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1 Introduction

In condensed matter physics, the mechanism leading to superconductivity with high critical
temperature, which can not be described by the conventional Bardeen-Cooper-Schrieffer
(BCS) theory [1], is still unclear. However, recently developed holographic superconductor
models, have been used to give some insights into the pairing mechanism in the high-
temperature superconductor systems [2–5]. According to the anti-de Sitter/conformal field
theory (AdS/CFT) correspondence, which relates strongly coupled systems to weakly cou-
pled systems [6], Gubser presented the spontaneous symmetry breaking of the U(1) symme-
try for an Abelian Higgs model coupled to the gravity theory with a negative cosmological
constant [7], and Hartnoll et al. reproduced the properties of a (2 + 1)-dimensional s-wave
superconductor in the (3 + 1)-dimensional holographic superconductor model based on
the framework of usual Maxwell electrodynamics [8]. To go a step further, the p-wave
holographic superconductivity was realized by introducing an SU(2) Yang-Mills field into
the bulk [9] while the d-wave holographic superconductor was constructed by introducing
a charged massive spin two field propagating in the bulk [10, 11]. Especially, introduc-
ing a charged vector field into an Einstein-Maxwell theory [12], Cai et al. developed a
novel p-wave holographic superconductor model which is a generalization of the SU(2)
model with a general mass and gyromagnetic ratio [13]. Considering the application of the
Mermin-Wagner theorem to the holographic superconductors, Gregory et al. constructed
holographic superconductors in the five-dimensional Einstein-Gauss-Bonnet gravity in the
probe limit where the backreaction of matter fields on the spacetime metric is neglected [14].
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It was observed that the higher curvature correction makes the scalar condensates harder
to form and causes the behavior of the claimed universal ratio ω/Tc ≈ 8 [15] unstable. Note
that this conclusion still holds in higher dimensions [16] and beyond the probe limit [17–
19]. Other generalized investigations based on the effects of the curvature correction on
the holographic dual models can be found, for example, in refs. [20–36].

All the studies mentioned above concerning the holographic dual models with the cur-
vature correction are based on the Einstein-Gauss-Bonnet gravity in dimensions D ≥ 5,
where we find that the higher curvature corrections make it harder for the scalar [14, 16–29]
or vector [30–36] hair to form. As pointed out by Gregory et al. in [14], one can expect
this tendency to be the same even in (2 + 1)-dimensions, however, it remains obscure to
what extent this suppression affects the physics of holographic superconductors in (2 + 1)-
dimensions. It now seems likely that we can investigate the influence of the curvature
correction on the (2 + 1)-dimensional superconductors because of the recently introduced
Einstein-Gauss-Bonnet gravity in four dimensions [37]. Rescaling the Gauss-Bonnet cou-
pling constant α→ α/(D−4) and taking the limit D → 4 [37], Glavan and Lin formulated
the novel four-dimensional (4D) Einstein-Gauss-Bonnet gravity and reported several ap-
pealing new predictions of this theory, including the singularity resolution for spherically
symmetric solutions. Extending the investigation to the AdS space, the authors obtained
the charged AdS black-hole solution in the 4D Einstein-Gauss-Bonnet Gravity [38] and
Einstein-Lovelock gravity [39]. Interestingly, the solution of the same form has been pre-
sented in the conformal anomaly inspired gravity [40, 41]. Along this line, the Einstein-
Gauss-Bonnet gravity in the 4D spacetime has been explored extensively on various as-
pects, including the exact solutions [42–55], the quasinormal modes and stability [56–67],
the observable shadows [68–73], the geodesics and gravitational lensing [74–78], and the
thermodynamics and cosmic censorship conjecture [79–86].

However, the original claim of ref. [37] is clearly in contradiction with the Lovelock
theorem, and some subtleties and criticisms on the D → 4 limit were revealed in [87–91],
concluding that there is no pure four-dimensional Einstein-Gauss-Bonnet gravity [92, 93].
In refs. [94, 95], the authors proposed the “regularized" versions of the 4D Einstein-Gauss-
Bonnet gravity, i.e., the scalar-tensor description of the D → 4 limit of the Einstein-
Gauss-Bonnet gravity, which can be described effectively by a particular subclass of the
Horndeski theory. Other investigations based on the regularized 4D Einstein-Gauss-Bonnet
gravity can be found, for example, in refs. [96, 97]. However, Kobayashi pointed out that
the regularized 4D Einstein-Gauss-Bonnet gravity contains an additional dynamical scalar
field but the scalar field lacks the quadratic kinetic term, which leads to the infinite strong
coupling problem [98]. In ref. [99], this issue was also discussed by Bonifacio et al. in
detail. Fortunately, using the Arnowitt-Deser-Misner (ADM) decomposition, Aoki et al.
proposed a novel four-dimensional theory that serves as a consistent realization of the
D → 4 limit of the Einstein-Gauss-Bonnet gravity with two dynamical degrees of freedom
by breaking the temporal diffeomorphism invariance [100]. In particular, it was found
that the Friedmann-Lemaître-Robertson-Walker (FLRW) and black hole solutions obtained
in [37] are solutions of this well-defined theory, which has been checked explicitly in [101].
In ref. [102], Konoplya et al. investigated the grey-body factor for Dirac, electromagnetic
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and gravitational fields, and estimated the intensity of Hawking radiation and lifetime for
asymptotically flat black holes in this consistent theory. More recently, the authors of
ref. [103] studied the inflationary gravitational waves in the consistent D → 4 Einstein-
Gauss-Bonnet gravity and found a new attractor regime which they called the Gauss-
Bonnet attractor as the dominant contribution coming from the Gauss-Bonnet term.

In this work, we will use the consistent theory of the D → 4 Einstein-Gauss-Bonnet
gravity [100] to give the 4D Gauss-Bonnet-AdS black hole solution, which is proved out
to be the solution obtained via the naive D → 4 limit of the higher-dimensional theory
(by setting the charge Q = 0) [38, 39] as well as the scalar-tensor theories with the Gauss-
Bonnet term [94, 95]. Considering the increasing interest in study of the 4D Einstein-
Gauss-Bonnet gravity, we are going to examine the influence of the curvature correction
on the (2 + 1)-dimensional superconductor models which has not been studied as far as
we know. We will give a more complete picture of how the curvature correction affects
the condensate for the scalar/vector operator and the conductivity by introducing the
s-wave and p-wave holographic superconductors with Gauss-Bonnet corrections in four
dimensions, and compare the result with that given in the higher-dimensional Gauss-Bonnet
superconductors. In order to avoid the complex computation and extract the main physics,
we will concentrate on the probe limit neglecting backreaction of the spacetime.

The plan of the work is the following. In section 2 we will present the 4D neutral AdS
black-hole solution in the Einstein-Gauss-Bonnet gravity by using the consistent D → 4
Einstein-Gauss-Bonnet gravity proposed in [100], which can also be obtained from ref. [39]
by setting the charge Q = 0. In section 3 we will construct the s-wave holographic su-
perconductors in the 4D Einstein-Gauss-Bonnet gravity and investigate the effect of the
curvature correction on the (2 + 1)-dimensional superconductors. In section 4 we will
explore the p-wave cases. We will conclude in the last section with our main results.

2 4D Gauss-Bonnet-AdS black holes

For the consistent theory of the four-dimensional Einstein-Gauss-Bonnet gravity, we can
write the metric in the ADM formalism as

ds2 = gµνdx
µdxν = −N2dt2 + γij(dxi +N idt)(dxj +N jdt), (2.1)

with the lapse function N , shift vector N i and spatial metric γij . And we can express the
gravitational action as [100, 101, 103]

S =
∫
dtd3xN

√
γL4D

EGB, (2.2)

with the Lagrangian density

L4D
EGB = M2

Pl
2

{
2R+ 6

L2 −M+ α

2

[
8R2 − 4RM−M2

−8
3
(
8RijRij − 4RijMij −MijMij

) ]}
, (2.3)
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where M2
Pl = (8πG)−1 is the reduced Planck mass. R and Rij are respectively the Ricci

scalar and Ricci tensor of the spatial metric, and

Mij ≡ Rij +KkkKij −KikKkj , M≡Mi
i , (2.4)

with

Kij ≡
1

2N
[
γ̇ij − 2D(iNj) − γijD2λGF

]
, (2.5)

where a dot denotes the derivative with respect to the time t, and Di represents the
covariant derivative compatible with the spatial metric.

Considering the four-dimensional topological black hole, we take the metric ansatz

N = eA(r) , N i = 0 , γij = diag(e2B(r), r2, r2H(k)) (2.6)

with

H(k) =


sinh2 θ , k = −1;
1, k = 0;
sin2 θ , k = 1.

(2.7)

For the symmetric static backgrounds, we can set the Lagrange multiplier λGF to zero in
practice and (2.5) reduces to the standard extrinsic curvature [101, 103]. Thus, we get the
simple form of the action

S = Σk

8πG

∫
dt dreA+B

[
r3ϕ (1 + αϕ) + r3

L2

]′
, (2.8)

where Σk represents the volume, ϕ = r−2(k−e−2B) is the function of r only, and the prime
denotes the derivative with respect to r. Thus, from this action we have [104]

eA+B = 1, ϕ(1 + αϕ) + 1
L2 = 8πGM

Σkr3 . (2.9)

Obviously, we can get the exact solution

e2A = e−2B = k + r2

2α

(
1±

√
1 + 32παGM

Σkr3 − 4α
L2

)
, (2.10)

which coincides with the black-hole solution obtained via the naive D → 4 limit of the
higher-dimensional theory (by setting the charge Q = 0) [38, 39] as well as the regularized
4D Einstein-Gauss-Bonnet gravity proposed in refs. [94, 95]. Since we can recover the
Schwarzschild-AdS black hole in the limit α→ 0, we are more interested in the physically
interesting solution with the minus sign.

In order to construct a superconductor dual to an AdS black hole configuration in the
probe limit, in this work we consider the background of the 4D planar Gauss-Bonnet-AdS
black hole

f = e2A = e−2B = r2

2α

1−

√√√√1− 4α
L2

(
1−

r3
+
r3

)  , (2.11)
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where the black hole horizon r+ is related to the mass M through r3
+ = 8πGML2/Σ0 with

the volume of the Ricci flat space Σ0. It should be noted that in the asymptotic region,
i.e., r → ∞, we find f(r) ∼ r2

(
1−

√
1− 4α/L2

)
/ (2α), which means that, just like the

cases D ≥ 5, we can define the effective asymptotic AdS scale by [104]

L2
eff = 2α

1−
√

1− 4α
L2

, (2.12)

where the so-called Chern-Simons limit α = L2/4 [105] is the upper bound of the Gauss-
Bonnet parameter. For simplicity, in the following we will consider the Gauss-Bonnet
parameter in the range −L2/10 ≤ α ≤ L2/4. We can easily obtain the Hawking tempera-
ture of this 4D Gauss-Bonnet-AdS black hole

T = 3r+
4πL2 , (2.13)

which will be interpreted as the temperature of the CFT. For convenience, we will scale
L = 1 in the following calculation.

3 s-Wave holographic superconductors

We want to know the influence of the curvature correction on the (2 + 1)-dimensional
superconductors since we have obtained the 4D Gauss-Bonnet-AdS black hole by using
the consistent theory proposed in [100]. In this section, we first introduce the s-wave
holographic superconductor models in the 4D Gauss-Bonnet-AdS black hole.

3.1 Condensates of the scalar field

We consider a Maxwell field and a charged complex scalar field coupled via the action

S =
∫
d4x
√
−g

[
−1

4FµνF
µν − gµν(∇µψ − iqAµψ)(∇νψ − iqAνψ)∗ −m2|ψ|2

]
. (3.1)

Adopting the ansatz for the matter fields ψ = |ψ|, At = φ where ψ, φ are both real functions
of r only, we arrive at the equations of motion

ψ′′ +
(2
r

+ f ′

f

)
ψ′ +

(
q2φ2

f2 −
m2

f

)
ψ = 0, (3.2)

φ′′ + 2
r
φ′ − 2q2ψ2

f
φ = 0, (3.3)

where the prime denotes differentiation in r.
To get the solutions in the superconducting phase, i.e., ψ(r) 6= 0, we have to count on

the appropriate boundary conditions. At the horizon r = r+, the regularity leads to the
boundary conditions ψ(r+) = f ′(r+)ψ′(r+)/m2 and φ(r+) = 0. Near the AdS boundary
r →∞, the asymptotic behaviors of the solutions are

ψ = ψ−
rλ−

+ ψ+
rλ+

, φ = µ− ρ

r
, (3.4)
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with the characteristic exponents

λ± = 1
2

(
3±

√
9 + 4m2L2

eff

)
, (3.5)

where µ and ρ are interpreted as the chemical potential and charge density in the dual
field theory, respectively. Considering the stability of the scalar field, we observe that
the mass should be above the Breitenlohner-Freedman bound m2

BF = −9/(4L2
eff) [106],

which depends on the Gauss-Bonnet parameter α. From the AdS/CFT correspondence,
provided λ− is larger than the unitarity bound, both ψ− and ψ+ can be normalizable and
correspond to the vacuum expectation values 〈O−〉 = ψ−, 〈O+〉 = ψ+ of an operator O
dual to the scalar field, respectively. We will impose boundary condition that either ψ+ or
ψ− vanishes since imposing boundary conditions in which both ψ− and ψ+ are non-zero
makes the asymptotic AdS theory unstable [8].

It is interesting to note that, from eqs. (3.2) and (3.3), we can get the useful scaling
symmetries and the transformation of the relevant quantities

r → βr, (t, x, y)→ β−1(t, x, y), q → q, ψ → ψ, φ→ βφ,

(T, µ)→ β(T, µ), ρ→ β2ρ, ψ± → βλ±ψ±, (3.6)

where β is a real positive number. We will make use of these properties to set r+ = 1 and
q = 1 when performing numerical calculations.

3.1.1 Scalar operator O+

Using the shooting method [8], we can solve numerically the equations of motion (3.2)
and (3.3) by doing an integration from the horizon out to the AdS boundary. From the
expression (3.5), we can choose the mass of the scalar field by selecting the values of m2L2

or m2L2
eff , due to the presence of the Gauss-Bonnet parameter, just as in the cases of

D ≥ 5 [14, 16]. Obviously, we have to reinvestigate the issue related to the different choices
of the mass of the scalar field for the (2 + 1)-dimensional Gauss-Bonnet superconductors.

In figure 1, we present the condensates of the scalar operator O+ as a function of
temperature with various Gauss-Bonnet parameters α for the fixed masses of the scalar field
m2L2 = −2 andm2L2

eff = −2. It is found that, the curves have similar behavior to the BCS
theory for different α, where the condensate goes to a constant at zero temperature, which
indicates that the s-wave holographic superconductors still exist even we consider Gauss-
Bonnet correction terms to the standard (2 + 1)-dimensional holographic superconductor
model built in [8]. Fitting these curves for small condensate, we observe that there is
a square root behavior 〈O+〉 ∼ (1 − T/Tc)1/2, which is typical of second order phase
transitions with the mean field critical exponent 1/2 for all values of α. Furthermore, the
left panel of figure 1 shows that the higher correction term α makes the condensation gap
larger for the operator O+, which implies the higher Gauss-Bonnet correction will make
the scalar hair more difficult to be developed. However, fixing the scalar field mass by
m2L2

eff = −2, we can see clearly from the right panel of figure 1 that there is an abnormal
behavior in the Chern-Simons limit α = 0.25, which is completely different from that of the
(3 + 1)-dimensional Gauss-Bonnet superconductors [14, 16]. This means that the different
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Figure 1. The condensates of the scalar operator O+ as a function of temperature for the fixed
masses of the scalar field m2L2 = −2 (left) and m2L2

eff = −2 (right) with different Gauss-Bonnet
parameters, i.e., α = −0.1 (red and dashed), 0.0 (blue), 0.1 (green) and 0.25 (black and dashed),
respectively.
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Figure 2. The critical temperature Tc of the scalar operator O+ as a function of the Gauss-Bonnet
parameter for the fixed masses of the scalar field by choosing values of m2L2 (left) and m2L2

eff
(right).

choices of the mass of the scalar field will modify the effect of α on the behavior of the
condensates even for the operator O+.

In order to further understand the findings of figure 1, we exhibit the critical tempera-
ture Tc as a function of the Gauss-Bonnet parameter α for the different choices of the mass
of the scalar field in figure 2. Fixing the mass of the scalar field by choosing values of m2L2,
from the left panel of figure 2 we observe that the critical temperature Tc decreases as α
increases for different masses of the scalar field, which agrees well with the finding in the left
panel of figure 1 and indicates that the higher curvature correction makes the condensate
of the scalar operator O+ harder. However, the story is different if we fix the mass of the
scalar field by choosing values of m2L2

eff . From the right panel of figure 2, we find that the
effect of the Gauss-Bonnet parameter is more subtle: the critical temperature Tc decreases
with the increase of α for the large mass scale such as m2L2

eff = 0 and −1, but decreases
first and then increases when α increases for the small mass scale such as m2L2

eff = −7/4
and −2, which is consistent with the behavior of the scalar condensates for m2L2

eff = −2
with various Gauss-Bonnet parameters in figure 1. This behavior is reminiscent of that seen

– 7 –



J
H
E
P
1
2
(
2
0
2
0
)
1
9
2

α=-0.1

α=0.0

α=0.1

m
2
L
2=-2

0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

6

T

Tc

<O->

1

λ-

Tc

α=-0.1

α=0.0

α=0.1

m
2
Le��

2=-2

0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

6

T

Tc

<O->

1

λ-

Tc

Figure 3. The condensates of the scalar operator O− as a function of temperature for the fixed
masses of the scalar field m2L2 = −2 (left) and m2L2

eff = −2 (right) with different Gauss-Bonnet
parameters, i.e., α = −0.1 (red and dashed), 0.0 (blue) and 0.1 (black and dashed), respectively.

for the (3 + 1)-dimensional Gauss-Bonnet superconductors with backreactions, where the
critical temperature first decreases then increases as the Gauss-Bonnet term tends towards
the Chern-Simons value in a backreaction dependent fashion [17]. Obviously, although how
the curvature correction works in the holographic s-wave superconductors is still an open
question, the (2 + 1)-dimensional Gauss-Bonnet superconductors exhibit a very interesting
and different feature when compared to the higher-dimensional cases in the probe limit.

3.1.2 Scalar operator O−

Now we are in a position to impose the condition ψ+ = 0 and discuss the condensates
of the scalar operator O−. For concreteness, we set m2L2 = −2 and m2L2

eff = −2 in
our calculation, where the choice of the Gauss-Bonnet parameter should satisfy the range
−9/4 < m2L2

eff < −5/4 where both modes of the asymptotic values of the scalar fields are
normalizable [15].

We give in figure 3 the condensates of the scalar operator O− as a function of tem-
perature with various Gauss-Bonnet parameters α for the fixed masses m2L2 = −2 and
m2L2

eff = −2, which will diverge at low temperatures, similar to that for the standard
holographic superconductor model in the probe limit neglecting backreaction of the space-
time [8]. More importantly, from this figure, we find that the condensate of the operator
O− for different choices of the mass of the scalar field has completely different behavior as
the Gauss-Bonnet parameter is changing, which is in agreement with the result obtained in
the figure 4, where the Gauss-Bonnet term has completely different effects on the critical
temperature Tc for m2L2 = −2 and m2L2

eff = −2. Considering the correct consistent influ-
ence due to the Gauss-Bonnet parameter in various condensates for all dimensions [16, 31]
and the pure effect of the curvature correction on the critical temperature Tc for the fixed
mass m2L2 = m2L2

eff = 0 in figure 2, i.e., the increase of α results in the decrease of Tc,
we argue that it is more appropriate to choose the mass of the scalar field by selecting
the values of m2L2

eff for the Gauss-Bonnet superconductors even in (2 + 1)-dimensions.
Therefore, the higher curvature corrections make it harder for the condensate of the scalar
operator O− to form.
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Figure 4. The critical temperature Tc of the scalar operator O− as a function of the Gauss-Bonnet
parameter for the fixed masses of the scalar field m2L2 = −2 (blue) and m2L2

eff = −2 (red).

3.2 Conductivity

In order to calculate the conductivity, we consider the perturbed Maxwell field δAx =
Ax(r)e−iωtdx, which results in the equation of motion

A′′x + f ′

f
A′x +

(
ω2

f2 −
2q2ψ2

f

)
Ax = 0. (3.7)

With the ingoing wave boundary condition near the horizon Ax(r) ∼ f(r)−iω/(3r+), and
the behavior in the asymptotic AdS region

Ax = A(0)
x + A

(1)
x

r
, (3.8)

from Ohm’s law we can obtain the conductivity of the dual superconductor [8]

σ = − iA
(1)
x

ωA
(0)
x

. (3.9)

We will focus on the case of the scalar operator O+ for the fixed scalar field massesm2L2
eff =

−2 and 0, and study the effect of the Gauss-Bonnet correction term on the conductivity
by solving eq. (3.7) numerically.

In figure 5 we present the frequency dependent conductivity for α = −0.1, 0 and
0.25 with the fixed masses m2L2

eff = −2 and 0 at temperatures T/Tc ≈ 0.2. We can
see clearly a gap in the conductivity with the gap frequency ωg which can be defined
as the frequency minimizing Im[σ(ω)] for all cases considered here [15]. For the same
mass of the scalar field, we observe that with the increase of the Gauss-Bonnet parameter
α, the gap frequency ωg becomes larger, just as in the (3 + 1)-dimensional Gauss-Bonnet
superconductors [14, 16]. Also, for increasing absolute value of α, we have larger deviations
from the value ωg/Tc ≈ 8, especially in the case of the Chern-Simons limit α = 0.25
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Figure 5. Conductivity of the (2+1)-dimensional s-wave superconductors for different values of the
Gauss-Bonnet parameter with the fixed scalar field masses m2L2

eff = −2 and 0. In each panel, the
blue (solid) line and red (dashed) line represent the real part and imaginary part of the conductivity
σ(ω) respectively.

where ωg/Tc ≈ 13.0 for m2L2
eff = −2 and ωg/Tc ≈ 14.5 for m2L2

eff = 0. This shows that
the higher curvature corrections really change the universal relation in the gap frequency
ωg/Tc ≈ 8 [15] for (2 + 1)-dimensional superconductors.

4 p-Wave holographic superconductors

In the previous section, we have investigated the influence of the curvature correction on
the (2+1)-dimensional s-wave superconductors, which shows that the Gauss-Bonnet terms
have more subtle effects on the condensates of the scalar field and change the ratio in
the gap frequency ωg/Tc ≈ 8. In this section, we will construct the p-wave holographic
superconductors in the 4D Gauss-Bonnet-AdS black hole and analyze the influence of the
curvature correction on these models.

4.1 Condensates of the vector field

We start with the action of the Einstein-Maxwell-complex vector model [12, 13]

S =
∫
d4x
√
−g
[
− 1

4FµνF
µν − 1

2(Dµρν −Dνρµ)†(Dµρν −Dνρµ)

−m2ρ†µρ
µ + iqγρµρ

†
νF

µν
]
, (4.1)

where m and q represent the mass and charge of the vector field ρµ, and Dµ = ∇µ− iqAµ is
the covariant derivative. The last term, which describes the interaction between the vector
field ρµ and gauge field Aµ, will not play any role since we will only consider the case without
an external magnetic field. Taking the ansatz for the matter fields ρνdxν = ρx(r)dx and
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Aνdx
ν = At(r)dt [12, 13], we obtain the following equations of motion

ρ′′x + f ′

f
ρ′x +

(
q2A2

t

f2 −
m2

f

)
ρx = 0, (4.2)

A′′t + 2
r
A′t −

2q2ρ2
x

r2f
At = 0, (4.3)

where the prime denotes the derivative with respect to r.
We impose the appropriate boundary conditions for ρx(r) and At(r) to get the solutions

in the superconducting phase. At the horizon, we can easily get the boundary conditions
ρx(r+) = f ′(r+)ρ′x(r+)/m2 and At(r+) = 0. At the asymptotic boundary, we have

ρx = ρx−
rλ−

+ ρx+
rλ+

, At = µ− ρ

r
, (4.4)

with the characteristic exponents

λ± = 1
2

(
1±

√
1 + 4m2L2

eff

)
, (4.5)

where ρx− and ρx+ are interpreted as the source and the vacuum expectation value of the
vector operator Ox in the dual field theory according to the AdS/CFT correspondence,
respectively. It should be noted that the mass has a lower bound m2

BF = −1/(4L2
eff) with

λ+ = λ− = 1/2. Since we require that the condensate appears spontaneously, we will
impose the boundary condition ρx− = 0 and use λ to denote λ+ in the following analysis.

Considering that eqs. (4.2) and (4.3) are invariant with respect to the following scaling
transformations

r → βr, (t, x, y)→ β−1(t, x, y), q → q, (ρx, At)→ β(ρx, At),
(T, µ)→ β(T, µ), ρ→ β2ρ, ρx+ → β1+λ+ρx+, (4.6)

with a positive number β. In what follows, we will use them to set r+ = 1 and q = 1, just
as in the previous section.

In figure 6, we plot the condensates of the vector operator Ox as a function of tem-
perature with various Gauss-Bonnet corrections α for the fixed masses of the vector field
m2L2 = 3/4 and m2L2

eff = 3/4. It is shown that, for all cases considered here, the behav-
ior of the each curve is similar to that of the p-wave holographic superconductor in the
literature, which suggests that the 4D Gauss-Bonnet black-hole solution with a non-trivial
vector field can describe a superconducting phase. Also, the transition is of the second
order and the condensate approaches zero as 〈Ox〉 ∼ (1− T/Tc)1/2 by fitting these curves
for small condensate. Obviously, regardless of the choice of the mass of the vector field
by selecting the value of m2L2 or m2L2

eff , we see that the increase of the Gauss-Bonnet
parameter α results in the increase of the condensation gap, which agrees well with the
result given in the figure 7, where the critical temperature Tc decreases as α increases for
all vector field masses chosen by fixing m2L2 and m2L2

eff . This means that the higher cur-
vature corrections make it harder for the vector field to condense in the (2+1)-dimensional
superconductors, which is quite different from the findings obtained in figure 1 for the s-
wave superconductors where the different choices of the mass of the scalar field will modify
the effect of the Gauss-Bonnet corrections on the behavior of the condensates.
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Figure 6. The condensates of the vector operator Ox as a function of temperature for the masses
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correspond to increasing Gauss-Bonnet parameter, i.e., α = −0.1 (red and dashed), 0.0 (blue), 0.1
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Figure 7. The critical temperature Tc of the vector operator Ox as a function of the Gauss-
Bonnet parameter for the fixed masses of the vector field by choosing values of m2L2 (left) and
m2L2

eff (right).

4.2 Conductivity

Considering the perturbed Maxwell field δAy = Ay(r)e−iωtdy, we obtain the equation of
motion

A′′y + f ′

f
A′y +

(
ω2

f2 −
2q2ρ2

x

r2f

)
Ay = 0, (4.7)

which has the ingoing wave boundary condition near the horizon Ay(r) ∼ f(r)−iω/(3r+),
and the general behavior near the asymptotic AdS boundary

Ay = A(0)
y + A

(1)
y

r
. (4.8)

Using the AdS/CFT dictionary, we get the conductivity [12]

σ = − iA
(1)
y

ωA
(0)
y

. (4.9)

For clarity, we choose the masses of the vector field m2L2
eff = 3/4 and 0 in our calculation.

– 12 –



J
H
E
P
1
2
(
2
0
2
0
)
1
9
2

α 0.1, m2
Le��

2 3/4

0 5 10 15 20

-1.0

-0.5

0.0

0.5

1.0

ω

Tc

σ

α 0, m2
Le��

2 3/4

0 5 10 15 20

-1.0

-0.5

0.0

0.5

1.0

ω

Tc

σ

α 0.25, m2Le��
2 3/4

0 5 10 15 20

-1.0

-0.5

0.0

0.5

1.0

ω

Tc

σ

α 0.1, m2
Le��

2 0

0 5 10 15 20

-1.0

-0.5

0.0

0.5

1.0

Tc

σ

α 0, m2
Le��

2 0

0 5 10 15 20

-1.0

-0.5

0.0

0.5

1.0

Tc

σ

α 0.25, m2Leff
2 0

0 5 10 15 20

-1.0

-0.5

0.0

0.5

1.0

Tc

σ

Figure 8. Conductivity of the (2 + 1)-dimensional p-wave superconductors for different values
of the Gauss-Bonnet parameter with the fixed vector field masses m2L2

eff = 3/4 and 0. In each
panel, the blue (solid) line and red (dashed) line represent the real part and imaginary part of the
conductivity σ(ω) respectively.

In figure 8, we show the frequency dependent conductivity of the (2 + 1)-dimensional
p-wave superconductors in the Einstein-Gauss-Bonnet gravity for α = −0.1, 0 and 0.25
with the fixed masses m2L2

eff = 3/4 and 0 at temperatures T/Tc ≈ 0.2. Similar to the s-
wave case in figure 5, we find that the conductivity develops a gap with the gap frequency
ωg and the larger deviation from the value ωg/Tc ≈ 8 with the increase of |α|. Thus, from
figures 5 and 8, our study implies that the higher curvature correction results in the larger
deviation from the expected universal relation in the gap frequency ωg/Tc ≈ 8 [15] in both
(2 + 1)-dimensional s-wave and p-wave superconductor models.

5 Conclusions

In this work, we first investigated the 4D neutral AdS black-hole solution in the consistent
D → 4 Einstein-Gauss-Bonnet gravity proposed in [100], which can also be obtained via the
naive D → 4 limit of the higher-dimensional theory (by setting the charge Q = 0) [38, 39]
as well as the regularized 4D Einstein-Gauss-Bonnet gravity [94, 95]. Then, we constructed
the s-wave and p-wave holographic superconductors in this Gauss-Bonnet black hole back-
ground and analyzed the effect of the curvature correction on the (2 + 1)-dimensional
superconductors, which may help to understand the influences of the 1/N or 1/λ (with
λ being the ’t Hooft coupling) corrections on the holographic superconductor models. In
the probe limit, we found that it is more appropriate to choose the mass of the field by
selecting the value of m2L2

eff , since this choice can disclose the correct consistent influ-
ence due to the Gauss-Bonnet parameter in various condensates for all dimensions. In
the s-wave model, although the underlying mechanism remains mysterious, the effect of
the curvature correction is more subtle: the critical temperature first decreases then in-
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creases as the Gauss-Bonnet parameter tends towards the Chern-Simons value in a scalar
mass dependent fashion for the scalar operator O+, but always decreases for the scalar
operator O−, which exhibits a very interesting and different feature when compared to the
higher-dimensional Gauss-Bonnet superconductors. In the p-wave model, we noted that
the critical temperature decreases as the Gauss-Bonnet parameter increases, which tells
us that the higher curvature correction makes it harder for the vector hair to form in the
full parameter space. On the other hand, for all cases considered here, we pointed out
that the curvature correction will not modify the critical phenomena, i.e., the holographic
superconductor phase transition belongs to the second order and the critical exponent of
the system takes the mean-field value. Moreover, we observed that the higher curvature
correction results in the larger deviation from the expected universal relation in the gap
frequency ωg/Tc ≈ 8 in both (2+1)-dimensional s-wave and p-wave superconductors, which
is the same to the finding obtained in (3 + 1)-dimensions.
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