertions are far from the boundary. Thus, we do not claim that the geometry

– 18 –



J
H
E
P
1
2
(
2
0
2
1
)
0
0
2

will break down everywhere in the bulk. Rather, our claim is that generically there cannot
be the type of simple causal structure consistent with an ETW brane geometry. The lack
of fine-tuned dimensions prohibits null-rays from leaving the boundary and returning in
reasonably-short times.7

In the spirit of [15], we can formalize our conjecture as the following:

Conjecture 1. A holographic CFT with boundary condition B will have a good bulk dual
provided

(i) correlation functions factorize about a (non-universal) free bulk solution; and

(ii) the boundary operator spectrum is gapped such that below some large ∆̂gap the only
operators are simple boundary operators and their multi-trace composites.

It is the first of these conditions — the existence of a consistent leading-order free bulk
two-point function — that we are concerned with in this paper and that we have argued
shouldn’t generically look like an ETW brane. Whether or not we might still expect a
good bulk geometry, but without an ETW brane, we will discuss in section 6. We leave the
examination of the second of these conditions to future work, but we note that aspects of
this are challenging without a characterization of the space of solutions to (i).

Note that the causal structure of the four-point function in a holographic CFT also
requires a similar alignment of operator dimensions. Specifically, in a holographic CFT
one obtains “double-twist operators” due to the crossing equations and the presence of
the identity operator; the stress tensor then fixes their anomalous dimensions, which
asymptotically go to zero at both large spin and large central charge. These two facts
explain the emergence of the “bulk point” [31], where scattering between CFT operators
occurs in the bulk but not the boundary.

In a defect CFT, a similar story generically emerges [54]: for a defect of codimension q,
there are boundary operators associated to derivatives of bulk primaries in the q directions
transverse to the defect. Their anomalous dimension goes to zero at large “transverse spin”
(i.e. the charge of the residual SO(q − 1, 1) symmetry). This control of the anomalous
dimensions clearly vanishes in an interface or boundary CFT. We no longer have any
transverse spin to work with when q = 1, even though we still have operators given by
derivatives of bulk primaries in the remaining transverse direction. To have a good bulk
dual, these operators must possess non-trivial anomalous dimensions that aren’t fixed by
symmetry and universal properties alone. A BCFT is then a simple setting where there
isn’t quite enough symmetry to fix the form of the vacuum two-point function and it must
be an input.

A useful analogy in holographic CFTs for when the free correlators are not fixed by
symmetry is an excited state. Excited states in a holographic CFT will not generically
have a good bulk geometry and hence will not have a good causal structure. Thus, we do
not expect to see the approximate singularities of a local bulk geometry except in carefully

7Of course, if we are willing to wait sufficiently long times, we can produce a resonance in an arbitrary
theory by waiting for the phases of any finite number of blocks to align in the future. It’s not clear that
these types of resonances should have a simple gravitational interpretation.
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chosen states. We suggest good ETW brane geometries are far from generic in the space of
BCFTs in much the same way good bulk geometries are far from generic in the Hilbert space.

6 Beyond ETW branes

Our discussion so far has focused only on the bottom-up ETW brane proposal of [40].
However, we know this proposal is insufficient to fully describe various top-down models
where the bulk geometry is more complicated. Moreover, while our evidence suggested that
an ETW brane required finely-tuned boundary operator dimensions, we would like to be
able to make a much more general conjecture: without special finely-tuned dimensions the
BCFT bulk will not be everywhere geometric. To examine this stronger statement, we will
elaborate below on constructions that go beyond the ETW brane proposal.

6.1 General bulk geometries

We explore first two simple toy models to build intuition for what happens when a BCFT is
not terminated by an ETW brane, but terminates instead when extra dimensions pinch off.

First, let us consider a metric on HS2 × R0,1, with the form

ds2 = −dt2 + dθ2 + sin2 θdϕ2 , t ∈ R , θ ∈ (0, π/2) , ϕ ∈ (0, 2π) . (6.1)

We take this to be a model of an extra dimension pinching off in the IR bulk geometry
where we view the angular direction ϕ as an extra compact direction and θ as a coordinate
on the base, like the bulk radial coordinate. We are concentrating on what happens in the
region where the extra dimension pinches off and we ignore the rest of the geometry for
now. Nevertheless, one could imagine smoothly joining the hemisphere to close off a circle
of constant radius fibered over AdS.

Suppose we have a massive scalar field φ, with mass M , on this geometry; the equation
of motion is

M2φ = �φ = −∂2
t φ+ 1

sin θ∂θ (sin θ∂θ)φ+ 1
sin2 θ

∂2
ϕφ . (6.2)

We assume a simple boundary operator will correspond to some fixed momentum on the
circle ψm(φ) = eimϕ. One might worry that the last term in (6.2) will generate a potential
for modes with non-zero angular momentum, leading to a different effective causal structure
in the base space for different modes (ie. different boundary operators). More importantly,
one might worry the potential will smear out the singularity of the returning signal that
reflects off the end of the extra dimension. To see that this won’t be the case, it’s easiest
to note that the causal structure corresponds to a high-energy limit where the potential
becomes irrelevant — the pinching extra dimensions appear just like a hard wall when
approached along the lightcone.

We can also make the above intuition more explicit. For some fixed m, the solutions of
the equation of motion that are smooth as the sphere caps off all take the form

ψω,m(t, θ, ϕ) = Pml(ω)(cos θ)eiωteimϕ , (6.3)
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where l(ω) = 1
2

(√
4ω2 − 4M2 + 1− 1

)
. Near the equator of the hemisphere, at large ω,

the solutions behave as

ψω,m(t, θ, ϕ) ≈ cos(ωθ + π)eiωteimϕ (6.4)

and so this behaves just like a wave reflecting off a hard wall at θ = 0. The ω modes all
add up coherently at t = 2θ to generate the reflected lightcone.

We can further fix the allowed frequencies ω by imposing additional boundary conditions
at the equator of the hemisphere (where we imagine joining onto the rest of the bulk solution).
For example, we can set Neumann boundary conditions on the equator to find that the
allowed asymptotic values of ω are precisely ωn = 2n , n ∈ N. It’s then possible to see the
lightcone that has reflected off of both boundaries and refocused at the original location:
after a time inverse to the regular operator spacing the modes again add up coherently.

Of course, this isn’t the only type of characteristic behaviour we can construct. We
can also consider a toy model where the extra dimension caps off slowly:

ds2 = −dt2 + dz2 + 1
z2dϕ

2 , t ∈ R , z ∈ R≥z0 , ϕ ∈ (0, 2π) . (6.5)

Here the radius of the extra dimension shrinks slowly like 1/z, again generating an effective
potential for angular modes on the extra-dimension, but this time with no hard end. At the
other end, we terminate the geometry at some z0 (where again we could imagine joining
onto another bulk solution). In contrast to the previous example, here we expect that as
we increase the energy of modes they will penetrate deeper and deeper into the infrared
geometry. Thus, there is no natural scale that sets the return time for lightrays sent in the
radial direction and no expected reflected lightcone.

To see this explicitly, we can solve the wave equation for a free, massive scalar field in
this background. The solutions that don’t diverge in the infrared take the form

ψω,m(t, z, ϕ) = U
(
M2−ω2

4m , 0;mz2
)
eiωteimϕ , (6.6)

where U(a, b, x) is the Tricomi (confluent hypergeometric) function. For large frequency
(and sufficiently small z), we can rewrite these solutions as

ψω,m(t, z, ϕ) ≈
√

2mz
πω

cos
(
ωz + π

4 (1− ω2/m)
)
eiωteimϕ . (6.7)

In contrast to the previous example, we see here that there is a phase shift that depends on ω
and so we will not have all of the reflected modes add coherently at the same time/position.

We can again further fix the allowed frequencies ω by imposing additional boundary
conditions at z0. For example, we can set Neumann boundary conditions at z = 1 to find
that the asymptotic spacing of eigenvalues ωn scales like ωn − ωn−1 ∼ 1/

√
n. This spacing

is not regular, and thus we will not have a finite-time recurrence where a reflected lightcone
could return.
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Causal depth. The primary distinguishing feature of the above two examples is the
difference in their causal depth. As in the ETW brane examples, when light rays sent into
the geometry can return in finite time (a finite causal depth), we see a reflected lightcone, a
corresponding divergence in the two-point function, and the careful alignment of asymptotic
eigenvalues. On the other hand, when light rays sent into the geometry don’t return in
finite time, we no longer expect a reflected lightcone, nor a corresponding divergence in
the two-point function or alignment of operator dimensions. The common intuition is
that BCFTs will have a dual bulk geometry with a finite causal depth, whether they are
terminated by an ETW brane or the closing off of extra compact dimensions, and should
look more like the first of these very simple toy models.

6.1.1 Asymptotically AdS toy model

The comments above contain the essential features and physical intuition for the argument
that individual Kaluza-Klein modes exhibit the same reflected singularity (in the case of
finite causal depth), and consequently, that different CFT operators must exhibit the same
resultant Lorentzian singularity.8 To give additional support for this claim, we can explicitly
analyze another toy model involving a free scalar field propagating on a background which is
a static, asymptotically locally AdS geometry whose spatial slices are cigar-like, as described
by the metric

ds2 = L2

z2

(
dz2 − dt2 + z2f(z)2dθ2

)
, θ ∈ (0, 2π) , (6.8)

where for convenience we choose
f(z) = 1− z2

2 . (6.9)

One can verify that this choice makes the geometry non-singular at z = 1.
The explicit analysis of this problem is left to appendix B, but we summarize the

important features here. The eigenfunctions of the Klein-Gordon operator are of the
variable-separated form eimθeiωtφm,ω(z), where we interpret different KK modes of the
internal S1 (labelled by integer m) as corresponding to different operators in the dual
quantum theory. The functions φm,ω(z) are known (they involve linear combinations of
confluent Heun functions, with linear dependence fixed by normalizability at z = 0), and
the values of ω are quantized by the requirement of regularity at z = 1. To demonstrate
that operators of differing m exhibit the same reflected singularity, which we expect to
occur when the insertions are separated by ∆t = 2 (the time for an ingoing null ray to
travel from z = 0 to the IR wall at z = 1 and bounce back), it suffices to show that, for any
fixed m, the quantized frequencies exhibit asymptotic spacing

∆ω ≡ lim
n→∞

ωn+1 − ωn = 2π
∆t = π . (6.10)

The form of the Green function as a sum over modes then fixes the desired singularity.
Computing the spectrum numerically in various cases, we indeed appear to find that (6.10)

8Although this argument is clearest when the form of the warping is relatively simple, as in the examples
we have described, we might hope that something analogous should hold in any case where there are internal
directions that degenerate.
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Figure 9. Plots of ln
∣∣ωn+1 − ωn − π

∣∣ versus n for various values of m in asymptotically AdS toy
model with a free scalar field. We have chosen ML = 1 for concreteness.

holds across values of m; an example of this calculation can be seen in figure 9. We interpret
this as additional concrete evidence for our claim that CFT operators corresponding to KK
modes of some bulk field should quite generally exhibit a common Lorentzian singularity
associated with bulk causality.

6.2 Top down holographic BCFT

In the previous subsection, we have discussed how some of our conclusions may be generalized
to plausible smooth bulk geometries involving an internal space which degenerates. We
would now like to understand how these considerations might apply to fully-fledged top-down
holographic constructions of AdS/BCFT. As mentioned in section 2.2.2, a number of such
constructions are known [43–49], and it appears necessary to explain whether or not the
existence of a smooth bulk in these cases entails the spectral fine-tuning we have argued for
previously, and if not, how their causal structure is consistent with this conclusion. Since
the spectrum of boundary operators with protected conformal dimensions is not known
in these theories, and extracting this spectrum is not expected to be straightforward in
general [55], our investigation will be on the side of the bulk causal structure.

Certainly, it is a possibility that the heuristic arguments of the previous subsection may
not capture important structural aspects of the warped supergravity solutions describing
the microscopic theories of interest. But in this section, we will attempt to address a
different possibility, namely that the intersection of the bulk light cone of a boundary point
with the asymptotic boundary may generically be small or empty in these theories. In
this case, bulk causality would not directly introduce a spectral constraint of the type we
have been concerned with, or would do so only for a very select subset of operators. In the
language of the previous subsection, we might say that such solutions exhibit infinite causal
depth. Unlike the simple toy models that we have considered, this is no longer necessarily a
manifestation of a slowly shrinking internal space, but rather may reflect that a generic
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(a) Initial behaviour of ingoing null geodesics on
internal submanifold Σ (with initial data in the
x-direciton provided).

(b) Generic behaviour of ingoing null geodesic
(in this case x′(0) = 0.2), which falls into and
orbits the AdS-cap.

Figure 10. The AdS-cap curvature singularities at w = ±1 in the upper half-plane Σ appear to be
attractor-like for ingoing null geodesics.

ingoing geodesic will follow a trajectory which may involve very complicated behaviour in
the internal space.

We can illustrate this possibility by considering a concrete example, namely the “AdS2-
Cap” solution of six-dimensional (0, 4) (“type 4b”) supergravity identified by Chiodaroli,
D’Hoker, and Gutperle in [43]; this is expected to provide a fully back-reacted holographic
description of a D1-D5 junction in 10 dimensions, where a D1-brane and a D5-brane
wrapping a suitable four-manifold join to form a D1/D5 bound state. This solution has a
single AdS3 × S3 asymptotic region, describing the near-horizon geometry for the D1/D5
bound state, while the D1-brane and the D5-brane each contribute a curvature singularity
at fixed locations in the internal space, referred to as “caps”. The resultant 6-dimensional
metric is of the form

ds2
6 = f2

1ds
2
AdS2 + f2

2ds
2
S2 + ρ2dwdw̄ , (6.11)

where (w, w̄) are complex coordinates on a Riemann surface Σ, which we may take to be
the upper half plane. One may use SL(2,R) symmetry to fix the location of the AdS3 × S3

asymptotic region at w = 0 and the AdS2-caps at w = ±1.
Equipped with this solution, one can proceed to study numerically the behaviour of

ingoing null geodesics; we leave a more detailed discussion to appendix D. In figure 10 we
display the behaviour of such null geodesics on the internal submanifold Σ, restricting to
geodesics with no initial momentum in the S2 direction for clarity; the geodesics are seen
to initially orbit the caps, which appear to be attractor-like.

To attempt to confirm that the AdS-caps do indeed attract all ingoing null geodesics in
the class we are considering, we can examine the geodesic equation in the vicinity of these
caps, again restricting to the case with no momentum in the S2 direction. (We choose the
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one at w = 1 for convenience). Denoting

x− 1 ≡ εx ≡ ε cos Θ , y ≡ εy ≡ ε sin Θ , (6.12)

we obtain at leading order in small ε

ε̈

ε
+ ε̇2

ε2
= 2 ε̇

2

ε2
+
(
O(ε) ε̇

2
x

ε2
+O(ε)

ε̇2y
ε2

+O(ε) ε̇x
ε

ε̇y
ε

)
, (6.13)

from which it should follow that
ε(s) ≈ ε0ecs , (6.14)

provided that ε remains sufficiently small that perturbation theory remains valid. That is,
it appears that the geodesics will approach the AdS-cap exponentially, and in particular
would not reach the precise location of the cap in finite affine parameter in the leading
order calculation. We can confirm numerically that, at least for sufficiently small affine
parameter, this is a good approximation (see appendix D).

Based on this cursory analysis, it appears plausible that a significant portion of the
bulk light cone has no intersection with the asymptotic boundary of the spacetime, instead
getting trapped near the AdS-cap curvature singularities. It is in this sense that this
example may be exhibiting what we have previously referred to as an infinite causal depth.
Note that, in this case, this is not due to a slowly shrinking internal space; in fact, the
AdS-caps are at finite proper distance from any point in the interior of the geometry, and
the geometry in the vicinity of the AdS-cap is of the form

ds2≈
√

2µ0
κ

√
κ2+µ2

0 sin2 Θ
(
dε2+ε2

(
dΘ2+ κ2

µ2
0
ds2

AdS2 + κ2 sin2 Θ
κ2+µ2

0 sin2 Θds2
S2

))
, (6.15)

where κ > 0 and µ0 are the real parameters for our class of AdS2-cap solutions. Rather, this
is simply a seemingly generic property of null geodesics sent inward from the asymptotic
boundary.

In general, we expect that the supergravity approximation should break down in the
vicinity of these singularities, with string loop and α′-corrections becoming important. This
may also be a generic feature of top-down constructions of holographic BCFT: generic
causal probes will enter regions of the bulk where the effective description breaks down.

It is worth noting that, even in this example, there exist geodesics which return to the
asymptotic boundary in short affine parameter as a result of finely-tuned initial conditions.
For example, null geodesics sent radially inward from the equator of the asymptotic S3 will
avoid falling into either AdS-cap. In the BCFT, the radial coordinate cross-ratio describing
the separation between endpoints of these geodesics is precisely

ρ = e±
iπµ0
2κ . (6.16)

(See appendix D for further details.) It is possible that this result is indicating the existence
of more complicated operators localized on the internal dimensions which do exhibit a
singularity, and that this again requires the existence of particular families of boundary
operators (whose dimensions in this case have asymptotic spacing |∆n+1 −∆n| ∼ 4κ

mu0
n).
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6.2.1 Top-down models with finite causal depth

The above top-down BCFT example shows how the holographic dual can seem to develop
an infinite causal depth and avoid the simplest causal constraints on the BOE spectrum.
Here we show that this isn’t the case for all known top-down constructions: we give an
explicit example of a top-down BCFT with finite causal depth.

Our example will be an interface conformal field theory (ICFT) with a codimension one
defect separating two different CFTs on either side of the defect. We can view the ICFT as
a BCFT by folding the two sides on top of each other. Then the BCFT will look like a
product of two non-interacting theories that are coupled only via the boundary condition.

The precise example we will consider here is the supersymmetric Janus solution found
in [56]. In this Janus solution, the bulk geometry smoothly interpolates between two
different asymptotic AdS3 × S2 × T 4 regions. The dual ICFT is a marginal deformation
of the two-dimensional D1/D5 N = (4, 4) SCFT. The details of the geometry will not be
important to our analysis and can be found in [56]. For our purposes, we note that the
metric takes a form similar to the previously discussed top-down constructions:

ds2
10 = f2

1ds
2
AdS2 + f2

2ds
2
S2 + ρ2dwdw̄ + f2

3ds
2
T 4 , (6.17)

where w, w̄ are coordinates on a Riemann surface Σ with boundary. The various metric
prefactors are functions on the Riemann surface.

Let us note that κ is bounded, κ > 1, and controls the warping of the AdS2 slices of
the bulk. In [56], it was shown that the boundary entropy is determined in terms of κ and
takes the form

Sbdy = c

3 log κ , (6.18)

where c is the central charge of the 2D CFT. With the bound on κ the boundary entropy
is always positive.

In [57], the Euclidean two-point function was computed holographically and takes
the form

〈
O (x⊥, t)O

(
x′⊥, t

′)〉= 23−2∆

πκ2∆[Γ(∆−1)]2
1∣∣x⊥x′⊥∣∣∆×

×
∞∑
n=0

sign(ξ)n(n+∆−1/2)Γ(n+2∆−1)
Γ(n+1) Q∆̂n−1(|2ξ+1|) .

(6.19)

The boundary operator dimensions ∆̂n appearing in the calculation were found exactly
in [57] and their asymptotic spacing is given by

lim
n→∞

∆̂n − ∆̂n−1 = 1
κ
. (6.20)

From this careful alignment of boundary operator dimensions we can already conclude that
these solutions have a finite causal depth.

To see the finite causal depth explicitly, we can go ahead and find the bulk singularity
by looking at the asymptotics of the analytically continued two-point function. Again using
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our radial coordinates, ρ, we expand (6.19) when both points are spacelike separated on the
same side of the defect. As already noted in [57], this gives an expansion in terms of ρn/κ.9
Thus, when we analytically continue to the timelike region on the r.h.s. where ρ = eiθR , we
expect a singularity at a time

θR = 2πκ . (6.21)

This can be explicitly checked from the summation of the asymptotic expansion in [57],
which gives a singularity of the form

1
(1− ρ1/κ)2∆−1/2 , (6.22)

with the appropriate divergence at ρ = ei2πκ.
We can also calculate the expansion when the two operators are timelike separated

on opposite sides of the defect. We first insert the second operator in the spacelike region
across the defect where 0 < −ρ < 1. Here the expansion takes the schematic form∑

n

cn(−1)n(−ρ)n/κ . (6.23)

We can then analytically continue −ρ to live on the unit circle and find that the phases
align when

θL = πκ . (6.24)

As expected, we find the singularity on the l.h.s. of the defect at half the time it takes for it
to return to the r.h.s.

7 Discussion

We have argued that a powerful probe of the putative bulk geometry of a BCFT is the
Lorentzian two-point function. The two-point function is sensitive to the (approximate)
causal structure of the bulk and is a probe of how null rays can reflect off the IR geometry
and return to the boundary.

In the case that the bulk geometry is terminated by an ETW brane, we argued in
section 3 that this is indicated in the two-point function of simple CFT operators by a
fixed, careful alignment of the boundary operator dimensions appearing in the BOE. We
suggest that there is no reason to expect such spacing generically in the possible boundary
conditions for a given holographic CFT. Thus, we have argued that an ETW brane is not
generically the correct bulk description of a boundary condition for a holographic CFT.

In certain cases, we also have a top-down construction of the dual geometry for a
boundary condition of a holographic CFT. These geometries are not described by ETW
brane geometries, but rather have extra compact dimensions that pinch off in the IR.
We argued that simple geometries that cap off at a finite causal depth will also have
a reflected lightcone that relies on a seemingly fragile alignment of boundary operator

9In the original author’s notation, our radial coordinates is precisely their ζ.
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dimensions. However, in some of the more complicated geometries actually found in top-
down constructions, it is more subtle. There it seems that many null geodesics may become
trapped in the IR geometry and do not return at short times. These top-down constructions
then might be more similar to our toy models without a finite causal depth.

The existence of top-down constructions with both finite and infinite causal depth make
it less clear just how atypical the existence of a good bulk dual is for a BCFT. Because some
examples seem to not have a finite causal depth when probed by simple CFT operators, they
do not require the same careful alignment of boundary operator dimensions. Nevertheless,
it would be a much stronger claim to then assume that any set of boundary dimensions
could always be explained by a sufficiently-complex local bulk geometry. It seems more
likely that these complicated geometries would be a small subset of even more complicated,
non-local solutions. Moreover, by probing a geometry with more complicated operators
that are localized in the extra dimensions, we might expect to be able to send light-like
signals into the bulk that return to the boundary. These would then require constraints
on the boundary spectrum of these more complicated operators, which also need not be
generic in the space of boundary conditions.

Complex geometries and chaotic boundary spectra. The trapping of light-like
geodesics in the IR geometry of some top-down models bears a resemblance to the dynamics
of chaotic systems. Insofar as the null geodesics explore the IR geometry ergodically and
fail to return to the boundary, this picture is reminiscent of the chaotic motion of billiards
on a Reimannian manifold. One possible correspondence is that there is a mapping between
the irregular spectrum of light operators in the BCFT and the chaotic light-like trajectories
in the bulk geometry. This seems to be a different manifestation of chaotic dynamics than
usually discussed in holography and it would be interesting to understand this connection
better.10 Nevertheless, as stated above, we remain hesitant to suggest that any complicated
spectrum could be mapped to a sufficiently complicated local bulk geometry.

Boundary vs. bulk causality. In the ETW brane scenario, when the brane is close to
the boundary, bulk null rays can reflect off the bulk brane and return to their point of
origin more quickly than a null ray confined to the boundary. This is the region (in figure 5)
where −1 < ξ < 0. In a 2D CFT with the simplest AdS+ETW brane bulk, for example,
this happens when the boundary entropy is negative.

There is some apparent (if perhaps naive) tension here with causality: a bulk observer
can learn information about the boundary condition more quickly than they can causally
probe the boundary of the CFT itself. On the other hand, these signals return in the causal
future of the boundary point, so there is no sharp conflict with boundary causality. Moreover,
it’s important to note that information about the boundary condition isn’t localized at the
boundary itself. As just one obvious example, information about the boundary condition is
encoded in one-point functions measurable arbitrarily far from the boundary.

10The possibility that the “hard chaos” of such causal probes in the near-horizon region of a black hole
could be a manifestation of scrambling appeared in [58].
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There are other cases where a bulk singularity in the region −1 < ξ < 0 would actually
be in conflict with boundary causality. In an ICFT (folded to be seen as a BCFT) a bulk
singularity in this region between a r.h.s. and l.h.s. operator would correspond to a signal
travelling acausally across the defect to the other side. We note that in section 6.2.1, our
Janus solution did not have a singularity in this region precisely because κ > 1 (that is the
boundary entropy was greater than zero).

It would be interesting to have top-down constructions where information about the
boundary can be causally accessed more quickly via the bulk than via the CFT.

Top-down models and SUSY. It is believed by some that supersymmetry is a necessary
ingredient for the existence of holographic CFTs [59]. In our top-down constructions, it
would be interesting to know what role, if any, supersymmetry plays in fixing the boundary
operator spectrum so that it is consistent with the bulk geometry. This would be particularly
interesting to consider in the ICFT of section 6.2.1 where we do see the careful tuning of
asymptotic boundary operator dimensions.

Calculating BCFT two-point functions. As we discussed in section 6.2, we do have
top-down constructions of holographic BCFTs with strong evidence for the existence of a
good bulk geometry. It would be useful to have BCFT calculations of two-point functions
in these theories to confirm the correspondence with predictions from the bulk geometry.

Bootstrap constraints. We have argued that the constraints on the boundary spectrum
necessary for agreement with a simple bulk geometry appear fragile and are not expected to
be generic. Moreover, the existence of more complicated top-down constructions also seems
to imply that a fixed regular spacing cannot be the only allowed possibility. Nevertheless,
we have not ruled out the possibility that the alignment of boundary operator dimensions
follows from some simpler assumptions, perhaps by using an appropriate bootstrap argument.
It would be interesting to explore this further.

2D CFTs. In [60], it was shown that the entanglement entropy of an interval in a 2D
BCFT is consistent with the AdS+ETW brane proposal, provided the assumption of vacuum
block dominance in the BCFT. It is somewhat surprising that the bulk would reproduce
the correct entanglement entropy, even if it fails to satisfy the constraints laid out in this
paper. One possible resolution is that the entanglement entropy is a rather weak probe of
the bulk geometry in this setting. When in this disconnected phase, the entropy depends
only on the boundary entropy and measures only the integrated distance to the brane. On
the other hand, it would be interesting if the assumption of vacuum block dominance also
placed constraints in the Lorentzian bulk brane regime we considered here.
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A Bulk canonical commutators

In section 2.2.3 we showed that a bulk scalar operator φ can be expressed as

φ(~y, u, r) =
∑
n

cnψ̄n(r)φ̂n(~y, u) , (A.1)

where the φ̂n(~y, u) are codimension-1 fields of asymptotic dimension (3.9), and ψ̄n(r)
are the normalizable mode functions (normalized with leading unit coefficient near the
asymptotically-AdS boundary). That analysis was insufficient to determine the overall
constants cn.

To determine the cn we require that the operators φ and φ̂n satisfy the equal time
canonical commutation relations

[φ(t, ~v1, u1, r1), π(t, ~v2, u2, r2)] = iδd+1(~v1 − ~v2, u1 − u2, r1 − r2), (A.2)
[φn(t, ~v1, u1), πm(t, ~v2, u2)] = iδd(~v1 − ~v2, u1 − u2)δm,n, (A.3)

where ~y = (t, ~v) and where π ≡ −√−ggtt∂tφ and πn ≡ −
√
−g̃g̃tt∂tφn are the canonically

conjugate fields to φ and πn, with g̃ the induced metric on the AdSd slices of fixed r.
This gives ∫ ∞

r0
dr coshd−2(r)ψn(r)ψm(r) = 1

c2
n

δnm, (A.4)

which we can evaluate to obtain cn.

B Asymptotically AdS toy model and the reflected singularity

In this appendix, we will provide some details for the calculation involving a free scalar
field propagating on an asymptotically locally AdS background that was mentioned in
section 6.1.1. Recall that our goal is to provide evidence in a concrete example that different
KK modes will give rise to the same reflected singularity when the bulk geometry has finite
causal depth. As pointed out earlier, it is sufficient to demonstrate that the asymptotic
frequency spacing ∆ω for each mode in this model is equal to π; we approach this problem
numerically.

Recall that the background geometry is

ds2 = L2

z2

(
dz2 − dt2 + z2f(z)2dθ2

)
, f(z) = 1− z2

2 , θ ∈ (0, 2π) . (B.1)

The massive scalar wave equation �φ = M2φ on this background yields

∂2
zφ−

2z
1− z2∂zφ =

(
∂2
t −

4
z2(1− z2)2∂

2
θ + M2L2

z2

)
φ . (B.2)

Separating variables by writing

φ(z, t, θ) = eimθeiωtφm,ω(z) , (B.3)
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the φm,ω(z) must satisfy

∂2
zφ−

2z
1− z2∂zφ =

(
−ω2 + 4m2

z2(1− z2)2 + M2L2

z2

)
φ . (B.4)

This equation has general solution

φ(x) = c1(z2−1)mx
1
2 +
√

1+4M2L2+16m2
2 H

(
0,
√

1+4M2L2+16m2

2 ,2m, ω
2

4 ,
8m2−ω2+1

4 ,z2
)

+c2(z2−1)mx
1
2−
√

1+4M2L2+16m2
2 H

(
0,−
√

1+4M2L2+16m2

2 ,2m, ω
2

4 ,
8m2−ω2+1

4 ,z2
)
,

(B.5)
where H(·) is a confluent Heun function, and c1, c2 are undetermined constants. The Heun
function is analytic at the point where its last argument vanishes (the asymptotic boundary
z = 0), where it takes value H(. . . , 0) = 1, and is singular for generic m,ω when its last
argument is unity (the “IR wall” z = 1). For M2 > 0, we see that the first function is the
normalizable solution at z = 0; for negative M above the Breitenlohner-Freedman bound

− 1 ≤M2L2 < 0 , (B.6)

we also have an alternate quantization as usual.
With the general solution to the equation of motion in hand, we will proceed to fix

various values of m, and numerically determine the values of ω consistent with regularity at
z = 1. The appropriate boundary condition to impose is

φm,ω(z) z→1∼ (1− z)m , (B.7)

since otherwise the θ-dependence will generate a singularity at z = 1. When computing the
allowed frequencies numerically, we simply look for roots of φm,ω(z = 1) as a function of ω.
In particular, we do not manually impose the correct power law (1− z)m in the vicinity
of z = 1, but rather we merely require that φm,ω(z = 1) vanishes. For m 6= 0 and generic
ω, φm,ω(z) actually has a singularity at z = 1; the desired values of ω occur when φm,ω
transitions between becoming large and positive and becoming large and negative in the
vicinity of this singularity. This procedure is illustrated in figure 11.

Applying this procedure for various values of m, we indeed find that the spacing of
allowed frequencies ω quickly converges to ∆ω = π, precisely as required to produce the
singularity at ∆t = 2; see figure 9 of section 6.1.1. We note that this convergence appears to
become slower with increasing m, though there is no reason to expect that the convergence
would break down at any finite m.

C BCFT singularities in 2D

Consider insertions zi on the (Euclidean) upper-half plane, with distances zij and zij̄
defined as usual. We will be interested in the correlator 〈O(z1)O(z2)〉 and its Lorentzian
continuation.
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Figure 11. Illustration of procedure for determining allowed frequencies ω. We plot solutions
φm,ω(x) with m = 1 consistent with normalizability at z = 0, for various values of ω. We have
chosen ML = 1 for concreteness. The figure on the left shows the full range of z, while the figure on
right shows a close-up in the vicinity of z = 1.

C.1 OPE expansion

The OPE expansion of our BCFT two-point correlator is just a sum over holomorphic
Virasoro conformal blocks. In the bulk CFT channel ξ → 0, we have

F(η) := 〈O(z1)O(z2)〉 =
∑
h

COOhAhVh(1− η), (C.1)

where COOh are bulk CFT OPE coefficients, Bh is the one-point function associated with
the primary h, and ξ = (1− η)/η. In the boundary channel η → 0 (ξ →∞), we have

F(η) =
∑
ĥ

|BOĥ|
2Vĥ(η), (C.2)

where BOh is a boundary OPE coefficient. It is possible to expand Virasoro blocks as [61]

Vh(η) = (16q)h−(c−1)/24[η(1− η)](c−1)/24−2hθ3(q)(c−1)/2−16hH(h, q), (C.3)

where H(h, q) is a power series in q which can be determined recursively, θ3 is a Jacobi
theta function, and q is the elliptic nome defined by

q = eiπτ(η), τ = i
K(1− η)
K(η) , K(η) = 1

2

∫ 1

0

dt√
t(1− t)(1− ηt)

. (C.4)

This can be inverted to give η = [θ2(q)/θ3(q)]4.
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Figure 12. The Z2 quotient of the torus leads to a double-cover of the sphere which is flat except
for conical defects at the corners, with uniformizing coordinates u as indicated. The A and B cycles
of the torus can be associated with bulk and boundary OPE channels in the (B)CFT, with insertions
at the corners.

C.2 The pillow geometry

The parameter τ appearing in q is the modulus of a torus which covers the Riemann sphere
twice. We will proceed with this construction, using Cardy’s doubling trick to suppose
we have a whole plane to play around with. We will pick a torus T 2 which branches at
0, η, 1,∞, a Riemann surface described by the following equation:

y2 = x(x− η)(x− 1), (C.5)

where x, y ∈ Ĉ are points on the Riemann sphere. This is the Weierstrass cubic associated
with the lattice Λ = 〈1, τ〉 which quotients the complex plane to give the torus. This
provides a double cover of the sphere since the defining equation is invariant under y 7→ −y,
and the fixed points of this map are precisely the branch points. The pillow has the topology
of a sphere, and is flat, except for conical defects at these branch points, as depicted in
figure 12.

The fundamental domain of the torus is oblique for general τ , but we can transform it
into a rectangle using a uniformizing coordinate u defined by

du = L

θ3(q)2
dx

y
. (C.6)

This has width 2πL, as one can check by performing the x integral. The Z2 action y 7→ −y
becomes u 7→ −u. In the u coordinates, the defects have coordinates

u(x = 0) = 0, u(x = η) = π, u(x = 1) = π(τ + 1), u(x =∞) = πτ. (C.7)

We can cut the pillow in half in two ways: the horizontal A cycle and the vertical B cycle,
which separate the corners into pairs, also shown in 12.

C.3 Evaluating the correlator

We now consider how to implement this in the BCFT. In the BCFT, η = z12z34/z13z24.
Thus, our insertions and their mirror images have the following identification on the pillow
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in u coordinates:

z1 7→ 0, z1̄ 7→ u = π, z2 = πτ, z2̄ = π(τ + 1). (C.8)

Thus, the boundary lies on the B cycle, and we should quantize on the A cycle. If we
normalize this cycle to have length 2π (or π in the halved geometry), then the relevant
Hamiltonian is just the dilatation operator in radial quantization (now on a half-cylinder),
H = L0 − c/24.

We evolve upwards by πτ , i.e., with Euclidean time evolution operator

eiπτ(L0−c/24) = qL0−c/24. (C.9)

The change to u coordinates is a Weyl rescaling, leading to an anomalous contribution to
the correlator. Performing this change and regularizing as in [31], we obtain

F(η) = Λ(η)g(q) (C.10)
g(q) = 〈O(u = 0)O(u = πτ)〉pillow (C.11)
Λ(η) = θ3(q)c/2−16h[η(1− η)]c/24−2h. (C.12)

We can think of the pillow two-point function g(q) as an expectation value

g(q) = 〈ψ|qL0−c/24|ψ〉, |ψ〉 = O(0)|0〉, (C.13)

where due to our choice of quantization, 〈ψ| = 〈0|O(πτ). To be clear, here |0〉 is the vacuum
state on the half-cylinder. In the boundary channel, factoring out the Λ prefactor also gives

g(q) =
∑
ĥ

|BOĥ|
2Ṽĥ(q), Ṽĥ(q) = Λ(η)−1Vĥ(η). (C.14)

We can split the block into descendants:

Ṽĥ(q) =
∑
n≥0

anq
n+ĥ−c/24. (C.15)

In a unitary BCFT, the an ≥ 0, since otherwise we can construct a linear combination of
descendants with negative norm.

The bulk channel is naturally interpreted as quantizing on the B cycle:

g(q) = 〈ψ′|q̄L0−c/24|B〉, (C.16)

where |ψ′〉 = O(πτ)O(0)|0〉, |0〉 now the vacuum state for the full cylinder, and q̄ = e−πi/τ

is the S-transformed modular parameter. Performing the bulk OPE expansion of our two
operators, we end up with precisely the sum of bulk Virasoro primaries weighted by OPE
coefficients and one-point functions given above.
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Figure 13. Left. Relation between the radial ρ variable and the nome q. Right. The real part of
− log q as a function of Lorentzian cross-ratio.

C.4 Seeking Lorentzian singularities

Mapping the unit disk |ρ| ≤ 1 to the q variable leads a region sitting inside the unit disk of
q, and hitting the boundary at q = ±1, which corresponds to ρ = ±1, and hence η = 1,−∞,
or ξ = 0,−∞ in our preferred cross-ratio. Note that g(q) is finite inside the unit disk, since
it is given by an expansion in powers of q with positive, bounded coefficients. We depict
this in figure 13 (left) below.

We would like to use the behaviour of g(q) to deduce that the only Lorentzian singular-
ities are the light-cone singularities. Let us define

log q
[
ξ = − cos2

(
φ

2

)]
= −σ(φ) + iθ(φ), (C.17)

where φ is the argument of ρ. We plot the values of σ(θ) = − log |q| in figure 13 (right).
It is positive except when φ ∈ πZ. Recall that ρ = reiφ = eτ+iφ in radial quantization, so
that when we continue to the Lorentzian cylinder, τ = it, the analytically continued nome
becomes q = e−σ(φ+t)+iθ(φ+t). The Cauchy-Schwarz inequality then gives

|g(q)| ≤ 〈ψ||q|L0−c/24|ψ〉 = g(e−σ(φ−t)). (C.18)

This is the Euclidean pillow correlator again, which is finite except when q = 1, i.e., σ = 0,
or φ+ t ∈ πZ. These are precisely the light-cone singularities. We have thus proved that
the only singularities in a 2D BCFT are the expected Euclidean and lightcone singularities,
as advertised.

D Bulk causality in top-down model

In this appendix, we will endeavour to give further background information about causal
features of the top-down construction mentioned in section 6.2, namely the AdS2-cap
solution of Chiodaroli, D’Hoker, and Gutperle. The metric functions for this solution are
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given by

f4
1 = 2κ2

µ2
0

µ2
0Im (w)2 + κ2|1− w2|2

|w|4

f4
2 = 2κ2µ2

0Im (w)4

|w|4
(
µ2

0Im (w)2 + κ2|1− w2|2
)

ρ4 = µ2
0

8κ2
µ2

0Im (w)2 + κ2|1− w2|2

|w|4|1− w2|4
,

(D.1)

where κ > 0 and µ are two real parameters. We will sometimes denote a ≡ 2κ
µ0

for
convenience. The asymptotically AdS3×S3 region is located at w = 0, whereas the AdS-cap
singularities are located at w = ±1.

Let (u, t) be the Poincaré coordinates of the AdS2 factor and (θ, φ) be the angular
coordinates of the S2 factor, so that

ds2
AdS2 = du2 − dt2

u2 , ds2
S2 = dθ2 + sin2 θdφ2 . (D.2)

It is straightforward to demonstrate that, in the limit that we approach the asymptotic
boundary, the AdS2 coordinates (u, t) agree with the BCFT coordinates (x⊥, t̂) (arising in
Fefferman-Graham gauge) up to a constant factor

u
∣∣
∂

= −x⊥/a , t
∣∣
∂

= t̂/a . (D.3)

In particular, these factors will drop out of a calculation of the BCFT cross-ratio, so we
can calculate the cross-ratio directly using the (u, t) parameters.

We would like to shoot in geodesics from the asymptotic boundary of the AdS3 × S3

region, provided initial data consistent with the null constraint

0 = f2
1
u2

(
u̇2 − ṫ2

)
+ f2

2

(
θ̇2 + sin2 θφ̇2

)
+ ρ2

(
ẋ2 + ẏ2

)
, (D.4)

and solve the geodesic equation to determine the intersection of the bulk light cone with
the asymptotic boundary.

Before proceeding to determine the null geodesics, we may choose to multiply the
metric functions by some fixed conformal factor, since this will not affect the bulk light
cone structure; we therefore choose for convenience to multiply the metric by f−2

1 , to obtain

ds̃2 = ds2
AdS2 + f2

2
f2

1
ds2
S2 + ρ2

f2
1
dwdw̄ . (D.5)

Our choice is motivated by the fact that ρ2/f2
1 is a simple function of the complex coordinates

(w, w̄), namely
ρ2

f2
1

= 1
a2

1
|1− w2|2

. (D.6)
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With this choice, and taking fixed θ = π
2 without loss of generality, we find the components

of the geodesic equation decouple pairwise, giving

ẍ = 4y(x2 + y2 + 1)
((x− 1)2 + y2) ((x+ 1)2 + y2) ẋẏ + 2x(x2 + y2 − 1)

((x− 1)2 + y2) ((x+ 1)2 + y2)
(
ẋ2 − ẏ2

)

− 8xy2φ̇2


(
x2 + y2 − 1

) (
(x+ 1)2 + y2

) (
(x− 1)2 + y2

)
(
(1− x2)2 + y4 + 2

(
x2 + 1 + µ2

0
2κ2

)
y2
)2

 ,

ÿ = 4x(x2 + y2 − 1)
((x− 1)2 + y2) ((x+ 1)2 + y2) ẋẏ −

2y(x2 + y2 + 1)
((x− 1)2 + y2) ((x+ 1)2 + y2)

(
ẋ2 − ẏ2

)

+ 4yφ̇2


((
x2 − 1

)2 − y4
) (

(x+ 1)2 + y2
) (

(x− 1)2 + y2
)

(
(1− x2)2 + y4 + 2

(
x2 + 1 + µ2

0
2κ2

)
y2
)2


φ̈

φ̇
=

 4x2 (x2 + y2 − 1
)

(1− x2)2 + y4 + 2
(
x2 + 1 + µ2

0
2κ2

)
y2

 ẋ

x

−

 2
((
x2 − 1

)2 − y4
)

(1− x2)2 + y4 + 2
(
x2 + 1 + µ2

0
2κ2

)
y2

 ẏ

y
,

(D.7)

and
ü = 1

u

(
u̇2 + ṫ2

)
, ẗ = 2

u
u̇ṫ , (D.8)

while the null condition is still as above (with θ̇ = 0).

D.1 Short light-crossing time with fine-tuned initial conditions

Before considering more general initial data, we will consider the case ẋ(0) = 0; it is
straightforward to see that x(s) = 0 for the entire trajectory in this case, so that the
equations simplify to

ÿ

y
= 2ẏ2

(1 + y2) + 4φ̇2

 (
1− y4) (1 + y2)2(

1 +
(
1 + µ2

0
2κ2

)
y2 + y4

)2


φ̈

φ̇
= −

 2
(
1− y4)

1 +
(
1 + µ2

0
2κ2

)
y2 + y4

 ẏ

y
.

(D.9)

We can integrate out the φ equation, which gives

ln
(
φ̇(s)/φ̇(s0)

)
= −

∫ s

s0
ds′

 2
(
1− y(s′)4)

1 +
(
1 + µ2

0
2κ2

)
y(s′)2 + y(s′)4

 ẏ(s′)
y(s′)

=

ln

y(s)4 +
(
1 + µ2

0
2κ2

)
y(s)2 + 1

y(s)2



s

s0

,

(D.10)
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that is,

φ̇(s) = c ·
y(s)4 +

(
1 + µ2

0
2κ2

)
y(s)2 + 1

y(s)2 , c ≡ φ̇0y
2
0

y4
0 +

(
1 + µ2

0
2κ2

)
y2

0 + 1
, (D.11)

where the subscript zero denotes evaluation at a reference value s = s0. The y equation
then gives

ÿ

y
− 2ẏ2

(1 + y2) = 4c2

y4 (1− y4)(1 + y2)2 , (D.12)

where y(s0) = y0 and φ̇(s0) = φ̇0. Note that the parameters µ0, κ have dropped out of this
expression.

For any choice of initial conditions for this ODE, the trajectory diverges to y = ∞
in some finite affine parameter. The point ∞ on Σ is a regular point of the smooth 6D
geometry; in particular, making coordinate transformation

v = 1
w
, v̄ = 1

w̄
, (D.13)

and letting
v = reiϕ , v̄ = re−iϕ , (D.14)

we have for small r

ds2 ≈ µ0√
8

(
dr2

r2 + a2

u2

(
du2 − dt2

))
+ µ0√

8

(
dϕ2 + 4r2 sin2 ϕ

(
dθ2 + sin2 θdφ2

))
. (D.15)

Evidently, this point is at an infinite proper distance from any other point in the geometry
that we might choose, but is reached by our null geodesic in finite affine parameter; the
metric in the vicinity of this point is conformal to

ds2 =
(
dr2 + r2dϕ2

)
+O(r2) , (D.16)

so our geodesic will “turn around” at this point.
For concreteness, we can consider the case φ̇(0) = 0; the corresponding geodesic leaves

and returns to the asymptotic boundary y = 0 in affine parameter s = π
ẏ(0) . Indeed, the

ODE determining the trajectory on the Riemann surface Σ

ÿ = 2y
(y2 + 1) ẏ

2 , y(0) = 0 , ẏ(0) = y1 , (D.17)

has solution

y(s) =

tan(y1s) 0 < s < π
2y1

tan (π − y1s) π
2y1

< s < π
y1

. (D.18)

In particular, we see that the geodesic returns to the asymptotic boundary in affine parameter
s = π

y1
. Without loss of generality, we take y1 = 1 in the following, which is simply a choice

of normalization for the affine parameter.
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We can now turn to the coordinates (u, t). The general solution to the differential
equations for these parameters is

u(s) = u(s0) sec
((s− s0)

a

)
t(s) = u(s0) tan

((s− s0)
a

)
+ u(s0) tan

(
s0
a

)
.

(D.19)

The only way that this trajectory couples to the trajectory on Σ is that the latter determines
the total affine parameter S elapsed along the trajectory. Thus, in particular, we may
calculate the cross-ratio for the initial and final coordinates on the geodesic, finding

ξ = − (t(S)− t(0))2 + (u(S)− u(0))2

4u(0)u(S) = 1
2 (cos (S/a)− 1) . (D.20)

In terms of the “radial coordinate” cross-ratio ρ defined by

ξ = (1− ρ)2

4ρ , (D.21)

we have
ρ = cos (S/a)± i sin (S/a) = e±

iS
a , (D.22)

where for example S = π for the case φ̇(0) = 0. Consequently, if we expect this cross-ratio
to describe the locus of a Lorentzian singularity of a BCFT two-point function, then we
might expect that such singularity can be attributed to the contribution of a particular
tower of boundary operators with dimensions exhibiting an asymptotic spacing which is an
integer multiple of 2a.

D.2 Geodesics for general initial conditions

More general solutions to the geodesic equations (D.7), (D.8) and the null constraint, without
the assumption x(s) = 0, may also be studied numerically. Doing so, we appear to find that
null geodesics with initial momentum in the x-direction quite generically approach the AdS-
caps. In figure 14, we plot the distance of various geodesics from the curvature singularity
as a function of affine parameter for various initial conditions, restricting momentarily
to the case with no momentum on the S2. This is consistent with the conclusion of our
perturbative argument in the main text; indeed, the perturbative assumption made there
appears to hold in general, with an example of this fact illustrated in figure 15.

We can attempt to extend this analysis to the case with momentum on the S2. However,
we cannot actually send in geodesics from the asymptotic boundary with momentum on the
S2; the system of ODEs is singular at x = y = 0, and the angular momentum on S2 diverges
there in general. Instead, we choose a point near the origin of Σ and send a geodesic in
from this point with initial momentum on the S2, with the hopes that this will capture
the relevant behaviour. Doing so, we again find that the AdS-caps act as attractors; see
figure 16 for an example.
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Figure 14. Logarithmic distance to the AdS-cap ln
(
(x(s)− 1)2 + y(s)2) versus affine parameter s

for geodesics with various initial conditions on the internal space Σ. Here we have chosen µ0 = κ = 1
for concreteness.

Figure 15. Plots of ln
(
ε̇2

x/ε
ε̇2/ε2

)
(left) and ln

(
ε̇2

y/ε

ε̇2/ε2

)
(right) versus affine parameter for a geodesic

with initial condition ẋ(0)/ẏ(0) = 0.3; these quantities are required to be small for ingoing geodesics
to approach the cap exponentially in the affine parameter. Here we have chosen µ0 = κ = 1 for
concreteness.
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Figure 16. Logarithmic distance to the AdS-cap ln
(
(x(s)− 1)2 + y(s)2) versus affine parameter s

for geodesics with various initial conditions on the S2. We take x = y = 10−4 as the origin for these
geodesics, with initial condition ẋ(0) = ẏ(0) = 1. Here we have chosen µ0 = κ = 1 for concreteness.
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