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1 Introduction

Supersymmetry has been a key ingredient of string theory model building and a leading
candidate for a solution to the long-standing gauge hierarchy problem [1, 2]. However,
the present-day absence of supersymmetric partners at the LHC [3], together with the
failure of supersymmetry to explain the even bigger cosmological problem, suggests that
the nature of supersymmetry breaking has not yet been understood. Recently, the fact
that anti-D-branes in type II Calabi-Yau orientifold compactifications [4, 5] spontaneously
break supersymmetry has received a great deal of attention [6–35] (for earlier analyses,
see refs. [36–42]). Together with fluxes, non-perturbative, and perturbative effects, whose
interplay can address the moduli stabilisation problem, the positive-definite energy den-
sity of anti-D-branes may help to obtain a (quasi-)de Sitter vacuum corresponding to the
observed Universe [43, 44]. Whilst the consistency of these de Sitter constructions is still
under debate (for an incomplete list, see refs. [45–86]), the spontaneous breaking of super-
symmetry by anti-D-branes means that these objects can be used in string model building
whilst maintaining the powerful machinery of supersymmetry.

In more detail, there is a precise identification between the anti-D3-brane action in flat
space placed on an orientifold plane and the Volkov-Akulov theory of non-linearly realised
supersymmetry [8, 87]. Moreover, all the degrees of freedom on an anti-D3-brane can be

– 1 –



J
H
E
P
1
2
(
2
0
2
0
)
1
7
4

described using the tools familiar from linear supergravity by placing the low-energy fields
in constrained supermultiplets [16, 17, 35], where the constraints ensure that either only
the bosonic or only the fermionic component is an independent degree of freedom [88, 89].
In particular, the anti-D3-brane gaugino plays the role of the goldstino, and falls in a
nilpotent superfield, X, where the constraint, X2 = 0, fixes the scalar component in terms
of the fermion component and auxiliary field as ϕX = ψXψX/FX , and FX is non-zero
by assumption. The standard non-linear supersymmetry transformation for the goldstino,√

2 δελ ∼ ε/l2, can be seen after the field redefinition λ ∼ ψX/(2l2FX), where l is the scale
where the massive string states come into play.

This progress has made it possible to describe how the anti-D3-brane couples to bulk
fields in type IIB Calabi-Yau orientifold flux compactifications, including the closed-string
moduli, and to determine the mutual interplay between the closed- and open-string sec-
tors [6, 9, 10, 13, 14, 21, 26, 29, 34]. The low-energy effective field theory corresponds
to a non-linear supergravity theory, including standard and constrained superfields, with
the anti-D3-brane uplift corresponding to an FX -term contribution to the scalar potential.
In particular, ref. [29] has derived the complete action for an anti-D3-brane in the KKLT-
scenario by means of constrained superfields, and ref. [34] has considered the coupling of the
anti-D3-brane goldstino to the complex structure modulus controlling the warp factor in a
Klebanov-Strassler throat [90]. Non-linear supersymmetry strongly constrains the theory;
for example, the well-known non-renormalisation theorems fulfilled by low-energy effec-
tive linearly realised supergravities descending from string theory extend to the non-linear
supergravity theories [21].

Given the null results thus far in sparticle searches, the recent insights into anti-D-
brane supersymmetry breaking, and the potential importance of the latter in cosmological
model building, this paper develops the idea that quasi-realistic particle physics models,
with non-standard realisations of supersymmetry, may be obtained using anti-D3-branes.
Anti-D3-/D7-brane systems placed at orbifold singularities are known to lead to interesting
low-energy particle spectra, comprising non-Abelian gauge groups, adjoint fermions, bifun-
damental scalar and bifundamental fermions [91–98] (for reviews, see e.g. refs. [99, 100]).
Intriguingly, as a consequence of the orbifold projection, the 3̄7- and 73̄-sector intersecting
fermions and scalars fall into distinct bifundamental representations of the gauge groups,
and so the low-energy spectrum does not fulfil the usual superpartner pairing. It is natural
to consider such systems at the tip of a strongly warped throat, which may be dynamically
obtained since anti-D3-branes minimize their energy there. Depending on the warping,
volume and mass-sourcing fluxes, both closed- and open-string sectors may localise either
in the highly-redshifted region or in the bulk, and hierarchical mass scales are explained
via geometrical warping [4, 101–104]. This article focuses on strongly-warped scenarios in
which most of the degrees of freedom, from both the closed- and the open-string sectors,
tend to localise in the highly-redshifted region of the internal space [104], but the results
could easily be extended to any model with intersecting anti-D3-/D7-branes. Interesting
bottom-up particle physics models may thus plausibly be embedded into complete string
compactifications, with in principle all closed- and open-string moduli stabilised via fluxes,
perturbative and non-perturbative effects.

– 2 –



J
H
E
P
1
2
(
2
0
2
0
)
1
7
4

Towards this objective, this article computes the low-energy effective field theory de-
scribing an anti-D3-/D7-brane system at an orbifold singularity at the tip of a strongly
warped throat, within a supersymmetric type IIB Calabi-Yau orientifold flux compacti-
fication [4, 102–105]. Whilst the closed-string and 77-sector degrees of freedom fulfil a
linear supersymmetry, and fall into standard supermultiplets [4, 106–114], the 3̄3̄- and
3̄7-/73̄-sector degrees of freedom have non-linear supersymmetry transformations, and fall
into constrained supermultiplets [16, 17, 21, 29, 35, 112]. By a dimensional reduction of
the ten-dimensional and worldvolume actions, and by exploiting how the internal space-
time symmetries transform the intersecting states (for which no action is known), one can
infer the non-linear supergravity action, encapsulated as usual in a Kähler potential, a
superpotential, the gauge kinetic functions and the Fayet-Iliopoulos terms. This non-linear
supergravity theory allows one to infer the interactions related by supersymmetry, both
linear and non-linear, and to work out the consequences of closed string moduli stabil-
isation, including perturbative and non-perturbative effects, on the open-string sectors.
Previous studies on the supersymmetry-breaking effects of anti-D3-branes in the KKLT
setup considered the possibility in which the matter sector originates from D3- and D7-
branes [13, 115–118], while in this work the anti-D3-brane sectors provide both the uplift
energy and matter.

It is interesting to compare the effective field theory description of anti-D3-brane su-
persymmetry breaking with the standard hidden-sector supersymmetry breaking via some
non-zero closed-string field F-term. For this purpose, pure anti-D3-brane breaking may
be assumed, though in the main text setups with both open- and closed-string break-
ing active will also be considered. Similarly to the standard procedure, one considers a
vacuum that spontaneously breaks supersymmetry via a non-zero FX -term and expands
the action around this F-term, to obtain a set of soft-breaking terms in the Lagrangian.
The anti-D3-/D7-brane systems give rise to several further low-energy fields — beyond
the goldstino — which also lie in constrained superfields without physical superpartners
and which can acquire soft-breaking terms (some of the constraints used not only fix the
would-be superpartner, but also the auxiliarly field in terms of the goldstino; in this case,
the supergravity expansions are different to the standard case and have been computed in
appendix B.3). As in standard gravity-mediated hidden-sector supersymmetry breaking
scenarios, the scale of the soft-breaking masses is msoft ∼ fX/mP , where fX sets the uplift
energy of the anti-D3-brane provided by the FX -term. Whereas, in a standard supersym-
metry breaking scenario, the light fields would fall in constrained superfields below the
scale msoft, for the anti-D3-brane, constrained superfields are necessary even above msoft,
and there is no scale at which superpartners appear. Instead, the structure that gives the
remarkable finiteness properties of string theory is expected to involve the entire spectrum
of string states, which appear at the warped string scale mw

s for anti-D3-branes at the tip
of strongly warped throats. The article discusses the scales that emerge for anti-D3-/D7-
brane systems embedded in KKLT-like moduli stabilisation, after the interplay between
open- and closed-string F-terms.

The article is organised as follows. Section 2 reviews strongly warped scenarios in type
IIB string theory, highlighting the hierarchies among the string, Kaluza-Klein and flux-
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induced energy scales as well as the conditions for a low-energy supergravity formulation to
be valid, with focus on the role of anti-D3-branes. As a helpful example, section 3 discusses
the supergravity description of models with intersecting D3-/D7-branes in strongly warped
regimes, including possible supersymmetry breaking by fluxes. Then, section 4 extends
to intersecting anti-D3-/D7-branes models, making use of the tools of constrained super-
fields, and embeds them into scenarios where the closed-string sector moduli are stabilised.
Section 5 discusses the supergravity description of quasi-realistic standard-like models on
anti-D3-/D7-brane models at orbifold singularities. Finally, a summary of possible mass
scales in these setups is provided in section 6 and section 7 outlines the main conclusions.
The appendices provide useful elements for the dimensional reduction of type IIB theories,
a review of hidden-sector supersymmetry breaking and supergravity soft-breaking terms,
and an extension of the latter in the presence of constrained superfields.

2 Warped IIB closed-string sector

Focussing on strongly warped type IIB compactifications, this section introduces the appro-
priate 10-dimensional metric, shows the hierarchies between the mass scales and discusses
the conditions for well-defined 4-dimensional supergravity formulations.

2.1 Warped metric and closed-string sector supergravity

In warped type IIB compactifications, the 10-dimensional metric takes the form [103, 105]

ds2
10 = γ3/2 e2Ω[c]

[e−4A + c]1/2
[
gµν dxµdxν + 2∂µc ∂mb dxµdym

]
+ [e−4A + c]1/2 gmn dymdyn, (2.1)

where the coordinates xµ and ym describe the non-compact 4-dimensional spacetime X1,3
and the compact 6-dimensional space Y6, respectively, e2Ω[c(x)] is a Weyl rescaling factor
to the 4-dimensional Einstein frame, defined as

e2Ω[c] =

∫
Y6

d6y
√
g6∫

Y6
d6y
√
g6
[
e−4A + c

] , (2.2)

γ is an extra arbitrary constant, and b = b(y) is a compensator field needed to solve
the Einstein equations [105] but ignored in the following as it is sources only derivative
couplings with the open-string excitations. The warp factor e−4A = e−4A(y) and the volume-
controlling real Kähler modulus c = c(x) combine together into the generalised warp factor

e−4Ac(x,y) = e−4A(y) + c(x). (2.3)

From the metric above, the physical internal volume in the Einstein frame is

vol6 =
∫
Y6

d6y
√
g6 [e−4A + c]3/2,

whilst the dimensionless unwarped and warped internal volumes are defined respectively as

l6sV(0) =
∫
Y6

d6y
√
g6, l6sVw =

∫
Y6

d6y
√
g6 e

−4A.

– 4 –



J
H
E
P
1
2
(
2
0
2
0
)
1
7
4

Moreover, the dimensionless physical internal volume is defined as V = vol6/V(0)l
6
s , in units

of the unwarped volume. Given the 10-dimensional gravitational coupling 2κ̂2
10 = g2

s l
8
s/2π,

with the string coupling gs and the string length ls, the 4-dimensional reduced Planck
length κ4 turns out to be

2κ2
4 = 2κ̂2

10
γ3/2l6sV(0)

= g2
s l

2
s

2πγ3/2V(0)
, (2.4)

with the reduced Planck mass mP being defined as the inverse mP = 1/κ4. In the large vol-
ume limit, where warping becomes negligible, one can identify the field c as c = e4u = V2/3

and the Weyl factor as e2Ω = 1/c = e−4u, and fixing the constant γ = 〈c〉 ensures that the
string and Planck scales are related by the physical internal volume [4, 44].

In a Calabi-Yau orientifold compactification with Hodge number h1,1
+ = 1, one can re-

produce the 4-dimensional effective action corresponding to the axio-dilaton τ = C0 + i e−φ,
the complex structure moduli uα, with α = 1, . . . , h2,1

− , and the Kähler modulus ρ = χ+ ic

by means of the Kähler and superpotential [102, 105, 119]

κ2
4K̂ = −ln [−i(τ − τ̄)]− ln

[
−i
∫
Y6
e−4A Ω ∧ Ω̄

]
− 3 ln

[
2 e−2Ω]+ ln

[ 2
π

Vw
[V(0)]3

]
, (2.5a)

κ3
4Ŵ = gs

l2s

∫
Y6
G3 ∧ Ω. (2.5b)

Note that e−2Ω = Im ρ + c0, with c0 = Vw/V(0), gives a Kähler potential for the volume
modulus of the usual no-scale form.1

Some more details of these results are reviewed in appendix A. The focus in the current
work is on local configurations of intersecting anti-D3-/D7-branes within such warped ge-
ometries, and it will be assumed throughout that the global configuration of fluxes, branes
and O-planes within the Calabi-Yau orientifold compactifications considered satisfy the
RR-tadpole cancellation conditions necessary for an overall consistency.

2.2 Field localisation and 4-dimensional supergravity conditions

In the presence of a highly warped throat, there can be non-trivial localisation effects for
the closed-string sector fields; further, there are interesting hierarchies between mass scales
in the bulk and in the redshifted region. These scenarios are studied in detail by ref. [104]
and, because they are relevant in the model-building setups considered in this article, a
review of their main features is provided below. For brevity, the normalisation V(0) = 1 is
assumed in the rest of the subsection.

1For future reference, it is immediate to show the identity ∂ρe2Ω = i e4Ω/2; then one finds the derivatives

κ2
4K̂ρ = 3i

2 e2Ω, κ2
4K̂ρρ̄ = 3

4 e
4Ω, κ3

4∇ρŴ = 3igs
2l2s

e2Ω
∫
Y6

G3 ∧ Ω.

Notice that the no-scale structure is preserved as a consequence of the identity κ2
4 K̂

ρρ̄K̂ρK̂ρ̄ = 3.
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2.2.1 Closed-string sector field localisation

As a guiding example for the closed-string sector fields with a flux-induced mass, one can
study the behaviour of the axio-dilaton τ . The linearised field equation for the axio-dilaton
wavefunction, labelled as τ = τ(y), takes the form [103, 120]

e2Ω

[e−4A + c] ∆6 τ(y) + m2

γ3/2 τ(y) = 1
12 Im τ

e2Ω

[e−4A + c]2 GmnpḠ
mnp τ(y),

where m2 is the 4-dimensional axio-dilaton mass, with the Laplacian ∆6 and the 3-form
terms sourcing the Kaluza-Klein tower and the flux-induced mass, respectively. By esti-
mating these terms, one can qualitatively understand the non-trivial localisation effects.

• In the bulk, the unwarped metric gmn is order one and the 3-form flux is of the order
of its quantisation integer nf , that is Gmnp ∼ nf/ls. The background warp factor is
negligible compared to the volume modulus, that is

e−4A � c ∼ V2/3.

Following these estimates, and assuming without loss of generality that integrals are
dominated by the bulk, the order of magnitude of the flux-induced moduli masses in
the bulk is

m2
flux = γ3/2

12
e2Ω

[e−4A + c]2 GmnpḠ
mnp ∼

n2
f

V2
γ3/2

l2s
∼
g2
sn

2
f

V2
1
κ2

4
. (2.6)

Also, given the characteristic length scale of the bulk λ as measured in terms of the
unwarped metric gmn (with λ6 ∼ V(0) in general), the bulk Kaluza-Klein scale is

m2
KK ∼

e2Ω

[e−4A + c]
γ3/2

λ2l2s
∼ 1
λ2V4/3

γ3/2

l2s
∼ g2

s

λ2V4/3
1
κ2

4
. (2.7)

From the dimensional reduction of the Einstein-Hilbert action one can observe that
the string mass is m2

s = g2
sM

2
P /4πγ3/2, so the bulk string scale must be defined as

m2
s = g2

s

4πV
1
κ2

4
. (2.8)

• At the tip of a highly warped throat, where e−4A � c, the scenario changes drastically.
Let n0

f be the order of the 3-form flux units therein. For example, for a Klebanov-
Strassler throat threaded by M units of F3-flux on the 3-sphere and K units of
H3-flux on the dual 3-cycle of the deformed conifold, n0

f ∼ M,K. In the vicinity of
the would-be conifold singularity, the 10-dimensional Einstein-frame metric takes the
form [4, 90]

ds2
10 = e2A0 ğµν dxµdxν + r2

0

[1
2 dτ2 + dΩ2

3 + 1
4 τ

2 dΩ2
2

]
,

where τ is the radial coordinate of the deformed conifold, the tip being located at
τ = 0, while the other line elements describe the 3- and 2-sphere of the conifold base,
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and r0 is the radius of the 3-sphere at the tip of the throat, such that r2
0 ∼ n0

f . This
indicates that the internal metric at the tip of the throat has the behaviour

g0
mn ∼ n0

f e
2A0 , (2.9)

where A0 is the warp factor at the tip of the throat, with the 3-form flux scaling
as G0

mnp ∼ n0
f/ls. In this way, the characteristic scale of the closed-string sector

flux-induced mass evaluated at the tip of the throat is

(mw
flux)2 = γ3/2

12 e2Ω+8A0 G0
mnpḠ

mnp
0 ∼ e2A0

n0
fV2/3

γ3/2

l2s
∼ g2

s

n0
fV2/3

1
κ2

4
e2A0 . (2.10)

On the other hand, according to the definition of the metric, the generic throat
Kaluza-Klein scale is

(mw
KK)2 ∼ e2Ω+4A0

λ2
0

γ3/2

l2s
∼ e2A0

n0
fχ

2V2/3
γ3/2

l2s
∼ g2

s

n0
fχ

2V2/3
1
κ2

4
e2A0 , (2.11)

where the length scale of a cycle at the tip of the throat, measured by g0
mn, has been

written as λ2
0 ∼ n0

f e
2A0 χ2, with χ a parameter independent of the warp factor. By

observing the dimensionally-reduced Einstein-Hilbert term, one may also infer that
the warped string scale can be defined as

(mw
s )2 = g2

s

4πV2/3
1
κ2

4
e2A0 (2.12)

Notice that the factor controlling the size of the throat is preferably taken to be
χ > 1, so that the warped Kaluza-Klein scale is smaller than the warped string scale.

In particular, if the warped mass of eq. (2.10) is smaller than the bulk mass of eq. (2.6),
then it is energetically favourable for the closed-string sector fields to be mostly localised
at the tip of the throat. Roughly, the condition for this to happen is therefore

V2/3

nf (n0
f )1/2 . e−A0 . (2.13)

Noticeably, the warped flux-induced and warped Kaluza-Klein scales mw
flux and mw

KK are
comparable. Because the cutoff for the 4-dimensional effective theory has to be at most the
warped Kaluza-Klein scale, most of the degrees of freedom from the closed-string sector fall
above the 4-dimensional threshold. Fields surviving the cutoff include the Kähler volume
modulus, which does not have a flux-induced mass, and potentially some complex structure
moduli associated to the geometry at the infrared end of the throat.

The flux integers nf and n0
f will be dropped in most of the remaining sections as they

are irrelevant in fixing the order of magnitude of the energy scales.
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2.2.2 Conditions for a 4-dimensional supergravity formulation

Whilst below the warped Kaluza-Klein scale the effective theory is 4-dimensional, an N4 = 1
supergravity formulation is not always possible. In particular, in the presence of super-
symmetry breaking, the gravitino gauging the broken supersymmetry becomes massive and
may happen to be localised by warping in the infrared end of the throat. In this case, it
would have stronger couplings than those expected from a supergravity description, since
they would be suppressed by the warped Planck scale rather than by the actual Planck
scale [104]. This will now be discussed in more detail, beginning with supersymmetry break-
ing by fluxes, and followed by comments on supersymmetry breaking with an anti-D3-brane.

The 4-dimensional gravitino corresponding to the least broken supersymmetry (i.e.
broken at the smallest scale) is identified with the lightest Kaluza-Klein mode, which be-
comes massless as the supersymmetry breaking parameter is taken to zero. Taking this
4-dimensional gravitino ψµ to be embedded in the 10-dimensional gravitino as Ψµ(x, y) =
ψµ(x)⊗η(y), the qualitative behaviour of the gravitino wavefunction η in the extra dimen-
sions can be determined from the 10-dimensional gravitino field equation, which implies a
flux-induced mass for ψµ that is of order

m3/2

γ3/4 ∼
eΩ

[e−4A + c] Gmnpγ
mnp,

where γm are the Dirac matrices representing the Clifford algebra {γm, γn} = 2gmn and
Gmnp is the supersymmetry-breaking 3-from flux. Similarly to the case of the axio-dilaton
described above, this mass gives rise to two possible scales across the internal manifold:

(i) a 3-form flux of order Gmnp ∼ nfθ/ls in the bulk generates a gravitino mass

m3/2 ∼
eΩγ3/4

[e−4A + c] Gmnpγ
mnp ∼ nfθ

V
γ3/4

ls
∼ gsnfθ

V
1
κ4

; (2.14)

(ii) a 3-form flux of order Gmnp ∼ n0
fθ0/ls in the throat generates a gravitino mass

mw
3/2 ∼ e

Ω+4A0 G0
mnpγ

mnp
0 γ3/4 ∼ θ0 e

A0

(n0
f )1/2V1/3

γ3/4

ls
∼ gsθ0

(n0
f )1/2V1/3

1
κ4
eA0 . (2.15)

These are also the expected orders of magnitude of the mass splittings among the fields
of any supermultiplet, depending on where the fields are localised. For supersymmetry-
breaking flux parameters such that mw

3/2 � m3/2, which is expected from condition (2.13),
it is energetically favourable for the lightest gravitino to localise at the infrared end of the
throat. Its interactions are then suppressed by the warped Kaluza-Klein scale, in contrast
to the Planck-suppressed graviton interactions, making a standard supergravity description
difficult. However, when the flux parameters satisfy

θ

θ0
� eA0V2/3

nf (n0
f )1/2 , (2.16)

which is fulfilled in particular as θ → 0, the gravitino mass scales in eqs. (2.14) and (2.15)
are such that m3/2 � mw

3/2. In this case, the 4-dimensional gravitino does not localise
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in the throat, allowing it to have standard mP -suppressed interactions. Nevertheless,
the gravitino mass is still warped-down, that is m̂w

3/2 = eA0m3/2, as the supersymmetry-
breaking scale is set at the tip of the throat where the super-Higgs mechanism is triggered.

This is the framework considered in the article and it is thus sensible to formulate
an N4 = 1 supergravity theory below a cutoff scale set as the warped Kaluza-Klein scale
mw

KK if the supergravity condition in eq. (2.16) holds, in the regime set by the localisation
condition in eq. (2.13). In particular, one can reproduce the supergravity description of a
highly warped theory by means of a Kähler potential with the structure

κ2
4K = 2A0 + κ2

4K, (2.17)

where K is the Kähler potential that one would define in the absence of the extremely
strong warping effects discussed above and A0 is the warp factor at the tip of the throat,
with the superpotential W (and the gauge kinetic functions fAB) unchanged.2 Indeed,
such a formulation manifestly provides redshifted energy scales and, in particular, all the
masses are warped down. This includes the warped-down gravitino mass, m̂w

3/2 = eA0m3/2,
where the redshift is induced by the 2A0-shift and the unwarped mass is m3/2 = eκ

2
4K/2W ,

as given by eq. (2.14). From now on, FM and VF also denote the F-terms and the F-term
potentials associated to a highly warped scenario.

To summarise, some fields are localised in the bulk region, like the graviton and the
gravitino, while others are localised at the tip of the warped throat, like the Kähler modulus
and possible open-string states, which provide the degrees of freedom for the standard-like
models of interest in this article. In particular:

• fields that are localised at the tip of the throat have redshifted mass scales and are
part of the low-energy effective theory, including the Kähler modulus and the local
open-string states;

• fields localised in the bulk typically have masses above the cutoff scale (like bulk com-
plex structure moduli) and/or highly suppressed couplings with the throat degrees
of freedom (like bulk branes, which could provide massless degrees of freedom), and
therefore they can be neglected.

In ref. [104], this discussion is applied to the spontaneous supersymmetry breaking by
fluxes. In this article, supersymmetry breaking by anti-D3-branes at the tip of a throat is
also considered. Although the way anti-D3-branes break supersymmetry is conceptually
different to flux supersymmetry breaking, the arguments on the localisation of the gravitino
in the bulk, for small bulk supersymmetry-breaking fluxes, follow through in the same way.
Hence, the following sections show how to incorporate open-string degrees of freedom in a
description with the 2A0-shift in the Kähler potential as in eq. (2.17).

2In general, purely closed-string contributions to K, W and fAB are then independent of A0, but note
that the open-string terms (or local geometric closed-string moduli terms) may have a dependence on A0

if they are located in a region of strong warping.
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2.2.2.1 Kähler modulus localisation. In KKLT-like constructions, in which the
Kähler modulus is stabilised by non-perturbative effects such as D7-brane gaugino con-
densates [121–124] or Euclidean D3-brane instantons [125], the Kähler potential shift in
eq. (2.17) implies that the scalar potential sourced by non-perturbative effects is redshifted
by the warp factor, even though the non-perturbative effects are not necessarily localised
near the throat.

To understand this redshifting, one should consider the localisation of the Kähler
modulus ρ. The field ρ is massless before the compactification, so naively one expects it to
be not localised. However, an explicit analysis is performed in ref. [105] and reveals that:

(i) the wavefunction of the 4-dimensional graviton gµν is strongly peaked in the bulk
region, both in the presence and in the absence of strong warping;

(ii) the wavefunction of the Kähler modulus ρ tends to be more and more peaked in the
throat as the warping becomes stronger.

Notice that even with non-perturbative effects, the Kähler modulus is very light and
well below the warped KK-scale cutoff, suggesting that its wavefunction is perturbed only
slightly and in particular that it is still peaked in the throat. Then, ρ should feel any
non-perturbative effects localised in the bulk via a redshifted mediation to the tip of the
throat. Consistently with this picture, one can observe that with a warped-down non-
perturbative contribution to the scalar potential, the stronger the warping is — i.e. the
longer the throat is — the less efficient the stabilisation becomes. Another challenge is that
any supersymmetry-breaking (0, 3)-flux localises around the gaugino condensate usually in
the bulk [126, 127], which could result in the gravitino localising at the throat tip, making
a supergravity description difficult.

3 Warped D3- and D7-branes

This section considers D3- and D7-branes in strongly warped Calabi-Yau orientifold com-
pactifications, as a warm up before the anti-D3-/D7-brane constructions. As D3-/D7-brane
systems preserve the same N4 = 1 supersymmetry as the closed-string sector, the only
sources of supersymmetry breaking considered here are (0, 3)-fluxes. An N4 = 1 super-
gravity description can be derived by matching with the operators that are obtained from
the dimensional reduction. Appendix A.2 reviews the field content and the generic form
of the worldvolume actions. In terms of N4 = 1 supersymmetry, the low-energy degrees of
freedom from the D-branes, composing the matter sector, are the following.

• D3-branes contain three complex scalars ϕa parametrising the position of the brane in
the internal space and three spinors ψa in an SU(3)-triplet with respect to the internal
tangent space group, which form three chiral multiplets, as well as one Abelian gauge
vector Aµ and a spinor λ in an SU(3)-singlet, which form a vector multiplet.

• D7-branes wrapping a 4-cycle in the internal space contain one complex scalar σ3

parametrising the position of the brane in the internal space and a spinor η, which
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together form a chiral multiplet, as well as one Abelian gauge vector Bµ and a spinor
ζ, which form a vector multiplet. Extra degrees of freedom associated to the Wilson
lines are absent if the wrapped cycle has no non-contractible 1-cycles.

• When D3 and D7-branes overlap, the intersecting 37- and 73-states correspond to two
complex scalars ϕ and ϕ̃ and two spinors ψ and ψ̃, which form two chiral multiplets
in conjugate representations of the gauge groups. Specifically, the chiral multiplets
ϕ and ϕ̃ have charges qD3 = +1,−1 and qD7 = −1,+1, respectively, under the D3-
and D7-brane U(1) gauge groups.

A summary of the supergravity expansions for models with matter and supersymmetry-
breaking hidden sectors, the latter including bulk moduli, is given in appendix B.2. In the
following subsections, the specific form of these interactions from the dimensional reduction
of D3-/D7-branes in warped flux compactifications will be derived and intersecting states
will also be discussed. The total Kähler potential and the total superpotential will be found
to take the form

K = 2A0
κ2

4
+ K̂ + Zσ3σ̄3σ3σ̄3 + 1

2
[
Hσ3σ3σ3σ3 + c.c.

]
+ Zϕaϕ̄bϕ

aϕ̄b + Zϕϕ̄ϕϕ̄+ Zϕ̃ ˜̄ϕϕ ˜̄ϕ,
(3.1a)

W = Ŵ + 1
2 µ̃σ3σ3σ3σ3 + ỹ(βσ3 − ϕ3)ϕϕ̃, (3.1b)

where K̂ and Ŵ are the pure closed-string potentials of eqs. (2.5a), (2.5b) and all the other
terms represent the open-string couplings. The gauge kinetic functions, D-term potentials
and — in the case of supersymmetry-breaking fluxes — soft terms will also be worked out.
The 2A0-shift will be inserted if working under the conditions (2.13) and (2.16), that is all
masses redshifted by the warp factor.

The details of the open-string sector terms depend on the brane configuration, with two
main constructions considered. The D3-brane will be placed at the tip of a highly warped
throat, whereas the D7-brane will wrap a 4-cycle either located at the tip of the throat or
extending from the tip into the bulk. Detailed global constructions are deferred for future
work and, when explicit, the wrapped 4-cycle will be assumed to be a torus orbifold for
simplicity; throats with such cycles have been constructed e.g. in [95]. Unless otherwise
stated, only a pure (2, 1)-flux is assumed to exist at the tip of the throat. The dimensional
reduction will not capture the complex structure moduli couplings, but the supergravity
formulation will correctly account for them. Stabilisation of the volume modulus ρ will be
considered in subsection 4.3 focussing on the main case of interest, which is the presence
of KKLT-like non-perturbative corrections and uplifting anti-D3-branes. Further, notice
that worldvolume fluxes will not be considered in this work.

3.1 Pure D3- and D7-brane states

This subsection overviews the analysis of D3- and D7-branes in type IIB Calabi-Yau orien-
tifold compactifications, adapting it to the strongly warped metric of eq. (2.1). In the fol-
lowing, superscripts and subscripts ‘0’ denote quantities evaluated at the tip of the throat.
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3.1.1 Warped D3-branes

As discussed in appendix A.2, it is possible to express the action of the D3-brane degrees of
freedom by adapting the results of the dimensional reductions from refs. [9, 107, 108, 128].

3.1.1.1 D3-brane chiral superfields. The pure kinetic action for the D3-brane scalars
takes the form (see also refs. [104, 129, 130], which work directly in the regime of strong
warping)

SD3-scalars
kin = − 1

2πgs

∫
X1,3

d4x
√
−det g4 e

2Ω g0
ab̄
gµν ∇µϕa∇νϕ̄b.

Therefore, one can include this term within the Kähler potential of the Kähler modulus as

κ2
4K = −3 ln

[
2 e−2Ω − κ2

4
3πgs

g0
ab̄
ϕaϕ̄b

]
.

This logarithmic no-scale structure, with K of the form K = −3 log [fhid(ρ, ρ̄) + fvis(ϕ, ϕ̄)],
is a common feature of D-brane supergravity and suggests the possibility of sequester-
ing [102, 131] (see also ref. [108]). Indeed, it implies that the brane scalars do not feel
hidden-sector supersymmetry breaking at tree-level, and it turns out that brane fermions
also stay massless at tree-level. From the expression above, it follows that the Kähler
matter metric reads

Zϕaϕ̄b = 1
2πgs

e2Ω g0
ab̄
. (3.2)

Due to supersymmetry, the D3-brane modulini are also captured by these couplings. Since,
the chiral multiplet ϕa is massless in an imaginary self-dual flux background, this Kähler
potential is enough to account for the D3-brane chiral field couplings.

As discussed in subsection 2.2, for a low-energy effective field theory describing fields
at the tip of a highly warped throat, the Kähler potential is shifted by the constant 2A0.
This clearly does not change the Kähler matter metric for the D3-brane fields.

3.1.1.2 D3-brane gauge sector. The Weyl scaling from the 10- to the 4-dimensional
Einstein frame does not affect the D3-brane gauge kinetic terms in the action, so one has

SD3-vector
kin = − 1

4πgs

∫
X1,3

e−φ F2 ∧ ∗F2 + 1
4πgs

∫
X1,3

C0 F2 ∧ F2

and the gauge kinetic function is as usual

fD3 = − iτ

2πgs
. (3.3)

This does not depend on the warp factor due to the cancellation happening in the metric-
dependent factors. The dimensional reduction of the gaugino is not performed as the action
can be reproduced by supersymmetry arguments.

– 12 –



J
H
E
P
1
2
(
2
0
2
0
)
1
7
4

rUV

θ

r

Σ4

Σ2

Σ2

D7-brane

(anti-)D3-brane

Figure 1. A sketch of the toy configuration under consideration, with the D7-brane wrapping the
4-space at θ = 0 and some throat being glued to the bulk at r = rUV. The D3- or anti-D3-brane
provides extra open-string states, as discussed in sections 3 and 4, respectively.

3.1.2 D7-branes extending from the tip of a warped throat into the bulk

This subsubsection describes a D7-brane wrapping a 4-cycle Σ4 which extends from the tip
of a warped throat up into the bulk region. Details of the dimensional reduction of the D7-
brane worldvolume action can be found in refs. [112, 113, 132] (see also refs. [110, 111, 114])
and are briefly overviewed in subsection A.2. A toy model is described below, including
the geometric configuration and the corresponding dimensional reduction. In particular,
the warp factor is assumed to be only a function of the directions parallel to the 4-cycle.

3.1.2.1 D7-brane configuration and field localisation conditions. It is assumed
that the internal space, locally in the neighbourhood of the wrapped D7-brane, takes the
form Σ4 n Σ2. Let the coordinates ym′ span the 4-space Σ4, for m′ = 4, . . . , 7, with
z1, z2 the corresponding complexified directions, and let the coordinates yṁ, for ṁ = 8, 9,
parametrise the transverse 2-space Σ2, with z3 the associated complex coordinate. Given
some convenient coordinates rm′ = rm

′(yn′) and θṁ = θṁ(yṅ), the metric is of the form

ds2
6 = e−2A gmndymdyn = e−2A(r)

(
gm′n′(r) dym′dyn′ + g33̄(r, θ) dz3dz̄3

)
.

At some r2 = rm′r
m′ = r2

UV, the bulk is glued to a warped throat, which ends at its tip
with a tiny warp factor e2A(r = 0) = e2A0 . The D7-brane wraps the slice corresponding to
the coordinates θi = 0. See figure 1.

In order to be able to perform explicit calculations, the warp factor is assumed to be a
function of only the 4-space coordinates. Further, the 4-cycle is assumed to be the orbifold
Σ4 = T4/Z2 and locally the orthogonal directions are the 2-torus T2, i.e. the metric is such
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that
gm′n′(r ∈ Σ4) = g

(T4/Z2)
m′n′ , g33̄(r ∈ Σ4, θ) = g

(T2)
33̄ .

Finally, in analogy with the Klebanov-Strassler throat, it is assumed that at the throat tip
the metric scales with the constant e2A0 , as in eq. (2.9), that is

gm′n′(r < rUV) r∼0∼ e2A0 , g33̄(r < rUV, θ)
r∼0∼ e2A0 .

Localisation scenarios. In analogy with what happens for the closed-string sector, one
might guess that the open-string moduli of the wrapped D7-brane can become localised at
the tip of the throat too. The conditions under which this occurs will now be worked out.

One can analyse the internal wavefunction of the D7-brane scalar fields by dimension-
ally reducing the real fields σṁ = σṁ(x, y), with ṁ = 8, 9, in a similar way to refs. [132, 133].
The D7-brane 8-dimensional scalar action can be written in terms of the 4-dimensional Ein-
stein frame metric as

Sscalar
D7 = −τD7σ

2
s

∫
X1,3

d4x
√
−det g4

∫
Σ4

d4y
√

det gΣ4

[
e2Ω+φ [e−4A + c] gṙṡ gµν ∇µσṙ∇νσṡ

+γ3/2 e4Ω+φ gṙṡ g
m′n′∇m′σṙ∇n′σṡ + 1

2
γ3/2 e4Ω+2φ

e−4A + c
Gm′n′ṙḠ

m′n′
ṡ σ

ṙσṡ
]
,

where it is understood that only some of the 3-form fluxes contribute, determined by the
interference of the DBI- and CS-actions [112]. For constant Kähler modulus and axio-
dilaton backgrounds, one finds the field equation

γ−3/2 ∆4σ
ṙ + e2Ω

[e−4A + c]∆Σ4σ
ṙ − 1

2
e2Ω+φ

[e−4A + c]2 G
m′n′ṙḠm′n′ṡ σ

ṡ = 0.

Then, defining the Kaluza-Klein decomposition of the field as

σṙ(x, y) =
∑
ω

σṙω(x) ζ ṙω(y)

and imposing the Klein-Gordon equations ∆4σ
ṙ
ω = m2

ωσ
ṙ
ω, one eventually obtains the in-

ternal wavefunction field equation

e2Ω

[e−4A + c]∆Σ4ζ
ṙ
ω + m2

ω

γ3/2 ζ
ṙ
ω = 1

2
e2Ω+φ

[e−4A + c]2 G
m′n′ṙḠm′n′ṡ ζ

ṡ
ω.

This is the same equation as the one defining the axio-dilaton wavefunction, with the only
difference that the wavefunction is 4- rather than 6-dimensional.

Following subsection 2.2, the compactification volume can be sufficiently large so that
warped-down masses are still greater than bulk masses (cf. eq. (2.13)), and fields tend to
localise in the bulk. However, the D7-brane chiral superfield is localised near the tip of
the throat whenever the warped-down mass mw

D7 is smaller than the unwarped bulk mass
mD7, that is if (in analogy with eq. (2.13))

eA0V2/3

nf (n0
f )1/2 .

θ′

θ′0
, (3.4)
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where the fluxes sourcing the D7-brane field masses have been taken to be Gmnp ∼ θ′nf/ls
in the bulk and Gmnp ∼ θ′0n

0
f/ls near the tip. For generic flux parameters, θ′ and θ′0, the

warped mass is of the same order as the warped flux-induced axio-dilaton mass mw
flux of

eq. (2.10) and the warped Kaluza-Klein scale mw
KK of eq. (2.11), i.e.

(mw
D7)2 ∼ g2

sθ
′
0

2

n0
fV2/3

1
κ2

4
e2A0 ,

so that these fields are too heavy to stay in the low-energy theory. However, if θ′0 is small
enough, it may be that fluxes sourcing the D7-brane masses allow both mw

D7 . mD7, so
fields are localised, and also mw

D7 � mw
KK, so fields stay in the low-energy theory. It may

also happen that θ′ is small enough that the hierarchy is mw
D7 & mD7, so it is energetically

favourable for the D7-brane fields to be localised in the bulk, and yet fluxes at the tip of
a highly warped throat source a warped-down mass, analogously to what happens to the
gravitino mass in eq. (2.16). These three scenarios will now be discussed in detail.

3.1.2.2 D7-brane chiral superfield in the bulk. For large enough internal volumes
that do not satisfy the localisation condition of eq. (3.4), mD7 . mw

D7 and D7-brane fields
generally extend along the throat from the tip into the bulk. Before the compactification
over the wrapped 4-cycle, the kinetic term for the D7-brane transverse complexified scalar
σ3 reads

SD7-scalar
kin = − 1

2πgsl4s

∫
X1,3

d4x
√
−g4

∫
Σ4

d4y
√
gΣ4 [e−4A + c] e2Ω+φ g33̄ g

µν ∇µσ3∇ν σ̄3.

Since the warp factor varies only longitudinally with respect to the brane, one can define
the dimensionless unwarped and warped 4-dimensional volumes

l4sV
Σ4
(0) =

∫
Σ4

d4y
√

det gΣ4 , l4sVΣ4
w =

∫
Σ4

d4y
√

det gΣ4 e
−4A.

In particular, the internal metric, being that of a torus, is independent of the 4-cycle coor-
dinates and, following the definition of the Weyl factor in eq. (2.2), it is apparent that the
kinetic term becomes

SD7-scalar
kin = −

VΣ4
(0)

2πgs

∫
X1,3

d4x
√
−g4 e

φ g33̄ g
µν ∇µσ3∇ν σ̄3.

One can reproduce this within a supergravity action by modifying the axio-dilaton Kähler
potential as

κ2
4K = −ln

[
−i(τ − τ̄)− κ2

4
πgs
VΣ4

(0) g33̄ σ
3σ̄3

]
,

or equivalently by defining the Kähler matter metric

Zσ3σ̄3 =
VΣ4

(0)
πgs

g33̄
[−i(τ − τ̄)] . (3.5)

As far as the mass term is concerned, from the dimensional reduction, in real notation
one finds an action of the form

SD7-scalar
mass = − 1

2πgsl4s

∫
X1,3

d4x
√
−g4

∫
Σ4

d4y
√
gΣ4

1
8πV(0)

g2
s

κ2
4

e4Ω+2φ

e−4A + c
l2s Gm′n′ṙ Ḡ

m′n′
ṡ σ

ṙσṡ.
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D7-branes have a supersymmetric mass sourced by a (2, 1)-flux. In the toy model under
consideration, in the vicinity of the brane it is possible to decompose forms in the 6-
dimensional space into products of forms in the 4- and 2-dimensional spaces, Σ4 = T4/Z2
and T2 (see appendix C). In particular, the specific mass-sourcing (2, 1)-flux can be written
as [112] (the hat denotes the specific component)

Ĝ3(r, θ = 0) = f(r, θ = 0)χϑ,

where the (2, 1)-form χϑ = η ∧ dw̄3 is defined in terms of the (2, 0)-form of the 4-cycle as
η = dz1 ∧ dz2 and dw̄3, with w3 = z3/ls a dimensionless coordinate, and f = f(r, θ) is
a function representing the near-brane dependences. For definiteness, let the integrals be
dominated by the throat region, where e−4A � 〈c〉. As e4AĜ3 is a harmonic form, one can
express the 2-form component g2 = f(r, θ = 0) η in terms of the harmonic (2, 0)-form η as

e4Ag2 = 1
ωΣ4
w

η

∫
Σ4
g2 ∧ η̄,

with ωΣ4
w =

∫
Σ4
e−4Aη∧η̄. Now, starting from the general action above, the supersymmetric

mass term can be expressed as

SD7-scalar
mass = − 1

2πgsl4s

∫
X1,3

d4x
√
−g4

∫
Σ4

d2z d2z̄
√
gΣ4

1
8πV(0)

g2
s

κ2
4
e4Ω+4A+2φ (g2 · ḡ2)σ3σ̄3

where, because g2 is automatically self-dual, i.e. ∗4g2 = g2, the 4-cycle integral is∫
Σ4

d2z d2z̄
√
gΣ4 e

4A g2 · ḡ2 =
∫

Σ4
e4A g2 ∧ ḡ2 = 1

(ωΣ4
w )2

∫
Σ4
e−4A η ∧ η̄

∫
Σ4
g2 ∧ η̄

∫
Σ4
ḡ2 ∧ η.

The first integral factor can be written as

λΣ4 =
∫

Σ4
e−4A η ∧ η̄ = ωΣ4

w ∼ ωΣ4
w

VΣ4
w

VΣ4
(0)

e2Ω,

where an approximate unit factor has been introduced in the final relation for convenience
in the comparison of the dimensionally reduced action with the supergravity. In the end
the scalar mass term becomes

SD7-scalar
mass = − 1

2πgs

∫
X1,3

d4x
√
−g4

1
8πV(0)

g2
s

κ2
4

e6Ω+2φ

ωΣ4
w

VΣ4
w

VΣ4
(0)

1
l4s

∫
Σ4
ḡ2 ∧ η̄

∫
Σ4
g2 ∧ η σ3σ̄3.

The opposite approximation to that used above, where integrals are dominated by the bulk
region, can be obtained easily by taking formally e4A = 1 everywhere, and e2Ω = 1/c.

In view of ref. [114], to generate the (2, 1)-flux-induced mass one introduces the holo-
morphic superpotential bilinear coupling

µ̃σ3σ3 = −
V(0)
π

1
κ4l2s

∂τ∂uϑ

∫
Y6

[
G3 ∧ Ω

]
δ(2)(θ)

=
[ V(0)
π[−i(τ − τ̄)]κ4l2s

∫
Y6

(G3 − Ḡ3) ∧
(
i

ωw
(∂uϑωw) Ω− χuϑ

)
δ(2)(θ)

] (3.6)
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where use has been made of the identity ∂uαΩ = [∂uα lnωw] Ω + iχα. Indeed, in the specific
case in which the background is pure (2, 1)-flux, this is

[
µ̃σ3σ3

]
(2,1) =

[ V(0)
π [−i(τ − τ̄)]κ4l2s

∫
Σ4
ḡ2 ∧ η

]
δ33.

As required, the effective coupling µσ3σ3 = eκ
2
4K̂/2[µ̃σ3σ3 ](2,1), reproduces a supersymmetric

mass m2
σ3σ̄3 =Zσ

3σ̄3
µσ3σ3 µ̄σ̄3σ̄3 that corresponds precisely to the one inferred from the di-

mensional reduction. The identification takes place if eκ2
4K̂csVw =VΣ4

w /ωΣ4
w , otherwise the

bilinear coupling µ̃σ3σ3 should be rescaled by an order one factor (Vw/ωw)−1/2
(
VΣ4
w /ωΣ4

w

)1/2
,

in which the apparent non-holomorphicity is expected to cancel. For the canonically nor-
malised field, one recognises the mass

m2
D7 ∼

g2
s

V2
1
κ2

4
.

As will be seen from all the dimensional reductions, all the couplings of the theory have 4-
dimensional scales which are defined in terms of the reduced Planck length with, depending
on the interactions, various suppressions from the string coupling, the volume and/or the
warp factor, while the string length factor precisely accounts for the integrations over the
compact space. Notice that mD7 is below the cutoff mw

KK.

Comment on generic flux backgrounds. For a generic flux background, one can again
take advantage of the results of refs. [112, 114] and a similar dimensional reduction follows
as above: one obtains the same supersymmetric mass just found, plus some soft-breaking
scalar mass terms.

In particular, ref. [114] considered unwarped toroidal orbifold compactifications, and
showed that all these terms can be generated by the holomorphic bilinear coupling µ̃σ3σ3

of eq. (3.6) and a non-vanishing Kähler potential H-term, which, together with the axio-
dilaton and complex structure moduli F-terms, give the same effective µ-coupling as above
(see eq. (B.4a)), along with the soft-breaking terms (see eqs. (B.7a), (B.7b)).

For less isotropic scenarios, where for instance only the wrapped cycle is a toroidal
orbifold O4 = T4/Z2, some difficulties may arise. The complex structure moduli Kähler
potential includes κ2

4K̂(u, ū) = −lnωw with ωw = iVΣ4
w VT2

(0)
∏3
a=1[−i(ua − ūa)], where u3 =

uϑ is the modulus associated to the (2, 1)-form χϑ, and the H-coupling should be

Hσ3σ3 = − 1
πgs

VΣ4
(0)

[−i(τ − τ̄)][−i(u3 − ū3)] δ33. (3.7)

The interplay between the various terms in eq. (B.4a) can take place here only if the closed-
string sector factors are also defined by integrations over the 4-cycle. This is true only if
the 3-form flux is constant over the whole transverse space. Similar considerations hold for
the soft-breaking masses of eq. (B.7a). The B-term also follows from eq. (B.7b).

3.1.2.3 Strongly warped throats with D7-brane chiral superfield at tip. If the
internal volume is sufficiently small as to satisfy the condition of eq. (2.13) and in particular
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the D7-brane mass flux parameters satisfy eq. (3.4), mw
D7 . mD7 and the D7-brane chiral

superfield field localises at the tip of the throat.
One can impose the localisation of the D7-brane scalar at the level of the dimensional

reduction by means of a delta-function that accompanies the superfield σ3, meaning the
substitution σ3σ̄3 → l4sδ

(4)(y − y0)σ3σ̄3. Adapting the previous results (in particular, the
integration over the 4-cycle gives a factor e2A0 originating from the metric terms, which at
the tip depend on gm′n′ ∼ e2A0), one finds the action

SD7-scalar = − 1
2πgs

∫
X1,3

d4x
√
−det g4 e

2Ω+2A0+φ gµν ∇µσ3∇ν σ̄3

− 1
2πgs

∫
X1,3

d4x
√
−det g4

1
8πV(0)

g2
s

κ2
4
e4Ω+8A0+2φ (g0

2 · ḡ0
2)σ3σ̄3.

The 2-form g0
2 is the component of the mass-sourcing flux precisely at the tip of the throat,

with G0
3 = g0

2 ∧dw3. It is convenient to absorb the warp factors into the scalar σ̇3 = eA0σ3,
for which the kinetic action becomes

SD7-scalar = −
∫
X1,3

d4x
√
−det g4

[
1
πgs

e2Ω

[−i(τ − τ̄)] g
µν ∇µσ̇3∇ν ˙̄σ3

+ gs
4π2V(0)

e4Ω+6A0

[−i(τ − τ̄)]2 (g0
2 · ḡ0

2) 1
κ2

4
σ̇3 ˙̄σ3

]
.

The action can be reproduced by means of the Kähler matter metric

Zσ̇3 ˙̄σ3 = 1
πgs

e2Ω

[−i(τ − τ̄)] (3.8)

and, in the presence of only (2, 1)-flux at the tip, the superpotential bilinear coupling

[
µ̃σ̇3σ̇3

]
(2,1) =

VT2

(0)
[
VΣ4

(0)
]1/2

π[−i(τ − τ̄)]κ4
g0

12. (3.9)

Notice that the bilinear coupling is holomorphic since it can be seen to arise from the
GVW-superpotential deformation

δW = 1
2π
[
VΣ4

(0)
]1/2

∂τ∂uϑ

∫
Y6

[
G3 ∧ Ω

]
δ(4)(r) δ(2)(θ) σ̇3σ̇3 ≡ 1

2 µ̃σ3σ3 σ̇3σ̇3.

This reproduces the mass term when the total Kähler potential contains the 2A0-shift,
namely when the theory is formulated as in eq. (2.17). In particular, as expected, the
canonically normalised mass reads

(mw
D7)2 ∼ g2

s

n0
fV2/3

1
κ2

4
e2A0 .

The structure in the Kähler and superpotential couplings for the D7-brane chiral su-
perfields here is identical to the case in which the D7-brane wraps a 4-cycle localised at
the tip of the throat, as discussed in subsubsection 3.1.3, after replacing the flux evaluated
at the warped end of the 4-cycle with the integral of the flux in the 4-cycle at the tip.
Therefore, the case discussed above will not be treated separately in the following.
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3.1.2.4 Strongly warped scenarios with D7-brane fields in the bulk. An in-
teresting scenario arises in the presence fluxes at the tip of the throat that would give
a warped-down mass for the D7-brane fields, mw

D7, that is still heavier than flux-induced
masses in the bulk,mD7. In this case, the D7-brane fields minimise their energy by localising
in the bulk, so the D7-brane couplings are those in eqs. (3.5), (3.6). However, as discussed
above, strongly warped scenarios fulfilling eq. (2.13), which allow a supergravity description
thanks to eq. (2.16), have a Kähler potential with the structure in eq. (2.17). So, simi-
larly to what happens with the gravitino when eq. (2.16) is satisfied, in the 4-dimensional
effective field theory the canonically normalised D7-brane scalar mass then scales as

eA0 mD7 ∼
θ′gs
V

1
κ4
eA0 .

3.1.2.5 D7-brane gauge sector. From the DBI-action of a stack of D7-branes one
can observe the kinetic action for the 4-dimensional gauge field to be

SD7-vector
kin = −τD7σ

2
s

4

∫
X1,3

d4x
√
−det g4

∫
Σ4

d4y
√

det gΣ4 [e−4A + c] gµρgνσ FµνFρσ.

It is thus possible to recognise the inverse of the Weyl factor and write

SD7-vector
kin = −

VΣ4
(0)

8πgs

∫
X1,3

d4x
√
−det g4 e

−2Ω gµρgνσ FµνFρσ,

so that from the Yang-Mills coupling condition

4π
g2

YM
= Im τYM = 1

gs
e−2Ω VΣ4

(0) = 1
gs

− i2 (ρ− ρ̄) + V
Σ4
w

VΣ4
(0)

VΣ4
(0) ,

together with holomorphicity, one concludes that the gauge kinetic function has to be

fD7 = −
iVΣ4

(0)
2πgs

[
ρ+ ic0

]
, (3.10)

with the constant c0 = VΣ4
w /VΣ4

(0) . So, for strong warping, it preserves the usual structure,
provided the inclusion of the shift suggested by ref. [105]. In the limit where integrals are
dominated by the bulk region, the gauge-kinetic function becomes fD7 = −iVΣ4

(0) ρ/2πgs.
It would be interesting to study localisation effects such as those that can take place

in the chiral sector. The gaugino soft-breaking mass is provided by (0, 3)-fluxes, following
eq. (B.9). Meanwhile, similar mechanisms seem to be prevented for the gauge field, since
the vectors do not have flux-induced masses.

3.1.3 D7-branes at the tip of warped throats

This subsubsection describes the dimensional reduction and the supergravity formulation
of a D7-brane wrapping a 4-cycle Σ4 at the tip of a warped throat, assuming that the warp
factor varies only transversally with respect to the brane. A toy model is described below,
including the geometric configuration and the corresponding dimensional reduction.
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0

rUV

r

(anti-)D3-brane

Σ2

Σ4

Σ4

D7-brane

Figure 2. A sketch of the toy configuration under consideration, with the D7-brane wrapping
the 4-space at r = 0. The D3- or anti-D3-brane provides extra open-string states, as discussed in
sections 3 and 4, respectively.

3.1.3.1 D7-brane configuration. Let the internal 6-dimensional space in the vicinity
of the D7-brane wrapped at the tip of the warped throat take the form Σ4 o Σ2. Let the
coordinates ym′ span a 4-space, for m′ = 4, . . . , 7, with z1, z2 their complex version, and
let yṁ parametrise the transverse 2-space, for ṁ = 8, 9, with z3 the corresponding complex
direction. Given some convenient coordinates ψm′ = ψm

′(yn′) and rṁ = rṁ(yṅ) for the 4-
and 2-dimensional spaces, respectively, the internal metric near the throat tip is

ds2
6 = e−2A gmndymdyn = e−2A(r)

(
gm′n′(ψ, r) dym′dyn′ + g33̄(r) dz3dz̄3

)
.

The D7-brane is assumed to wrap the 4-dimensional slice corresponding to the position
r = 0 at the tip and this 4-space is assumed to see a warp factor which ends up at the
tiny value e2A(r = 0) = e2A0 . The warped throat is glued to some conformal Calabi-Yau
orientifold representing the bulk at r2 = rṁr

ṁ = r2
UV, for some rUV. See figure 2.

To make calculations explicit, it will be assumed that the metric at the tip of the throat
corresponds to the geometry (T4/Z2) × T2. Moreover, in analogy with the KS-metric at
the throat tip in eq. (2.9), an overall scaling with the constant e2A0 is assumed, giving

gm′n′(ψ, r < rUV) r∼0∼ g
(T4/Z2)
m′n′ e2A0 , g33̄(r < rUV) r∼0∼ g

(T2)
33̄ e2A0 . (3.11)

3.1.3.2 D7-brane chiral superfield. If the D7-brane wraps a 4-cycle which is entirely
localised at the tip of the warped throat, then the metric of the 4-cycle needs to be evaluated
at that point in the transverse space. Observing the strong warping condition e−4A0 � c,
the kinetic term for the D7-brane scalar field takes the form

SD7-scalar
kin = − 1

2πgsl4s

∫
X1,3

d4x
√
−g4

∫
Σ4

d4y
√
g0

Σ4
e2Ω−4A0+φ g0

33̄ g
µν ∇µσ3∇ν σ̄3.
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Because in the current setup neither the warp factor nor the internal metric depend on the
4-cycle coordinates, one can easily observe that such an action reads

SD7-scalar
kin = − V

0
4

2πgs

∫
X1,3

d4x
√
−g4 e

2Ω−4A0+φ g0
33̄ g

µν ∇µσ3∇ν σ̄3,

where the 4-cycle dimensionless unwarped volume at the tip of the throat is defined as

V0
4 = 1

l4s

∫
Σ4

d4y
√
g0

Σ4
∼ e4A0 .

In the end, the Kähler matter metric has to be

Zσ3σ̄3 = 1
πgs

e2Ω−4A0

[−i(τ − τ̄)] V
0
4 g

0
33̄.

Interestingly, the D7-brane scalar Kähler matter metric shows two distinct features now
that the D7-brane lies at the strongly warped throat-tip rather than extending along the
throat:

– a dependence on the warp factor, which is reasonable because the whole D7-brane is
localised at strong warping;

– a dependence on the Kähler modulus, which means the D7-brane fields are se-
questered and effectively very similar to a D3-brane localised at the tip of the throat.

Also notice that the matter metric has the effective volume and warp factor scaling Zσ3σ̄3 ∼
e2Ω+2A0 , in accord with the result of ref. [104], following the scaling of the metric g0

33̄ and,
correspondingly, of the volume of the 4-cycle at the tip of the throat V0

4 .
Again, the total mass term emerges from the interference of the DBI- and CS-actions,

but for the purposes of determining the suppression factors one can simply focus on e.g.
the DBI-action, which, in real notation, is of the form

SD7-scalar
mass = − 1

2πgs

∫
X1,3

d4x
√
−g4

∫
Σ4

d4y
√
g0

Σ4

g2
s e

4Ω+4A0+2φ

8πV(0)κ
2
4l

2
s

G0
m′n′ṙ Ḡ

0
p′q′ṡ g

m′p′

0 gn
′q′

0 σṙσṡ.

As the theory at the tip of the throat sees a constant warp factor, one can expand the
harmonic mass-sourcing (2, 1)-flux easily. The supersymmetric mass-sourcing (2, 1)-flux is
still proportional to the harmonic form χϑ = η ∧ dw̄3, with η the holomorphic (2, 0)-form
of the space T4/Z2, and can be written as [112]

Ĝ0
3 = f(r = 0)χϑ,

where f = f(r) is a function of the transverse direction (again, the hat denotes the com-
ponent of the flux that sources a mass term). In terms of the 2-form component, which
can be identified as g2 = f η, the expansion thus reads

g0
2 = 1

ωΣ4
(0)

η

∫
Σ4
g0

2 ∧ η̄,
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where ωΣ4
(0) =

∫
Σ4
η ∧ η̄. The mass term can thus be expressed as

SD7-scalar
mass = − 1

2πgsl4s

∫
X1,3

d4x
√
−g4

∫
Σ4

d4y
√
g0

Σ4

1
8πV(0)

g2
s

κ2
4
e4Ω+4A0+2φ g0

2 · ḡ0
2 σ

3σ̄3.

It turns out that the 4-cycle integral can be performed straightforwardly and reads∫
Σ4

d4y
√

det g0
Σ4
g0

2 · ḡ0
2 =

∫
Σ4
g2 ∧ ḡ2 = 1

ωΣ4
(0)

∫
Σ4
g0

2 ∧ η̄
∫

Σ4
ḡ0

2 ∧ η,

so the scalar mass term is simply

SD7-scalar
mass = − 1

2πgs

∫
X1,3

d4x
√
−g4

1
8πV(0)

g2
s e

4Ω+4A0+2φ

ωΣ4
(0)κ

2
4l

4
s

∫
Σ4
g0

2 ∧ η̄
∫

Σ4
ḡ0

2 ∧ η σ3σ̄3.

With a pure (2, 1)-flux background at the tip, such a mass can be generated by means of
the superpotential bilinear coupling

[
µ̃σ3σ3

]
(2,1) = −

V(0)
πκ4l2s

g0
33̄
V0

4
VΣ4

(0)

1/2 [
∂τ∂uϑ

∫
Y6

[
G3 ∧ Ω

]
δ(2)(r)

]
(2,1)

=
V(0)

π [−i(τ − τ̄)]κ4l2s

g0
33̄
V0

4
VΣ4

(0)

1/2 ∫
Σ4
ḡ0

2 ∧ η.

(3.12)

Similarly to the case of eq. (3.12), the identification is made assuming the validity of the
relationship eκ

2
4K̂csVw = VΣ4

(0) /ω
Σ4
(0). This is not necessarily true in every compactification,

in which case an additional factor [(VΣ4
(0) ω(0))/(ωΣ4

(0)V(0)))]1/2 can be inserted in µ̃σ3σ3 .

Comment on generic flux backgrounds. For generic flux-backgrounds, similar chal-
lenges arise as in paragraph 3.1.2.2. However, for ISD-fluxes, if the Kähler modulus is sta-
bilised by non-perturbative effects, the (0, 3)-flux is localised away from the tip [126, 127].
Therefore, the (0, 3)-flux does not actually contribute to the integral in µ̃σ3σ3 , and the
Kähler potential coupling Hσ3σ3 can also be set to zero.

Notice that, following eqs. (B.7a), (B.7b), even if (0, 3)-flux is present in the bulk, and
therefore there is a non-zero F-term for the volume modulus, cancellations hold such that
if Hσ3σ3 = 0 then it follows that Bσ3σ3 = 0 and m2

σ3σ3, soft = 0, consistently with the fact
that the tip of the throat only sees (2, 1)-fluxes [112, 114].3

Warp factors and field redefinitions. The superpotential bilinear coupling µ̃σ3σ3 in
eq. (3.12) depends on the warp factor through g0

33̄ and V0
4 . It is convenient to make the

warp factor dependences explicit. Two possible approaches are now discussed.
One can focus on a highly warped compactification described by means of a Kähler

potential of the form in eq. (2.17). In order to match the D7-brane chiral multiplet kinetic
3Notice, however, the discrepancy between eqs. (3.25, [112]) and (6.24, [114]).
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and mass terms with such a structure, first of all one has to redefine the D7-brane scalar
field (and consequently its superpartner too) as

σ̌3 ˇ̄σ3 = e−4A0 V0
4 g

0
33̄ σ

3σ̄3. (3.13)

In this way, the kinetic and mass terms read

SD7-scalar = − 1
2πgs

∫
X1,3

d4x
√
−g4 e

2Ω+φ gµν ∇µσ̌ȧ∇ν ˇ̄σḃ

− 1
2πgs

∫
X1,3

d4x
√
−g4

g2
s

8πV(0)

e4Ω+2A0+2φ

ω̃(0)κ
2
4l

4
s

e6A0

V0
4 g

0
33̄

∫
Σ4
g0

2 ∧ η̄
∫

Σ4
ḡ0

2 ∧ η σ̌3 ˇ̄σ3.

By relabelling the fields as σ̌3 → σ3 for simplicity, one obtains the final action via the
Kähler matter metric

Zσ3σ̄3 = 1
πgs

e2Ω

[−i(τ − τ̄)] (3.14)

and the superpotential bilinear coupling

[
µ̃σ3σ3

]
(2,1) =

e6A0

g0
33̄

VΣ4
(0)
V0

4

1/2  VT2

(0)
π[−i(τ − τ̄)]κ4l2s

∫
Σ4
ḡ0

2 ∧ η

 . (3.15)

Thanks to the field redefinition and the Kähler potential shift, the bilinear potential is
actually independent of the warp factor.

A second possibility is to replace the original eA0-dependence in the bilinear coupling
µ̃σ3σ3 with a trilinear term coupling z1/3 to the product σ3σ3 [26, 34], where z is the
complex structure modulus fixing the warp factor at the tip as 〈z〉1/3 ∼ eA0 , assuming for
concreteness a Klebanov-Strassler throat. This will be discussed further below.

3.1.3.3 D7-brane gauge sector. From the D7-brane DBI-action one can observe the
kinetic action for the 4-dimensional gauge field to be

SD7-vector
kin = − 1

8πgs

∫
X1,3

d4x
√
−g4 [e−4A0 + c]V0

4 g
µρgνσ FµνFρσ

and therefore the Yang-Mills coupling is

4π
g2

YM
= Im τYM = [e−4A0 + c] V

0
4
gs

=
[
e−4A0 − i

2 (ρ− ρ̄)
] V0

4
gs
∼ e−4A0 V

0
4
gs
,

following the condition e−4A0 � c. One can thus conclude that the gauge kinetic function
has to be

fD7 ∼
V0

4
2πgs

e−4A0 . (3.16)

Notice that, as the volume of the wrapped 4-cycle depends on the warp factor due to the
behaviour of the metric eq. (3.11), the term V0

4 e
−4A0 is actually independent of the warp

factor. The subleading term in fD7 instead depends on the warp factor, and, as for the
µ̃-term above, it can be written as a holomorphic contribution in the complex structure
modulus z4/3 [26, 34]. Also, although the subleading term in fD7 contributes a soft gaugino
mass, due to the e4A0 redshift factor it is always suppressed with respect to the anomaly-
mediated mass contributions discussed below.
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3.2 D3-/D7-brane intersecting states

Interactions in the low-energy effective action involving D3-/D7-brane intersecting states
will now be worked out. Tools other than dimensional reduction need to be used since a
higher dimensional effective theory for such states is unknown.

3.2.1 D3-brane and D7-brane extending from the throat tip into the bulk

For intersecting D3-/D7-branes, where the D3-brane is at the tip of a warped throat and
the D7-brane wraps a 4-cycle extending from the tip into the bulk with the configuration
described in paragraph 3.1.2.4, the couplings for the intersecting states in the Kähler and
superpotential of eqs. (3.1a), (3.1b) are as follows.

• Following the studies of scattering amplitudes in refs. [106, 110, 111], suggests one to
define the Kähler matter metrics for the intersecting D3-/D7-brane states as

Zϕϕ̄ = Zϕ̃ ˜̄ϕ = 1
2πgs

e2Ω. (3.17)

The references [106, 110, 111] find the structure Zϕϕ̄ = 1/[−i(ρ− ρ̄)] in an unwarped
compactification, and eq. (3.17) is its natural generalisation. Further, symmetry
arguments reveal that the fields ϕ and ϕ̃ do not have flux-induced masses [112].
The resulting no-scale structure implies they can be included within the logarithmic
Kähler potential (together with the other chiral superfields) by defining the ρ-term as

κ2
4K = −3 ln

[
2 e−2Ω − κ2

4
3πgs

ϕϕ̄

]
.

• As they need to be massless, the intersecting states do not have any bilinear H- or
µ̃-coupling. However, one needs to account for a would-be mass term in the case in
which the D3- and D7-brane are separated, as explained by ref. [112]. As will also
be argued in subsubsection 3.2.3, the superpotential term which accounts for this is
generated by the Yukawa couplings

Ỹσ3ϕϕ̃ = −Ỹϕ3ϕϕ̃ = 1
gs

[ 2
π

[V(0)]3
]1/2

= ỹ. (3.18)

It will be shown below that such terms are fundamental in order to generate the lead-
ing order flux-mediated couplings between the D7-brane and the intersecting states.
Notice that the canonically normalised physical Yukawa couplings involving σ3 are
suppressed by the warp factor, while those involving ϕ3 are not, consistently with
their different localisations with respect to ϕ and ϕ̃.

The corresponding action has the D-term potential, the F-term potential, and some soft
supersymmetry-breaking couplings.

• The D-term potential emerges because the intersecting states are charged under the
D3- and the D7-brane gauge fields, with couplings

g−2
D3 = − i

4πgs
(τ − τ̄), g−2

D7 = −
iVΣ4

(0)
4πgs

(ρ− ρ̄+ 2ic0) =
VΣ4

(0)
2πgs

e−2Ω.
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It is now easy to infer that the D-term potential for the field ϕ is

V
(susy)
D = 1

2 g
2
D3 (Zϕϕ̄ϕϕ̄)2 + 1

2 g
2
D7 (Zϕϕ̄ϕϕ̄)2

= e4Ω

2πgs [−i(τ − τ̄)] (ϕϕ̄)2 + e6Ω

4πgs VΣ4
(0)

(ϕϕ̄)2,
(3.19)

and similarly for the field ϕ̃. It is interesting to observe that the specific value of the
redshift factor at the tip of the throat does not appear.

• On the other hand, in an ISD-background the F-term potential comes from the
effective superpotential

Wsusy = 1
2µσ3σ3σ3σ3 + y (σ3 − ϕ3)ϕϕ̃,

where for the sake of simplicity the trilinear term

y = eκ
2
4K/2ỹ

has been defined, and reads V susy
F = Zij̄

[
∂iWsusy

][
∂j̄W̄susy

]
. This potential gives the

redshifted D7-brane supersymmetric mass, but also the couplings between the pure
and the intersecting brane states. First of all, one has the cubic interaction

V
(σ3ϕϕ̃)

cubic =
[
Zσ

3σ̄3
µσ3σ3 ȳσ3ϕ̄ ˜̄ϕ+c.c.

]
=− 1

4πκ4

e6Ω+2A0

[−i(τ−τ̄)]ωΣ4
w

[
2

πV(0)

]1/2 VΣ4
w

VΣ4
(0)

[[ 1
l2s

∫
Σ4
ḡ2∧η

]
σ3ϕ̄ ˜̄ϕ+c.c.

]
.
(3.20)

Additionally, one can observe two distinct quartic interactions which involve only the
intersecting states. First of all, there is the standard quartic potential

V
(ϕϕ̄)

quartic = Zσ
3σ̄3
yȳ ϕϕ̃ϕ̄ ˜̄ϕ+ Zϕ

3ϕ̄3
yȳ ϕϕ̃ϕ̄ ˜̄ϕ

= 1
2πgs

e6Ω+2A0

ωΣ4
w

VΣ4
w

VΣ4
(0)

ϕϕ̃ϕ̄ ˜̄ϕ+
VΣ4

(0)
πgs

e4Ω+2A0

[−i(τ − τ̄)]ωΣ4
w

VΣ4
w

VΣ4
(0)

g33̄
0 ϕϕ̃ϕ̄ ˜̄ϕ,

(3.21)

in which the warp factor redshifts the D7-brane term, but not the D3-brane one due to
the cancellation induced by the inverse metric g33̄

0 ∼ e−2A0 . This does not happen for
the D7-brane because its matter metric is determined by the bulk metric g33̄. Second,
there are the quartic interactions that represent the would-be mass terms, namely

V
(σ3ϕϕ̄)

quartic = yȳ Zϕ̃
˜̄ϕ (σ3 − ϕ3)(σ̄3 − ϕ̄3)ϕϕ̄

= 1
πgs

e4Ω+2A0 VΣ4
w

[−i(τ − τ̄)]ωΣ4
w

(σ3 − ϕ3)(σ̄3 − ϕ̄3)ϕϕ̄
(3.22)

and the equivalent term for the field ϕ̃, which are redshifted by the warp factor as
must be due to the location of the intersection at the tip of the throat.
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• In order to determine the supersymmetry-breaking terms for the states ϕ and ϕ̃,
instead, it is necessary to determine the Riemann tensor associated to the Kähler
matter metrics. In order to show the general structure of the couplings, in this dis-
cussion the possibility of having both (2, 1)- and (0, 3)-fluxes is considered.4 One finds
the Levi-Civita connection Γϕρϕ = i e2Ω/2, which implies that the only non-vanishing
component of the Riemann tensor is

Rρρ̄ϕϕ̄ = 1
2πgs

1
4 e

6Ω.

So, as a manifestation of sequestering, in an ISD-background the identity still holds

m2
ϕϕ̄, soft = m̂w

3/2 ˆ̄mw
3/2 Zϕϕ̄ − F̂

ρ ˆ̄F ρ̄Rρρ̄ϕϕ̄ = 0,

and the fields ϕ and ϕ̃ stay massless even when supersymmetry is broken by ρ. Due
to the lack of an H- or a µ̃-term for these fields there is no B-coupling either.

Finally, one has to consider the supersymmetry-breaking scalar trilinear couplings,
which must be studied with some care. For the couplings to the D7-brane scalar σ3,
one finds

∇ρYσ3ϕϕ̃ = ∂ρYσ3ϕϕ̃ + 1
2 κ

2
4K̂ρYσ3ϕϕ̃ − 3 Γlρσ3Ylϕϕ̃ = 3i

2 e2ΩYσ3ϕϕ̃

as a consequence of the fact that, because of the special form of the D7-brane matter
metric, its associated Levi-Civita connection vanishes, i.e. Γσ3

ρσ3 = 0. One also finds

∇ρYϕϕ̃σ3 = ∂ρYϕϕ̃σ3 + 1
2 κ

2
4K̂ρ Yϕϕ̃σ3 − 3 Γlρϕ Ylϕ̃σ3 = 0,

∇ρYϕ̃σ3ϕ = ∂ρYϕ̃σ3ϕ + 1
2 κ

2
4K̂ρ Yϕ̃σ3ϕ − 3 Γlρϕ̃ Ylσ3ϕ = 0,

because in this case the connection is exactly such as to cancel the first two terms. For
the couplings with the D3-brane scalar ϕ3, one finds that all the covariant derivatives
vanish too as a consequence of the form of the Kähler matter metric. Therefore, the
only supersymmetry-breaking trilinear coupling is Aσ3ϕϕ̃, see eq. (B.7c). If one writes
the (0, 3)-flux as G′3 = g′2(w3, w̄3) ∧ dw̄3, with a suitable (0, 2)-form g′2 = g′2(w3, w̄3)
on the 4-cycle, then this becomes5

Aσ3ϕϕ̃ = 3
4π

e6Ω+2A0

[−i(τ − τ̄)]ωΣ4
w κ4

VΣ4
w

VΣ4
(0)

[
2

πV(0)

]1/2 1
l2s

∫
Σ4
ḡ′2 ∧ η̄. (3.23)

4Notice that a (0, 3)-flux does not necessarily affect the supersymmetric couplings: the D3-brane does
not have supersymmetric couplings depending on ISD-fluxes, while the D7-brane effective µ-term is correct
so long as the conditions around eq. (3.7) are fulfilled.

5In this calculation the coupling involving the intersecting states is present only if there is a (0, 3)-flux
at the tip of the throat. This is not necessarily what happens in a fully stabilised model, where the non-
perturbative corrections that stabilise the volume modulus localise the (0, 3)-flux in the bulk. Consistently
with this, the F-term of the field ρ is small, so effectively one finds a small A-term.
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Evidently, in the presence of supersymmetry-breaking imaginary anti-self-dual fluxes,
one would obtain mass corrections for the scalars ϕ and ϕ̃ sourced by both the axio-
dilaton and the complex structure modulus. Also, one would obtain new trilinear
terms coupling these fields to the D3-brane scalar ϕ3 too.

Notice that in an ISD-background the intersecting D3-/D7-brane states couple to the
background fluxes only via the mediation of the D7-brane fields as the interactions with
the D3-brane fields are protected by the no-scale structure of the latter.

3.2.2 D3-brane and D7-brane at the tip of the throat

For a system of intersecting D3-/D7-branes where the D7-brane wraps a 4-cycle that
is localised at the tip of a warped throat, as in subsubsection 3.1.3, or where the D7-
brane wraps a 4-cycle extending through the throat with fields localised at the tip, as in
paragraph 3.1.2.3, the intersecting state parameters of the Kähler and superpotentials of
eqs. (3.1a), (3.1b) are as follows:

• the Kähler matter metric is

Zϕϕ̄ = Zϕ̃ ˜̄ϕ = 1
2πgs

e2Ω; (3.24)

• setting β = e−A0 , as discussed in subsubsection 3.2.3, the Yukawa couplings are

Ỹσ3ϕϕ̃ =
V(0)
gs

[ 2
π
VT2

(0)

]1/2
β = ỹβ, (3.25a)

Ỹϕ3ϕϕ̃ = −ỹ. (3.25b)

In this case the canonically normalised physical Yukawa couplings are not redshifted.

These account for the sequestered nature of the fields as well as for the presence of the
would-be mass term due to any brane separation.

For the intersecting state contributions to the D-term potential, F-term potential and
soft supersymmetry-breaking terms, the fact that the D7-brane is localised and therefore
has a no-scale-like matter metric (cfr. eqs. (3.5), (3.14)) gives rise to particular features.

• The D3- and the D7-brane gauge couplings are (neglecting the ρ-dependent term for
the D7-brane)

g−2
D3 = − i

4πgs
(τ − τ̄), g−2

D7 = V0
4

2πgs
e−4A0 ,

so the D-term potential for the field ϕ reads

V
(susy)
D = 1

2πgs [−i(τ − τ̄)] e
4Ω (ϕϕ̄)2 + 1

4πgs V0
4
e4Ω+4A0 (ϕϕ̄)2. (3.26)

The volume dependence is now different for the D7-brane-induced potential. How-
ever, the warp factor at the tip of the throat is still effectively missing.
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• As usual, the F-term potential comes from the effective superpotential and, in ad-
dition to the D7-brane supersymmetric mass, there are couplings between the pure
and the intersecting brane states. One finds the cubic interaction

V
(σ3ϕϕ̃)

cubic = 1
4πκ4

e4Ω+A0

[−i(τ−τ̄)]ωΣ4
(0)

[
2

πV(0)

e6A0

g0
33̄V

0
4

]1/2[[ 1
l2s

∫
Σ4
ḡ0

2∧η
]
σ3ϕ̄ ˜̄ϕ+c.c.

]
. (3.27)

Compared to the potential of eq. (3.20), this potential is less warped down due to
the term β = e−A0 . The pure intersecting states’ quartic interactions are

V
(ϕϕ̄)

quartic = 1
2πgsωΣ4

(0)
e4Ω ϕϕ̃ϕ̄ ˜̄ϕ+ 1

πgs

e4Ω+2A0

[−i(τ − τ̄)]ωΣ4
(0)

g33̄
0 ϕϕ̃ϕ̄ ˜̄ϕ, (3.28)

where for the D3-brane induced term, the redshift effect is again cancelled by the
metric, while for the D7-brane the cancellation arises due to the specific setup with
the wrapped 4-cycle at the tip of the throat and the field redefinition of eq. (3.13) (see
subsubsection 3.2.3). There is also the quartic would-be separation mass interaction

V
(σ3ϕϕ̄)

quartic = 1
πgs

e4Ω+2A0

[−i(τ − τ̄)]ωΣ4
(0)

(σ3e−A0 − ϕ3)(σ̄3e−A0 − ϕ̄3)ϕϕ̄. (3.29)

• For the supersymmetry-breaking terms, it is obvious that in a pure (2, 1)-flux there
cannot be any. In particular, one finds no flux-dependent A-coupling for the inter-
secting D3-/D7-brane states. In fact, even if there were a (0, 3)-flux, the trilinear
scalar coupling Aσ3ϕϕ̃ would vanish due to the no-scale structure of the modulus ρ.

3.2.3 A 6-dimensional description of the intersecting states

One can further motivate the form of the Kähler and superpotential for the D3-/D7-brane
intersecting states by a qualitative analysis of their would-be effective field theory.

One can consider the setup in which the branes are separated due to a non-zero differ-
ence δZ3 = 〈π3〉 − 〈φ3〉, where π3 and φ3 are the string frame D7- and D3-brane positions
in the D7-brane transverse direction, respectively (recall σ3 = γ3/4π3, ϕ3 = γ3/4φ3, as in
appendix A.2). A displacement of the D3-brane in the D7-brane longitudinal directions
does not induce mass terms, so the intersecting states can be assumed to be 6-dimensional
fields living in the non-compact 4-dimensional spacetime as well as in the 2-dimensional
compact space which separates the D3- and D7-branes along the transverse complex direc-
tion of the latter. In the string frame, the supersymmetric mass term for the 6-dimensional
intersecting states θ and θ̃ is

M2
θθ̄

= M2
θ̃ ¯̃θ

= G33̄δZ
3δZ̄3,

with GMN the string frame metric, and θ, θ̃ will soon be related to the 4-dimensional fields
ϕ, ϕ̃. The kinetic action must be of the form

SD3/D7 = − 1
2πl2s

∫
X1,3×T2

d6x
√
−G6 e

−nΦ
[
Gµν∂µθ∂ν θ̄ +

(
G33̄δZ

3δZ̄3) θθ̄]
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with n a constant representing the fact that usually actions in the string frame are nor-
malised with overall dilaton factors. Then, in the 4-dimensional Einstein frame one obtains

SD3/D7 =−
VT2

(0)
2πgns

∫
X1,3

d4x
√
−g4 e

2Ω+(1−n)φ
[
gµν∂µϕ∂νϕ̄+e2Ω+φ (g33̄δζ

3δζ̄3)ϕϕ̄], (3.30)

where the brane position moduli have been rescaled as explained in appendix A.2, leading to
δζ3 = γ3/4δZ3 = β〈σ3〉−〈ϕ3〉, and the same scaling has been performed on the intersecting
states, i.e. ϕ = γ3/4θ. The factor β is

β =

1, D7-brane extended from tip to bulk,
e−A0 , D7-brane localised at tip,

where the warp factor emerges only for the case in which the D7-brane multiplet is localised
at the tip, following the extra field redefinition (3.13). Noticeably, such a construction is
compatible with a supersymmetric description, i.e. by means of a µ̃-tilde coupling, only if
the dilaton power takes the value n = 1 as a different choice cannot reproduce in super-
gravity the action of eq. (3.30).

So far, this action applies to any intersecting D3-/D7-brane setup, but it is convenient
to specialise to the case in which the D3-brane is located at the tip of a warped throat. As
the intersection takes place at the tip of the throat, the action has the form

SD3/D7 = − 1
2πgs

∫
X1,3

d4x
√
−det g4

[
e2Ω gµν∂µϕ∂νϕ̄+ e4Ω+2A0+φ (δζ3δζ̄3)ϕϕ̄],

where advantage has been taken of the fact that the internal metric scales as g0
33̄ ∼ e2A0

and the 2-torus volume factor has been absorbed by the fields. Below, the two distinct
scenarios which are of interest are discussed separately, assuming the formulation with the
Kähler potential 2A0-shift.

• If the warp factor is a function of only the longitudinal coordinate along the 4-
cycle which is wrapped by the D7-brane, the action above can be reproduced in a
supersymmetric way by means of the Kähler and superpotential terms

Zϕϕ̄ = 1
2πgs

e2Ω, (3.31a)

µ̃ϕϕ = 1
gs

[ 2
π

[
V(0)

]3]1/2
δζ3. (3.31b)

• If the warp factor is only a function of the transverse direction to the 4-cycle, the
Kähler potential (2.5a) is cancelled and it implies that the Kähler and superpotential
couplings are

Zϕϕ̄ = 1
2πgs

e2Ω, (3.32a)

µ̃ϕϕ =
V(0)
gs

[ 2
π
VT2

(0)

]1/2
δζ3, (3.32b)
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For definiteness, the calculations have been referred to the case where the whole internal
space is factorised as Σ4 ×T2. The complex structure moduli dependence in the complete
mass terms m2

ϕϕ̄ = eκ
2
4K̂Zϕϕ̄µ̃ϕϕ ˜̄µϕ̄ϕ̄ has not been captured by the dimensional reduc-

tion above.
In a theory in which the D3- and D7-brane scalars are dynamical, the bilinear terms

µ̃ϕϕ can be used to fix the trilinear couplings as Ỹσ3ϕϕ = µ̃ϕϕ|〈ϕ3〉=0/〈σ〉3, Ỹϕ3ϕϕ =
µ̃ϕϕ|〈σ〉3=0/〈ϕ〉3. This is a simplified example since it contains only one intersecting field,
while in reality there are both the 37- and the 73-states. However, provided a diago-
nalisation of the states, the structure of the Yukawa couplings is correct. In this way,
from the bilinear couplings in eqs. (3.31b), (3.32b) one obtains the trilinear couplings in
eqs. (3.18), (3.25), respectively.

As commented on in subsubsection 3.1.3, if a complex structure modulus z associated
to the tip of the throat controls the warp factor, then one might choose to not use the
redefinition eq. (3.13) of the D7-brane scalars at the tip of the warped throat, instead
obtaining couplings to zp, with p ≥ 0.

4 Warped anti-D3- and D7-branes

First, this section overviews the supergravity description of anti-D3-branes in terms of con-
strained superfields, following the results that have recently been derived in ref. [29], which
are for a different metric Ansatz to eq. (2.1) and outside the regimes of field localisation
at the tip, eqs. (2.13), (2.16) (see also ref. [21]). Second, this section shows how to extend
these results to anti-D3-/D7-brane constructions, including in particular the intersecting
states, building on results of the previous section for D3-/D7-brane constructions. Finally,
considering how these local models may eventually be embedded in global compactifica-
tions, the effects of moduli stabilisation and anomaly mediation on the open-string degrees
of freedom will be worked out referring to the KKLT scenario for definiteness. Along
with the dimensional reductions in appendix A.2, use is made of appendix B.3, which de-
rives the supergravity expansions that are suitable in the presence of non-linearly realised
supersymmetry.

4.1 Pure anti-D3-brane

The particle content of D3- and anti-D3-branes is the same, but the couplings with the
bulk and other sources are different due to the opposite RR-charges, with implications on
the supersymmetry transformations. This subsection begins with a brief general discus-
sion on anti-D3-brane supersymmetry breaking and their low-energy effective field theory
descriptions, then the field content and action are described in detail.

4.1.1 Anti-D3-brane supersymmetry breaking

In type IIB Calabi-Yau orientifolds, anti-D3-branes do not preserve the same supersymme-
try as the closed-string sector since the orientifold-invariant supersymmetry charge realises
supersymmetry only non-linearly on their worldvolume, whereas the supersymmetry charge
that would be linearly realised on the brane is projected out. In particular, the gaugino
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transformation under the surviving supersymmetry takes the form
√

2δελ ∼ ε/l2, where
the factor l ∼ τ̃−1/4

D3 is set by the effective anti-D3-brane tension τ̃D3 (i.e. after taking into
account any warping effects).

Because the scale 1/l never vanishes, there is no scale at which supersymmetry becomes
linearly realised, and there is not the usual F- or D-term whose vacuum expectation value
may become zero to restore linear supersymmetry. Nevertheless, because the worldvolume
action remains supersymmetric, whilst there is no vacuum in which the anti-D3-brane
goldstino has a non-zero supersymmetry transformation, it is effectively a spontaneously
broken symmetry. As a consequence of non-linearity, the anti-D3-brane degrees of freedom
cannot be encoded in standard N4 = 1 multiplets; instead, all the massless degrees of
freedom of the anti-D3-brane must be packaged into constrained superfields. Once the tool
of constrained supermultiplets is introduced, there is no technical difference with respect to
the low energy effective theory describing “standard” F-term spontaneous supersymmetry
breaking below the supersymmetry breaking scale.

Constrained superfields in global supersymmetry are thoroughly discussed in ref. [88]
as a tool to describe effective theories with broken supersymmetry when the superpartners
that become heavy due to the mass-splitting are integrated out. The simplest example
is the nilpotent chiral superfield, whose only physical degree of freedom is its fermion
playing the role of Volkov-Akulov goldstino for broken supersymmetry [87]. A generic
treatment of constrained superfields in both global and local supersymmetry can be found
in ref. [89]. As recently discussed in ref. [35], it should be noted that, although the massless
degrees of freedom realise non-linear supersymmetry as if their superpartners had been
integrated out, above the supersymmetry-breaking scale the full infinite tower of string
states is necessary for a consistent supersymmetric theory, and there is no energy scale
above which supersymmetry in the usual sense is restored (see ref. [134] for more discussion
on this).

4.1.2 Anti-D3-brane constrained multiplets

To place the anti-D3-brane fields in constrained supermultiplets, one matches the non-linear
supersymmetry transformations for the brane fields with those of a specific constrained
superfield, as done in great detail by refs. [16, 17, 135].

• The gaugino λ, which plays the role of the goldstino, is described via the fermion com-
ponent ψX of a chiral superfield X which satisfies the nilpotency condition [136–139]

X2 = 0. (4.1)

This effectively removes its scalar ϕX in favour of the spinor ψX , indeed implying
the identification ϕX = ψXψX/FX , with the auxiliary field FX being non-vanishing
by assumption. At leading order in l, i.e. the scale at which the tower of string states
enters into play, the gaugino λ and the goldstino ψX are then related as

λ ∼ 1
2l2

ψX

FX
,
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with the non-linear supersymmetry variation
√

2δελ ∼ ε/l2. If the anti-D3-brane sits
at the tip of a warped throat, then this supersymmetry-breaking scale is essentially
the warped string scale l ∼ 1/mw

s . In fact, comparing with the anti-D3-brane energy
density uplift below, one can see that the effective anti-D3-brane tension at the tip
of the throat scales as τ̃1/4

D3 ∼ g
−1/4
s mw

s .

As the goldstino is contained in a chiral multiplet, the would-be gaugino D-term
breaking is actually described as an F-term breaking. Eventually the gaugino is fixed
as λ = 0 in the unitary gauge. Refs. [140–144] discuss the supergravity generalisation
of this construction.

• The Abelian gauge field Aµ is contained in the vector degrees of freedom of a field-
strength chiral multiplet Wα satisfying the constraint [88, 145]

XWα = 0, (4.2)

which removes the gaugino ζW by making it proportional to the goldstino ψX .

• The so-called modulini ψa are described by the fermionic degrees of freedom of three
chiral superfields Y a satisfying the constraints [146, 147]

XY a = 0, (4.3)

which remove the scalars ϕY a by making them proportional to the goldstino ψX .

• The scalars ϕa describing position fluctuations are encoded in the scalar degrees of
freedom of three chiral superfields Ha satisfying the constraints [88, 89]

X̄DαHa = 0, (4.4)

with Dα the supersymmetry-covariant derivative, which makes both the spinors ψHa

and the auxiliary fields FHa proportional to the goldstino ψX . As it is constrained,
the solution to the F-term field equation is not the usual FHa = eκ

2
4K/2KHaĪ∇ĪW̄ ,

but rather a goldstino-dependent expression which vanishes in the unitary gauge.

4.1.3 Anti-D3-brane supergravity

The supergravity formulation of a single anti-D3-brane at the tip of a warped throat in an
orientifold compactification with Hodge number h1,1

+ = 1 is reported below. One can follow
the dimensional reductions of refs. [9, 29, 107, 108, 128] and adapt them to the metric of
eq. (2.1).

4.1.3.1 Anti-D3-brane uplift energy. Anti-D3-branes provide a positive energy up-
lift to the vacuum energy. Given the warp factor A0 at the anti-D3-brane location, in the
4-dimensional Einstein frame it reads

SD3
Λ = − 1

κ4
4

∫
d4x

√
−det g4

g3
s

4π[V(0)]2
e4Ω

e−4A0 + c
.
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In the setup with the anti-D3-brane at the tip of the throat, the warp factor dominates
over the volume modulus, so that the effective form of the term above is

SD3
Λ = − 1

κ4
4

∫
d4x

√
−det g4

g3
s

4π[V(0)]2
e4Ω+4A0 .

Such a vacuum energy can be reproduced in supergravity in a very easy way as the F-term
potential contribution of the goldstino X by defining the Kähler and superpotential

κ2
4K̂ = − ln[−i(τ − τ̄)]− ln[−iωw] + ln

[
2
π

Vw
[V(0)]3

]

− 3 ln
[
2 e−2Ω − 4κ2

4
3gs
Vw
V(0)

e−2A0 XX̄

[−i(τ − τ̄)][−iωw]

]
,

(4.5a)

κ3
4Ŵ = gs

l2s

∫
Y6
G3 ∧ Ω +

√
2 gsκ4X, (4.5b)

with the actual total Kähler potential being κ2
4K = 2A0 + κ2

4K̂. In the unitary gauge, the
only change to the closed-string sector effective theory induced by the nilpotent superfield
is the anti-D3-brane uplift contribution to the F-term potential (as long as the goldstino
is aligned completely with the spinor in X [6]).6

Notice that ref. [29] does not work with the 2A0-shift in the Kähler potential, as is
appropriate in regimes not fulfilling eq. (2.13).7

Complex structure moduli in warped throats. In type IIBN4 = 1 compactifications
the axio-dilaton and the complex structure moduli are typically stabilised at high energy
scales; however, in a KS-throat, the complex structure modulus z, which controls the size of
3-sphere at the throat tip, stays in the low-energy effective theory [26]. For a dimensionless
field z, its vacuum expectation value fixes the warp factor at the tip of the throat as [4]

〈zz̄〉1/3 = e2A0 = e−4πK/3gsM , (4.6)

where M and K are the quantised F3- and H3-fluxes through the conifold 3-sphere and its
dual 3-cycle, respectively.

Ref. [148] computes the Kähler metric for the complex structure modulus z. Moreover,
ref. [34] shows the way to include such a field within the supergravity formulation together
with an uplifting anti-D3-brane. Together with the Kähler modulus shift used here, one
can postulate the Kähler and superpotential

κ2
4K̂ = −3 ln

[
2 e−2Ω − 4κ2

4
3gs
Vw
V(0)

XX̄

[−i(τ − τ̄)][−iωw]

]
+ Zzz̄(zz̄)zz̄,

κ3
4Ŵ = gs

l2s

∫
Y6
G3 ∧ Ω +W (z) +

√
2 gsκ4z

1/3X,

6Explicitly, the correction to the F-term potential is ∆VF = e2A0+κ2
4K̂ K̂XX̄∇XŴ∇X̄

ˆ̄W , with the terms

K̂XX̄ = 2
gs

e2Ω−2A0

[−i(τ − τ̄)][−iωw]
Vw
V(0)

, κ3
4∇XŴ =

√
2gsκ4.

7Also, in ref. [29] the warp factor depends on the brane scalars, i.e. A0 = A0(Ha, H̄a), which would
imply a kinetic term correction for the scalars whenever there is the 2A0-shift in the Kähler potential. In
the formulation presented here, the term A0 is independent of the brane scalars.
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where the Kähler metric Zzz̄ and the superpotential W (z) determine the vacuum expec-
tation value of the field z to be that in equation (4.6); for brevity, the constant term and
the axio-dilaton and other complex structure moduli have been dropped. Also, one may
include the Kähler potential shift as the extra Kähler potential coupling

κ2
4δK̂ = 1

3 ln zz̄ ∼ 2A0.

Such a term does not participate in the Kähler metric but only in the overall scaling of the
energy scales, as it needs to do, and to some scalar and fermionic couplings.

In the KS-throat, the unwarped metric at the tip of the throat scales as g0
mn ∼ e2A0 ,

which is crucial as it sets the Kähler matter metric of the open-string degrees of freedom
sitting at the tip of the throat. Therefore, writing the warp factor at the tip in terms of
the complex structure modulus leads, for example, to a coupling from the would-be kinetic
term of the form

δK = 1
2πgs

e2Ωg0
ab̄
HaH̄b ∼ 1

2πgs
(zz̄)1/3e2Ωδab̄H

aH̄b

It would be interesting to incorporate all such interactions between z and the open-string
fields in a complete supergravity description.

Obviously, if the throat is not of the Klebanov-Strassler type, the details of the poten-
tials are different, but by analogy one should expect qualitatively similar results.

4.1.3.2 Anti-D3-brane modulini. For the modulini of an anti-D3-brane, the pure
kinetic term reads

SD3-modulini
kin = − i

2πgs

∫
X1,3

d4x
√
−det g4 e

2Ω g0
ab̄
ψ̄bσ̄µ∇µψa.

This can be matched with a supergravity formulation by encoding the spinors ψa in the
constrained multiplets Y a, with XY a = 0, and using the Kähler potential

κ2
4K̂ = −3 ln

[
2 e−2Ω − κ2

4
3πgs

g0
ab̄
Y aȲ b − 4κ2

4
3gs

e−2A0

[−i(τ − τ̄)][−iωw]
Vw
V(0)

XX̄

]
,

or alternatively, after an easy logarithmic expansion, with the Kähler matter metric

ZY aȲ b = 1
2πgs

e2Ω g0
ab̄
. (4.7)

For the mass term, from the dimensional reduction one finds

SD3-modulini
mass = − i

2πgs

∫
X1,3

d4x
√
−det g4

[
mψaψbψ

aψb + c.c.
]
,
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with the mass8

mψaψb = − 1[
4πV(0)

]1/2 gs
4κ4

e3Ω+4A0+φ/2 l4sg
0
c(a Ω0

b)de (Ḡ−3 )c̄de0 .

Following the method of ref. [29], this mass term can be generated via a Kähler potential
bilinear coupling

HY aY b = i

4πg2
s

V1/2
w

[−i(τ − τ̄)][−iωw]1/2
e2Ω+A0 l4s g

0
c(a Ω0

b)de (Ḡ−3 )c̄de0 κ4X̄. (4.8)

Indeed, as required, in an imaginary self-dual background one obtains the effective µ-term

µY aY b = −F̄X ∂X̄HY aY b = i

2πgs
mψaψb .

The scale of the canonically normalised mass is [104]

(mw
D3)2 = g2

s

V2/3
1
κ2

4
e2A0 .

4.1.3.3 Anti-D3-brane scalars. The pure kinetic action for the anti-D3-brane scalars
takes the form

SD3-scalars
kin = − 1

2πgs

∫
X1,3

d4x
√
−det g4 e

2Ω g0
ab̄
gµν ∇µϕa∇νϕ̄b.

In order to correctly account for the expected no-scale structure (see paragraph 3.1.1.1),
one needs to generalise the full Kähler potential for the Kähler modulus as

κ2
4K̂ =−3ln

[
2e−2Ω− 4κ2

4
3gs

e−2A0

[−i(τ−τ̄)][−iωw]
Vw
V(0)

XX̄− κ2
4

3πgs
g0
ab̄
Y aȲ b− κ2

4
3πgs

g0
ab̄
HaH̄b

]
,

where Ha are the constrained chiral multiplets containing the scalars ϕa. Indeed, in this
way the Kähler matter metric is

ZHaH̄b = 1
2πgs

e2Ω g0
ab̄

+ κ2
4

3πg2
s

e4Ω−2A0

[−i(τ − τ̄)][−iωw]
Vw
V(0)

XX̄ g0
ab̄
. (4.9)

For the scalar masses, from the combination of the relevant parts of the DBI- and CS-
actions one finds the term

SD3-scalars
mass = − 1

2πgs

∫
X1,3

d4x
√
−det g4

e4Ω

4πV(0)

g2
s

κ2
4

[l2s∇a∇b̄(e
4A + α)]0 ϕaϕ̄b.

8In ref. [128] the holomorphic 3-form is defined in terms of the gamma-matrices that are suitable for
the geometry at the tip of the throat. Given the internal Dirac matrices γm and the internal spinor η+ of
positive chirality and norm η†+η+ = 1 which defines the SU(3)-structure of the space, with η− its conjugate,
the holomorphic 3-form and the Kähler form are defined as

l3sΩmnp = η†−γmnpη+, ω̃mn = i η†+γmnη+.

To make estimates in terms of the warp factor scaling, then one needs to consider the qualitative behaviour
l3sΩ0 ∼ e3A0 (n0

f )3/2, consistently with the metric behaviour. This observation is important for section 6.
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If only (2, 1)-flux is present at the tip of the throat, the anti-D3-brane scalar mass-squared
trace can be evaluated at leading order thanks to the GKP-equations, which, at a position
in the internal space with pure (2, 1)-flux background, imply the relation [4, 107, 149]9

gab̄∇a∇b̄e
4A = 1

12 e
8A+φG−2,1 · Ḡ

−
2,1.

In accord with ref. [107], in a pure (2, 1)-flux background the anti-D3-brane supertrace
vanishes, and the scalar masses are provided by a µ-term equivalent that of the modulini.
It is then natural to try to generate the µ-term by using an equivalent H-coupling to
the modulini, that is HHaHb = HY aY b given in eq. (4.8). Some care is needed, as the
constrained superfield Ha does not have an independent F-term, and so its couplings in
the supergravity expansions are different to the standard case, as shown in appendix B.3.
It turns out that the coupling HHaHb = HY aY b , is still able to generate a mass

m2
ϕaϕ̄b = 2ZHcH̄dF̂M ˆ̄FNHHaHc,N̄H̄H̄bH̄d,M ,

but it will be seen around the derivaton of eq. (4.13) that this choice also originates un-
wanted bilinear couplings. An alternative way to describe the mass term is to use a coupling
HY aHb , with HY aHb = HY aY b .10 From the F-term of the multiplet Y a one now obtains
the scalar mass

m2
ϕaϕ̄b = ZY

cȲ dF̂M ˆ̄FNHHaY c,N̄H̄H̄bȲ d,M

and it also turns out that the unwanted bilinear interactions are avoided. Such an H-term
also contributes a coupling m2

Y aȲ b
Y aȲ b, but this is actually a fermionic term that vanishes

in the unitary gauge. In conclusion, one reproduces the scalar mass by means of the Kähler
potential bilinear coupling

HHaY b = i

4πg2
s

V1/2
w

[−i(τ − τ̄)][−iωw]1/2
e2Ω+A0 l4s g

0
c(a Ω0

b)de (Ḡ−3 )c̄de0 κ4X̄, (4.10)

with the supersymmetric scalar mass being m2
ϕaϕ̄b

= ZY
cȲ d µHaY c µ̄H̄bȲ d .

9In the GKP-setup [4], by rearranging the 4-dimensional components of the Einstein equations and the
field equation of the 4-form potential, one can show the condition (for the conventions, see appendix A)

∇m∇m
(
e4A + α

)
= e2A

24 Im τ

[
iGmnp + (∗6G)mnp

] [
− iGm̂n̂p̂ + (∗6G)m̂n̂p̂

]
+ e−6A [∇m(e4A + α

)] [
∇̂m̂
(
e4A + α

)]
− 2κ̂2

10 e
2A
[1

4
(
ĝµνTµν − ĝmnTmn

)
(source)

− T3 ρ
(source)
3

]
.

In a background with ISD-fluxes G3 = −i ∗6 G3 and the condition e4A = α, one can observe that:

• the source term vanishes for an anti-D3-brane and is subleading in the string length for a D7-brane;

• all the flux contributions are expected to have the same functional dependence as the 3-form term.

Therefore, in a pure (2, 1)-flux, one finds the equation in the main text. Obviously a similar result holds
for a generic imaginary self-dual (2, 1)- and (0, 3)-flux background.

10For a coupling HY aHb , expanding the F-term scalar potential, one finds that the scalar mass term for
the multiplet Ha (without independent F-term) is given by eq. (B.5) (it is generated by the F-term of Y a),
while the scalar mass term for the multiplet Y a is given by eq. (B.10).
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The analysis of subsection B.3 shows that in general there is also a would-be soft
supersymmetry-breaking coupling mass

m2
ϕaϕ̄b, soft = κ2

4V̂FZHaH̄b − F̂M ˆ̄FN
[
ZHaH̄b,MN̄ − 2 ΓHc

MHa ZHcH̄d Γ̄H̄d

N̄H̄b

]
.

In a (2, 1)-flux background, the only contribution is from the X-field F-term, which gives

m2
ϕaϕ̄b, soft = 2

3 κ
2
4VD3 ZHaH̄b . (4.11)

This term can be seen to emerge in the dimensional reduction as follows. In the presence of
the anti-D3-brane scalars, the volume is shifted and the total Weyl-factor should be such
that [103, 150]

e−2Ω′ = e−2Ω − κ2
4

6πgs
g0
ab̄
HaH̄b, (4.12)

with the actual uplift energy V ′D3 = 4πγ3 e4Ω′+4A0/gsl
4
s . If one expands this energy in Ha,

then what is obtained is exactly the sought-after factor, being

V ′D3(e2Ω′) = VD3(e2Ω)
[
1 + 2

3 κ
2
4ZHaH̄bHaH̄b

]
.

If a non-zero (0, 3)-flux were present at the tip of the throat too, the scalar masses
would receive extra contributions in the dimensional reduction. This cannot be added as
a would-be supersymmetric µ-term, since an FX -induced extra contribution gives cross-
terms between (2, 1)- and (0, 3)-fluxes in the scalar mass-squared trace, which are not seen
from the dimensional reduction [107], and an F ρ-induced µ-coupling cannot work either
because it is impossible to find a scaling Hab ∝ enΩ giving a mass m2

ab̄
∝ e4Ω, even after

including a µ̃-coupling. Instead, the matching can be achieved via a would-be soft-breaking
term, by adding an extra XX̄-term in the Kähler metric in eq. (4.9). Notice that, even in
the presence of a non-vanishing F ρ-term, the scalar masses are still protected by a no-scale
cancellation

ZHaH̄b, ρρ̄ − 2 ΓHc

ρHa ZHcH̄d Γ̄H̄d

ρ̄H̄b = 0.

This is a specific feature of the constrained-superfield would-be supersymmetry-breaking
mass expression, since the usual soft supersymmetry-breaking mass vanishes in the presence
of a logarithmic structure but due to a different cancellation involving the gravitino mass.
In any case, in the main scenario considered, only a (2, 1)-flux is present at the tip of the
throat, so the (0, 3)-flux induced mass vanishes.

From the dimensional reduction one also obtains bilinear and trilinear couplings. For
an Abelian anti-D3-brane, the bilinear coupling is

SD3-scalars
bilinear = − 1

2πgs

∫
X1,3

d4x
√
−det g4

e4Ω

8πV(0)

g2
s

κ2
4

(
[l2s∇a∇b(e4A + α)]0 ϕaϕb + c.c.

)
,

whilst there are no trilinear couplings. The description within supergravity follows from
the discussions in subsections B.2 and B.3. As there are no bilinear µ̃-couplings, for a term
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HHaHb the generic B-coupling would be

Bϕaϕb = κ2
4V̂FHHaHb − ˆ̄mw

3/2
ˆ̄FM∂M̄HHaHb + m̂w

3/2F̂
M∇̂MHHaHb

− F̂M ˆ̄F N̄
(
HHaHb,MN̄ − 4 ΓlMiHHaHb,N̄

)
.

One can now observe that if a term HHaHb ∝ X̄ e2Ω+A0 were used to generate the mass
term mϕaϕ̄b , it would also give a B-term scaling as Bϕaϕb ∝ e6Ω+5A0 , which is not present
in the dimensional reduction. Although this could be cancelled by a suitable counter-term
H ′
HaHb ∝ XX̄ e4Ω+A0 , it is simpler to instead obtain the mass term via the coupling HHaY b ,

as chosen in eq. (4.10); this only generates a bilinear term BϕaY b , which is not a scalar
coupling and vanishes in the unitary gauge. Finally, the required coupling Bϕaϕb above
can be obtained by defining an extra H-term

H ′HaHb = 1
2πgs

e4Ω

8πV(0)

g2
s

κ2
4

[
l2s∇a∇b(e4A + α)

]
0

XX̄

F̂X ˆ̄FX
, (4.13)

which only affects the B-term because this is the only term scaling as a second X-derivative
of the H-term.

4.1.3.4 Anti-D3-brane gauge field. Compared to the D3-brane gauge field, the anti-
D3-brane gauge field is described by the same DBI-action but by an opposite CS-action,
which results in the 4-dimensional action

SD3-vector
kin = − 1

4πgs

∫
X1,3

e−φ F2 ∧ ∗F2 −
1

4πgs

∫
X1,3

C0 F2 ∧ F2.

Of course, the gauge kinetic function cannot be fD3 = iτ̄/2πgs as it is not holomorphic in
the axio-dilaton. A solution to this issue is given in ref. [29], which finds

fD3 =
(
D̄2 − 8R

) (X̄f̄D3(τ̄)
D̄2X̄

)
,

with Dα the supergravity fermionic derivative and R the gravity multiplet. This function
is holomorphic thanks to the projectors but at the same time has a superspace expansion

fD3 = iτ̄

2πgs
+O(X). (4.14)

Because X is the nilpotent superfield, all the extra terms are proportional to the goldstino
and therefore vanish in the unitary gauge.

4.2 Anti-D3-/D7-brane intersecting states

For intersecting anti-D3-/D7-branes systems, the pure anti-D3- and pure D7-states have
been described in the previous subsections. It is also possible to provide a supergravity
formulation of anti-D3-/D7-brane intersecting states:

• on the one hand, one can infer the scaling factors for the kinetic and interaction terms
of anti-D3-/D7-brane intersecting states using the D3-/D7-brane system discussed in
subsection 3.2;

• on the other hand, the tools of constrained superfields allow one to formulate the
low-energy theory in the language of supergravity.
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4.2.1 Anti-D3-/D7-brane constrained superfields and couplings

The strings stretching between the anti-D3- and the D7-brane give two scalar fields ϕ and
ϕ̃ as well as two Weyl spinors ψ and ψ̃; in particular, the fields (ϕ,ψ) and (ϕ̃, ψ̃) are in
conjugate representations of the gauge groups.

Similarly to the pure anti-D3-brane states, as the anti-D3-/D7-brane intersecting states
do not respect the supersymmetry of Calabi-Yau orientifold compactification, the natural
tool to describe them is constrained superfields. It is impossible to identify the constrained
superfields for the intersecting states by comparing supersymmetry variations because the
latter are unknown as they cannot be inferred from a dimensional reduction. However, one
can postulate the following ones:

(i) the scalar fields ϕ and ϕ̃ belong to the chiral superfields H and H̃ satisfying the
spinor-removing constraints

XX̄ DαH = 0, XX̄ DαH̃ = 0; (4.15)

(ii) the Weyl spinors ψ and ψ̃ belong to the chiral superfields Y and Ỹ satisfying the
scalar-removing constraints

XY = 0, XỸ = 0. (4.16)

These constraints have been chosen because they are the easiest way [89] to remove
the undesired degrees of freedom from the effective theory below the anti-D3-brane
supersymmetry-breaking scale. In particular, notice that the constraint for the scalar
fields is such as to leave an independent F-term [151].

In the strongly-warped regimes set by eqs. (2.13), (2.16), the Kähler potential contains
the 2A0-shift as in eq. (2.17). Given the closed-string and anti-D3-brane goldstino poten-
tials K̂ and Ŵ of eqs. (4.5a), (4.5b), one can argue that the total Kähler potential and
superpotential are

K = K̂ + ZY aȲ bY
aȲ b + 1

2
[
HHaHbY aY b + c.c.

]
+ ZHaH̄bHaH̄b + 1

2
[
HY aHbY aHb + c.c.

]
+ Zσ3σ̄3σ3σ̄3 + 1

2
[
Hσ3σ3σ3σ3 + c.c.

]
+ ZHH̄HH̄ + ZY Ȳ Y Ȳ + Z

H̃ ˜̄HH̃
˜̄H + Z

Ỹ ˜̄Y Ỹ
˜̄Y,

(4.17a)

W = Ŵ + 1
2 µ̃σ3σ3σ3σ3 + ỹ(βσ3 − Y 3 −H3)Y Ỹ

+ ỹ(βσ3 − Y 3 −H3)HỸ + ỹ(βσ3 − Y 3 −H3)Y H̃,
(4.17b)

The pure anti-D3- and D7-brane terms follow from those discussed in subsubsections 3.1.2,
3.1.3, 4.1.3, and their theory is the same except for the anti-D3-brane uplift effect on the
D7-brane to be discussed. The other terms represent the intersecting states and will be
discussed below.

The field H,Y , and H̃, Ỹ have charges qD3 = 1,−1 and qD7 = −1, 1, respectively,
under the anti-D3- and D7 gauge groups.
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4.2.2 Anti-D3-brane with D7-brane from the throat tip into the bulk

In the setup in which the anti-D3-brane sits at the tip of the warped throat and the D7-
brane wraps a 4-cycle extending from the throat tip into the bulk, the couplings for the
intersecting states in eqs. (4.17a), (4.17b) are as follows.

• Because the kinetic terms are not affected by the flux-induced supersymmetry break-
ing, for anti-D3-/D7-brane intersecting states one can make use of the same Kähler
matter metric terms as for the D3-/D7-brane case. The logarithmic structure that is
equivalent to eq. (3.17) for D3-/D7-branes is generaralised to

κ2
4K = −3 ln

[
2 e−2Ω − 4κ2

4
3gs
Vw
V(0)

e−2A0 XX̄

[−i(τ − τ̄)][−iωw] −
κ2

4
3πgs

ϕϕ̄

]
,

so the matter metrics for anti-D3-/D7-branes are defined to be

ZHH̄ = 1
2πgs

e2Ω + κ2
4

3πg2
s

e4Ω−2A0

[−i(τ − τ̄)][−iωw]
Vw
V(0)

XX̄, (4.18a)

ZY Ȳ = 1
2πgs

e2Ω. (4.18b)

This is consistent with the intersecting states not acquiring flux-induced masses [112]
due to similar cancellations to those discussed for the anti-D3-brane scalars.

• For the trilinear couplings in the superpotential, further explanations are required, as
two related but distinct features from the higher dimensional setup need considering.

(i) Using the internal space symmetries of the flux-dependent couplings, ref. [112]
shows that the anti-D3-/D7-brane intersecting states couple only to the pure
anti-D3-brane states and not to the pure D7-brane states. The coupling 3-form
flux can be written as G′′3 = g′′2 ∧ dw3, where g′′2 = g′′2(w3, w̄3) is a combination
of (1, 1)-forms on the 4-cycle, and the scalar trilinear couplings are of the kind

tαβγ = 1
κ4
u(e2Ω, e2A0) cαβγ ,

where (see appendix C for the explicit expressions of the (1, 1)-forms, ζi)

c
H3H̄ ˜̄H = 1

l2s

∫
Σ4
g′′2 ∧ ζ1,

cH3HH̃ = 1
l2s

∫
Σ4
g′′2 ∧ ζ2,

c
H3H̃ ˜̄H = 1

l2s

∫
Σ4
g′′2 ∧ (ζ3 + ζ4) = cH3HH̄ ,

(4.19)

with the overall factor

u(e2Ω, e2A0) = 1
4π

e7Ω+3A0

[−i(τ − τ̄)]1/2 [−iωw]

[
1

πV(0)

]1/2 VΣ4
w

VΣ4
(0)

.
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A (2, 1)-flux sources the coupling, but it is not the same flux that sources the
D7-brane mass. Ref. [112] identifies the flux components that the couplings
depend on, while the overall scaling u has been inferred from the D3-/D7-brane
case (see eqs. (3.20), (3.23), and note that the matching is done in terms of
canonically normalised fields).

(ii) Also, one needs to account for the mass due to the brane separation in a super-
symmetric way since both the scalars and the spinors acquire the same separa-
tion mass. A way to do that is via a trilinear coupling in the superpotential.

A natural guess to implement both these facts in the 4-dimensional effective theory
is a generalisation of the trilinear coupling in eq. (3.18), with all the permutations ac-
counting for the fact that now scalars and spinors are in different multiplets. Because
for ISD-fluxes both the anti-D3- and the D7-brane have an effective superpotential bi-
linear coupling, though, such a term would again generate a coupling of the D7-brane
state σ3 with the intersecting states. A way to avoid it is to exclude the coupling11

∆W = ỹ(σ3 −H3 − Y 3)HH̃.

As a matter of fact the trilinear couplings of the proposed superpotential in eq. (4.17b),
namely

Ỹσ3Y Ỹ = Ỹσ3HỸ = Ỹσ3Y H̃ = ỹ, (4.20a)
ỸY 3Y Ỹ = ỸY 3HỸ = ỸY 3Y H̃ = −ỹ, (4.20b)
ỸH3Y Ỹ = ỸH3HỸ = ỸH3Y H̃ = −ỹ, (4.20c)

are enough to generate the desired couplings apart from a couple, which however will
be dealt with in paragraph 4.2.2.2.

4.2.2.1 Standard supergravity terms. One now needs to determine the effective
D- and F-term potentials as well as the soft would-be supersymmetry-breaking couplings.
Most of the terms have already been worked out in the earlier discussions on anti-D3- and
D7-brane states, so one can focus on the interplay between the branes and on the new
terms from intersecting states.

• For the D7-brane, most of the calculations hold as in the analysis of the pure D7-brane
in subsubsection 3.1.2, as now summarised.

For the supersymmetric terms, the effective µ-coupling and the corresponding su-
persymmetric mass is exactly the same as discussed in subsubsection 3.1.2. On the

11The removal of the term ∆1W = ỹσ3HH̃ prevents the couplings with the D7-brane, the absence of
the term ∆2W = −ỹH3HH̃ prevents the repetition of quartic couplings of the anti-D3-brane with the
intersecting states already generated by the other terms — which however also generate the would-be
separation mass terms in an elegant way including the D7-brane scalar too — and the absence of the term
∆3W = −ỹY 3HH̃ prevents the coupling ȳµ33H

3H̄ ˜̄H, which is also forbidden by the symmetry arguments
of ref. [112].
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other hand, the effective superpotential couplings follow straightforwardly from the
superpotential and are

Yσ3Y Ỹ = Yσ3HỸ = Yσ3Y H̃ = y. (4.21)

Notice that the superpotential gives exactly the same (and no extra) Yukawa cou-
plings as the D3-/D7-brane construction, since only the terms with one scalar and
two spinors generate proper Yukawa terms.

For the supersymmetry-breaking terms, assuming that the Kähler metric and the
H-term do not depend on X since they come from a deformation of the axio-dilaton
Kähler potential, from the general expression one can observe the soft-breaking mass
(where mflux

σ3σ̄3, soft represents the flux-induced soft-breaking terms)

m2
σ3σ̄3, soft =

(
m̂w

3/2 ˆ̄mw
3/2 + κ2

4VF
)
Zσ3σ̄3 −FM F̄M̄ RMN̄σ3σ̄3

= (mflux
σ3σ̄3, soft)

2 + δm2
σ3σ̄3, soft,

which clearly has an uplifting contribution due to the supersymmetry breaking by
the anti-D3-brane, with

δm2
σ3σ̄3, soft = κ2

4VD3 Zσ3σ̄3 =
[

gs
2πV(0)

]2 e4Ω+4A0 VΣ4
(0)

κ2
4[−i(τ − τ̄)]

. (4.22)

The effective B-term follows a similar destiny since it can be seen to read

Bσ3σ3 = Bflux
σ3σ3 + κ2

4VD3Hσ3σ3 . (4.23)

Finally, the trilinear A-terms do not really generate any scalar trilinear coupling as the
trilinear terms of eq. (4.21) never involve three scalars due to the constraints, which
means that the would-be scalar trilinear coupling is actually a fermionic interaction.

• For the anti-D3-brane, there is no substantial difference with respect to the analysis of
subsubsection 4.1.3 since there are no new bilinear couplings in the Kähler potential
or in the superpotential. One also has the superpotential trilinear couplings

YY 3Y Ỹ = YY 3HỸ = YY 3Y H̃ = −y, (4.24a)
YH3Y Ỹ = YH3HỸ = YH3Y H̃ = −y. (4.24b)

Evidently, these terms just add couplings between the anti-D3-brane and the inter-
secting states, but do not cause any particular modification to the pure anti-D3-brane
action. Again, the superpotential also gives exactly the same Yukawa couplings as
in the D3-/D7-brane construction.

• For the anti-D3-/D7-brane intersecting states, because their Kähler potential and
superpotential expansion terms do not involve bilinear terms apart from the Kähler
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matter metric, one simply has the trilinear superpotential couplings discussed above
and the soft-breaking masses

m2
ϕϕ̄, soft =

(
m̂w

3/2 ˆ̄mw
3/2 ZHH̄ −F

ρF̄ρRρρ̄HH̄
)

+
(
κ2

4VD3 ZHH̄ −F
XF̄X RXX̄HH̄

)
,

and similarly for the counterpart ϕ̃. The first contribution vanishes in an ISD-
background before non-perturbative corrections kick in, but the second one does
not and reads

δm2
ϕϕ̄, soft = 2

3 κ
2
4VD3 ZHH̄ =

[
gs

2πV(0)

]2 e6Ω+4A0

3κ2
4

. (4.25)

Because these fields have no pure bilinear and trilinear couplings in the Kähler and
superpotential, they do not have soft-breaking bilinear and trilinear terms either.

• To conclude, one must consider the complete effective D- and F-term potentials.

First of all, for the D-term potential, one has again the positive semi-definite quartic
self-interaction terms (and similarly for the corresponding field ϕ̃)

V
(susy)
D = 1

2 g
2
D3 (ZHH̄ϕϕ̄)2 + 1

2 g
2
D7 (ZHH̄ϕϕ̄)2

= 1
2πgs [−i(τ − τ̄)] e

4Ω (ϕϕ̄)2 + 1
4πgs VΣ4

(0)
e6Ω (ϕϕ̄)2.

(4.26)

Second, for the F-term potential, most of the terms that are generated are actually
fermionic interactions and not scalar couplings. Taking into account the effective
bilinear terms from the pure D7- and anti-D3-branes as well as the Yukawa couplings
in eqs. (4.21), (4.24), one obtains the effective superpotential

Wsusy = 1
2 µσ3σ3σ3σ3 + 1

2 µY aY bY
aY b + µY aHbY aHb + y (σ3 − Y 3 −H3)Y Ỹ

+ y (σ3 − Y 3 −H3)HỸ + y (σ3 − Y 3 −H3)Y H̃.

Therefore, the effective F-term potential takes the form12

V
(susy)
F = Zσ

3σ̄3
µσ3σ3 µ̄σ̄3σ̄3σ3σ̄3 + ZY

aȲ b µY aHc µ̄Ȳ bH̄dϕcϕ̄d

+ ZY Ȳ
[
y
(
σ3 − ϕ3)ϕ̃][ȳ(σ̄3 − ϕ̄3) ˜̄ϕ

]
+ Z Ỹ

˜̄Y [y(σ3 − ϕ3)ϕ][ȳ(σ̄3 − ϕ̄3)ϕ̄].
(4.27)

One immediately recognises the D7-brane supersymmetric mass, the anti-D3-brane
scalar mass and the would-be separation mass for the anti-D3-/D7-brane intersecting
states, with the same volume scaling as for the D3-/D7-brane case.

12For ease of notation, only the non-fermionic terms have been reported. Denoting the fermionic terms
that one would have as O(X), the actual expression one finds is

V
(susy)
F = Zσ

3σ̄3(
µσ3σ3σ3 +O(X)

)(
µ̄σ̄3σ̄3 σ̄3 +O(X̄)

)
+ ZY

aȲ b(
µY aHcϕc +O(X)

)(
µ̄Ȳ bH̄d ϕ̄

d +O(X̄)
)

+ ZY Ȳ
[
y
(
σ3 − ϕ3)ϕ̃+O(X)

][
ȳ
(
σ̄3 − ϕ̄3) ˜̄ϕ+O(X̄)

]
+ ZỸ

˜̄Y [y(σ3 − ϕ3)ϕ+O(X)
][
ȳ
(
σ̄3 − ϕ̄3)ϕ̄+O(X̄)

]
.
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The constrained multiplets Ha have constrained F-terms, but they always appear
in mixed HaY b-, HaH- and HaH̃-couplings. Therefore they both contribute the
non-standard couplings discussed in appendix B.3, which turn out be fermionic and
vanishing in the unitary gauge, and standard couplings via the effect of Y b, H, H̃,
which have unconstrained F-terms and end up providing bosonic terms in the action
(see footnote 10).

4.2.2.2 XX̄-dependent interaction terms. The supergravity formulation described
so far incorporates all expected couplings, except the trilinear flux couplings in eq. (4.19)
and an anti-D3-/D7-brane version of the D3-/D7-brane quartic potential (3.21).

These couplings can be obtained by considering a specific class of supersymmetric
terms, introduced in refs. [22, 29]. This involves the nilpotent goldstino field in such a way
as to only contribute bosonic terms to the component action, with the fermionic terms
vanishing in the unitary gauge. Indeed, the coupling in eq. (4.19) can be described by
adding to the Kähler potential in eq. (4.17a) the deformation

δK = 2[VΣ4
w ]2

g4
sV

Σ4
(0)

[ 1
π
V(0)

]1/2 κ2
4XX̄ e5Ω−3A0

[−i(τ − τ̄)]3/2 [−iωw]2
[
κ4 cαβγH

αHβHγ + c.c.
]
. (4.28)

The only modification that this induces in the bosonic action comes from the second deriva-
tive with respect to X and X̄, namely δVF = δKXX̄FXF̄X as all the other terms contain
the scalar component of X, which is proportional to the goldstino. One can similarly
include the coupling of eq. (3.21).

4.2.3 Anti-D3-brane and D7-brane at the tip of the throat

If the anti-D3-brane and the D7-brane are localised at the tip of the warped throat, the
supergravity couplings for the intersecting states in eqs. (4.17a), (4.17b) are given explicitly
as follows.

• As in subsubsection 4.2.2, the matter metric terms for the anti-D3-/D7-brane case
read

ZHH̄ = 1
2πgs

e2Ω + κ2
4

3πg2
s

e4Ω−2A0

[−i(τ − τ̄)][−iωw]
Vw
V(0)

XX̄, (4.29a)

ZY Ȳ = 1
2πgs

e2Ω. (4.29b)

• For the cubic superpotential term, one can again follow subsubsection 4.2.2. For a
localised D7-brane there is no (0, 3)-flux mediated coupling for the intersecting D3-
/D7-brane states, so, following the tangent space symmetry arguments [112] and the
scaling factors determined therein, the trilinear scalar couplings are still of the form

tαβγ = 1
κ4
u(e2Ω, e2A0) cαβγ ,
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where the flux and index structure is

c
H3H̄ ˜̄H = 1

l2s

∫
Σ4
g′′2 ∧ ζ1,

c
H3H̃ ˜̄H = 1

l2s

∫
Σ4
g′′2 ∧ (ζ2 + ζ3) = cH3HH̄ ,

(4.30)

but with an overall factor

u(e2Ω, e2A0) = 1
4π

e4Ω+2A0

[−i(τ − τ̄)]1/2 [−iωΣ4
(0)]

[ 1
πV(0)

e6A0

g0
33̄V

0
4

]1/2
.

The matching with the scaling for the D3-/D7-brane coupling in eq. (3.27) is done
in terms of the canonically normalised fields. Anyway, as in subsubsection 4.2.2, the
Yukawa couplings are still simply

Ỹσ3Y Ỹ = Ỹσ3HỸ = Ỹσ3Y H̃ = ỹβ, (4.31a)
ỸY 3Y Ỹ = ỸY 3HỸ = ỸY 3Y H̃ = −ỹ, (4.31b)
ỸH3Y Ỹ = ỸH3HỸ = ỸH3Y H̃ = −ỹ, (4.31c)

with β = e−A0 , from the discussion of subsubsection 3.2.3.

4.2.3.1 Standard supergravity terms. Again, one can study the interactions term
by term.

• For the D7-brane, the results of subsubsection 3.1.3 still hold with the further anti-
D3-brane contribution to the soft-breaking mass13

δm2
σ3σ̄3, soft = κ2

4VD3 Zσ3σ̄3 =
[

gs
2πV(0)

]2 e6Ω+4A0

κ2
4[−i(τ − τ̄)]

and the B-term
Bσ3σ3 = κ2

4VD3Hσ3σ3 . (4.32)

Further, now one has the effective superpotential couplings

Yσ3Y Ỹ = Yσ3HỸ = Yσ3Y H̃ = y e−A0 . (4.33)

Finally, the trilinear A-terms do not generate any scalar trilinear coupling since in
fact they correspond to fermionic interactions.

• For the anti-D3-brane, the same results as in subsubsection 4.1.3 hold identically.
Further, there are the superpotential trilinear couplings

YY 3Y Ỹ = YY 3HỸ = YY 3Y H̃ = −y, (4.34a)
YH3Y Ỹ = YH3HỸ = YH3Y H̃ = −y. (4.34b)

13Since the Kähler metric now contains a factor e2Ω/Im τ , it is now ambiguous whether it comes from
a shift in the axio-dilaton Kähler potential or the Kähler modulus one. In the latter case, the D7-brane
Kähler metric acquires an XX̄-dependence, and there is an additional contribution to δm2

σ3σ̄3, soft, which
results in an overall factor f = 2/3 in the total expression.
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• For the anti-D3-/D7-brane intersecting states, once again the only thing to add is
the soft-breaking mass

δm2
ϕϕ̄, soft = 2

3κ
2
4VD3 ZHH̄ =

[
gs

2πV(0)

]2
e6Ω+4A0

3κ2
4

. (4.35)

• To conclude, one must discuss the effective D- and F-term potentials. For the D-term
potential, one has again

V
(susy)
D = e4Ω

2πgs [−i(τ − τ̄)] (ϕϕ̄)2 + e4Ω+4A0

4πgs V0
4

(ϕϕ̄)2. (4.36)

For the F-term potential, from the effective superpotential

Wsusy = 1
2 µσ3σ3σ3σ3 + 1

2 µY aY bY
aY b + µY aHbY aHb + y (σ3e−A0 − Y 3 −H3)Y Ỹ

+ y (σ3e−A0 − Y 3 −H3)HỸ + y (σ3e−A0 − Y 3 −H3)Y H̃,

so that the effective F-term potential reads as usual

V
(susy)
F = Zσ

3σ̄3
µσ3σ3 µ̄σ̄3σ̄3σ3σ̄3 + ZY

aȲ b µY aHc µ̄Ȳ bH̄dϕcϕ̄d

+ ZY Ȳ
[
y(σ3e−A0 − ϕ3)ϕ̃

][
ȳ(σ̄3e−A0 − ϕ̄3) ˜̄ϕ

]
+ Z Ỹ

˜̄Y [y(σ3e−A0 − ϕ3)ϕ
][
ȳ(σ̄3e−A0 − ϕ̄3)ϕ̄

]
.

4.2.3.2 XX̄-dependent interaction terms. For completeness, one has to include
in the theory the flux-dependent trilinear couplings between the anti-D3-brane and the
intersecting states in eq. (4.19). Again, one can do so by means of the Kähler potential

δK =
2VΣ4

(0)
g4
s

κ2
4XX̄ e2Ω−4A0

[−i(τ − τ̄)]3/2 [−iωΣ4
(0)]2

[
V(0)
π

e6A0

g0
33̄V

0
4

]1/2 [
κ4 cαβγH

αHβHγ + c.c.
]
. (4.37)

One can do the same for the quartic coupling in eq. (3.28).

4.3 Moduli stabilisation and anomaly mediation

The scenario presented so far provides a toy model towards quasi-realistic constructions
with non-linear supersymmetry in which most scalars are massive. However, the volume
modulus is a runaway direction due to the anti-D3-brane uplift and its stabilisation affects
the other fields of the theory. Moreover, as will also be discussed, some fields receive
non-negligible mass contributions from anomaly mediation effects.

4.3.1 Moduli stabilisation via perturbative and non-perturbative corrections

Due to the no-scale structure of the theory, tree-level type IIB flux compactifications lack
the stabilisation of the Kähler modulus; nevertheless, this can be fixed once α′- and non-
perturbative corrections are included.

For concreteness, the KKLT scenario [43] for the Kähler modulus stabilisation will be
considered here, but analogous computations could be performed for the Large Volume
Scenario [44]. Two important modifications to the closed string K̂ and Ŵ for the present
analysis are the following.
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(i) In the KKLT approach, the Kähler modulus potential receives non-perturbative cor-
rections from effects such as D7-brane gaugino condensation14 or Euclidean D3-brane
instantons. Both effects can be described in the low-energy supergravity theory by
means of a superpotential of the form

δŴnp = 1
κ3

4
Aeaiρ,

where A and a are parameters whose details depend on the origin of the non-
perturbative effects. This correction against a non-vanishing flux superpotential sta-
bilises the volume modulus and, together with the anti-D3-brane uplift, it may give
a 4-dimensional non-supersymmetric de Sitter vacuum.

(ii) The α′-corrections modify the Kähler potential for the volume modulus as [152]

κ2
4K̂ = −2 ln

[(
2 e−2Ω

)3/2
+ 1

2 ξ̂
]
,

where, given the parameter ξ = −ζ(3)χ/16π3, with ζ = ζ(s) the Riemann ζ-function
and the Euler number χ = 2 (h1,1 − h2,1) taken to be positive, the deformation is

ξ̂ = ξ̂(τ, τ̄) = [−i(τ − τ̄)]3/2ξ.

Although α′-corrections to a KKLT-setup with anti-D3-brane uplift do not qualita-
tively modify the stabilisation of ρ, as they are subleading in the volume suppression,
they turn out to provide leading order contributions to some open-string masses,
specifically the intersecting scalars.

Note that, as discussed in subsubsection 2.2.2, in strongly warped scenarios, the effects of
supergravity corrections are warped down in the scalar potential due to localisation effects,
leading to a modification of the usual scales. This stems from the 2A0-shift in the Kähler
potential (see eq. (2.17)).

Typically the axio-dilaton and complex structure moduli are fixed at higher energy
scales than the Kähler modulus and the open-string degrees of freedom, determining the
flux background to be imaginary self-dual. This happens also in highly warped compact-
ifications, as discussed in subsection 2.2, so in the low-energy effective field theory they
can be regarded as constant terms. An exception may be the complex structure moduli
associated to the throat base at the strongly warped end [26, 34].

For the open-string sector, the anti-D3-brane scalars receive leading-order flux-induced
mass contributions, so non-perturbative and α′-corrections would give at most subleading
corrections. A similar reasoning applies to the D7-brane scalars. Spinors are less affected
than the scalars since they do not get soft-breaking contributions. On the other hand, the
intersecting states do not have flux-induced masses, so such corrections play a relevant role.

14This mechanism and its stability after the anti-D3-brane uplift have been scrutinised carefully in the
literature and, despite the criticisms, there is no clear proof for it to be inconsistent. For the most recent
discussions, see for instance refs. [80–82, 85, 86].
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Including the perturbative and non-perturbative corrections, the relevant terms in the
supergravity theory for the volume modulus ρ and the anti-D3-/D7-brane intersecting state
scalars ϕ are (the additional constant terms, including the 2A0-shift in the Kähler potential,
as in eq. (2.17), will be included later)

κ2
4K = −2 ln

([−i(ρ− ρ̄) + 2c0]− κ2
4

3 gXX̄XX̄ −
κ2

4
3 gϕϕ̄ϕϕ̄

)3/2

+ ξ̂

2

 , (4.38a)

κ3
4W = W0 +Aeaiρ + κ4sX, (4.38b)

where, recall, e−2Ω = Imρ + c0 with c0 = Vw/V(0). The function gϕϕ̄ can be read off from
eqs. (4.18), (4.29), while the definitions of the constant GVW-term and of the anti-D3-
brane parameters W0, gXX̄ and s, respectively, can be extracted from eqs. (4.5a), (4.5b)
and read

W0 = gs
l2s

〈∫
Y6
G3 ∧ Ω

〉
, gXX̄ = 4

gs

Vw
V(0)

e−2A0

〈−i(τ − τ̄)〉〈−iωw〉
, s =

√
2gs.

The contributions from the vacuum expectation values of the axio-dilaton and the complex
structure moduli as well as the constant terms have not been reported in the Kähler
potential for brevity, but they will be reinserted when discussing physical scales.

Although the underlying string construction is different, as far as the scalar fields are
concerned the supergravity theory of eqs. (4.38a), (4.38b) is formally equivalent to the one
studied in detail in ref. [13],15 so this subsubsection mostly summarises the main results.
After a standard calculation, the F-term potential of this model can be written as

VF = V̂F (ρ, ρ̄) + ∆VF (ϕ, ϕ̄),

where V̂F is the Kähler modulus potential, as a consequence of the breaking of the no-scale
structure by the corrections and uplift term, while ∆VF is the scalar potential for the scalar
field ϕ, generating a mass term among other interactions.

4.3.1.1 Kähler modulus stabilisation and Minkowski vacuum. On the one hand,
one can show that the leading order hidden-sector supersymmetry-breaking F-term poten-
tial reads

V̂F = V KKLT+α′
F + V D3+α′

F , (4.39)

where the α′-corrected KKLT-potential and uplift energy respectively read

V KKLT+α′
F = 1

κ4
4

[
a2AĀ eia(ρ−ρ̄)

3 [−i(ρ− ρ̄) + 2c0] + a(W0Ā e
−iaρ̄ + W̄0Ae

iaρ)
[−i(ρ− ρ̄) + 2c0]2

]
+ δα′V

KKLT
F ,

V D3+α′
F = s2

gXX̄ [−i(ρ− ρ̄) + 2c0]2κ4
4

+ δα′V
D3
F ,

15In ref. [13], the matter sector is modelled using a D3-brane in the bulk, with supersymmetry broken by
a distant anti-D3-brane. For the scalar fields, this turns out to have an analogous supergravity formulation,
the only differences being the 2A0-shift to the Kähler potential and the c0-shift to the Kähler modulus.
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with the α′-corrections being

δα′V
KKLT
F = ξ̂

2κ4
4

[
1
6

a2AĀeia(ρ−ρ̄)

[−i(ρ−ρ̄)+2c0]5/2
− a[W0Āe

−iaρ̄+W̄0Ae
iaρ]

2[−i(ρ−ρ̄)+2c0]7/2
+ 3W0W̄0

2[−i(ρ−ρ̄)+2c0]9/2

]
,

δα′V
D3
F =− ξ̂

2κ4
4

s2

gXX̄ [−i(ρ−ρ̄)+2c0]7/2
.

By parametrising the superpotential constants as W0 = |W0| eiθ and A = |A| eiα, given the
definition of the Kähler modulus

ρ = χ+ i c,

one finds that at leading order the axion χ is minimised as a〈χ〉 = θ − α+ nπ. Then, the
leading order c-dependent scalar potential is

V (c) = 1
κ4

4

a|A|
2

[
1
3
a|A| e−2ac

[c+ c0] −
|W0| e−ac

[c+ c0]2

]
+ 1
κ4

4

s2

4 gXX̄ [c+ c0]2 . (4.40)

Defining the shifted variables c′ = c+ c0 and |B| = |A| eac0 [105], one obtains results which
are formally equivalent to those of ref. [13]. In the large volume regime, in which c � 1,
the stationary condition ∂V/∂c = 0 gives the solution

|W0| =
2
3 〈a[c+ c0]〉|A|e−〈ac〉 + 1

a gXX̄

s2

〈a[c+ c0]〉|A|e
〈ac〉. (4.41)

Further, a Minkowski vacuum 〈V̂F 〉 = 0 can be obtained if the parameter s fulfils the
leading order equality

s2 = 2
3 a gXX̄ 〈a[c+ c0]〉|A|2e−2〈ac〉. (4.42)

Of course one might want to impose a de Sitter vacuum, but anyway the vacuum energy
has to be small. The α′-corrections would modify the vacuum conditions only at subleading
order in the volume.

One can write the vacuum expectation value (4.41) in view of the Minkowksi vacuum
condition (4.42) as |W0| = (2/3) (〈a[c + c0]〉 + 1) |A| e−〈ac〉, or, more conveniently and at
leading order in the volume, as

|W0|2 = 2s2

3 gXX̄
〈[c+ c0]〉.

By taking this into account, the gravitino mass, namely κ2
4m̂

2
3/2 = 〈eκ2

4K̂ Ŵ ˆ̄W 〉, at leading
order in the volume is

m̂2
3/2 = 1

κ2
4

s2

12 gXX̄〈[c+ c0]〉2 .

Similarly, one can see that the not-yet canonically normalised Kähler modulus mass is

m̂2
cc = 1

2
∂2V

∂c2

∣∣∣∣
c=〈c〉

= 1
κ4

4

a2s2

4 gXX̄〈[c+ c0]〉2 .

– 49 –



J
H
E
P
1
2
(
2
0
2
0
)
1
7
4

Finally, the combination of fluxes, non-perturbative corrections and anti-D3-brane
uplift induces a non-zero F-term for the field ρ, along with the one for X. In the Minkowski
vacuum of eqs. (4.41), (4.42), at leading order in the volume one finds16

F̂X =
[ 6
gXX̄

(〈c〉+ c0)
]1/2 ˆ̄m3/2

κ4
, F̂ ρ = i

a
ˆ̄m3/2.

This means that the goldstino ψg is now a linear combination of the anti-D3-brane gaugino
and of the Kähler modulino (see e.g. refs. [143, 153] for progress in the couplings between the
gravitino and ψX). The unitary gauge does not exactly set to zero the spinor component
ψX of the nilpotent superfield, but rather the goldstino. This means that the anti-D3-
brane models in this section have a plethora of interactions between the fields coupled to
X and/or ρ and the linear combination of ψX and ψρ that is orthogonal to the goldstino.
This spinor ψ′g is massive, with a mass of at least the same order as the Kähler modulus
mass. However, from the scalar potential, one can see that the scales at which each F-term
comes into play have a different volume suppression, being [34]

fX =
[
KXX̄F

X F̄X
]1/2∼ m̂3/2

κ4
, fρ =

[
Kρρ̄F

ρF̄ ρ
]1/2∼ 1

V2/3
m̂3/2
κ4

. (4.43)

This suggests that, due to the hierarchically smaller volume suppression, the anti-D3-brane
still provides the dominant contribution to the goldstino ψg, thus not changing drastically
the scenario compared to the case where the goldstino is provided by the anti-D3-brane
alone.

4.3.1.2 Open-string mass terms. In order to write the open-string scalar potential
in a convenient way it is helpful to consider the complete canonical normalisation of the
scalar field, including the α′-corrections. At the end of the day, one finds the ϕ-field scalar
potential

∆VF =
[

2κ2
4

3
(
V KKLT+α′
F + V D3+α′

F

)
+ ΘF

]
(1 + δZϕϕ̄) gϕϕ̄ϕϕ̄
[−i(ρ− ρ̄) + 2c0] , (4.44)

where the correction to the field normalisation is δZϕϕ̄ = −ξ̂/2[−i(ρ− ρ̄) + 2c0]3/2. In this
form, it is easy to impose the vacuum solutions. The ΘF -term reads

ΘF = ΘKKLT+α′
F + ΘD3+α′

F ,

with the KKLT- and uplift-like terms

ΘKKLT+α′
F = 5ξ̂

72κ2
4

[
a2AĀeai(ρ−ρ̄)

[−i(ρ−ρ̄)+2c0]5/2
+ 3a(ĀW0e

−aiρ̄+AW̄0e
aiρ)

[−i(ρ−ρ̄)+2c0]7/2
+ 9W0W̄0

[−i(ρ−ρ̄)+2c0]9/2

]
,

ΘD3+α′
F = ξ̂

12κ2
4

s2

gXX̄ [−i(ρ−ρ̄)+2c0]7/2
.

16In the presence of perturbative and non-perturbative corrections (and an anti-D3-brane), the axio-
dilaton F-term becomes non-zero too. However, it is small compared to the F-terms for X and ρ [13].
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In the Minkowski vacuum of eqs. (4.41), (4.42), only ΘF contributes to the scalar masses.
At leading order, its KKLT-like term happens to vanish, so the potential is fixed by its
uplift-like term and it is positive definite. In particular, one finds the mass term

∆VF |ρ=〈ρ〉 = s2gϕϕ̄
12gXX̄ [−i〈ρ− ρ̄〉+ 2c0]9/2

ξ̂

κ2
4
ϕϕ̄. (4.45)

4.3.1.3 Complete scalar potential and mass terms. For a fully-fledged calculation,
one must insert the axio-dilaton and complex structure modulus Kähler potentials and the
constant term, as in eqs. (4.5a), (4.5b). Further, the 2A0-shift in K also needs to be
included, as in eq. (2.17), and the consequent redshift will be indicated by the superscript
‘w’, in line with the notation in the rest of the article. Finally, recall that hatted quantities
mean they are purely determined by the supersymmetry-breaking hidden-sector potentials.

Developing the observations made at the end of subsubsection 2.2.2 on the redshifting of
non-perturbative contributions to the scalar potential in strongly warped scenarios, notice
that the 2A0-shift in the Kähler potential does not change qualitatively the shape of the
scalar potential in the presence of KKLT-like non-perturbative corrections and anti-D3-
brane uplift, but it affects it quantitatively. Indeed, the uplift term from the anti-D3-brane
is scaled by the usual factor e4A0 , but the pure closed-string sector term, which is usually
unwarped, is now also scaled down by a factor e2A0 . The moduli stabilisation is thus
somewhat more delicate, as the uplift from the anti-D3-brane should not be too large with
respect to the close string stabilisation so as to cause a runaway. Also, all the masses are
now redshifted by an extra factor e2A0 .

In detail, in the closed-string sector, the gravitino mass and the non-canonically nor-
malised Kähler modulus mass read, respectively,

(m̂w
3/2)2 = 1

κ2
4

g3
s

12π[V(0)]2
e4Ω+4A0 ∼ g3

s

V4/3
1
κ2

4
e4A0 , (4.46)

(m̂w
cc)2 = 3a2

κ2
4

(m̂w
3/2)2 ∼ g3

s

V4/3
1
κ4

4
e4A0 . (4.47)

Notice that two factors contribute to make the gravitino mass highly suppressed, i.e.
the e2A0-redshift and the small bulk (0, 3)-flux, which in the tuning towards a de Sit-
ter/Minkowski vacuum ends up providing a lower volume- but enhanced warp factor-
suppression.

Moreover, if the open-string scalars are the intersecting state fields ϕ and ϕ̃, then in
terms of the gravitino mass their non-canonically normalised mass is

m2
ϕϕ̄ = ξ

8πgs
e5Ω−3φ/2 (m̂w

3/2)2 ∼ ξg2
s

V3
1
κ2

4
e4A0 , (4.48)

and similarly for the field ϕ̃. Such a mass is quite small due to a large volume suppression
and the effect of warping, but it is necessarily positive definite. Notice that it vanishes in
the absence of the α′-corrections, namely if one sets ξ = 0.

Further, for D7-branes extending from the bulk to the throat the gauge kinetic function
is determined by the volume modulus (see eq. (3.10)) and one finds the F ρ-induced gaugino
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mass

mD7
1/2 = e2Ω

2a m̂w
3/2 ∼

g3
s

V2
1
κ2

4
e4A0 . (4.49)

For D7-branes at the tip of the throat, there is a dependence on the volume modulus but
it is highly redshifted (see eq. (3.16)).

4.3.1.4 Corrections to pure anti-D3- and D7-brane couplings. The effect of the
Kähler modulus stabilisation on the masses and couplings of the pure anti-D3- and D7-
brane states can also be worked out using supergravity, as will now be summarised. It is
useful to note that the F-term for the volume modulus ρ has an extra volume-suppression
in the presence of non-perturbative corrections, while the F-term for X is unchanged (see
eq. (4.43)). The key point is that the non-perturbative corrections induce scales that are
never bigger than the flux-induced ones discussed before, so in the end the orders of mag-
nitude for masses and couplings are unchanged. In fact, these fields typically have masses
above the warped KK-scale unless localised in the bulk due to a small mass-sourcing flux.

For the pure D7- and anti-D3-brane chiral multiplets, the (would-be) canonically nor-
malised supersymmetric masses are eA0mD7 or mw

D7 for the D7-brane fields localised in the
bulk or at the tip, respectively (see sections 3.1.2, 3.1.3), and mw

D3 for the anti-D3-brane
(see sections 4.1.3). For such fields, the ρ-field F-term does not participate in the effective
µ-terms, leaving these (would-be) supersymmetric masses unchanged. The (would-be) soft-
breaking masses turn out to be never bigger than these flux-induced terms, being at most of
the order of the gravitino mass, namely mi, soft ∼ m̂w

3/2 after canonically normalising, where
however eA0mD7 ∼ m̂w

3/2 (assuming θ ∼ θ′) and mw
D7,m

w
D3 � m̂w

3/2. The B-terms are un-
affected for the anti-D3-branes, coming from an XX̄-term, while they receive normalised
contributions for the D7-branes of order Bi ∼ (eA0mD7 + m̂w

3/2)m̂w
3/2 or Bi ∼ mw

D7m̂
w
3/2, for

bulk or tip localisation, respectively. In the former case, the soft-breaking corrections
compete with the flux-induced ones, but do not dominate, while in the latter the correc-
tions are irrelevant for the mass eigenvalues. The trilinear soft-breaking couplings with the
intersecting states are inserted via the XX̄-coupling and are thus unaffected.

As has been mentioned, the non-perturbative effects do not directly affect the open-
string sector XX̄-couplings. However, one may expect corrections for all the couplings,
with a scale set by m̂w

3/2. For the pure anti-D3-brane, such corrections would be irrelevant,
as mw

D3 � m̂w
3/2. On the other hand, considering the counter-part D3-/D7-branes, the soft-

breaking trilinear coupling depends on the ρ-field F-term and is thus suppressed in the
presence of non-perturbative corrections. All these changes must be implemented by hand,
modifying the scalings in the XX̄-terms.

In all these couplings, the α′-corrections may only contribute at most with volume-
suppressed terms and are thus irrelevant for fixing the orders of magnitude. An intuitive
explanation for this can be seen in the fact that they do not participate in the stabilisation
of the Kähler modulus and they are subleading in the F-terms.

– 52 –



J
H
E
P
1
2
(
2
0
2
0
)
1
7
4

4.3.2 Anomaly mediation

In supersymmetric theories with a hidden sector, anomaly mediation provides a one-loop
contribution to gaugino masses and trilinear scalar couplings, and a two-loop contribution
to charged scalar masses [131, 154]. Again, this is discussed in a setup similar to the current
one in ref. [13], so only an essential review is reported below.

In the case of a diagonalisable Kähler matter metric, one can show that the anomaly-
mediated gaugino masses, the scalar masses and the trilinear couplings read [131, 154–158]

ma
1/2

∣∣∣
anom

= βga
ga

[
m̂w

3/2 −
1
3 F

MK̂M

]
, (4.50a)

m2
i

∣∣∣
anom

= 1
2 βh

∂γi

∂h

[
m̂w

3/2 −
1
3 F

MK̂M

][
ˆ̄mw

3/2 −
1
3 F̄

MK̂M̄

]
, (4.50b)

Aijk
∣∣∣
anom

= 1
2 e

A0 Ỹijk (γi + γj + γk)
[
m̂w

3/2 −
1
3 F

MK̂M

]
, (4.50c)

where h represents any running coupling and βh the corresponding beta-function, with γi

the i-field anomalous dimension. These expressions refer to the canonically normalised
fields, with indices lowered and raised by Kronecker deltas δij̄ and δij̄ .

• Given the quadratic Casimir invariant in the adjoint representation C2(G) and the
generator normalisation C(rG) for the representation rG, respectively, the beta-
functions for the gauge couplings g read

βg = − g3

16π2 b,

where b is the coefficient

b = 11
3 C2(G)− 2

3 nf C(rfG)− 1
3 nsC(rsG),

with nf and ns being the spinors and scalars in the representations rfG and rsG of the
gauge group G, respectively. For the special unitary group SU(n), with n > 1, one
has the set of values

particle representation C C2

n
1
2

n2 − 1
2n

(n, n̄) n n

and, for a group U(1), C(y) = y2 and C2(y) = 0, where y is the particle charge.

• One can write schematically the beta-functions for the Yukawa couplings Yijk as

βYijk = 6
∑
l

γl(iYjk)l ,

where γij are functions which happen to be irrelevant in the following calculations.
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• Finally, the anomalous dimension γi can be written as

γi = 1
16π2

1
2
∑
j,k

Yijk Ȳīj̄k̄ − 2
∑
a

g2
aC(riGa)

 .
The relevant mass scales are worked out below for intersecting anti-D3-/D7-branes. For
single branes, the only non-neutral fields of the model are in the intersecting sector, which
is thus the only one receiving corrections. More realistic non-Abelian models with multiple
branes have a larger non-neutral spectrum, but the mass scales, being fixed by the gauge
couplings, are analogous. In particular, the b-coefficients are typically negative due to the
large number of degrees of freedom.

• For a D7-brane wrapping a 4-cycle extending along the throat, the anomaly-mediated
gaugino mass is slightly more suppressed than the volume modulus F-term contribu-
tion, being

mD7
1/2

∣∣∣
anom

= − g2
D7

16π2 bD7 m̂
w
3/2 = − gsbD7

8πVΣ4
(0)

e2Ω m̂w
3/2. (4.51)

Instead, if the D7-brane wraps a 4-cycle that is localised at the infrared end of the
throat, the anomaly-mediated mass is

mD7
1/2

∣∣∣
anom

= − g2
D7

16π2 bD7 m̂
w
3/2 = −gsbD7

8π m̂w
3/2. (4.52)

In the presence of non-Abelian anti-D3-branes, there are extra would-be gaugini apart
from the goldstino and their anomaly-mediated mass is17

mD3
1/2

∣∣∣
anom

= −
g2

D3
16π2 bD3 m̂

w
3/2 = −

gsbD3
4π[−i(τ − τ̄)] m̂

w
3/2. (4.53)

• For the intersecting state scalars, which classically are vanishing, in principle the full
anomaly-mediated mass term is

m2
ϕ

∣∣∣
anom

= 1
2
[
g4

D7bD7C(rϕD7) + g4
D3bD3C(rϕD3)

](m̂w
3/2

8π2

)2

,

where the Yukawa term contribution has been ignored, in the anomalous dimension,
due to a smaller volume and the warp factor suppression, i.e. g2

a � y. So, for a
D7-brane wrapping a 4-cycle extending along the throat, the leading order anomaly-
mediated scalar mass is dominated by the anti-D3-brane contribution and reads

m2
ϕ

∣∣∣
anom

=
g2
sbD3C(rϕD3)

8π2[−i(τ − τ̄)]2 (m̂w
3/2)2. (4.54)

17If one considers the effects of a non-zero axio-dilaton F-term, the gaugino mass contribution is at most
of order mD3

1/2 ∼ (3m̂w
3/2/2aV2/3) [13], so it is usually subleading with respect to the anomaly-mediated one.
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On the other hand, for a D7-brane wrapping a 4-cycle localised at the tip of the
throat, the leading order term is

m2
ϕ

∣∣∣
anom

=

 g2
sbD3C(rϕD3)

8π2[−i(τ − τ̄)]2 + g2
sbD7C(rϕD7)

32π2

(
e4A0

V0
4

)2
 (m̂w

3/2)2. (4.55)

Such masses are negative definite as long as the b-coefficients are negative. These
contributions are in close competition with the α′-induced terms and the tachyonic
terms might dominate, leading to an instability.

• The contributions to the trilinear couplings are again dominated by the gauge cou-
pling terms and read

Aijk = eA0 Ỹijk
∑
a

[ 1
ba
C(riGa)ma

1/2

∣∣∣
anom

+ 1
ba
C(rjGa)ma

1/2

∣∣∣
anom

+ 1
ba
C(rkGa)ma

1/2

∣∣∣
anom

]
,

which means an approximate scaling of at least

Aijk ∼ gsm̂w
3/2Ỹijk e

A0 .

For D7-branes extending along the throat, these terms tend to be leading due to the
smaller volume suppression, while for D7-branes wrapping 4-cycles at the tip of the
throat they are subleading corrections to the flux-dependent couplings between the
intersecting states and the anti-D3-brane scalars, as can be verified by comparing
with subsubsections 4.2.2 and 4.2.3.

5 Overview on the extension to non-Abelian theories

So far, the focus has been only on single anti-D3- and D7-branes. This section outlines a
way to extend the previous results to multiple coincident branes at orbifold singularities,
which provide quasi-realistic models with non-Abelian gauge groups and matter fields in
bifundamental representations. The identification of the non-Abelian sectors with appropri-
ate constrained superfields is worked out, and the new supergravity interactions are found,
first for anti-D3-brane stacks, then for anti-D3-/D7-brane systems. Finally, the low-energy
effective field theory corresponding to anomaly-free combinations of anti-D3-/D7-branes
on orbifold singularities within flux compactifications is spelled out in some detail.

Although an explicit realisation of a Calabi-Yau orientifold with orbifold-like singu-
larities is beyond the scope of this paper, the results in sections 3 and 4 hold in any
such construction. In particular, the consequences of the orbifolding are in the richer
array of gauge group representations particles may fall into, as reviewed below, but the
gauge couplings and masses computed in earlier sections continue to hold in general. At
the same time, there is a very interesting interplay between the orbifolding and super-
symmetry breaking by anti-D3-branes, whereby, after the orbifolding, the bifundamental
matter stretching between anti-D3-branes and D7-branes will have scalars and fermions
in different gauge representations. Other minor differences, due for instance to orbifold
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symmetries projecting out certain background fluxes, are commented on explicitly. In a
complete construction, local and global RR-tadpole cancellation would restrict the combi-
nations of fluxes, anti-D3-branes and wrapped D7-branes appearing at each fixed point of
the geometry.

5.1 Non-Abelian anti-D3-branes

First of all it is necessary to describe a stack of coincident anti-D3-branes in the language of
N4 = 1 supergravity by extending its constrained superfields to the non-Abelian framework
and adding a few new couplings which are non-zero only in the non-Abelian case.

5.1.1 Particle content

The gauge group of a stack of n coincident anti-D3-branes at a smooth point in the internal
space is the non-Abelian group U(n). The group U(n) fulfils the isomorphism

U(n) ' SU(n)×U(1)/Zn,

so its generators tI , with I = 0, i, consist of the n-dimensional identity t0 = 1n and of the
n-dimensional Hermitean generators ti of the group SU(n), with i = 1, . . . , n2 − 1.

The particle content contains the following degrees of freedom:

• a non-Abelian gauge vector, i.e.

Âµ = ÂIµtI = Aµ1n +Aiµti;

• a gaugino in the adjoint representation, i.e.

λ̂ = λ̂ItI = λ1n + λiti;

• three complex scalars in the adjoint representation, i.e.

ϕ̂a = ϕ̂aItI = ϕa1n + ϕaiti;

• three modulini in the adjoint representation, i.e.

ψ̂a = ψ̂aItI = ψa1n + ψaiti.

The field Aµ gauges the U(1)-component and the fields Aiµ gauge the non-Abelian SU(n)-
component. Also, the fields λ, ϕa and ψa are netural under the Abelian group and singlets
of the SU(n)-component, whereas the fields λi, ϕai and ψai are neutral under the Abelian
group and in the adjoint representation of the SU(n)-component.

As it is a singlet under all the gauge groups, the spinor λ is the goldstino of the theory.
Therefore, it can be placed in a nilpotent chiral superfield X just as in eq. (4.1), with

X2 = 0. (5.1)

Being a singlet, the nilpotent superfield is sufficient to define the other constraints in a
similar fashion as for a single anti-D3-brane, thanks to the linearity of their solutions [88].
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• The non-Abelian gaugini λi can be packaged in the chiral superfield

X̃ = Xiti,

which is neutral under the U(1)- and in the adjoint of the SU(n)-component of the
gauge group, with the scalars removed by a constraint like the one in eq. (4.3), i.e.

XX̃ = 0. (5.2)

• Similarly, the full gauge vector can be described by the field-strength chiral superfield

Ŵα = Wα + W̃α,

with Wα = Wα1n and W̃α = W i
α ti, where the spinor components are removed by the

constraints18 (generalising that of eq. (4.2))

XWα = 0, (5.3a)
XW̃α = 0. (5.3b)

As the nilpotent superfield X is a singlet, these constraints are gauge invariant.19

Also notice that the condition XŴα = 0 is equivalent to the two constraints written
above.

• For the modulini, one can define the chiral superfields

Ŷ a = Y a + Ỹ a,

with Y a = Y a1n and Ỹ a = Y aiti, and remove the scalar components by means of the
constraints (generalising the ones in eq. (4.3))

XY a = 0, (5.4a)
XỸ a = 0. (5.4b)

Again, gauge invariance is preserved and an equivalent condition is XŶ a = 0.

• Finally, the scalars can again be encoded in the chiral superfields

Ĥa = Ha + H̃a,

with Ha = Ha1n and H̃a = Haiti, with the spinor and auxilary field components
removed by constraints (generalising those of eq. (4.4))

X̄DαHa = 0; (5.5a)
X̄DαH̃a = 0. (5.5b)

Again, these are gauge invariant and one can simply write the condition XDαĤa = 0.
18In addition to the constraint, there may be a modified Wess-Zumino gauge condition, as discussed in

the Abelian case by ref. [88], which easily extends to the non-Abelian case.
19Notice that, if the constraint reads XW̃ = 0, then, given the gauge transformation induced by the

chiral superfield Λ, the constraint X[eiΛW̃e−iΛ] = eiΛXW̃e−iΛ = 0 holds too.
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5.1.2 Supergravity formulation

Given the superfield spectrum above, one needs to extend the N4 = 1 description of
subsubsection 4.1.3 to a non-Abelian theory. Adapting the existing Abelian couplings
to their non-Abelian version is straightforward. Moreover, to match the dimensionally-
reduced effective action of refs. [108, 128] one needs to generate a further cubic and quartic
scalar interaction as well as some Yukawa couplings.

Quite remarkably, one can verify that the only extra terms which need to be included
in the supergravity theory are those in the trilinear superpotential

δŴ = υ

4πgs
l3sΩ0

abc tr Ŷ aŶ bĤc + υ

4πgs
l3sΩ0

abc tr Ŷ aĤbĤc, (5.6)

where the normalisation constant is υ2 = 4π e−2A0 [V(0)]3. One could account for the warp
factor by considering the throat complex structure modulus [26, 34].

• Since it contains two spinors and one scalar, the first term in the superpotential only
represents a Yukawa coupling between the modulini ψ̂a and the scalars ϕ̂a of the form

yψ̂aψ̂bϕ̂c = yŶ aŶ bĤc = e3Ω

2πgs[−i(τ − τ̄)]1/2
V1/2
w

[−iωw]1/2
l3sΩ0

abc,

which corresponds to the couplings in refs. [108, 128], provided the insertion of
the complex structure moduli in ωw (not captured explicitly in the dimensional
reduction).

• In a similar way as for D3-branes, the Yukawa terms also generate the quartic scalar
potential and part of the cubic potential [108]. Indeed, now one has the effective
anti-D3-brane superpotential

WD3
susy = 1

2 µŶ aŶ btr Ŷ
aŶ b + 1

2 µŶ aĤbtr Ŷ aĤb

+ 1
2 yŶ aŶ bŶ ctr Ŷ

aŶ bĤc + 1
2 yŶ aĤbĤctr Ŷ aĤbĤc,

which in the unitary gauge generates the F-term scalar potential

V
(susy)
F = Z Ŷ

a ˆ̄Y b tr
(
µŶ aĤcϕ̂

c + yŶ aĤcĤdϕ̂
cϕ̂d

)(
µ̄ ˆ̄Y b ˆ̄He

ˆ̄ϕe + ȳ ˆ̄Y b ˆ̄He ˆ̄Hf
ˆ̄ϕe ˆ̄ϕf

)
.

Further, the D-term potential now reads

VD = 1
2 g

2
D3 tr (Z

Ĥa ˆ̄Hbϕ̂
a ˆ̄ϕb)(Z

Ĥc ˆ̄Hdϕ̂
c ˆ̄ϕd).

Obviously, the quadratic term in the F-term potential is the usual anti-D3-brane mass
term. Then, consistently with the results of refs. [108, 128], the cubic term reads20

V D3
cubic = −

 e4Ω+4A0

16π[−i(τ − τ̄)]κ4

[
1

2πω
Vw
V(0)

]1/2

ls(Ḡ+0
3 )ab̄c̄ ϕ̂

a ˆ̄ϕb ˆ̄ϕc + c.c.

 ,
20In the presence of (0, 3)-flux at the tip of the throat, there would be a further soft-breaking contribution

to the trilinear scalar potential.
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while the D-term potential and the quartic term of the F-term potential combine to
give the usual would-be N4 = 4 scalar potential

V D3
quartic = e4Ω

8πgs[−i(τ − τ̄)]
Vw
ω
g0
ab̄
g0
cd̄

tr
[
[ϕ̂a, ϕ̂c][ ˆ̄ϕb, ˆ̄ϕd] + [ϕ̂a, ˆ̄ϕd][ ˆ̄ϕb, ϕ̂c]

]
,

which concludes the discussion of the consistency with the dimensional reductions in
refs. [108, 128].

5.2 Non-Abelian anti-D3-/D7-brane systems

As a further step toward quasi-realistic constructions, one can add a stack of w intersecting
D7-branes to the system with n anti-D3-branes. The new states are as follows.

• The D7-brane worldvolume is enhanced to a non-Abelian U(w)-theory, where the
gauge group is factorisable as U(w) ' SU(w) × U(1)/Zw, with K = 0, k, for k =
1, . . . , w2 − 1. The degrees of freedom are then:

– a non-Abelian gauge vector and a spinor in the adjoint representation, i.e.

B̂µ = Bµ1w +Bk
µ tk, ζ̂ = ζ1w + ζk tk;

– a scalar and another spinor in the adjoint representation, i.e.

σ̂3 = σ31w + σ3 k tk, k̂3 = η31w + η3 k tk.

As D7-branes do not break supersymmetry, these fields make up standard multiplets.
In particular, there are an Abelian vector superfield Yα, containing Bµ and ζ, a non-
Abelian SU(w) vector superfield Ỹα, containing Bk

µ and ζk, a neutral chiral multiplet
σ3, containing σ3 and η3, and a chiral multiplet σ̃3, containing σ3 k and η3 k.

• For the anti-D3-/D7-brane intersecting states, the situation does not differ too much
from the setup with single branes. The degrees of freedom are:

– two scalar fields ϕ and ϕ̃ from the 3̄7- and 73̄-sectors, respectively, with the
former in the fundamental representation of the group U(n) and in the antifun-
damental of U(w), and the latter in the conjugate representation;

– two spinor fields ψ and ψ̃ from the 3̄7- and 73̄-sectors, respectively, with the
former in the fundamental representation of the group U(n) and in the antifun-
damental of U(w), and the latter in the conjugate representation.

As usual, these fields cannot be packaged in standard supermultiplets with respect
to the closed-string sector supersymmetry, but rather in constrained superfields.

– The scalars can be encoded in the chiral superfields H and H̃ such as to remove
their spinor components, generalising eqs. (4.15), i.e.

XX̄ DαH = 0, (5.7a)
XX̄ DαH̃ = 0. (5.7b)
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– The spinors can be encoded in the chiral superfields Y and Ỹ such as to remove
their scalar components, generalising eqs. (4.16), i.e.

XY = 0, (5.8a)
XỸ = 0. (5.8b)

Again, thanks to the linearity of the constraints, their solutions are simple generalisa-
tions of the Abelian ones. Notice that a superfield in the fundamental representation
of a group U(p) has a charge q = +1 under the corresponding Abelian subgroup and
is in the fundamental representation of the SU(p)-subgroup, and correspondingly for
the antifundamental representation.

5.3 Anti-D3-/D7-branes at orbifold singularities

An interesting class of model-building setups is the one with anti-D3-branes and D7-branes
at orbifold singularities, as introduced by ref. [92] and implemented by ref. [95] in a more
complete quasi-realistic flux setup (see also ref. [96]).

The fact that the branes sit at an orbifold singularity breaks each gauge group U(m)
into several subgroups U(mi). Interestingly, the anti-D3-/D7-intersecting scalars and
spinors now transform in different representations of the unbroken gauge groups, and so
have no semblance to being superpartners.

5.3.1 Outline of the gauge group breaking and massless spectrum

One considers a 10-dimensional spacetime of the kind X1,9 = R1,3 × Y6, where Y6 is the
6-dimensional orbifold O6 = T 6/ZN . The action θ of the ZN -twist on the complex internal
coordinates is

za
ZN−→ αlaza,

with the definition α = e2πi/N and the bulk supersymmetry condition
∑3
a=1 la = 0 modN ;

for simplicity, only the case where l3 is even is discussed. The action of the ZN -twist on
the massless degrees of freedom of a stack of n anti-D3-branes is then as follows.

• Because they are orthogonal to the orbifolded directions, the action of the ZN -twist
on the anti-D3-brane gauge vector fields is simply

Âµ
ZN−→ Γθ,3̄ Âµ Γ−1

θ,3̄,

where, given N arbitrary integers ni, with i = 0, 1, . . . , N−1, such that
∑N−1
i=0 ni = n,

the representation of the orbifold matrix is chosen to be

Γθ,3̄ = diag
(
1n0 , α1n1 , . . . , α

N−11nN−1

)
.

Therefore, it is not difficult to infer that the invariant generators generate the sub-
group

GZN =
N−1⊗
i=0

U(ni).
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• The three complex scalars ϕ̂a transform under the orbifold twist θ as

ϕ̂a
ZN−→ αla Γθ,3̄ ϕ̂a Γ−1

θ,3̄,

which implies that the orbifold-invariant scalar fields fall into the representations

3∑
a=1

N−1∑
i=0

(ni,ni+la).

• The four Weyl spinors are associated to the states |{sm}〉4m=1, where the half-integers
sm = ±1/2 define their chirality [159], and compatibly with the GSO-projection
can be labelled as ψ̂r, with r = 0 corresponding to the would-be gaugino λ̂ and
r = a = 1, 2, 3 corresponding to the would-be modulini ψ̂a. The orbifold twist takes
the form

ψ̂r
ZN−→ αsmkm Γθ,3̄ ψ̂r Γ−1

θ,3̄,

where km are integers defining the orbifold action on the fermions, with
∑4
m=1 km =

0 modN and l1 = k3 + k4, l2 = k2 + k4 and l3 = k2 + k3, and the calculations show
that the orbifold-invariant subset of the spinor λ̂ transform in the representation

N−1∑
i=0

(ni,ni),

while from the would-be modulini ψ̂a one obtains the representations

3∑
a=1

N−1∑
i=0

(ni,ni+la).

In the presence of D7-branes, the reasoning is analogous. Just as for the action of the
orbifold twist on the anti-D3-brane degrees of freedom, one defines the matrix

Γθ,7 = diag
(
1w0 , α1w1 , . . . , α

N−11wN−1

)
,

and essentially follows the same reasoning as above. The description of the orbifold action
on the anti-D3-/D7-brane intersecting states can also be worked out in a similar way.

The full spectrum is summarised below.

• The 3̄3̄-sector provides a simple would-be supersymmetric massless spectrum.

(i) The vector fields and adjoint Weyl spinors transform in identical representations
of the group

⊗N−1
i=0 U(ni), i.e. in particular:

3̄3̄-sector vectors: r(3̄3̄)
v =

N−1∑
i=0

(ni,ni);

3̄3̄-sector Weyl spinors: r
(3̄3̄)
W0

=
N−1∑
i=0

(ni,ni).

(5.9)
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(ii) The 3N complex scalar fields and the remaining 3N Weyl spinors transform in
identical bi-fundamental representations of the group

⊗N−1
i=0 U(ni), namely:

3̄3̄-sector scalars: r(3̄3̄)
s =

3∑
a=1

N−1∑
i=0

(ni,ni+la);

3̄3̄-sector Weyl spinors: r
(3̄3̄)
W =

3∑
a=1

N−1∑
i=0

(ni,ni+la).

(5.10)

• The 73̄- and 3̄7-sectors provide the following non-supersymmetric massless spectrum,
transforming in distinct bifundamental representations:

(i) two sets of N scalar fields:

73̄-sector scalars: r(73̄)
s =

N−1∑
i=0

(ni,wi), (5.11a)

3̄7-sector scalars: r(3̄7)
s =

N−1∑
i=0

(ni,wi); (5.11b)

(ii) two sets of N Weyl spinors:

73̄-sector Weyl spinors: r
(73̄)
W =

N−1∑
i=0

(ni,wi−l3/2), (5.12a)

3̄7-sector Weyl spinors: r
(3̄7)
W =

N−1∑
i=0

(ni−l3/2,wi). (5.12b)

• Finally, in the 77-sector, one has a supersymmetric spectrum, as follows:

(i) the vector fields and a class of Weyl spinors form a number N of N4 = 1 vector
multiplets:

77-sector vector multiplets: r
(77)
V =

N−1∑
i=0

(wi,wi); (5.13)

(ii) the scalars fields and the Weyl spinors form a number N of N4 = 1 chiral
multiplets:

77-sector chiral multiplets: r
(77)
C =

N−1∑
i=0

(wi,wi+l3). (5.14)

Such representations factorise according to the factorisation of the groups U(pi), for in-
stance if a field is in the representation pi with respect to the group U(pi), it has charge
q = 1 under its U(1)-component and is in the representation pi of the SU(pi)-component.

As models with anti-D3- and D7-branes at orbifold singularities contain chiral fermions
in fundamental representations of the gauge groups, the theory is anomalous unless special
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cancellations occur, which is usually guaranteed by RR-tadpole cancellation [94]. The spe-
cific configurations which make the theory anomaly-free are spelled out below and amount
to the combinations of the sets of integers {ni}N−1

i=0 and {wi}N−1
i=0 that happen to give a

theory in which all the anomalous Feynman diagrams add up to zero.

(i) The condition that cancels out all the non-Abelian anomalies that arise from the
SU(ni)- and SU(wi)-subgroups is [92, 94, 95]

4
[ 3∏
a=1

sin
(
πkla
N

)]
tr Γθk,3̄ − sin

(
πkl3
N

)
tr Γθk,7 = 0. (5.15)

(ii) Under the condition above, the mixed Abelian/non-Abelian diagrams are pseudo-
anomalous, which implies that the Abelian factors actually acquire a mass via the
Green-Schwarz mechanism, apart from the linear combination21 [92, 95, 160]

Q =
N−1∑
i=0

Qni
ni

. (5.16)

Depending on the model, there may be additional non-anomalous combinations.

In principle, the gauge fields in the multiplets from the spectrum reported in eq. (5.9) are
the vectors22 Â

(i)
µ = A

(i)
µ + Ã

(i)
µ , one for each different U(ni)-subgroup, and similarly for

the U(wi)-subgroups. However:

(i) the non-Abelian gauge fields Ã(i)
µ of the SU(ni)-components are non-anomalous if the

condition in eq. (5.15) is satisfied, and similarly for the SU(wi)-components;

(ii) all the Abelian gauge vectors A(i)
µ are anomalous and hence disappear from the low-

energy effective theory, apart from the linear combination given in eq. (5.16), i.e.

Vµ =
N−1∑
i=0

A
(i)
µ

ni
.

Additional anti-D3-branes at other fixed points are also included in order to cancel the
D7-brane anomaly induced there. Even though the corresponding new U(1)-factors are
anomaly-free, they still acquire a mass via the Stückelberg coupling [95, 160].

5.3.2 Outlook on a supergravity formulation

Given the massless spectrum of anti-D3-/D7-branes at orbifold singularities, one can now
describe the effective theory in the language of N4 = 1 supergravity. In particular, one
needs to identify the goldstino and understand how to encode the remaining degrees of
freedom in supermultiplets.

21Actually, this combination exists as long as all the integers ni are non-zero. Moreover, some ZN -orbifolds
might have further anomaly-free linear combinations. An explanation to this is in ref. [92], section 2.3.

22The notation should not be misleading: for instance, Ã(i)
µ denotes the gauge field for the SU(ni)-

component, and it can be expanded as Ã(i)
µ = Ã

(i) k
µ t

(i)
k , with t(i)k the Hermitean generators of SU(ni).
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If the anti-D3-brane sits at an orbifold singularity, the goldstino survives (see eq. (5.9))
and the same supersymmetry breaking takes place as if it is at a smooth point (a similar
breaking also happens for anti-D3-branes sitting at an orientifold singularity, as in ref. [8]).
With multiple anti-D3-branes, the following reasoning holds.

(i) At a smooth point, the anti-D3-brane goldstino would be the neutral singlet contained
in the U(n)-gaugino λ̂. At an orbifold singularity, the original U(n)-gaugino λ̂ suffers
the orbifold projection

λ̂
ZN−→ Γθ,3̄ λ̂Γ−1

θ,3̄,

which singles out several diagonal components as several gaugini λ̂(i) for each of the
subgroups U(ni). For each of these, one extracts a neutral singlet λ(i) under the U(1)i
and SU(ni) subgroups.

(ii) Only one linear combination of the gaugini and their would-be vector superpartners
is actually massless, with orthogonal combinations acquiring a mass via the Green-
Schwarz mechanism [95]. In accordance with eq. (5.16), the goldstino of the theory
is thus the linear combination

ψg =
N−1∑
i=0

λ(i)

ni

since it is the only massless gauge-neutral spinor on the anti-D3-brane worldvolume.

The goldstino can be encoded as usual in a nilpotent superfield X. After the identification
of the goldstino, one can easily infer the main characteristics of the supergravity effective
field theory of the remaining fields in the massless spectrum. Details are below.

• In the 3̄3̄-sector, the situation is as follows.

(i) The vectors and the neutral Weyl spinors that transform in the adjoint repre-
sentations r(3̄3̄)

v = r
(3̄3̄)
W0

are the orbifold-invariant blocks of the fields Ãµ and λ̃,
plus the non-anomalous Abelian component Vµ and the goldstino ψg. Therefore,
they belong to the orbifold-invariant blocks from the constrained superfields W̃α,
X̃, Wα and X, respectively.
The vectors are massless and provide the standard-like model gauge fields, with
the goldstino being set to zero in the unitary gauge. On the other hand, the
would-be non-Abelian gaugini are extra massless degrees of freedom which can
be made massive via non-trivial effects such as anomaly mediation.

(ii) The complex scalars and Weyl spinors transforming in the bifundamental rep-
resentations r(3̄3̄)

s = r
(3̄3̄)
W are the orbifold-invariant blocks of the fields ϕa, ϕ̃a,

ψa and ψ̃a, and therefore belong to the orbifold-invariant blocks from the con-
strained superfields Ha, H̃a, Y a and Ỹ a, respectively.
All these fields are massive in the presence of (2, 1)-flux at the anti-D3-brane
location. Scalars receive further subleading contributions originating from per-
turbative and non-perturbative corrections to the theory. Notice that not all the
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orbifold singularities allow for (2, 1)-fluxes, in which case the corrections become
leading.23

• In the 73̄- and 3̄7-sectors, the situation is as follows.

(i) The scalars transforming in the bifundamental representations r(3̄7)
s and r(73̄)

s

are the orbifold-invariant blocks of the fields ϕ and ϕ̃, and therefore belong to the
corresponding blocks from the constrained superfields H and H̃, respectively.
Such fields are massive after supersymmetry breaking and receive contributions
from anomaly mediation. Anomaly-mediated mass contributions can be neg-
ative and lead to tachyonic instabilities, but they may be balanced by other
effects such as the α′-corrected uplift contribution.

(ii) The spinors belonging to the bifundamental representations r
(3̄7)
W and r

(73̄)
W are

the orbifold-invariant blocks of the fields ψ and ψ̃, and therefore belong to the
corresponding blocks from the constrained superfields Y and Ỹ , respectively.
Such fields are always massless and represent the matter content of the standard-
like model extension built at the orbifold singularity.

• In the 77-sector, the situation is the following.

(i) The fields in the vector multiplets in the adjoint representations r
(77)
V are the

invariant blocks from the fields Bµ (if anomaly-free), B̃µ, ζ and ζ̃, and therefore
belong to the corresponding blocks of the vector multiplets Yα and Ỹα.
Such gauge fields are chosen to correspond to interactions in a hidden sector. In a
pure-flux background, the gaugini are massive only in the presence of (0, 3)-flux,
which is not present at the tip of the throat. However, for bulk-extended D7-
branes they acquire masses from a non-zero volume modulus F-term and even
for throat-localised D7-branes they acquire a mass from the anomaly mediation
mechanism.

(ii) The fields in the chiral multiplets in the bifundamental representations r
(77)
C are

the invariant blocks of the fields σ3, σ̃3, η3 and η̃3, and therefore belong to the
corresponding blocks of the chiral superfields σ3 and σ̃3.
All these fields are massive in the presence of (2, 1)-flux, with further contribu-
tions from perturbative and non-perturbative corrections to the theory.

Now that the supermultiplets have been identified, given the N4 = 1 supergravity formula-
tion of a system with intersecting anti-D3- and D7-branes at a smooth point in the internal
space, in order to describe the theory of intersecting anti-D3- and D7-branes at an orbifold

23For a supersymmetric ZN -twist, a necessary condition for the (2, 1)-flux to survive the orbifold projec-
tion is that at least one of the la-coefficients be la = N/2, which is not satisfied e.g. by a C3/Z3-singularity,
but it is for instance by C3/Z4; the flux can also be preserved for singularities of the form (C2/ZN ) × C,
C3/[ZM× ZN ] and C3/[ZM× ZN× ZK ] [92, 107, 112].

Moreover, depending on the orbifold action, the specific flux components that render the modulini mas-
sive [107] might be projected out. The trace condition allows this situation while keeping the scalars
massive.
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singularity one can simply reduce the original superfields to the subset that is invariant
under the orbifold twist.

Notice that there exist singularities with further massless would-be vector superfields.
In particular, this is a feature of orbifolds which leave invariant at least one of the complex
directions [92]. In this case this gives rise to extra massless Abelian gauge fields and neutral
spinor fields.

6 Analysis of the mass hierarchies

Together, sections 3, 4 and 5 provide the tools to formulate the supergravity theory for
chiral gauge theories from intersecting anti-D3-/D7-branes on warped orbifold singulari-
ties in type IIB Calabi-Yau orientifold flux compactifications. The physical mass scales
that emerge in such constructions are now discussed, with a view towards quasi-realistic
standard-like models. In the scenario considered:

• the localisation condition of eq. (2.13) is assumed, implying that closed-string sector
fields, apart from the gravitino, tend to localise near the redshifted end of the throat;

• the hierarchy of eq. (2.16) between the gravitino mass-sourcing fluxes is assumed,
implying that the gravitino is localised in the bulk and a low-energy supergravity
description is consistent.

It is also assumed that only (2, 1)-fluxes are present at the tip of the throat. For ease of
notation, the normalisation V(0) = 1 is considered in the rest of this section.

6.1 Pure D7- and anti-D3-brane states

Pure D7- and anti-D3-brane states are discussed first, as their masses are essentially de-
termined by the dimensional reduction of the worldvolume actions. In particular, except
for some of the gaugini, the 77- and 3̄3̄-states are not critically dependent on the interplay
between each other, neither on the way in which the Kähler modulus is stabilised nor on
anomaly mediation effects.

• For D7-branes that wrap 4-cycles extending from the tip of a warped throat into the
bulk, the fate of the hidden matter chiral multiplets can be one of two possibilities,
in accord with subsubsection 3.1.2.

– If the mass-sourcing fluxes do not have specific hierarchies, then the D7-brane
chiral superfield is localised near the tip of the throat with a mass of the order of
the flux-induced axio-dilaton one, that is, from the normalisation induced by the
matter metric and the µ-coupling in eqs. (3.8), (3.9), a canonical supersymmetric
mass

m2
77 ∼ (mw

D7)2 ∼ g2
s

V2/3
1
κ2

4
e2A0 , (6.1)

which is of the same order of magnitude as the warped Kaluza-Klein scale mw
KK

of eq. (2.11), above the cutoff scale of the theory.
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– If the fluxes are such that the D7-brane chiral multiplet does not localise near
the tip, then, from the matter metric and the µ-coupling in eqs. (3.5), (3.6), the
canonically normalised supersymmetric mass is

m2
77 ∼ e2A0m2

D7 ∼
θ′2g2

s

V2
1
κ2

4
e2A0 , (6.2)

where θ′ is a small number representing the small bulk flux. In this case, the
chiral multiplet survives the warped Kaluza-Klein cutoff.

Again following subsubsection 3.1.2, given the gauge kinetic function of eq. (3.10),
the hidden-sector gauge couplings are of order

g2
D7 ∼

gs
V2/3 . (6.3)

In the absence of (0, 3)-flux, if there are no supersymmetry-breaking or anomaly-
mediation effects, the D7-brane gaugino is massless.

• For D7-branes that wrap 4-cycles localised at the tip of a warped throat, from
the discussion in subsubsection 3.1.3 with the matter metric and the µ-coupling
of eqs. (3.14), (3.15), the hidden chiral matter multiplets acquire the canonical
mass [104]

m2
77 ∼ (mw

D7)2 ∼ g2
s

V2/3
1
κ2

4
e2A0 . (6.4)

This means that the fields do not survive the cutoff unless the mass-sourcing (2, 1)-
flux is parametrically smaller than other fluxes in the throat that generate the warped
Kaluza-Klein scale. Also, subsubsection 3.1.3, thanks to the gauge kinetic function
of eq. (3.16), indicates that the hidden gauge couplings scale as

g2
D7 ∼ gs. (6.5)

Again, the gaugino is massless in the absence of supersymmetry-breaking or anomaly-
mediation effects.

• For anti-D3-branes, the modulini and scalar exotics have masses of the same or-
der of magnitude, as discussed in subsubsection 4.1.3. From the matter metrics of
eqs. (4.7), (4.9) and the H-couplings of eqs. (4.8), (4.10), one finds once again that a
(2, 1)-flux sources a canonical mass [104]

m2
3̄3̄ ∼ (mw

D3)2 ∼ g2
s

V2/3
1
κ2

4
e2A0 . (6.6)

Further, given the gauge kinetic function in eq. (4.14), the gauge coupling scales as

g2
D3 ∼ gs. (6.7)

As the anti-D3-brane gaugino is the goldstino of the theory, it is always massless. For
non-Abelian branes, there can be anomaly-mediation effects, otherwise the gaugini
are always massless in the models under consideration.
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6.2 Anti-D3-/D7-brane intersecting states and stable Kähler modulus

In the presence of intersecting anti-D3- and D7-branes, following subsection 4.2, both the
scalars and the spinors from the 3̄7- and 73̄-sectors are massless if one ignores perturbative
and non-perturbative corrections. However, the string perturbative and non-perturbative
effects are crucial for both stabilising the Kähler modulus and for making the intersecting
scalars massive, as discussed in subsection 4.3. In contrast, for the pure anti-D3- and D7-
brane states, these only induce suppressed extra contributions which are only significant
for some of the gaugini. A relevant role can also be played by anomaly mediation.

As discussed in subsection 4.3, following eq. (4.46), the interplay between perturbative
and non-perturbative corrections imply that the gravitino acquires a mass of order

(m̂w
3/2)2 ∼ g3

s

V4/3
1
κ2

4
e4A0 . (6.8)

Roughly, this can be written in terms of the warped Kaluza-Klein scale and the condition
of eq. (2.13) shows that this mass is bounded above as

(m̂w
3/2)2 .

gs
V2 (mw

KK)2.

This means that the gravitino is well within the cutoff of the theory. Also, the Kähler
modulus is stabilised and, from eq. (4.47), its canonically normalised24 mass is of order

(m̂w
V )2 ∼ V4/3 (m̂w

3/2)2, (6.9)

with the upper bound
(m̂w
V )2 .

gs
V2/3 (mw

KK)2,

leaving it well within the warped Kaluza-Klein cutoff too. Finally, from the matter metrics
in eqs. (4.18)/(4.29) and the mass of eq. (4.48), the canonical masses for the 3̄7-/73̄-states
visible scalar are of order

m2
3̄7 ∼ m

2
73̄ ∼

ξ

V
(m̂w

3/2)2. (6.10)

Again, one can easily verify that these fields survive the 4-dimensional cutoff, being

m2
3̄7 ∼ m

2
73̄ .

gsξ

V3 (mw
KK)2.

As discussed in subsection 4.3, moduli stabilisation has effects on the gaugini, and
anomaly mediation affects both the gaugini and the intersecting states.

• For D7-branes wrapping a 4-cycle extended from the throat tip into the bulk, from
eq. (4.49), the non-zero volume F-term induces D7-brane hidden gaugini masses of
order

mD7
1/2 ∼

1
V2/3 m̂

w
3/2. (6.11)

24For ease of notation, although this is the mass of the canonically normalised modulus (which requires
taking into account both the Kähler metric and inserting the appropriate dimension for a 4-dimensional
field), the symbol V is maintained from now on since the volume is what is controlled by the canonically
normalised field c.
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An anomaly-mediated contribution is also there but it has an extra string coupling
suppression, as can be seen in eq. (4.51). Further, from eq. (4.54), the anti-D3-/D7-
brane visible sector intersecting scalars anomaly-mediated mass contribution is

δm2
3̄7 ∼ δm

2
73̄ ∼ −g

2
s(m̂w

3/2)2, (6.12)

which competes with the α′-induced contribution.

• If the D7-brane wraps a 4-cycle which is localised at the tip of the warped throat, then
eq. (4.52) indicates that the D7-brane hidden gaugino acquires an anomaly mediated
mass of order

mD7
1/2 ∼ gs m̂

w
3/2. (6.13)

Further, from eq. (4.55), the anti-D3-/D7-brane visible sector intersecting scalars’
anomaly-mediated contribution is

δm2
3̄7 ∼ δm

2
73̄ ∼ −g

2
s (m̂w

3/2)2. (6.14)

This dominates the term induced by the α′-induced contribution, generating an in-
stability, unless the volume and the string coupling are properly tuned.

• Anomaly mediation also generates masses for the anti-D3-brane visible sector would-
be gaugini apart from the goldstino, which are present for non-Abelian anti-D3-
branes. In this case, thanks to eq. (4.53), the order of magnitude is

mD3
1/2 ∼ gs m̂

w
3/2. (6.15)

An interesting scenario is the one in which the mass-sourcing (2, 1)-flux is such that
the pure anti-D3- and D7-brane chiral multiplets are heavier than the cutoff scale. Since
their positions are stabilised at the expectation values 〈ϕa〉 = 0 and 〈σ3〉 = 0, the trilinear
couplings disappear. One is left with an effective theory in which the 4-dimensional degrees
of freedom are:

• the non-anomalous visible and hidden gauge vectors, which are massless, and the
gaugini, which are massless if Abelian and with masses of the order of magnitude in
eqs. (6.11)/(6.13) and (6.15) otherwise;

• the intersecting states, namely some standard-like model spinors and exotic scalars
in fundamental representations of the gauge groups, where the spinors are massless
and the scalars have masses of the order of magnitude in eq. (6.10);

• the graviton, which is obviously massless, and a gravitino with a mass of the order
of magnitude in eq. (6.8);

• the Kähler modulus and its superpartner, with masses of the order in eq. (6.9), which
constitute the lightest closed-string hidden-sector particles after the gravitino.

In models at orbifold singularities, the intersecting states are generally such that the scalars
and the spinors are in different representations of the gauge groups, meaning that they do
not even have would-be superpartners, but rather represent just a bunch of different charged
spin-0 and spin-1/2 particles.
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6.3 Sample mass scales

A qualitative spectrum that summarises the typical mass scales in models with intersecting
anti-D3- and D7-branes for strongly warped compactifications, i.e. satisfying the condition
in eq. (2.13), and in the limit where the bulk (0, 3)-flux is sufficiently small that a 4-
dimensional supergravity formulation is allowed, i.e. satisfying eq. (2.16), is reported below.

In detail, figure 3 reports a qualitative sample spectrum, in units of the reduced Planck
mass mP , in the case where the anti-D3-brane sits at the tip of the warped throat and
the D7-brane wraps a 4-cycle extending from the throat tip into the bulk, with its chiral
multiplet localised at the tip (see sections 3.1.2.3, 4.1.3, 4.2.3). A similar spectrum emerges
if the D7-brane wraps a 4-cycle localised at the throat tip (see sections 3.1.3, 4.1.3, 4.2.3),
with only minor changes in the gauge sector. Instead, if the D7-brane wraps a 4-cycle
extending from the bulk into the tip, with the chiral multiplet localised in the bulk, the
only difference is in the smaller mass of the latter (see sections 3.1.2.4, 4.1.3, 4.2.2).

The volume modulus is stabilised by KKLT-like non-perturbative corrections and α′-
corrections are inserted too (see sections 4.3). The sample values are gs = 5 · 10−2 and
e2A0 = 10−8 as well as a = 0.1, |A| = 1 and |W0| = 10−5, with 〈Im τ〉 = 1, 〈−iωw〉 = 1,
Vw/V(0) = 1 and c0 = 1, which, for the scalar potential in eq. (4.40), give a volume vacuum
expectation value 〈V〉 = 1.6 ·103 and a minimum energy Λ ∼ 10−26m4

P (which can as usual
be adjusted with further fine-tuning). As usual, these parameters have been tuned to ensure
the volume modulus stabilisation (for recent progress towards a top-down understanding of
the KKLT parameter space see e.g. refs. [26, 83, 85, 161]). In particular, the values chosen
here are close to the original ref. [43] and satisfy the assumptions of the current setup,
but are only one example in a vast parameter space. Along with the Minkowski vacuum
condition of eqs. (4.41), (4.42), the most stringent bounds are:

• the localisation condition in eq. (2.13), which requires a small enough volume, com-
pared to the warp factor, such that 〈V〉2/3 . e−A0 ;

• a small GVW-superpotential |W0|, which is necessary for the KKLT-vacuum but also
to accomplish the supergravity condition in eq. (2.16);

• a string coupling that is large enough to be a reasonable gauge coupling in the visible
sector, being g2

vis ∼ 2πgs, but also sufficiently small, compared to the volume 〈V〉, as
to satisfy the inequality ξ/(g2

s〈V〉) & 1, which prevents tachyons in the intersecting
sector.

Roughly, in order to have reasonable gauge couplings and to avoid open-string tachyons,
the string coupling has to be of order gs ∼ 10−2 and the volume is thus forced to be roughly
at most of the order of magnitude 〈V〉 ∼ 103. Therefore, the gravitino mass in eq. (6.8)
— to which all the other 4-dimensional effective masses are proportional — indicates that
what really suppresses the masses is the redshift factor eA0 . In particular, the parameters
chosen here place the gravitino mass and scalar exotics just above the current observational
bounds. However, by stretching the parameters of the non-perturbative superpotential
correction, one may achieve scenarios where the redshift eA0 is small enough to make the
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Figure 3. A qualitative sample of the mass scales in models with intersecting anti-D3- and D7-
branes in highly warped compactifications, i.e. such that 〈V〉2/3 ≤ e−A0 , with KKLT-like non-
perturbative corrections and α′-corrections, and a small bulk (0, 3)-flux such that the gravitino
localises in the bulk. Where the spin is not indicated, the masses refer to the supermultiplet as
the soft-breaking corrections do not dominate. The observed standard model energy range and the
relevant scales above the cutoff are shown explicitly. The graph refers to an anti-D3-brane sitting
at the throat tip and a D7-brane wrapping a 4-cycle extending from the tip into the bulk, with
the D7-brane chiral multiplet localised at the tip, where the gauge couplings are g2

D3 ∼ 0.3 and
g2

D7 ∼ 2 · 10−3. A similar spectrum emerges if the D7-brane wraps a 4-cycle localised at the tip,
with then the D7-brane scales similar to the anti-D3-brane scales, so g2

D7 ∼ g2
D3 and mD7

1/2 ∼ m
D3
1/2.

If the D7-brane wraps a 4-cycle extending into the bulk and the mass-sourcing (2, 1)-fluxes are such
that the D7-brane chiral multiplet localises in the bulk, then the latter approaches the gravitino
mass scale, m77 ∼ m̂w

3/2.

gravitino — and consequently all the other low-energy fields — arbitrarily light. On the
other hand, bigger values of the redshift eA0 are also possible and provide masses that can
be a few orders of magnitude larger.
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Although a detailed exploration of the phenomenological implications of such scenarios
is not the main aim of this article, a few comments are due. Notice that in the mass scales
all the numerical factors have been dropped and only the parametric dependences on eA0 ,
gs and 〈V〉 have been taken into account.

• From the cosmological perspective, the models do not present the cosmological moduli
problem [162–165] since all the hidden moduli are heavier than the visible scalars.
Whether or not there is a gravitino problem depends on the decay channels and
abundances, but, in any case, the gravitino, with mass of order m̂w

3/2 ∼ 8 · 10−13mP ,
is sufficiently heavy to decay soon enough as not to spoil the BBN-physics, with a
lower bound at roughly mmin

3/2 ∼ 10−13mP [165–167]. The models also contain some
massless hidden U(1)-gaugini and some heavy non-Abelian gaugini from the 77-sector,
with masses mD7

1/2 ∼ 6 · 10−15mP for a wrapped 4-cycle extending into the bulk, with
a very small gauge coupling of order g2

hid ∼ 2 · 10−3, or mD7
1/2 ∼ 4 · 10−14mP for a

wrapped 4-cycle at the throat tip, with coupling g2
hid ∼ 0.3. If the D7-brane chiral

multiplet localises near the tip, its mass scale is above the cutoff, while if its mass-
sourcing bulk flux is small enough and it stays in the bulk, then its mass is comparable
to the gravitino one, i.e. m77 ∼ m̂w

3/2.

• From the particle physics point of view, the visible sector consists of one Abelian and
a few non-Abelian gauge groups plus some charged massless spinors in bifundamental
representations as well as some heavy charged bifundamental scalars and a few slightly
heavier non-Abelian gaugini. All the gauge couplings are of order g2

vis ∼ 0.3. For a
gravitino with a mass of order m̂w

3/2 ∼ 8 · 10−13mP , these scalar masses are of order
mscalar

3̄7 ∼ mscalar
73̄ ∼ 2 · 10−14mP , while for the gaugini they are mD3

1/2 ∼ 4 · 10−14mP .
These values are consistent with the observational bounds [3].

It is important to discuss the scale at which the supersymmetry-breaking mass split-
tings come into play. Indeed, whilst there is no scale at which superpartners emerge for
the 3̄3̄- and 3̄7-/73̄-states, closed-string and 77-multiplets do have supersymmetry-breaking
mass splittings, and 3̄3̄-states and 3̄7-/73̄-scalars also acquire soft mass contributions from
supersymmetry breaking effects. The breaking of supersymmetry by the anti-D3-branes
takes place at the warped-string scale mw

s , where the full tower of string states comes into
play [35]. However, the relevant mass scale for supersymmetry breaking in the low-energy
theory is instead controlled by the gravitino mass scale m̂w

3/2, as will now be explained.
In a near-Minkowski vacuum, the orders of magnitude of the contributions to the F-term
scalar potential are fixed by the scales [13, 34]

fX =
[
KXX̄F

XF̄X
]1/2∼ m̂w

3/2mP , fρ =
[
Kρρ̄FρF̄ρ

]1/2∼ 1
V2/3 m̂

w
3/2mP ,

although the anti-D3-brane uplift energy and the KKLT-like Kähler modulus potentials
combine non-trivially with the gravitino mass-dependent contribution to give a near-zero
cosmological constant. One may then define a supersymmetry-breaking scale in the low-
energy theory as mSUSY ∼ f

1/2
X . Nevertheless, for both the Kähler modulus and the open-
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string sector, the orders of magnitude of the mass splittings read

m̂w
V ∼ V2/3 m̂w

3/2, mopen
soft ∼ m̂

w
3/2.

So, even though there is no order parameter able to restore supersymmetry for the anti-
D3-brane, the mass-splittings are not at the scale mw

s or mSUSY, but rather they are fixed
by the gravitino mass m̂w

3/2 in the stabilised model: as usual, the canonical normalisation
in physical units sets the volume modulus mass at a slightly volume-enhanced gravitino
scale, whereas for the open-string contributions the scale is immediately set at the scale
msoft ∼ m2

SUSY/mP ∼ m̂w
3/2 by the mediation of gravity. Moreover, for the low-energy

bifundamental scalars, this scale is further reduced by cancellations at leading order and
they are the lightest (exotic) visible particles.

To end, it is worthwhile to stress that the particle spectra discussed here represent the
generic low-energy effective theory corresponding to intersecting anti-D3-/D7-branes at an
orbifold-like singularity, located at the tip of a strongly warped throat in a Calabi-Yau orien-
tifold flux compactification, with the Kähler modulus stabilised in a KKLT-like framework.
An explicit and globally consistent realisation of such constructions is left for future work.

7 Conclusions

This article has developed the supergravity description for the low-energy effective field the-
ory of intersecting anti-D3-/D7-brane systems on orbifold singularities at the tip of warped
throats, in stabilised type IIB Calabi-Yau orientifold flux compactifications. Such string
configurations could plausibly provide a realisation of the gauge and matter sectors of the
Standard Model of Particle Physics, along with a rich hidden sector, with a geometric origin
for large hierarchies of scales and a non-standard realisation of supersymmetry breaking.
The anti-D3-brane degrees of freedom realise the bulk N4 = 1 supersymmetry only non-
linearly, and thus break supersymmetry spontaneously, with the goldstino corresponding to
the neutral massless gaugino that is always present. When the branes are placed on orbifold
singularities, moreover, the anti-D3-/D7-brane intersecting fermions and bosons transform
in different bifundamental representations of the gauge groups; thus they in no way resemble
superpartners. New descriptions are therefore necessary, namely non-linear supergravity
using constrained superfields. The focus of the article has been on the main distinctive
features of these novel non-supersymmetric scenarios and their low energy descriptions,
while the realisation of globally consistent concrete models is left for future studies.

The paper began by reviewing the properties of warped flux compactifications in sec-
tion 2. In particular, for strongly warped throats and bulk volumes that are not too large,
i.e. satisfying eq. (2.13), bulk fields tend to dynamically localise near the tip of the throat,
where energy scales are suppressed due to a gravitational redshift. In order to have a
4-dimensional gravitino localised in the bulk, with Planck-suppressed couplings to match
those of the graviton, as expected in supergravity, special fluxes satisfying condition (2.16)
have also been assumed. The strong warping can eventually be captured in the low-energy
supergravity theory describing degrees of freedom at the bottom of the throat via a constant
shift the Kähler potential by the redshift logarithm ln e2A0 = 2A0 [104].
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Taking this highly warped flux background, the low-energy effective theory for a su-
persymmetric D3-/D7-brane system was reviewed in section 3. Two qualitatively different
scenarios were considered: first with the D7-brane wrapping a 4-cycle extending from the
tip along the throat into the bulk, second with the wrapped 4-cycle localised at the tip.
Moreover, in the first case, the D7-brane chiral supermultiplet may be localised in the bulk
or at the tip, depending on its mass-sourcing fluxes. The possibility of six-dimensional
integrals being dominated by the warped throat or the bulk were also both considered.
For the 33- and 77-states, the effective field theory for the light degrees of freedom can be
found by simply matching the 4-dimensional interactions found via dimensional reduction
with those obtained in linear supergravity (including soft-breaking terms in the presence
of supersymmetry-breaking fluxes). For the 37- and 73-states, further tools are necessary,
in particular the allowed interactions can be inferred using the internal space symme-
tries [112]. The power of linear supergravity is that, having identified the Kähler potential,
superpotential, gauge kinetic functions and Fayet-Iliopoulos terms by matching with a few
dimensionally reduced interactions, the complete action necessary for supersymmetry can
be inferred, including couplings to bulk moduli.

With these preparations, the low-energy description of anti-D3-/D7-branes at the bot-
tom of warped throats in supersymmetric warped flux compactifications was worked out,
first for Abelian setups in section 4 and then for non-Abelian stacks of branes on orbifold
singularities in section 5. Despite supersymmetry breaking, the non-linear supergravity
construction provides a useful framework for the low-energy theory, including the cou-
plings with bulk fields. After identifying the appropriate constrained superfields to en-
capsulate the low-energy fields, their interactions were worked out, building on both the
single anti-D3-brane case [29] and the supersymmetric D3-/D7-brane cases above. Most
of the interactions can be described within standard supergravity expansions with hidden-
sector supersymmetry breaking and soft-breaking terms. However, in the presence of con-
strained superfields where the constraint also fixes the auxiliary field in the multiplet in
terms of the goldstino, the supergravity expansions are non-standard, and are computed
in appendix B.3. Another consequence of the anti-D3-brane supersymmetry breaking is
a few couplings involving intersecting states, which would follow from analogy with the
supersymmetric D3-/D7-brane case, but do not appear to fit in to the non-linear super-
gravity expansions. These can instead be realised via a new interaction proportional to
the nilpotent goldstino superfield, i.e. an XX̄-term [22], which provides each coupling term
by term, plus further interactions proportional to the goldstino and vanishing in the uni-
tary gauge. Although this somewhat weakens the power of the supergravity formulation,
at least in the current understanding, the latter allows an embedding of bottom-up open
string scenarios with brane supersymmetry breaking into fully stabilised compactifications,
including perturbative and non-perturbative effects. This is essential to understand their
phenomenology and cosmology.

To this end, the D-brane setups were embedded in the KKLT-scenario, with the anti-
D3-branes providing both gauge and matter sectors as well as the anti-D3-brane uplift to
Minkowski/de Sitter vacuum energy. Attractively, the small bulk (0, 3)-flux backgrounds,
necessary to balance against non-perturbative effects and stabilise the Kähler modulus,

– 74 –



J
H
E
P
1
2
(
2
0
2
0
)
1
7
4

also help satisfy condition (2.16) allowing a supergravity description [104]. The technology
developed can easily be applied to other moduli stabilisation scenarios, and less warped
scenarios, outside the validity of eqs. (2.13), (2.16).

The low-energy effective actions thus found have several interesting features. The com-
plex structure, axio-dilaton, 77-, and 3̄3̄-sector chiral multiplets acquire would-be super-
symmetric mass terms from (2, 1)-fluxes, at a scale above the cut-off (as well as subleading
soft-breaking masses from the anti-D3-brane supersymmetry breaking). Physically, this
means that the open-string moduli corresponding to brane positions are stabilised at the
tip of the throat. Instead, fermionic 3̄7- and 73̄-states remain massless and could provide
the standard-like model visible sector, whilst scalar visible sector exotic 3̄7- and 73̄-states —
in distinct bifundamental representations — always have (would-be) soft-breaking masses,
due to the anti-D3-brane and volume modulus supersymmetry breaking. Because the lat-
ter is suppressed by no-scale-like cancellations, α′-corrections (positive-definite masses) and
anomaly mediation (tachyonic masses) can set the scale of the exotic scalar masses [13],
and which contribution wins depends on the parameter choices. Moduli stabilisation and
anomaly mediation also provide mass terms for the 77- and 3̄3̄-sector gaugini. As well as
the mass scales, the leading supersymmetric and soft-breaking bilinear and trilinear cou-
plings have all been computed. The visible 3̄3̄- and hidden 77-sector gauge couplings are
fixed by the string coupling. All this is spelled out in section 6.

As well as the light visible sector (standard-like model gauge fields and fermions,
and scalar exotics), and a light hidden gauge sector plus matter, when embedding in
KKLT-like scenarios for Kähler modulus stabilisation, the volume modulus and gravitino
remain in the effective field theory, whereby cosmological bounds on the gravitino con-
strain the parameter space. Notice that the KKLT small parameter |W0| implies a small
gravitino mass, which is then further reduced by warping. Although the precise mass
scales are model-dependent, the pattern of masses and their parametric dependence on the
warp factor, volume and string-coupling are fairly universal within the KKLT scenario.
Whilst a thorough phenomenological study, including renormalisation-group flows of the
scales, is beyond the scope of this paper, if the warping is too strong, the gravitino mass
m̂w

3/2 ∼ (g3/2
s eA0/V2/3)mP e

A0 may be so suppressed as to be ruled out by the observational
bounds that confirm the BBN-physics, while the exotic scalar masses m3̄7 ∼ m̂w

3/2/V
1/2 may

be ruled out by observation in accelerators. Conversely, weaker warping allows scales to
be pushed far beyond current experimental bounds.

This work leads to several interesting and important open questions. First and foremost
is a rigorous understanding of the extent to which non-linearly realised supersymmetry and
strong warping can help resolve hierarchy problems like the gauge hierarchy. The presence
of spontaneous supersymmetry breaking, and yet no scale at which the usual superpartners
appear, is an intriguing feature of these scenarios. Recently there has been a great deal of
interest towards non-supersymmetric constructions in string theory (see e.g. refs. [168–179])
and it is very compelling to understand the relation between the D-brane supersymmetry
breaking considered here and other approaches in the literature. See ref. [134] for an
upcoming work in this direction.
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From a model building point of view, it would be essential to build warped throats that
allow viable singularities at their tip, and the presence of simple 4-cycles (like for instance
the K3-surface or the 4-torus T4) at their tip or along their length would then allow easy
explicit dimensional reductions. Geometric constructions with warped throats hosting a
4-torus T4 at the tip and Z3-singularities are built in ref. [95]. It would be fruitful to extend
the present work to anti-D3/D7-brane systems on more general toric singularities, such as
in refs. [97, 180–183], at the tip of warped throats. Related work on the construction of
throats with branes at singularities can already be found e.g. in refs. [10, 14, 97, 182–186]
and on throats with wrapped D7-branes in refs. [187–189]. Ultimately, globally consistent
compactifications, with appropriate singularities, cycles and sources that fulfil RR-tadpole
cancellation, should be constructed, to which the results presented here would apply.

Various possible instabilities arising from anti-D3-branes in flux backgrounds should
also be explored, since this work has completely neglected the brane backreaction and the
details of the complex structure modulus that governs the warp factor at the throat tip. In
particular, as shown by ref. [45], p anti-D3-branes in the flux background of the KS-throat
withM units of RR-flux are metastable and long-lived for sufficiently small ratio p/M , with
brane-flux decay occurring non-perturbatively via brane polarisation à la Myers [190] (for
an overview of past debates on this picture, see ref. [84]). Also, ref. [26] has shown that for a
KS-throat the anti-D3-branes may induce a complex structure instability, depending on the
amount of flux relative to the branes. It would be interesting to investigate these dynamics
in other relevant throats and in the presence of orbifold singularities. Additionally, so far,
world-volume fluxes on the D7-branes have been neglected for simplicity, though they can
contribute interesting D-terms and F-terms.

Once globally consistent, realistic constructions, approaching the standard model of
particle physics have been identified, detailed phenomenological and cosmological studies
would be possible.
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A Dimensional reduction in warped compactifications

This section reviews the dimensional reduction of closed- and open-string sectors in warped
compactifications.25 It is meant to set the notation for the main text and to provide a review
of how the scaling factors are obtained in warped dimensional reductions.

A.1 Warped closed-string sector in type IIB string theory

In type IIB compactifications, in principle the theory is formulated in terms of the string-
frame metric ds2

10 = GMN dxMdxN . Given the gravitational coupling 2κ̌2
10 = l8s/2π, where

25See also ref. [191] for a recent discussion of the scaling properties of the closed- and open-string effective
theories in string compactifications.
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the string length is ls = 2π
√
α′, the 10-dimensional massless bosonic action reads [192]

Sboson
IIB = 1

2κ̌2
10

∫
X1,9

[
e−2Φ

(
R10 ? 1 + 4 dΦ ∧ ? dΦ− 1

2 H3 ∧ ?H3

)]
+ 1

2κ̌2
10

∫
X1,9

[
−1

2 F
s
1 ∧ ?F s1 −

1
2 F̃

s
3 ∧ ? F̃ s3 −

1
4 F̃

s
5 ∧ ? F̃ s5

]
− 1

4κ̌2
10

∫
X1,9

Cs4 ∧H3 ∧ F̃ s3 ,

where the NS/NS- and R/R-sector field-strength tensors are respectively defined as H3 =
dB2 and F̃ s = dCs−H3∧Cs. Also, the string coupling is gs = e〈Φ〉, where Φ is the dilaton.
Then, the 10-dimensional Einstein frame metric is defined as

ĝMN = e−(Φ−〈Φ〉)/2GMN ,

which can be expressed more easily in terms of the shifted dilaton φ = Φ − 〈Φ〉. In this
way, in a more compact notation, the low-energy effective action can eventually be written
as [193]

Sboson
IIB = 1

2κ̂2
10

∫
X1,9

[
R̂10∗̂1−

dτ ∧ ∗̂ dτ̄
2 (Im τ)2 −

G3 ∧ ∗̂ Ḡ3
2 Im τ

− 1
4 F̃5 ∧ ∗̂ F̃5

]

− 1
4κ̂2

10

∫
X1,9

C4 ∧H3 ∧ F̃3,

(A.1)

where the physical 10-dimensional gravitational coupling is 2κ̂2
10 = g2

s l
8
s/2π and the RR-

fields have been rescaled as C = gsC
s. Further, the axio-dilaton and the complexified

3-form flux have been defined as τ = C0 + i e−φ and G3 = F̃3 − i e−φH3, respectively.
In a Calabi-Yau orientifold compactification with non-zero background fluxes, the field

equations imply a non-trivial warp factor [4, 102]. Following refs. [103, 105], the volume-
controlling real Kähler modulus c = c(x) appears as a shift in the warp factor eA = eA(y),
leading to the definition of the generalised warp factor

e−4Ac(x,y) = e−4A(y) + c(x),

with the 10-dimensional Einstein-frame metric taking the form

ds2
10 = 1

[e−4A + c]1/2
ğµν dxµdxν + [e−4A + c]1/2 ğmn dymdyn.

As discussed by ref. [105], one can Weyl rescale this to the 4-dimensional Einstein frame,
while also introducing a compensator field b = b(y) that is necessary to solve the Einstein
equations, with the full metric reading

ds2
10 = e2Ω γ3/2

[e−4A+c]1/2
(gµν dxµdxν+2∂µc∂mbdxµdym)+[e−4A+c]1/2 gmndymdyn. (A.2)

In particular, in the Weyl rescaling one has the Kähler modulus-dependent factor

e2Ω =

∫
Y6

d6y
√
g6∫

Y6
d6y
√
g6 [e−4A + c]
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and for generality also an arbitrary constant γ3/2 has been introduced, which in this case
will be chosen as γ ∼ 〈c〉 [44].26 The warp factor has the following behaviours:

• in the infrared region of the throat τ6, the background warp factor is much larger
than the volume modulus, that is e−4A(y ∈ τ6)� 〈c〉 � 1 so that

e−〈4Ac〉 ∼ e−4A, for y ∈ τ6;

• in the bulk region of the compact space, the background warp factor is negligible,
that is e−4A(y ∈ Y6\τ6)� c, so

e−〈4Ac〉 ∼ 〈c〉, for y ∈ Y6\τ6.

The dimensional reduction of the closed-string sector action, to find the 4-dimensional
low-energy effective theory corresponding to the flux compactification, is now reviewed for
the most relevant degrees of freedom. Following the very definition of the 4-dimensional
Einstein frame, the type IIB Einstein-Hilbert action becomes

SIIB
EH = 1

2κ̂2
10

∫
X1,9

d10x
√
−det ĝ10 R̂10 = 1

2κ2
4

∫
X1,3

d4x
√
−det g4 R4 + δSIIB

EH ,

with the 4-dimensional gravitational coupling defined as

2κ2
4 = 2κ̂2

10
γ3/2l6sV(0)

= g2
s l

2
s

2πγ3/2V(0)
(A.3)

and the term δSIIB
EH standing for the internal curvature and other derivative terms, emerging

from the remainder of the Ricci scalar, which provide contributions to the kinetic terms and
the scalar potential for the geometric moduli. In particular, the Kähler modulus kinetic
term is reproduced by means of the Kähler potential [105]

κ2
4K̂(ρ, ρ̄) = −3 ln

[
−i(ρ− ρ̄) + 2c0

]
,

with c0 = Vw/V(0), where the complexified Kähler modulus ρ is defined as

ρ(x) = χ(x) + i c(x),

with χ being the 4-form axion. The description of the other closed-string sector fields
follows with specific features determined by warping effects [102, 148].

• For the axio-dilaton τ , it is immediate to check that the kinetic term is

Saxio-dilaton = 1
2κ̂2

10

∫
X1,9

d10x
√
−det ĝ10

[
− 1

2 (Im τ)2 ĝ
MN∂Mτ∂N τ̄

]
= 1

2κ2
4

∫
X1,3

d4x
√
−det g4

[
− 1

2 (Im τ)2 g
µν ∂µτ∂ν τ̄

]
,

which is reproduced by the usual Kähler potential κ2
4K̂(τ, τ̄) = −ln [−i(τ − τ̄)].

26Notice that the canonically normalised masses in Planck units are independent of constant Weyl rescal-
ings and most references work with γ = 1.
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• For the complex structure moduli uα, with α = 1, . . . , h2,1
− , the dimensional reduction

is more involved. In particular, one needs the quantities

ωw =
∫
Y6
e−4AΩ ∧ Ω̄, K̂αβ̄ = − 1

ωw

∫
Y6
e−4A χα ∧ χ̄β ,

which provide the warped version of the complex structure moduli Kähler potential,
κ2

4K̂(u, ū) = −ln [−iωw], and the explicit Kähler metric [102, 194], where Ω and χα
are the unwarped harmonic 3-form and (2, 1)-form basis, respectively.

To have a complete supergravity formulation, one must also match the scalar potential
that arises from the dimensional reduction. The following calculation only captures the
axio-dilaton and complex structure moduli potential as it neglects the details of the coupling
with the warp factor, the volume modulus and the compensator field. It is just meant to
argue the emergence of the GVW-superpotential [195] and to fix the overall constants. The
functional dependence of the scalar potential is set by the 3-form term as the remaining
terms from the Einstein-Hilbert and 5-form actions can be combined with the 3-form action,
cancelling the contribution from imaginary self-dual fluxes G−3 and leaving pure imaginary
anti-self-dual fluxes G+

3 [4, 102], with

G±3 = 1
2 (1± i∗6)G3.

Refs. [103, 105] show that if the warp factor e−4A solves the field equations, so does the
shifted warp factor e−4A + c. Assuming then for simplicity the background value for the
volume 〈c〉, one can express this 10-dimensional potential in terms of the 4-dimensional
Einstein-frame metric, i.e.

S3-form = 1
2κ̂2

10

∫
X1,9

d10x
√
−det ĝ10

[
− 1

12 Im τ
G+

3 ·̂ Ḡ
+
3

]

= γ3

2κ̂2
10

∫
X1,3

d4x
√
−det g4

∫
Y6

d6y
√

det g6

[
−e
〈4Ω〉+〈4Ac〉

12 Im τ
G+

3 · Ḡ
+
3

]
.

The most interesting case to consider is the one where integrations are dominated by the
throat region τ6, in which e−〈4Ac〉 ∼ e−4A. Because the GKP field equations require the
imaginary anti-self-dual 3-forms e4AG+

3 to be harmonic [4, 102], without loss of generality
one can focus on the (3, 0)-component and expand it as

e4AG(3,0) = 1
ωw

Ω
∫
τ6
G3 ∧ Ω̄,

so that the action can be written as

S3-form = γ3

2κ̂2
10

∫
X1,3

d4x
√
−det g4

∫
τ6

[
− i2

e〈4Ω〉−4A

Im τ ω2
w

Ω ∧ Ω̄
[∫
τ6
G3 ∧ Ω̄

][∫
τ6
Ḡ3 ∧ Ω

]]
.

The integral over the internal space is now easily seen to be

λ ∼
∫
Y6
e−4A Ω ∧ Ω̄ = ωw ∼ ωw

Vw
V(0)

e〈2Ω〉, (A.4)
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where an approximate unit factor has been introduced in the final relation, for convenience
in the comparison with the supergravity action below. At the end of the day, the 3-form
action is (the numerical factor can be determined by properly taking into account the
axio-dilaton and 5-form contributions to the scalar potential [102])

S3-form = γ3

2κ̂2
10

∫
X1,3

d4x
√
−det g4

[
− i e〈6Ω〉

Im τ ωw

Vw
V(0)

[∫
Y6
G3 ∧ Ω̄

][∫
Y6
Ḡ3 ∧ Ω

]]

= 1
2κ4

4

g2
s

4π

∫
X1,3

d4x
√
−det g4

[
− i e〈6Ω〉

Im τ ωw

Vw
[V(0)]3

1
l4s

[∫
Y6
G3 ∧ Ω̄

][∫
Y6
Ḡ3 ∧ Ω

]]

The last step takes into account the definition of the 4-dimensional Planck units while
keeping the bulk integrals scaled with the appropriate string length factors (recalling the
scalings G3 ∼ l2s and Ω ∼ 1). This result gives a way to understand how to insert the
volume and warped-volume factors in the effective supergravity formulation whereby the
Kähler and superpotential of eqs. (2.5a), (2.5b) reproduce it exactly.

A similar analysis can be done with the opposite approximation that bulk integrals
dominate over throat integrals, which leads to the unwarped limit. The calculation follows
analogously but it is easier since the warping in the integrations is irrelevant, i.e. Vw ∼ V(0)
and ωw ∼ ω(0) =

∫
Y6

Ω∧Ω̄. In more detail, one may start from the 10-dimensional potential
written above noticing the identities e4Ac = 1/c = e−4u and e2Ω = 1/c = e−4u, and reduce
it along the same lines, with the 3-form flux G+

3 being harmonic. Alternatively, formally
this limit can be found by setting e4A = 1 in all the final integrated expressions, so that
Vw = V(0) and ωw = ω(0). One obtains the famous results of refs. [4, 113]. The warped
expressions are always kept in the main text for the sake of generality.

A.2 General D-brane action

As is well-known, the uncompactified (p+ 1)-dimensional worldvolume theory of a stack of
n coincident Dp- or anti-Dp-branes consists of the following massless degrees of freedom:

• from the NS-sector, a vector Aα which gauges the non-Abelian gauge group U(n) and
9−p scalars φṁ in the adjoint representation of the group U(n), with the indices α and
ṁ respectively running over the worldvolume longitudinal and transverse directions,
meaning α = 0, . . . , p and ṁ = p+ 1, . . . , 9;

• from the R-sector, some spinors ψA in the adjoint representation of the group U(n),
where the family index A counts the number of (p+1)-dimensional spinors descending
from a single 10-dimensional Majorana-Weyl spinor.

The difference between branes and anti-branes is their charge under the RR-fields, which
is q = 1,−1, respectively.

The effective action describing the massless degrees of freedom of coincident D-branes
is a non-Abelian generalisation of the effective action describing a single D-brane [190]. In
detail, it is the summation of a Dirac-Born-Infeld and a Chern-Simons action, i.e.

SDp = SDp
DBI + SDp

CS . (A.5)
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The string frame description will be reviewed first as this is what is usually suitable for de-
riving effective actions, and then everything will be re-expressed in the Einstein frame. The
embedding function of the Dp-brane worldvolume W1,p into the 10-dimensional spacetime
X1,9 will be represented by

ϕ : W1,p ↪→ X1,9,

where the pull-back of a 10-dimensional vector v = vM dxM is defined as vα = (ϕ∗v)α =
vM ∂αx

M , and similarly for tensors of arbitrary rank.
For brevity, only the bosonic action is discussed below. An analysis of the general

Dp-brane fermionic action can be found in refs. [196–198] (see also ref. [199]).

A.2.1 Dirac-Born-Infeld action

In the string frame, the Dirac-Born-Infeld term for a stack of Dp-branes at a generic smooth
point in the internal manifold takes the form27

SDp
DBI = −Tp

∫
W1,p

dp+1ξ str
[
e−Φ

√
−det

[
Γαβ

]
· det

[
Qṅṁ

]]
,

where Tp = 2π/lp+1
s is the Dp-brane tension. Also, one has the rank-2 tensor

Γαβ ≡ Eαβ + Eαṁ
(
Q−1 − 1

)ṁ
l̇
E l̇ṅEṅβ + 2πα′Fαβ ,

along with the combination of the string frame metric tensor and the 2-form NS-field,
EMN = GMN + BMN , with Eαβ being its pull-back on the worldvolume, as well as the
purely non-Abelian rank-(1, 1) tensor

Qṅṁ = δṅṁ + 2πiα′
[
φṅ, φk̇

]
Ek̇ṁ.

The determinant ‘det’ is with respect to spacetime indices, while the trace ‘str’ is the
symmetrised trace over the gauge group indices such that the Lie matrix-valued terms Fαβ ,
Dαφ

ṁ and [φṁ, φṅ] are treated as commuting (no other terms are treated as commuting).
One can write the action in the Einstein frame by redefining the metric and NS-field

combination as êMN = e−φ/2EMN = ĝMN + e−φ/2BMN . Elementary operations then
reveal the action to take the form

SDp
DBI = −τDp

∫
W1,p

dp+1ξ str
[
e (p−3)φ/4

√
−det

[
γ̂αβ

]
· det

[
Qṅṁ

]]
, (A.6)

where the physical Dp-brane tension turns out to be τDp = 2π/gslp+1
s . Also, one redefines

the rank-2 tensor as

γ̂αβ ≡ êαβ + êαṁ
(
Q−1 − 1

)ṁ
l̇
êl̇ṅ êṅβ + 2πα′ e−φ/2 Fαβ ,

whilst the rank-(1, 1) tensor is still

Qṅṁ = δṅṁ + 2πiα′ eφ/2
[
φṅ, φk̇

]
êk̇ṁ.

27Notice that one can define the brane tension as τDp = Tp/gs as a direct consequence of writing the
dilaton factor in the action in terms of the shifted dilaton field φ = Φ− 〈Φ〉.
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A.2.2 Chern-Simons action

The Chern-Simons action is the same both in the string and the 10-dimensional Einstein
frame up to the rescaling of the RR-fields and it takes the form

SDp
CS = q τDp

∫
W1,p

str
{[
ϕ∗

(
e2πiα′iφ̇iφ̇

( 4∑
l=0

C2l ∧ eB2

))]
∧ e2πα′F2

}
, (A.7)

where iφ̇ denotes the interior product with the vector field φṁ, i.e. for a general n-form

iφ̇An = 1
(p− 1)!φ

ṁAṁM1...Mn−1 dxM1 ∧ . . . dxMn−1 .

A.2.3 Further remarks

One typically chooses to work in the so-called static gauge, in which, given the expansion
parameter σs = l2s/2π for ease of notation, the brane position is parametrised as

X µ̇(ξ) = δµ̇α ξ
α, Y ṁ(ξ) = yṁ0 + σsφ

ṁ(ξ).

In detail, yṁ0 are the background brane positions in the Dirichlet directions while the terms
δY ṁ = σsφ

ṁ represent fluctuations thereof. Moreover, the notation is such that:

• indices µ̇ span both the 4-dimensional spacetime and the p − 3 internal directions
wrapped by the Dp-brane, i.e. µ̇ = µ,m′, with m′ = 4, . . . , p;

• indices ṁ span the internal directions which are not wrapped, i.e. ṁ = p+ 1, . . . , 9.

Under these premises, one has to take care of the following facts.

• The DBI- and CS-actions involve pull-backs of 10-dimensional fields onto the brane
worldvolume: these are a generalised version of the standard pull-back as they involve
non-Abelian fields. For instance the non-Abelian pull-back on the worldvolume of a
1-form v = vM dxM is

ϕ∗v = vµ̇ δ
µ̇
α dξα + σs∇αφṁ vṁ dξα,

where ∇α is the standard gauge covariant derivative, as a generalisation of the stan-
dard pull-back expression involving ∂αym. Generalisations to n-forms are immediate.

• Fields on the brane worldvolume must be expressed as functions of the coordinates
ξα, of course. A generic 10-dimensional function f = f(xM ) can be written as a
non-Abelian Taylor expansion on the worldvolume, i.e.

f(xµ̇, yṁ) =
+∞∑
k=0

σks
k! φ

ṁ1φṁ2 . . . φṁk ∂ṁ1∂ṁ2 . . . ∂ṁk f(xµ̇, yṁ0 ),

which accounts for the fluctuations of the Dp-brane in terms of the non-Abelian
displacements from the original position yṁ0 .
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A.2.4 D3, anti-D3- and D7-brane kinetic and mass terms

In the probe approximation, an explicit dimensional reduction of the D3- and anti-D3-brane
action has been performed in refs. [9, 29, 107, 108, 128], while the study of the D7-brane
action can be found in refs. [112, 113, 132]. Most references work with the metric form

ds2
10 = e2Ac ğµν dxµdxν + e−2Ac ğmn dymdyn.

In this subsubsection the results are taken directly from such references. For a 4-dimensional
theory, the worldvolume degrees of freedom must be reduced, and they are sensitive to the
details of the wrapped (p − 3)-cycle. It is also convenient to combine pairs of real scalars
into single complex scalars as φa = φṁ=2a+2 + i φṁ=2a+3, and similarly for the modulini.

• For D3- and anti-D3-branes, the dimensional reduction proceeds in the same way
except for the different interference between the DBI- and CS-actions due to the
different RR-charge. All the terms evaluated at the brane location carry a symbol ‘0’.

First of all one finds the cosmological constant contribution

S
D3q
Λ = −(1− q)τD3

∫
d4x

√
−ğ4 e

4A0
c ,

which explains the anti-D3-brane uplift energy.

Further, the pure scalar kinetic and mass terms turn out to be (there are also bilinear
φaφb-couplings with the same scaling as the mass terms)

S
D3q
scalars = −τD3σ

2
s

∫
X1,3

d4x
√
−ğ4

[
ğ0
ab̄
ğµν ∇̆µφa∇̆ν φ̄b + [∇a∇b̄(e

4Ac − qα)]0 φaφ̄b
]
.

Following the GKP-equations [4, 102, 103], the anti-D3-brane scalars are massive for
imaginary self-dual (2, 1)- and (0, 3)-fluxes, whereas for D3-branes they are massless.

For the modulini, one finds the kinetic and mass action28

S
D3q
modulini = −iτD3σ

2
s

∫
X1,3

d4x
√
−ğ4

[
ğ0
ab̄

˘̄ψb ˘̄σµ∇̆µψ̆a +
(
m

(q)
ψ̆aψ̆b

ψ̆aψ̆b + c.c.
)]
.

For anti-D3-branes, the modulini masses are purely sourced by (2, 1)-fluxes and read

m
(q=−1)
ψ̆aψ̆b

= −1
4 e

4A0
c+φ/2 ğ0

c(a l
3
sΩ̆0

b)de (Ḡ−3 )˘̄cd̆ĕ
0 ,

while, the for D3-branes they are sourced by imaginary anti-self-dual (1, 2)-fluxes.

One also finds the gauge vector action

SD3q
gauge = −τD3σ

2
s

2

∫
X1,3

e−φ F2 ∧ ∗̆F2 + qτD3σ
2
s

2

∫
X1,3

C0 F2 ∧ F2.

The gaugino mass is sourced by (0, 3)- and (3, 0)-fluxes for anti-D3- and D3-branes,
respectively.

28The dimensional reduction of the 10-dimensional Majorana-Weyl spinor to the 4-dimensional Weyl
spinors is the same as in ref. [128] since e−4A0

c ∼ e−4A0 for branes at the tip of the throat.
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• For D7-branes, the reduction to a 4-dimensional action depends on the wrapped in-
ternal 4-cycle, so only the general features of bosons will be discussed. Let the 4-cycle
be spanned by the coordinates (z1, z2) and let z3 be transverse direction.

For the transverse scalar π3 = φ3, the pure kinetic action is

SD7-scalar
kin = −τD7σ

2
s

∫
X1,3

d4x
√
−ğ4

∫
Σ4

d4y
√
ğΣ4 [e−4A + c] eφ ğ33̄ ğ

µν ∇̆µπ3∇̆ν π̄3.

The total mass term emerges from the interference of the DBI- and CS-actions, with
the terms adding up or cancelling out. The full expression is complicated, but the
scalings can be read from the DBI-term and the mass action has the form

SD7-scalar
mass = −τD7σ

2
s

2

∫
X1,3

d4x
√
−ğ4

∫
Σ4

d4y
√
ğΣ4

e2φ

e−4A + c
Gm′n′ṙ Ḡ

m̆′n̆′
ṡ π

ṙπṡ,

in real notation. As D7-branes preserve the same supersymmetry as the orien-
tifold, the supersymmetric mass is sourced by a (2, 1)-flux (but IASD-fluxes source
supersymmetry-breaking masses as well). For the theory to have no Freed-Witten
anomalies [200], the 2-form B2 must be constant over the 4-cycle and in this case the
supersymmetric mass is sourced specifially by the flux G123̄.

One also finds the gauge vector kinetic action

SD7-vector
kin = −τD7σ

2
s

4

∫
X1,3

d4x
√
−det ğ4

∫
Σ4

d4y
√

det ğΣ4 [e−4A + c] ğµρğνσ FµνFρσ,

with gaugino masses sourced by (0, 3)-fluxes.

In order to switch to the 4-dimensional Einstein frame defined in eq. (2.1), which is
necessary to single out the leading order Kähler modulus couplings, one can make the
identifications

ğµν = e2Ω γ3/2 gµν , ğmn = gmn.

Notice that one also needs to transform the Pauli matrix 4-vector as σ̆µ = e−Ω γ−3/4 σµ and
to rescale the spinors as ψ̆ = e−Ω/2γ−3/8ψ̃ (for similar calculations, see e.g. refs. [108, 201]).

It is also convenient to renormalise the fields in such a way as to remove the γ-factors,
which turns out to be very helpful in order to obtain 4-dimensional quantities expressed in
the appropriate (string coupling, volume and/or warp factor suppressed) Planck units. So
for the D3- and anti-D3-branes one has

ϕa = γ3/4φa, ψa = γ3/4ψ̃a,

while for D7-branes one has
σ3 = γ3/4π3.

Further couplings that arise from the redefinition of the volume modulus are given in
the main text (see eq. (4.12)). A complete analysis including the compensator field (see
eq. (A.2) is beyond the scope of this paper but for progresses in that direction see ref. [130],
where it is shown that cancellations occur such that the D3-brane kinetic term is unaffected.
Worldvolume fluxes are also not considered.
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B Soft terms for linear and non-linear supersymmetry

This section overviews the structure of the N4 = 1 low-energy effective theories of type IIB
compactifications with hidden-sector supersymmetry breaking: first it reviews the well-
known results for standard multiplets, then it discusses the modifications that occur in the
presence of constrained superfields.

B.1 Classification of superfields in IIB low-energy supergravity

A convenient way to study the low-energy effective N4 = 1 theory of type IIB Calabi-Yau
orientifold compactifications starts from observing that the degrees of freedom of the model
are divided in three groups.

• Chiral superfields φM that are gauge-neutral and may acquire a non-zero expectation
value and/or a non-zero F-term. These constitute the hidden sector responsible for
the breaking of supersymmetry and typically correspond to the closed-string moduli
but may also include open-string fields.

• Chiral superfields ϕi that, in order to preserve the gauge symmetries, necessarily
have vanishing vacuum expectation values and F-terms, meaning they do not directly
break supersymmetry either. These are typically open-string degrees of freedom and
constitute the matter sector.

• Vector multiplets WA which come from both the closed- and the open-string sectors
and provide both hidden and observable gauge sectors.

In the main text, the breaking of supersymmetry is described as an F-term breaking, so the
vector superfields play quite a marginal role. Also, the terms in the action with a number n
of ϕi-fields correspond to order-n couplings as these have zero vacuum expectation values,
which motivates the expansion of their theory around the vacuum defined by the fields φM .

From the expansion of the F-term potential, one can compute the couplings of the
theory for all the chiral multiplets in the theory. To start, it is convenient to express the
total Kähler potential K and the total superpotential W of the theory in the form

K = K̂(φ, φ̄) + Zij̄(φ, φ̄)ϕiϕ̄j̄ + 1
2
(
Hij(φ, φ̄)ϕiϕj + c.c.

)
, (B.1a)

W = Ŵ (φ) + 1
2 µ̃ij(φ)ϕiϕj + 1

3 Ỹijk(φ)ϕiϕjϕk, (B.1b)

along with the gauge kinetic functions

fAB = fAB(φ), (B.2)

where the Kähler potential K̂ and the superpotential Ŵ describe the pure supersymmetry-
breaking hidden sector, while the gauge kinetic functions fAB and the expansion parameters
Zij̄ , Hij , µ̃ij and Ỹijk describe their couplings to the fluctuations ϕi. The gauge kinetic
functions are always assumed to be block-diagonal.
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Then, from an analysis of the general N4 = 1 supergravity action [202] for the the-
ory (B.1a), (B.1b) and (B.2), one finds the standard low-energy effective component action
for the supersymmetry-breaking hidden sector φM and just a few relevant couplings in-
volving the matter sector ϕi. In detail, denoting all the chiral multiplets of the theory with
the indices I = M, i, one can simply insert the potentials in eqs. (B.1a), (B.1b) into the
F-term scalar potential

VF = KIJ̄F
I F̄ J − 3κ2

4 e
κ2

4KWW̄,

where the F-terms are fixed by their algebraic field equations to be F I = eκ
2
4K/2KIJ̄∇J̄W̄ ,

with ∇IW = ∂IW + (κ2
4∂IK)W . Fermionic interactions can be discussed in a similar way,

and a similar analysis applies for the gauge sectors in eq. (B.2). A spontaneous breaking of
supersymmetry taking place in the hidden sector is also transmitted to the matter sector
with the emergence of mass splittings and certain softly non-supersymmetric couplings.

B.2 Theories with linearly realised supersymmetry

If all the fields realise supersymmetry linearly, then all the degrees of freedom are en-
coded within standard chiral and vector superfields and the expansions are lengthy but
straightforward. This subsection summarises the results of refs. [108, 203, 204].

• All the hatted quantities represent the pure φM -field terms generated by the Kähler
and superpotential K̂ and Ŵ , namely the F-term scalar potential

V̂F = eκ
2
4K̂
(
K̂MN̄∇̂MŴ ˆ̄∇N̄

ˆ̄W − 3κ2
4 Ŵ

ˆ̄W
)
,

with the Kähler-covariant derivative ∇̂MŴ = ∂MŴ+(κ2
4∂MK̂)Ŵ , the auxilary fields

F̂M = eκ
2
4K̂/2 K̂MN̄ ˆ̄∇N̄

ˆ̄W

and the gravitino mass
m̂3/2 = eκ

2
4K̂/2κ2

4Ŵ .

As explained above, the pure supersymmetry-breaking hidden-sector effective theory
is the same independently of the matter sector. In particular, in the absence of
cancellations, the F-term scalar potential V̂F sets the supersymmetry-breaking scale
at the order of magnitude mSUSY ∼ [K̂MN̄ F̂

M ˆ̄FN ]1/4 ∼ [m̂3/2mP ]1/2.

• As far as the bosonic interactions are concerned, one can see that the theory generates
a low-energy theory described by the Lagrangian

Lϕ-bosons = −Zij̄ ∂µϕi∂µϕ̄j̄ − Vsusy − Vsoft,

where Vsusy and Vsoft are the ϕi-sector supersymmetric and soft supersymmetry-
breaking potentials, respectively, given by

Vsusy = 1
2 D

2 + Zij̄ ∂iWsusy∂j̄W̄susy, (B.3a)

Vsoft = m2
ij̄, soft ϕ

iϕ̄j̄ +
(1

2 Bij ϕ
iϕj + 1

3 Aijk ϕ
iϕjϕk + c.c.

)
. (B.3b)
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In detail, one can conveniently define the effective superpotential as

Wsusy = 1
2 µij ϕ

iϕj + 1
3 Yijk ϕ

iϕjϕk,

where the effective supersymmetric couplings read

µij = eκ
2
4K̂/2 µ̃ij + m̂3/2Hij − ˆ̄F N̄∂N̄Hij , (B.4a)

Yijk = eK̂/2 Ỹijk. (B.4b)

In particular this generates the supersymmetric masses

m2
ij̄ = Zkl̄ µikµ̄j̄ l̄ (B.5)

as well as supersymmetric trilinear and supersymmetric quartic couplings. Another
supersymmetric term is the D-term potential determined by

D = −g Zij̄ ϕiϕ̄j̄ ,

with the gauge coupling being

g−2 = 1
2 (f + f̄). (B.6)

Second, one finds the soft supersymmetry-breaking terms

m2
ij̄, soft = (m̂3/2 ˆ̄m3/2 + κ2

4V̂F )Zij̄ − F̂M
ˆ̄F N̄ RMN̄ij̄ , (B.7a)

Bij = (2 m̂3/2 ˆ̄m3/2 + κ2
4V̂F )Hij − ˆ̄m3/2

ˆ̄F M̄ ∂M̄Hij + m̂3/2 F̂
M∇̂MHij

−F̂M ˆ̄F N̄ ∇̂M∂N̄Hij − eκ
2
4K̂/2 µ̃ij ˆ̄m3/2 + F̂M∇̂M (eκ2

4K̂/2µ̃ij),

(B.7b)

Aijk = F̂M∇̂MYijk, (B.7c)

where, given the Levi-Civita connection of the Kähler metric Zij̄ , i.e. ΓjMi=Zjk̄∂MZik̄,
the Riemann tensor reads

RMN̄ij̄ = ∂M∂N̄Zij̄ − ΓkMi Zkl̄ Γ̄
l̄
N̄ j̄
,

while the Kähler-covariant derivatives are

∇̂M
(
eκ

2
4K̂/2µ̃ij

)
= ∂M

(
eκ

2
4K̂/2µ̃ij

)
+ 1

2 κ
2
4K̂M eκ

2
4K̂/2µ̃ij − 2 ΓkMi e

κ2
4K̂/2µ̃kj ,

∇̂MYijk = ∂MYijk + 1
2 κ

2
4K̂M Yijk − 3 ΓlMi Yljk,

as well as ∇̂MHij = ∂MHij − 2 ΓkMiHkj and ∇̂MHij,N̄ = ∂MHij,N̄ − 2 ΓkMiHkj,N̄ .
Unless there are further suppressions due to a cancellation, the order of magni-
tude of the canonically normalised matter soft-breaking terms is set by the scale
msoft ∼ m2

SUSY/mP ∼ m̂3/2.
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• As far as fermionic interactions are concerned, the relevant terms are the ψi-field
fermionic massesmf

ij and Yukawa couplings yijk from the supersymmetric Lagrangian

Lψ-fermions = −Zij̄ ψ̄j̄ σ̄µ∂µψi −
(1

2 m
f
ij ψ

iψk + 1
3 yijk ϕ

iψjψk + c.c.
)
,

which turn out to be

mf
ij = µij , (B.8a)

yijk = Yijk. (B.8b)

Also, the supersymmetry-breaking gaugino masses read

m1/2 = F̂M∂M ln(f + f̄). (B.9)

B.3 Theories with linearly and non-linearly realised supersymmetry

If the theory also contains fields that realise supersymmetry non-linearly, then it is nec-
essary to describe such degrees of freedom using constrained supermultiplets. This is the
case for instance of type IIB orientifold models with anti-D3-branes.

Non-linearly realised supersymmetry comes in by means of a nilpotent chiral super-
field X, whose scalar is constrained to be φX = ψXψX/2FX by the nilpotency condi-
tion X2 = 0: such a multiplet has a non-zero F-term and therefore must be included in
the supersymmetry-breaking hidden sector. Other fields may realise supersymmetry non-
linearly due to similar constraints with similar solutions, but usually they do not have
non-zero F-terms and thus are not in this sector. Anyway, for all such constrained multi-
plets, there are two distinct scenarios.

• If the constraint does not fix the F-term of the multiplet, the usual supergravity
expansions of subsection B.2 still hold and the constraint only fixes either its bosonic
or fermionic dynamical degrees of freedom in the final action. In the unitary gauge
the fixed components vanish.

• If the constraint also fixes the F-term, then the expansions of subsection B.2 do not
hold anymore since they are derived by expanding the F-term too. If the fields ϕi

correspond to chiral multiplets without independent spinor and auxiliary fields, then
the calculation proceeds as follows:

- in principle, the full F-term potential is VF = KIJ̄F
I F̄ J − 3κ2

4 e
κ2

4KWW̄ , with
the auxiliary fields given by the well-known solutions to their algebraic field
equations, F̄ J = κ2

4e
K/2KIJ̄DIW ;

- however, the constraints on the ϕi auxiliary fields can be implemented as extra
Lagrange multipliers which make them purely fermionic terms, so that the actual
F-term potential is just VF = KMN̄F

M F̄N − 3κ2
4 e

κ2
4KWW̄ .
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By performing an expansion as in equations (B.1a), (B.1b), one can show that the
scalar potential for the fields ϕi is of the form

V = m2
ij̄ϕ

iϕ̄j̄+
(
aijk̄ϕ

iϕjϕ̄k+c.c.
)

+m2
ij̄, softϕ

iϕ̄j̄+
(1

2Bijϕ
iϕj+ 1

3Aijkϕ
iϕjϕk+c.c.

)
.

Obviously there is no distinction between supersymmetric and supersymmetry-
breaking terms, but the notation is meant to emphasise the differences with respect
to the standard case. In particular, the two mass contributions read

m2
ij̄ = −Z lk̄µilF̂MH̄j̄k̄,M − Z

lk̄ ˆ̄FNHil,N̄ µ̄j̄k̄, (B.10a)

m2
ij̄, soft = κ2

4V̂FZij̄ − F̂
M ˆ̄FN

[
Zij̄,MN̄ − 2 ΓkMi Zkl̄ Γ̄

l̄
N̄ j̄

]
. (B.10b)

Instead the bilinear B-coupling reads

Bij = κ2
4V̂FHij + F̂M∇̂M (eκ2

4K̂/2µ̃ij)− ˆ̄m3/2
ˆ̄F N̄Hij,N̄ + m̂3/2F̂

M∇̂MHij

−F̂M ˆ̄F N̄
(
Hij,MN̄ − 4 ΓlMiHlj,N̄

)
− 3 ˆ̄m3/2µ̃ij .

(B.11)

As for the trilinear terms, one has both the would-be supersymmetric and the would-
be supersymmetry-breaking terms, namely

aijk̄ = −Zpl̄YpijF̂ M̄H̄l̄k̄,M , (B.12a)

Aijk = F̂M∇̂MYijk − 3 ˆ̄m3/2Yijk. (B.12b)

The effective couplings µij and Yijk and the covariant derivatives are defined as
above. Noticeably, although the structure of all the coupling terms is different, one
can observe that the theory is still invariant under the usual Kähler transformations
as all the terms are individually covariant. The case where the scalar and the F-term
components of a multiplet are constrained may be discussed in a similar fashion. It
is not encountered in the main text and thus left for future study.

C Geometry of warped 4-cycles

This appendix contains a few observations about the geometry of a 4-cycle wrapped by a
D7-brane in the two setups discussed in the main text.

C.1 Products of 2- and 4-cycles

In the main text, whenever it is necessary to consider the cycles wrapped by the D7-branes
explicitly, as in e.g. subsubsections 3.1.2 and 3.1.3, they are assumed to be (conformally) a
4-dimensional orbifold O4 = T4/Z2, and the 6-dimensional space is locally assumed to be
(conformally) the product of the orbifold O4 and the 2-torus T2.

To be concrete, following refs. [111, 111, 114], one considers the 4-dimensional orbifold
O4 spanned by the coordinates (z1, z2) and the 2-torus T2 spanned by z3, with wa = za/ls
the dimensionless coordinates. Then:
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• on the 4-cycle O4 = T4/Z2, the untwisted (2, 0)- and (1, 1)-forms are

η = dw1 ∧ dw2,

and
ζ1 = dw1 ∧ dw̄2, ζ2 = dw̄1 ∧ dw2,

ζ3 = dw1 ∧ dw̄1, ζ4 = dw2 ∧ dw̄2;

• the untwisted harmonic 3-forms on the 6-dimensional space (T4/Z2) × T2 are then
the holomorphic 3-form

Ω = η ∧ dw3 = dw1 ∧ dw2 ∧ dw3,

and the (2, 1)-forms

χ1 = dw1 ∧ dw̄2 ∧ dw3

[−i(u2 − ū2)] , χ2 = dw̄1 ∧ dw2 ∧ dw3

[−i(u1 − ū1)] , χϑ = dw1 ∧ dw2 ∧ dw̄3

[−i(u3 − ū3)] ,

as well as (ignoring the off-diagonal complex structure moduli)

χ3 = dw1 ∧ dw̄1 ∧ dw3, χ4 = dw2 ∧ dw̄2 ∧ dw3,

where the complex structure moduli ua have been introduced into the relevant ele-
ments of the basis, with the definition dza = dya + uadya+3, for a = 1, 2, 3.

Also, there are extra moduli corresponding to blown-up singularities which are ignored.
Moreover, one can show that the unwarped complex structure Kähler potential reads

K̂(0)
cs = −ln

[
−i
∫
Y6

Ω ∧ Ω̄
]

= −ln
(
[−i(u1 − ū1)][−i(u2 − ū2)][−i(u3 − ū3)]

)
− lnV(0).

In warped scenarios, if the identification of the bulk complex structure moduli still holds,
one finds analogus results with the substitution of the unwarped volume with Vw.

C.2 Complex structure Kähler metrics

It is convenient to collectively label the basis of the harmonic (1, 1)-forms on the orbifold
O4 = Σ4 as ζi, with i = 1, . . . , 4, and the basis of harmonic (2, 1)-forms on the 6-dimensional
product O4 × T2 as χα, with α = 1, . . . , 4, ϑ. Further there are the harmonic (2, 0)-form η

and the harmonic (3, 0)-form Ω. The explicit complex structure moduli factors [−i(ua−ūa)]
will be ignored for brevity. It is then possible to observe the following equivalences.

• If the wrapped 4-cycle is extended in the bulk and the warp factor does not vary over
the transverse space, then one can observe the identities

ωw =
∫
Y6
e−4AΩ ∧ Ω̄ = VT2

(0)

∫
Σ4
e−4Aη ∧ η̄

and ∫
Y6
e−4Aχα ∧ χ̄β = VT2

(0)

[
δiαδ

j
β

∫
Σ4
e−4Aζi ∧ ζ̄j − δϑαδϑβ

∫
Σ4
e−4Aη ∧ η̄

]
.
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This implies that the complex structure moduli metric can be written as

K̂αβ̄ = − 1
ωw

∫
Y6
e−4Aχα ∧ χ̄β = δiαδ

j
β K̂ij̄ + δϑαδ

ϑ̄
β̄
,

with the definitions

K̂ij̄ = − 1
ωΣ4
w

∫
Σ4
e−4Aζi ∧ ζ̄j , ωΣ4

w =
∫

Σ4
e−4Aη ∧ η̄.

• In a setup with the wrapped 4-cycle being localised at the tip of a warped throat,
i.e. with the warp factor varying only along the 2-torus, the analysis of the complex
structure moduli is also easy. Then, one can observe the identities

ωw =
∫
Y6
e−4AΩ ∧ Ω̄ = VT2

w

∫
Σ4
η ∧ η̄

and ∫
Y6
e−4Aχα ∧ χ̄β = VT2

w

[
δiαδ

j
β

∫
Σ4
ζi ∧ ζ̄j − δϑαδϑβ

∫
Σ4
η ∧ η̄

]
so that the warped version of the complex structure moduli metric is the same as the
unwarped one, i.e.

K̂αβ̄ = − 1
ωw

∫
Y6
e−4Aχα ∧ χ̄β = δiαδ

j
β K̂

(0)
ij̄

+ δϑαδ
ϑ̄
β̄
,

with the definitions

K̂
(0)
ij̄

= − 1
ωΣ4

(0)

∫
Σ4
ζi ∧ ζ̄j , ωΣ4

(0) =
∫

Σ4
η ∧ η̄.

The explicit complex structure moduli factors may be inserted by following straightfor-
wardly the definitions above. In particular, one finds

ωw =
∫
Y6
e−4AΩ ∧ Ω̄ = [−i(u3 − ū3)]VT2

(0)

∫
Σ4
e−4Aη ∧ η̄,

K̂ϑϑ̄ = − 1
ωw

∫
Y6
e−4Aχϑ ∧ χ̄ϑ = 1

[−i(u3 − ū3)]2 ,

as follows directly from the definition χϑ = η ∧ dw̄3/[−i(u3 − ū3)], with the identification∫
T2 dw3 ∧ dw̄3 = −i[−i(u3 − ū)3]VT2

(0) . As an example, given the expansion

e4AG3 = − 1
ωw

K̂ϑϑ̄χϑ

∫
Y6
G3 ∧ χ̄ϑ,

defining the 2-form g2 via the identification G3 = g2 ∧ dw̄3, one finds the same expansion
that is used in the main text, i.e.

e4Ag2 = 1
ωΣ4
w

η

∫
Σ4
g2 ∧ η̄.
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production in any medium, provided the original author(s) and source are credited.

References

[1] S.P. Martin, A Supersymmetry primer, Adv. Ser. Direct. High Energy Phys. 21 (2010) 1
[hep-ph/9709356] [INSPIRE].

[2] F. Quevedo, S. Krippendorf and O. Schlotterer, Cambridge Lectures on Supersymmetry and
Extra Dimensions, arXiv:1011.1491 [INSPIRE].

[3] Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018)
030001 [INSPIRE].

[4] S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string
compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].

[5] M. Graña, Flux compactifications in string theory: A Comprehensive review, Phys. Rept.
423 (2006) 91 [hep-th/0509003] [INSPIRE].

[6] S. Ferrara, R. Kallosh and A. Linde, Cosmology with Nilpotent Superfields, JHEP 10 (2014)
143 [arXiv:1408.4096] [INSPIRE].

[7] R. Kallosh and A. Linde, Inflation and Uplifting with Nilpotent Superfields, JCAP 01
(2015) 025 [arXiv:1408.5950] [INSPIRE].

[8] R. Kallosh and T. Wrase, Emergence of Spontaneously Broken Supersymmetry on an
Anti-D3-Brane in KKLT dS Vacua, JHEP 12 (2014) 117 [arXiv:1411.1121] [INSPIRE].

[9] E.A. Bergshoeff, K. Dasgupta, R. Kallosh, A. Van Proeyen and T. Wrase, D3 and dS,
JHEP 05 (2015) 058 [arXiv:1502.07627] [INSPIRE].

[10] R. Kallosh, F. Quevedo and A.M. Uranga, String Theory Realizations of the Nilpotent
Goldstino, JHEP 12 (2015) 039 [arXiv:1507.07556] [INSPIRE].

[11] M. Bertolini, D. Musso, I. Papadimitriou and H. Raj, A goldstino at the bottom of the
cascade, JHEP 11 (2015) 184 [arXiv:1509.03594] [INSPIRE].

[12] I. Bandos, L. Martucci, D. Sorokin and M. Tonin, Brane induced supersymmetry breaking
and de Sitter supergravity, JHEP 02 (2016) 080 [arXiv:1511.03024] [INSPIRE].

[13] L. Aparicio, F. Quevedo and R. Valandro, Moduli Stabilisation with Nilpotent Goldstino:
Vacuum Structure and SUSY Breaking, JHEP 03 (2016) 036 [arXiv:1511.08105]
[INSPIRE].

[14] I. García-Etxebarria, F. Quevedo and R. Valandro, Global String Embeddings for the
Nilpotent Goldstino, JHEP 02 (2016) 148 [arXiv:1512.06926] [INSPIRE].

[15] K. Dasgupta, M. Emelin and E. McDonough, Fermions on the antibrane: Higher order
interactions and spontaneously broken supersymmetry, Phys. Rev. D 95 (2017) 026003
[arXiv:1601.03409] [INSPIRE].

[16] B. Vercnocke and T. Wrase, Constrained superfields from an anti-D3-brane in KKLT,
JHEP 08 (2016) 132 [arXiv:1605.03961] [INSPIRE].

[17] R. Kallosh, B. Vercnocke and T. Wrase, String Theory Origin of Constrained Multiplets,
JHEP 09 (2016) 063 [arXiv:1606.09245] [INSPIRE].

– 92 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1142/9789812839657_0001
https://arxiv.org/abs/hep-ph/9709356
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9709356
https://arxiv.org/abs/1011.1491
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1011.1491
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD98%2C030001%22
https://doi.org/10.1103/PhysRevD.66.106006
https://arxiv.org/abs/hep-th/0105097
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0105097
https://doi.org/10.1016/j.physrep.2005.10.008
https://doi.org/10.1016/j.physrep.2005.10.008
https://arxiv.org/abs/hep-th/0509003
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0509003
https://doi.org/10.1007/JHEP10(2014)143
https://doi.org/10.1007/JHEP10(2014)143
https://arxiv.org/abs/1408.4096
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1408.4096
https://doi.org/10.1088/1475-7516/2015/01/025
https://doi.org/10.1088/1475-7516/2015/01/025
https://arxiv.org/abs/1408.5950
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1408.5950
https://doi.org/10.1007/JHEP12(2014)117
https://arxiv.org/abs/1411.1121
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1411.1121
https://doi.org/10.1007/JHEP05(2015)058
https://arxiv.org/abs/1502.07627
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1502.07627
https://doi.org/10.1007/JHEP12(2015)039
https://arxiv.org/abs/1507.07556
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.07556
https://doi.org/10.1007/JHEP11(2015)184
https://arxiv.org/abs/1509.03594
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1509.03594
https://doi.org/10.1007/JHEP02(2016)080
https://arxiv.org/abs/1511.03024
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1511.03024
https://doi.org/10.1007/JHEP03(2016)036
https://arxiv.org/abs/1511.08105
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1511.08105
https://doi.org/10.1007/JHEP02(2016)148
https://arxiv.org/abs/1512.06926
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.06926
https://doi.org/10.1103/PhysRevD.95.026003
https://arxiv.org/abs/1601.03409
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1601.03409
https://doi.org/10.1007/JHEP08(2016)132
https://arxiv.org/abs/1605.03961
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.03961
https://doi.org/10.1007/JHEP09(2016)063
https://arxiv.org/abs/1606.09245
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1606.09245


J
H
E
P
1
2
(
2
0
2
0
)
1
7
4

[18] I. Bandos, M. Heller, S.M. Kuzenko, L. Martucci and D. Sorokin, The Goldstino brane, the
constrained superfields and matter in N = 1 supergravity, JHEP 11 (2016) 109
[arXiv:1608.05908] [INSPIRE].

[19] L. Aalsma, J.P. van der Schaar and B. Vercnocke, Constrained superfields on metastable
anti-D3-branes, JHEP 05 (2017) 089 [arXiv:1703.05771] [INSPIRE].

[20] R. Kallosh, A. Linde, D. Roest and Y. Yamada, D3 induced geometric inflation, JHEP 07
(2017) 057 [arXiv:1705.09247] [INSPIRE].

[21] M.P. Garcia del Moral, S. Parameswaran, N. Quiroz and I. Zavala, Anti-D3 branes and
moduli in non-linear supergravity, JHEP 10 (2017) 185 [arXiv:1707.07059] [INSPIRE].

[22] N. Cribiori, F. Farakos, M. Tournoy and A. van Proeyen, Fayet-Iliopoulos terms in
supergravity without gauged R-symmetry, JHEP 04 (2018) 032 [arXiv:1712.08601]
[INSPIRE].

[23] N. Kitazawa, Brane SUSY Breaking and the Gravitino Mass, JHEP 04 (2018) 081
[arXiv:1802.03088] [INSPIRE].

[24] C. Krishnan, H. Raj and P.N. Bala Subramanian, On the KKLT Goldstino, JHEP 06
(2018) 092 [arXiv:1803.04905] [INSPIRE].

[25] L. Aalsma, M. Tournoy, J.P. Van Der Schaar and B. Vercnocke, Supersymmetric embedding
of antibrane polarization, Phys. Rev. D 98 (2018) 086019 [arXiv:1807.03303] [INSPIRE].

[26] I. Bena, E. Dudas, M. Graña and S. Lüst, Uplifting Runaways, Fortsch. Phys. 67 (2019)
1800100 [arXiv:1809.06861] [INSPIRE].

[27] N. Cribiori, F. Farakos and M. Tournoy, Supersymmetric Born-Infeld actions and new
Fayet-Iliopoulos terms, JHEP 03 (2019) 050 [arXiv:1811.08424] [INSPIRE].

[28] R. Kallosh, A. Linde, E. McDonough and M. Scalisi, dS Vacua and the Swampland, JHEP
03 (2019) 134 [arXiv:1901.02022] [INSPIRE].

[29] N. Cribiori, C. Roupec, T. Wrase and Y. Yamada, Supersymmetric anti-D3-brane action in
the Kachru-Kallosh-Linde-Trivedi setup, Phys. Rev. D 100 (2019) 066001
[arXiv:1906.07727] [INSPIRE].

[30] N. Cribiori, R. Kallosh, C. Roupec and T. Wrase, Uplifting Anti-D6-brane, JHEP 12 (2019)
171 [arXiv:1909.08629] [INSPIRE].

[31] R. Kallosh and A. Linde, Mass Production of Type IIA dS Vacua, JHEP 01 (2020) 169
[arXiv:1910.08217] [INSPIRE].

[32] N. Cribiori, R. Kallosh, A. Linde and C. Roupec, Mass Production of IIA and IIB dS
Vacua, JHEP 02 (2020) 063 [arXiv:1912.00027] [INSPIRE].

[33] L. Randall, The Boundaries of KKLT, Fortsch. Phys. 68 (2020) 1900105
[arXiv:1912.06693] [INSPIRE].

[34] E. Dudas and S. Lüst, An update on moduli stabilization with antibrane uplift,
arXiv:1912.09948 [INSPIRE].

[35] N. Cribiori, C. Roupec, M. Tournoy, A. Van Proeyen and T. Wrase, Non-supersymmetric
branes, JHEP 07 (2020) 189 [arXiv:2004.13110] [INSPIRE].

[36] I. Antoniadis, E. Dudas and A. Sagnotti, Brane supersymmetry breaking, Phys. Lett. B 464
(1999) 38 [hep-th/9908023] [INSPIRE].

– 93 –

https://doi.org/10.1007/JHEP11(2016)109
https://arxiv.org/abs/1608.05908
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.05908
https://doi.org/10.1007/JHEP05(2017)089
https://arxiv.org/abs/1703.05771
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.05771
https://doi.org/10.1007/JHEP07(2017)057
https://doi.org/10.1007/JHEP07(2017)057
https://arxiv.org/abs/1705.09247
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.09247
https://doi.org/10.1007/JHEP10(2017)185
https://arxiv.org/abs/1707.07059
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.07059
https://doi.org/10.1007/JHEP04(2018)032
https://arxiv.org/abs/1712.08601
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.08601
https://doi.org/10.1007/JHEP04(2018)081
https://arxiv.org/abs/1802.03088
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1802.03088
https://doi.org/10.1007/JHEP06(2018)092
https://doi.org/10.1007/JHEP06(2018)092
https://arxiv.org/abs/1803.04905
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.04905
https://doi.org/10.1103/PhysRevD.98.086019
https://arxiv.org/abs/1807.03303
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.03303
https://doi.org/10.1002/prop.201800100
https://doi.org/10.1002/prop.201800100
https://arxiv.org/abs/1809.06861
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.06861
https://doi.org/10.1007/JHEP03(2019)050
https://arxiv.org/abs/1811.08424
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.08424
https://doi.org/10.1007/JHEP03(2019)134
https://doi.org/10.1007/JHEP03(2019)134
https://arxiv.org/abs/1901.02022
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.02022
https://doi.org/10.1103/PhysRevD.100.066001
https://arxiv.org/abs/1906.07727
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.07727
https://doi.org/10.1007/JHEP12(2019)171
https://doi.org/10.1007/JHEP12(2019)171
https://arxiv.org/abs/1909.08629
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.08629
https://doi.org/10.1007/JHEP01(2020)169
https://arxiv.org/abs/1910.08217
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.08217
https://doi.org/10.1007/JHEP02(2020)063
https://arxiv.org/abs/1912.00027
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.00027
https://doi.org/10.1002/prop.201900105
https://arxiv.org/abs/1912.06693
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.06693
https://arxiv.org/abs/1912.09948
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.09948
https://doi.org/10.1007/JHEP07(2020)189
https://arxiv.org/abs/2004.13110
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.13110
https://doi.org/10.1016/S0370-2693(99)01023-0
https://doi.org/10.1016/S0370-2693(99)01023-0
https://arxiv.org/abs/hep-th/9908023
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9908023


J
H
E
P
1
2
(
2
0
2
0
)
1
7
4

[37] C. Angelantonj, Comments on open string orbifolds with a nonvanishing B(ab), Nucl. Phys.
B 566 (2000) 126 [hep-th/9908064] [INSPIRE].

[38] G. Aldazabal and A.M. Uranga, Tachyon free nonsupersymmetric type IIB orientifolds via
brane-antibrane systems, JHEP 10 (1999) 024 [hep-th/9908072] [INSPIRE].

[39] C. Angelantonj, I. Antoniadis, G. D’Appollonio, E. Dudas and A. Sagnotti, Type I vacua
with brane supersymmetry breaking, Nucl. Phys. B 572 (2000) 36 [hep-th/9911081]
[INSPIRE].

[40] A.M. Uranga, Comments on nonsupersymmetric orientifolds at strong coupling, JHEP 02
(2000) 041 [hep-th/9912145] [INSPIRE].

[41] E. Dudas and J. Mourad, Consistent gravitino couplings in nonsupersymmetric strings,
Phys. Lett. B 514 (2001) 173 [hep-th/0012071] [INSPIRE].

[42] G. Pradisi and F. Riccioni, Geometric couplings and brane supersymmetry breaking, Nucl.
Phys. B 615 (2001) 33 [hep-th/0107090] [INSPIRE].

[43] S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys.
Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].

[44] J.P. Conlon, F. Quevedo and K. Suruliz, Large-volume flux compactifications: Moduli
spectrum and D3/D7 soft supersymmetry breaking, JHEP 08 (2005) 007 [hep-th/0505076]
[INSPIRE].

[45] S. Kachru, J. Pearson and H.L. Verlinde, Brane/flux annihilation and the string dual of a
nonsupersymmetric field theory, JHEP 06 (2002) 021 [hep-th/0112197] [INSPIRE].

[46] A.R. Frey, M. Lippert and B. Williams, The Fall of stringy de Sitter, Phys. Rev. D 68
(2003) 046008 [hep-th/0305018] [INSPIRE].

[47] C.M. Brown and O. DeWolfe, Brane/flux annihilation transitions and nonperturbative
moduli stabilization, JHEP 05 (2009) 018 [arXiv:0901.4401] [INSPIRE].

[48] I. Bena, M. Graña and N. Halmagyi, On the Existence of Meta-stable Vacua in
Klebanov-Strassler, JHEP 09 (2010) 087 [arXiv:0912.3519] [INSPIRE].

[49] I. Bena, G. Giecold, M. Graña, N. Halmagyi and F. Orsi, Supersymmetric Consistent
Truncations of IIB on T 1,1, JHEP 04 (2011) 021 [arXiv:1008.0983] [INSPIRE].

[50] I. Bena, G. Giecold, M. Graña and N. Halmagyi, On The Inflaton Potential From
Antibranes in Warped Throats, JHEP 07 (2012) 140 [arXiv:1011.2626] [INSPIRE].

[51] I. Bena, G. Giecold, M. Graña, N. Halmagyi and S. Massai, On Metastable Vacua and the
Warped Deformed Conifold: Analytic Results, Class. Quant. Grav. 30 (2013) 015003
[arXiv:1102.2403] [INSPIRE].

[52] I. Bena, G. Giecold, M. Graña, N. Halmagyi and S. Massai, The backreaction of anti-D3
branes on the Klebanov-Strassler geometry, JHEP 06 (2013) 060 [arXiv:1106.6165]
[INSPIRE].

[53] I. Bena, M. Graña, S. Kuperstein and S. Massai, Anti-D3 Branes: Singular to the bitter
end, Phys. Rev. D 87 (2013) 106010 [arXiv:1206.6369] [INSPIRE].

[54] I. Bena, A. Buchel and O.J.C. Dias, Horizons cannot save the Landscape, Phys. Rev. D 87
(2013) 063012 [arXiv:1212.5162] [INSPIRE].

[55] I. Bena, D. Junghans, S. Kuperstein, T. Van Riet, T. Wrase and M. Zagermann, Persistent
anti-brane singularities, JHEP 10 (2012) 078 [arXiv:1205.1798] [INSPIRE].

– 94 –

https://doi.org/10.1016/S0550-3213(99)00662-8
https://doi.org/10.1016/S0550-3213(99)00662-8
https://arxiv.org/abs/hep-th/9908064
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9908064
https://doi.org/10.1088/1126-6708/1999/10/024
https://arxiv.org/abs/hep-th/9908072
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9908072
https://doi.org/10.1016/S0550-3213(00)00052-3
https://arxiv.org/abs/hep-th/9911081
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9911081
https://doi.org/10.1088/1126-6708/2000/02/041
https://doi.org/10.1088/1126-6708/2000/02/041
https://arxiv.org/abs/hep-th/9912145
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9912145
https://doi.org/10.1016/S0370-2693(01)00777-8
https://arxiv.org/abs/hep-th/0012071
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0012071
https://doi.org/10.1016/S0550-3213(01)00441-2
https://doi.org/10.1016/S0550-3213(01)00441-2
https://arxiv.org/abs/hep-th/0107090
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0107090
https://doi.org/10.1103/PhysRevD.68.046005
https://doi.org/10.1103/PhysRevD.68.046005
https://arxiv.org/abs/hep-th/0301240
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0301240
https://doi.org/10.1088/1126-6708/2005/08/007
https://arxiv.org/abs/hep-th/0505076
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0505076
https://doi.org/10.1088/1126-6708/2002/06/021
https://arxiv.org/abs/hep-th/0112197
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0112197
https://doi.org/10.1103/PhysRevD.68.046008
https://doi.org/10.1103/PhysRevD.68.046008
https://arxiv.org/abs/hep-th/0305018
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0305018
https://doi.org/10.1088/1126-6708/2009/05/018
https://arxiv.org/abs/0901.4401
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0901.4401
https://doi.org/10.1007/JHEP09(2010)087
https://arxiv.org/abs/0912.3519
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0912.3519
https://doi.org/10.1007/JHEP04(2011)021
https://arxiv.org/abs/1008.0983
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1008.0983
https://doi.org/10.1007/JHEP07(2012)140
https://arxiv.org/abs/1011.2626
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1011.2626
https://doi.org/10.1088/0264-9381/30/1/015003
https://arxiv.org/abs/1102.2403
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1102.2403
https://doi.org/10.1007/JHEP06(2013)060
https://arxiv.org/abs/1106.6165
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1106.6165
https://doi.org/10.1103/PhysRevD.87.106010
https://arxiv.org/abs/1206.6369
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1206.6369
https://doi.org/10.1103/PhysRevD.87.063012
https://doi.org/10.1103/PhysRevD.87.063012
https://arxiv.org/abs/1212.5162
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1212.5162
https://doi.org/10.1007/JHEP10(2012)078
https://arxiv.org/abs/1205.1798
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1205.1798


J
H
E
P
1
2
(
2
0
2
0
)
1
7
4

[56] I. Bena, M. Graña, S. Kuperstein and S. Massai, Polchinski-Strassler does not uplift
Klebanov-Strassler, JHEP 09 (2013) 142 [arXiv:1212.4828] [INSPIRE].

[57] I. Bena, J. Blaback, U.H. Danielsson and T. Van Riet, Antibranes cannot become black,
Phys. Rev. D 87 (2013) 104023 [arXiv:1301.7071] [INSPIRE].

[58] U.H. Danielsson and T. Van Riet, Fatal attraction: more on decaying anti-branes, JHEP 03
(2015) 087 [arXiv:1410.8476] [INSPIRE].

[59] F.F. Gautason, B. Truijen and T. Van Riet, Smeared antibranes polarise in AdS, JHEP 07
(2015) 165 [arXiv:1502.00927] [INSPIRE].

[60] I. Bena and S. Kuperstein, Brane polarization is no cure for tachyons, JHEP 09 (2015) 112
[arXiv:1504.00656] [INSPIRE].

[61] F.F. Gautason, B. Truijen and T. Van Riet, The many faces of brane-flux annihilation,
JHEP 10 (2015) 152 [arXiv:1505.00159] [INSPIRE].

[62] D. Cohen-Maldonado, J. Diaz, T. van Riet and B. Vercnocke, Observations on fluxes near
anti-branes, JHEP 01 (2016) 126 [arXiv:1507.01022] [INSPIRE].

[63] I. Bena and G. Pasini, Instabilities of microstate geometries with antibranes, JHEP 04
(2016) 181 [arXiv:1511.01895] [INSPIRE].

[64] I. Bena, J. Blåbäck and D. Turton, Loop corrections to the antibrane potential, JHEP 07
(2016) 132 [arXiv:1602.05959] [INSPIRE].

[65] J. Moritz, A. Retolaza and A. Westphal, Toward de Sitter space from ten dimensions, Phys.
Rev. D 97 (2018) 046010 [arXiv:1707.08678] [INSPIRE].

[66] S. Sethi, Supersymmetry Breaking by Fluxes, JHEP 10 (2018) 022 [arXiv:1709.03554]
[INSPIRE].

[67] T.D. Brennan, F. Carta and C. Vafa, The String Landscape, the Swampland, and the
Missing Corner, PoS TASI2017 (2017) 015 [arXiv:1711.00864] [INSPIRE].

[68] U.H. Danielsson and T. Van Riet, What if string theory has no de Sitter vacua?, Int. J.
Mod. Phys. D 27 (2018) 1830007 [arXiv:1804.01120] [INSPIRE].

[69] J. Moritz and T. Van Riet, Racing through the swampland: de Sitter uplift vs weak gravity,
JHEP 09 (2018) 099 [arXiv:1805.00944] [INSPIRE].

[70] G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, de Sitter Space and the Swampland,
arXiv:1806.08362 [INSPIRE].

[71] S.K. Garg and C. Krishnan, Bounds on Slow Roll and the de Sitter Swampland, JHEP 11
(2019) 075 [arXiv:1807.05193] [INSPIRE].

[72] M. Cicoli, S. De Alwis, A. Maharana, F. Muia and F. Quevedo, de Sitter vs Quintessence in
String Theory, Fortsch. Phys. 67 (2019) 1800079 [arXiv:1808.08967] [INSPIRE].

[73] R. Kallosh and T. Wrase, dS Supergravity from 10d, Fortsch. Phys. 67 (2019) 1800071
[arXiv:1808.09427] [INSPIRE].

[74] R. Kallosh, A. Linde, E. McDonough and M. Scalisi, de Sitter Vacua with a Nilpotent
Superfield, Fortsch. Phys. 67 (2019) 1800068 [arXiv:1808.09428] [INSPIRE].

[75] R. Kallosh, A. Linde, E. McDonough and M. Scalisi, 4D models of de Sitter uplift, Phys.
Rev. D 99 (2019) 046006 [arXiv:1809.09018] [INSPIRE].

– 95 –

https://doi.org/10.1007/JHEP09(2013)142
https://arxiv.org/abs/1212.4828
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1212.4828
https://doi.org/10.1103/PhysRevD.87.104023
https://arxiv.org/abs/1301.7071
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1301.7071
https://doi.org/10.1007/JHEP03(2015)087
https://doi.org/10.1007/JHEP03(2015)087
https://arxiv.org/abs/1410.8476
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1410.8476
https://doi.org/10.1007/JHEP07(2015)165
https://doi.org/10.1007/JHEP07(2015)165
https://arxiv.org/abs/1502.00927
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1502.00927
https://doi.org/10.1007/JHEP09(2015)112
https://arxiv.org/abs/1504.00656
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1504.00656
https://doi.org/10.1007/JHEP10(2015)152
https://arxiv.org/abs/1505.00159
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1505.00159
https://doi.org/10.1007/JHEP01(2016)126
https://arxiv.org/abs/1507.01022
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.01022
https://doi.org/10.1007/JHEP04(2016)181
https://doi.org/10.1007/JHEP04(2016)181
https://arxiv.org/abs/1511.01895
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1511.01895
https://doi.org/10.1007/JHEP07(2016)132
https://doi.org/10.1007/JHEP07(2016)132
https://arxiv.org/abs/1602.05959
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1602.05959
https://doi.org/10.1103/PhysRevD.97.046010
https://doi.org/10.1103/PhysRevD.97.046010
https://arxiv.org/abs/1707.08678
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.08678
https://doi.org/10.1007/JHEP10(2018)022
https://arxiv.org/abs/1709.03554
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1709.03554
https://doi.org/10.22323/1.305.0015
https://arxiv.org/abs/1711.00864
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.00864
https://doi.org/10.1142/S0218271818300070
https://doi.org/10.1142/S0218271818300070
https://arxiv.org/abs/1804.01120
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.01120
https://doi.org/10.1007/JHEP09(2018)099
https://arxiv.org/abs/1805.00944
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.00944
https://arxiv.org/abs/1806.08362
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.08362
https://doi.org/10.1007/JHEP11(2019)075
https://doi.org/10.1007/JHEP11(2019)075
https://arxiv.org/abs/1807.05193
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.05193
https://doi.org/10.1002/prop.201800079
https://arxiv.org/abs/1808.08967
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.08967
https://doi.org/10.1002/prop.201800071
https://arxiv.org/abs/1808.09427
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.09427
https://doi.org/10.1002/prop.201800068
https://arxiv.org/abs/1808.09428
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.09428
https://doi.org/10.1103/PhysRevD.99.046006
https://doi.org/10.1103/PhysRevD.99.046006
https://arxiv.org/abs/1809.09018
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.09018


J
H
E
P
1
2
(
2
0
2
0
)
1
7
4

[76] F.F. Gautason, V. Van Hemelryck and T. Van Riet, The Tension between 10D Supergravity
and dS Uplifts, Fortsch. Phys. 67 (2019) 1800091 [arXiv:1810.08518] [INSPIRE].

[77] J. Armas, N. Nguyen, V. Niarchos, N.A. Obers and T. Van Riet, Meta-stable non-extremal
anti-branes, Phys. Rev. Lett. 122 (2019) 181601 [arXiv:1812.01067] [INSPIRE].

[78] I. Bena, A. Buchel and S. Lüst, Throat destabilization (for profit and for fun),
arXiv:1910.08094 [INSPIRE].

[79] Y.-C. Qiu and S.-H.H. Tye, Linking the Supersymmetric Standard Model to the
Cosmological Constant, arXiv:2006.16620 [INSPIRE].

[80] Y. Hamada, A. Hebecker, G. Shiu and P. Soler, Understanding KKLT from a 10d
perspective, JHEP 06 (2019) 019 [arXiv:1902.01410] [INSPIRE].

[81] F. Carta, J. Moritz and A. Westphal, Gaugino condensation and small uplifts in KKLT,
JHEP 08 (2019) 141 [arXiv:1902.01412] [INSPIRE].

[82] F.F. Gautason, V. Van Hemelryck, T. Van Riet and G. Venken, A 10d view on the KKLT
AdS vacuum and uplifting, JHEP 06 (2020) 074 [arXiv:1902.01415] [INSPIRE].

[83] R. Blumenhagen, D. Kläwer and L. Schlechter, Swampland Variations on a Theme by
KKLT, JHEP 05 (2019) 152 [arXiv:1902.07724] [INSPIRE].

[84] J. Blåbäck, F.F. Gautason, A. Ruipérez and T. Van Riet, Anti-brane singularities as red
herrings, JHEP 12 (2019) 125 [arXiv:1907.05295] [INSPIRE].

[85] I. Bena, M. Graña, N. Kovensky and A. Retolaza, Kähler moduli stabilization from ten
dimensions, JHEP 10 (2019) 200 [arXiv:1908.01785] [INSPIRE].

[86] S. Kachru, M. Kim, L. McAllister and M. Zimet, de Sitter Vacua from Ten Dimensions,
arXiv:1908.04788 [INSPIRE].

[87] D.V. Volkov and V.P. Akulov, Is the Neutrino a Goldstone Particle?, Phys. Lett. B 46
(1973) 109 [INSPIRE].

[88] Z. Komargodski and N. Seiberg, From Linear SUSY to Constrained Superfields, JHEP 09
(2009) 066 [arXiv:0907.2441] [INSPIRE].

[89] G. Dall’Agata, E. Dudas and F. Farakos, On the origin of constrained superfields, JHEP 05
(2016) 041 [arXiv:1603.03416] [INSPIRE].

[90] I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: Duality
cascades and chi SB resolution of naked singularities, JHEP 08 (2000) 052
[hep-th/0007191] [INSPIRE].

[91] G. Aldazabal, L.E. Ibáñez and F. Quevedo, A D− brane alternative to the MSSM, JHEP
02 (2000) 015 [hep-ph/0001083] [INSPIRE].

[92] G. Aldazabal, L.E. Ibáñez, F. Quevedo and A.M. Uranga, D-branes at singularities: A
Bottom up approach to the string embedding of the standard model, JHEP 08 (2000) 002
[hep-th/0005067] [INSPIRE].

[93] D. Berenstein, V. Jejjala and R.G. Leigh, The Standard model on a D-brane, Phys. Rev.
Lett. 88 (2002) 071602 [hep-ph/0105042] [INSPIRE].

[94] M.E. Angulo, D. Bailin and H.-X. Yang, Tadpole and anomaly cancellation conditions in
D-brane orbifold models, Int. J. Mod. Phys. A 18 (2003) 3637 [hep-th/0210150] [INSPIRE].

– 96 –

https://doi.org/10.1002/prop.201800091
https://arxiv.org/abs/1810.08518
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.08518
https://doi.org/10.1103/PhysRevLett.122.181601
https://arxiv.org/abs/1812.01067
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.01067
https://arxiv.org/abs/1910.08094
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.08094
https://arxiv.org/abs/2006.16620
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.16620
https://doi.org/10.1007/JHEP06(2019)019
https://arxiv.org/abs/1902.01410
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.01410
https://doi.org/10.1007/JHEP08(2019)141
https://arxiv.org/abs/1902.01412
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.01412
https://doi.org/10.1007/JHEP06(2020)074
https://arxiv.org/abs/1902.01415
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.01415
https://doi.org/10.1007/JHEP05(2019)152
https://arxiv.org/abs/1902.07724
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.07724
https://doi.org/10.1007/JHEP12(2019)125
https://arxiv.org/abs/1907.05295
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.05295
https://doi.org/10.1007/JHEP10(2019)200
https://arxiv.org/abs/1908.01785
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.01785
https://arxiv.org/abs/1908.04788
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.04788
https://doi.org/10.1016/0370-2693(73)90490-5
https://doi.org/10.1016/0370-2693(73)90490-5
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB46%2C109%22
https://doi.org/10.1088/1126-6708/2009/09/066
https://doi.org/10.1088/1126-6708/2009/09/066
https://arxiv.org/abs/0907.2441
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0907.2441
https://doi.org/10.1007/JHEP05(2016)041
https://doi.org/10.1007/JHEP05(2016)041
https://arxiv.org/abs/1603.03416
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1603.03416
https://doi.org/10.1088/1126-6708/2000/08/052
https://arxiv.org/abs/hep-th/0007191
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0007191
https://doi.org/10.1088/1126-6708/2000/02/015
https://doi.org/10.1088/1126-6708/2000/02/015
https://arxiv.org/abs/hep-ph/0001083
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0001083
https://doi.org/10.1088/1126-6708/2000/08/002
https://arxiv.org/abs/hep-th/0005067
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0005067
https://doi.org/10.1103/PhysRevLett.88.071602
https://doi.org/10.1103/PhysRevLett.88.071602
https://arxiv.org/abs/hep-ph/0105042
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0105042
https://doi.org/10.1142/S0217751X03015234
https://arxiv.org/abs/hep-th/0210150
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0210150


J
H
E
P
1
2
(
2
0
2
0
)
1
7
4

[95] J.F.G. Cascales, M.P. Garcia del Moral, F. Quevedo and A.M. Uranga, Realistic D-brane
models on warped throats: Fluxes, hierarchies and moduli stabilization, JHEP 02 (2004) 031
[hep-th/0312051] [INSPIRE].

[96] F. Marchesano, G. Shiu and L.-T. Wang, Model building and phenomenology of flux-induced
supersymmetry breaking on D3-branes, Nucl. Phys. B 712 (2005) 20 [hep-th/0411080]
[INSPIRE].

[97] M. Cicoli, S. Krippendorf, C. Mayrhofer, F. Quevedo and R. Valandro, D-Branes at del
Pezzo Singularities: Global Embedding and Moduli Stabilisation, JHEP 09 (2012) 019
[arXiv:1206.5237] [INSPIRE].

[98] M. Cicoli, S. Krippendorf, C. Mayrhofer, F. Quevedo and R. Valandro, D3/D7 Branes at
Singularities: Constraints from Global Embedding and Moduli Stabilisation, JHEP 07
(2013) 150 [arXiv:1304.0022] [INSPIRE].

[99] D. Malyshev and H. Verlinde, D-branes at singularities and string phenomenology, Nucl.
Phys. B Proc. Suppl. 171 (2007) 139 [arXiv:0711.2451] [INSPIRE].

[100] A. Maharana and E. Palti, Models of Particle Physics from Type IIB String Theory and
F-theory: A Review, Int. J. Mod. Phys. A 28 (2013) 1330005 [arXiv:1212.0555] [INSPIRE].

[101] L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys.
Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

[102] O. DeWolfe and S.B. Giddings, Scales and hierarchies in warped compactifications and
brane worlds, Phys. Rev. D 67 (2003) 066008 [hep-th/0208123] [INSPIRE].

[103] S.B. Giddings and A. Maharana, Dynamics of warped compactifications and the shape of
the warped landscape, Phys. Rev. D 73 (2006) 126003 [hep-th/0507158] [INSPIRE].

[104] C.P. Burgess et al., Warped Supersymmetry Breaking, JHEP 04 (2008) 053
[hep-th/0610255] [INSPIRE].

[105] A.R. Frey, G. Torroba, B. Underwood and M.R. Douglas, The Universal Kähler Modulus in
Warped Compactifications, JHEP 01 (2009) 036 [arXiv:0810.5768] [INSPIRE].

[106] L.E. Ibáñez, C. Muñoz and S. Rigolin, Aspect of type-I string phenomenology, Nucl. Phys. B
553 (1999) 43 [hep-ph/9812397] [INSPIRE].

[107] P.G. Cámara, L.E. Ibáñez and A.M. Uranga, Flux induced SUSY breaking soft terms, Nucl.
Phys. B 689 (2004) 195 [hep-th/0311241] [INSPIRE].

[108] M. Graña, T.W. Grimm, H. Jockers and J. Louis, Soft supersymmetry breaking in
Calabi-Yau orientifolds with D-branes and fluxes, Nucl. Phys. B 690 (2004) 21
[hep-th/0312232] [INSPIRE].

[109] T.W. Grimm and J. Louis, The Effective action of N = 1 Calabi-Yau orientifolds, Nucl.
Phys. B 699 (2004) 387 [hep-th/0403067] [INSPIRE].

[110] D. Lüst, P. Mayr, R. Richter and S. Stieberger, Scattering of gauge, matter, and moduli
fields from intersecting branes, Nucl. Phys. B 696 (2004) 205 [hep-th/0404134] [INSPIRE].

[111] D. Lüst, S. Reffert and S. Stieberger, Flux-induced soft supersymmetry breaking in chiral
type IIB orientifolds with D3/D7-branes, Nucl. Phys. B 706 (2005) 3 [hep-th/0406092]
[INSPIRE].

[112] P.G. Cámara, L.E. Ibáñez and A.M. Uranga, Flux-induced SUSY-breaking soft terms on
D7-D3 brane systems, Nucl. Phys. B 708 (2005) 268 [hep-th/0408036] [INSPIRE].

– 97 –

https://doi.org/10.1088/1126-6708/2004/02/031
https://arxiv.org/abs/hep-th/0312051
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0312051
https://doi.org/10.1016/j.nuclphysb.2005.01.046
https://arxiv.org/abs/hep-th/0411080
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0411080
https://doi.org/10.1007/JHEP09(2012)019
https://arxiv.org/abs/1206.5237
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1206.5237
https://doi.org/10.1007/JHEP07(2013)150
https://doi.org/10.1007/JHEP07(2013)150
https://arxiv.org/abs/1304.0022
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1304.0022
https://doi.org/10.1016/j.nuclphysBPS.2007.06.009
https://doi.org/10.1016/j.nuclphysBPS.2007.06.009
https://arxiv.org/abs/0711.2451
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0711.2451
https://doi.org/10.1142/S0217751X13300056
https://arxiv.org/abs/1212.0555
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1212.0555
https://doi.org/10.1103/PhysRevLett.83.3370
https://doi.org/10.1103/PhysRevLett.83.3370
https://arxiv.org/abs/hep-ph/9905221
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9905221
https://doi.org/10.1103/PhysRevD.67.066008
https://arxiv.org/abs/hep-th/0208123
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0208123
https://doi.org/10.1103/PhysRevD.73.126003
https://arxiv.org/abs/hep-th/0507158
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0507158
https://doi.org/10.1088/1126-6708/2008/04/053
https://arxiv.org/abs/hep-th/0610255
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0610255
https://doi.org/10.1088/1126-6708/2009/01/036
https://arxiv.org/abs/0810.5768
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0810.5768
https://doi.org/10.1016/S0550-3213(99)00264-3
https://doi.org/10.1016/S0550-3213(99)00264-3
https://arxiv.org/abs/hep-ph/9812397
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9812397
https://doi.org/10.1016/j.nuclphysb.2004.04.013
https://doi.org/10.1016/j.nuclphysb.2004.04.013
https://arxiv.org/abs/hep-th/0311241
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0311241
https://doi.org/10.1016/j.nuclphysb.2004.04.021
https://arxiv.org/abs/hep-th/0312232
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0312232
https://doi.org/10.1016/j.nuclphysb.2004.08.005
https://doi.org/10.1016/j.nuclphysb.2004.08.005
https://arxiv.org/abs/hep-th/0403067
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0403067
https://doi.org/10.1016/j.nuclphysb.2004.06.052
https://arxiv.org/abs/hep-th/0404134
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0404134
https://doi.org/10.1016/j.nuclphysb.2004.11.030
https://arxiv.org/abs/hep-th/0406092
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0406092
https://doi.org/10.1016/j.nuclphysb.2004.11.035
https://arxiv.org/abs/hep-th/0408036
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0408036


J
H
E
P
1
2
(
2
0
2
0
)
1
7
4

[113] H. Jockers and J. Louis, The Effective action of D7-branes in N = 1 Calabi-Yau
orientifolds, Nucl. Phys. B 705 (2005) 167 [hep-th/0409098] [INSPIRE].

[114] D. Lüst, P. Mayr, S. Reffert and S. Stieberger, F-theory flux, destabilization of orientifolds
and soft terms on D7-branes, Nucl. Phys. B 732 (2006) 243 [hep-th/0501139] [INSPIRE].

[115] K. Choi, A. Falkowski, H.P. Nilles and M. Olechowski, Soft supersymmetry breaking in
KKLT flux compactification, Nucl. Phys. B 718 (2005) 113 [hep-th/0503216] [INSPIRE].

[116] K. Choi, K.S. Jeong and K.-i. Okumura, Phenomenology of mixed modulus-anomaly
mediation in fluxed string compactifications and brane models, JHEP 09 (2005) 039
[hep-ph/0504037] [INSPIRE].

[117] A. Falkowski, O. Lebedev and Y. Mambrini, SUSY phenomenology of KKLT flux
compactifications, JHEP 11 (2005) 034 [hep-ph/0507110] [INSPIRE].

[118] O. Lebedev, H.P. Nilles and M. Ratz, de Sitter vacua from matter superpotentials, Phys.
Lett. B 636 (2006) 126 [hep-th/0603047] [INSPIRE].

[119] M. Chemtob, Warped modes in flux compactification of type-II b supergravity on the
conifold, arXiv:1909.07668 [INSPIRE].

[120] A.R. Frey and A. Maharana, Warped spectroscopy: Localization of frozen bulk modes, JHEP
08 (2006) 021 [hep-th/0603233] [INSPIRE].

[121] J.P. Derendinger, L.E. Ibáñez and H.P. Nilles, On the Low-Energy d = 4, N = 1
Supergravity Theory Extracted from the d = 10, N = 1 Superstring, Phys. Lett. B 155
(1985) 65 [INSPIRE].

[122] M. Dine, R. Rohm, N. Seiberg and E. Witten, Gluino Condensation in Superstring Models,
Phys. Lett. B 156 (1985) 55 [INSPIRE].

[123] C.P. Burgess, J.P. Derendinger, F. Quevedo and M. Quirós, On gaugino condensation with
field dependent gauge couplings, Annals Phys. 250 (1996) 193 [hep-th/9505171] [INSPIRE].

[124] R. Blumenhagen, M. Cvetič, S. Kachru and T. Weigand, D-Brane Instantons in Type II
Orientifolds, Ann. Rev. Nucl. Part. Sci. 59 (2009) 269 [arXiv:0902.3251] [INSPIRE].

[125] E. Witten, Nonperturbative superpotentials in string theory, Nucl. Phys. B 474 (1996) 343
[hep-th/9604030] [INSPIRE].

[126] A. Dymarsky and L. Martucci, D-brane non-perturbative effects and geometric
deformations, JHEP 04 (2011) 061 [arXiv:1012.4018] [INSPIRE].

[127] D. Baumann, A. Dymarsky, S. Kachru, I.R. Klebanov and L. McAllister, D3-brane
Potentials from Fluxes in AdS/CFT, JHEP 06 (2010) 072 [arXiv:1001.5028] [INSPIRE].

[128] P. McGuirk, G. Shiu and F. Ye, Soft branes in supersymmetry-breaking backgrounds, JHEP
07 (2012) 188 [arXiv:1206.0754] [INSPIRE].

[129] H.-Y. Chen, Y. Nakayama and G. Shiu, On D3-brane Dynamics at Strong Warping, Int. J.
Mod. Phys. A 25 (2010) 2493 [arXiv:0905.4463] [INSPIRE].

[130] B. Cownden, A.R. Frey, M.C.D. Marsh and B. Underwood, Dimensional Reduction for
D3-brane Moduli, JHEP 12 (2016) 139 [arXiv:1609.05904] [INSPIRE].

[131] L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557
(1999) 79 [hep-th/9810155] [INSPIRE].

– 98 –

https://doi.org/10.1016/j.nuclphysb.2004.11.009
https://arxiv.org/abs/hep-th/0409098
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0409098
https://doi.org/10.1016/j.nuclphysb.2005.09.011
https://arxiv.org/abs/hep-th/0501139
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0501139
https://doi.org/10.1016/j.nuclphysb.2005.04.032
https://arxiv.org/abs/hep-th/0503216
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0503216
https://doi.org/10.1088/1126-6708/2005/09/039
https://arxiv.org/abs/hep-ph/0504037
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0504037
https://doi.org/10.1088/1126-6708/2005/11/034
https://arxiv.org/abs/hep-ph/0507110
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0507110
https://doi.org/10.1016/j.physletb.2006.03.046
https://doi.org/10.1016/j.physletb.2006.03.046
https://arxiv.org/abs/hep-th/0603047
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0603047
https://arxiv.org/abs/1909.07668
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.07668
https://doi.org/10.1088/1126-6708/2006/08/021
https://doi.org/10.1088/1126-6708/2006/08/021
https://arxiv.org/abs/hep-th/0603233
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0603233
https://doi.org/10.1016/0370-2693(85)91033-0
https://doi.org/10.1016/0370-2693(85)91033-0
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB155%2C65%22
https://doi.org/10.1016/0370-2693(85)91354-1
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB156%2C55%22
https://doi.org/10.1006/aphy.1996.0092
https://arxiv.org/abs/hep-th/9505171
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9505171
https://doi.org/10.1146/annurev.nucl.010909.083113
https://arxiv.org/abs/0902.3251
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0902.3251
https://doi.org/10.1016/0550-3213(96)00283-0
https://arxiv.org/abs/hep-th/9604030
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9604030
https://doi.org/10.1007/JHEP04(2011)061
https://arxiv.org/abs/1012.4018
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1012.4018
https://doi.org/10.1007/JHEP06(2010)072
https://arxiv.org/abs/1001.5028
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1001.5028
https://doi.org/10.1007/JHEP07(2012)188
https://doi.org/10.1007/JHEP07(2012)188
https://arxiv.org/abs/1206.0754
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1206.0754
https://doi.org/10.1142/S0217751X10048366
https://doi.org/10.1142/S0217751X10048366
https://arxiv.org/abs/0905.4463
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0905.4463
https://doi.org/10.1007/JHEP12(2016)139
https://arxiv.org/abs/1609.05904
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1609.05904
https://doi.org/10.1016/S0550-3213(99)00359-4
https://doi.org/10.1016/S0550-3213(99)00359-4
https://arxiv.org/abs/hep-th/9810155
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9810155


J
H
E
P
1
2
(
2
0
2
0
)
1
7
4

[132] F. Marchesano, P. McGuirk and G. Shiu, Open String Wavefunctions in Warped
Compactifications, JHEP 04 (2009) 095 [arXiv:0812.2247] [INSPIRE].

[133] P.G. Cámara and F. Marchesano, Open string wavefunctions in flux compactifications,
JHEP 10 (2009) 017 [arXiv:0906.3033] [INSPIRE].

[134] N. Cribiori, S. Parameswaran, F. Tonioni and T. Wrase, Misaligned Supersymmetry and
Open Strings, arXiv:2012.04677 [INSPIRE].

[135] E. Bergshoeff, F. Coomans, R. Kallosh, C.S. Shahbazi and A. Van Proeyen,
Dirac-Born-Infeld-Volkov-Akulov and Deformation of Supersymmetry, JHEP 08 (2013) 100
[arXiv:1303.5662] [INSPIRE].

[136] M. Roček, Linearizing the Volkov-Akulov Model, Phys. Rev. Lett. 41 (1978) 451 [INSPIRE].

[137] E.A. Ivanov and A.A. Kapustnikov, General Relationship Between Linear and Nonlinear
Realizations of Supersymmetry, J. Phys. A 11 (1978) 2375 [INSPIRE].

[138] U. Lindström and M. Roček, Constrained local superfields, Phys. Rev. D 19 (1979) 2300
[INSPIRE].

[139] R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio and R. Gatto, Nonlinear Realization
of Supersymmetry Algebra From Supersymmetric Constraint, Phys. Lett. B 220 (1989) 569
[INSPIRE].

[140] F. Farakos and A. Kehagias, Decoupling Limits of sGoldstino Modes in Global and Local
Supersymmetry, Phys. Lett. B 724 (2013) 322 [arXiv:1302.0866] [INSPIRE].

[141] E. Dudas, S. Ferrara, A. Kehagias and A. Sagnotti, Properties of Nilpotent Supergravity,
JHEP 09 (2015) 217 [arXiv:1507.07842] [INSPIRE].

[142] E.A. Bergshoeff, D.Z. Freedman, R. Kallosh and A. Van Proeyen, Pure de Sitter
Supergravity, Phys. Rev. D 92 (2015) 085040 [Erratum ibid. 93 (2016) 069901]
[arXiv:1507.08264] [INSPIRE].

[143] F. Hasegawa and Y. Yamada, Component action of nilpotent multiplet coupled to matter in
4 dimensional N = 1 supergravity, JHEP 10 (2015) 106 [arXiv:1507.08619] [INSPIRE].

[144] S. Ferrara, M. Porrati and A. Sagnotti, Scale invariant Volkov-Akulov supergravity, Phys.
Lett. B 749 (2015) 589 [arXiv:1508.02939] [INSPIRE].

[145] M. Klein, Couplings in pseudosupersymmetry, Phys. Rev. D 66 (2002) 055009
[hep-th/0205300] [INSPIRE].

[146] A. Brignole, F. Feruglio and F. Zwirner, On the effective interactions of a light gravitino
with matter fermions, JHEP 11 (1997) 001 [hep-th/9709111] [INSPIRE].

[147] G. Dall’Agata, S. Ferrara and F. Zwirner, Minimal scalar-less matter-coupled supergravity,
Phys. Lett. B 752 (2016) 263 [arXiv:1509.06345] [INSPIRE].

[148] M.R. Douglas, J. Shelton and G. Torroba, Warping and supersymmetry breaking,
arXiv:0704.4001 [INSPIRE].

[149] I. Bena, M. Graña, S. Kuperstein, P. Ntokos and M. Petrini, D3-brane model building and
the supertrace rule, Phys. Rev. Lett. 116 (2016) 141601 [arXiv:1510.07039] [INSPIRE].

[150] D. Baumann, A. Dymarsky, I.R. Klebanov and L. McAllister, Towards an Explicit Model of
D-brane Inflation, JCAP 01 (2008) 024 [arXiv:0706.0360] [INSPIRE].

– 99 –

https://doi.org/10.1088/1126-6708/2009/04/095
https://arxiv.org/abs/0812.2247
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0812.2247
https://doi.org/10.1088/1126-6708/2009/10/017
https://arxiv.org/abs/0906.3033
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0906.3033
https://arxiv.org/abs/2012.04677
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.04677
https://doi.org/10.1007/JHEP08(2013)100
https://arxiv.org/abs/1303.5662
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1303.5662
https://doi.org/10.1103/PhysRevLett.41.451
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C41%2C451%22
https://doi.org/10.1088/0305-4470/11/12/005
https://inspirehep.net/search?p=find+J%20%22J.Phys.%2CA11%2C2375%22
https://doi.org/10.1103/PhysRevD.19.2300
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD19%2C2300%22
https://doi.org/10.1016/0370-2693(89)90788-0
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB220%2C569%22
https://doi.org/10.1016/j.physletb.2013.06.001
https://arxiv.org/abs/1302.0866
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1302.0866
https://doi.org/10.1007/JHEP09(2015)217
https://arxiv.org/abs/1507.07842
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.07842
https://doi.org/10.1103/PhysRevD.93.069901
https://arxiv.org/abs/1507.08264
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.08264
https://doi.org/10.1007/JHEP10(2015)106
https://arxiv.org/abs/1507.08619
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.08619
https://doi.org/10.1016/j.physletb.2015.08.066
https://doi.org/10.1016/j.physletb.2015.08.066
https://arxiv.org/abs/1508.02939
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1508.02939
https://doi.org/10.1103/PhysRevD.66.055009
https://arxiv.org/abs/hep-th/0205300
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0205300
https://doi.org/10.1088/1126-6708/1997/11/001
https://arxiv.org/abs/hep-th/9709111
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9709111
https://doi.org/10.1016/j.physletb.2015.11.066
https://arxiv.org/abs/1509.06345
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1509.06345
https://arxiv.org/abs/0704.4001
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0704.4001
https://doi.org/10.1103/PhysRevLett.116.141601
https://arxiv.org/abs/1510.07039
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1510.07039
https://doi.org/10.1088/1475-7516/2008/01/024
https://arxiv.org/abs/0706.0360
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0706.0360


J
H
E
P
1
2
(
2
0
2
0
)
1
7
4

[151] G. Dall’Agata and F. Farakos, Constrained superfields in Supergravity, JHEP 02 (2016) 101
[arXiv:1512.02158] [INSPIRE].

[152] K. Becker, M. Becker, M. Haack and J. Louis, Supersymmetry breaking and alpha-prime
corrections to flux induced potentials, JHEP 06 (2002) 060 [hep-th/0204254] [INSPIRE].

[153] I. Antoniadis, E. Dudas, S. Ferrara and A. Sagnotti, The Volkov-Akulov-Starobinsky
supergravity, Phys. Lett. B 733 (2014) 32 [arXiv:1403.3269] [INSPIRE].

[154] G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets,
JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].

[155] J.A. Bagger, T. Moroi and E. Poppitz, Anomaly mediation in supergravity theories, JHEP
04 (2000) 009 [hep-th/9911029] [INSPIRE].

[156] P. Binetruy, M.K. Gaillard and B.D. Nelson, One loop soft supersymmetry breaking terms
in superstring effective theories, Nucl. Phys. B 604 (2001) 32 [hep-ph/0011081] [INSPIRE].

[157] L.L. Everett, I.-W. Kim, P. Ouyang and K.M. Zurek, Moduli Stabilization and
Supersymmetry Breaking in Deflected Mirage Mediation, JHEP 08 (2008) 102
[arXiv:0806.2330] [INSPIRE].

[158] F. D’Eramo, J. Thaler and Z. Thomas, Anomaly Mediation from Unbroken Supergravity,
JHEP 09 (2013) 125 [arXiv:1307.3251] [INSPIRE].

[159] R. Blumenhagen, D. Lüst and S. Theisen, Basics Concepts of String Theory,
Springer-Verlag Berlin Heidelberg (2013) [DOI].

[160] L.E. Ibáñez, F. Marchesano and R. Rabadán, Getting just the standard model at
intersecting branes, JHEP 11 (2001) 002 [hep-th/0105155] [INSPIRE].

[161] M. Demirtas, M. Kim, L. Mcallister and J. Moritz, Vacua with Small Flux Superpotential,
Phys. Rev. Lett. 124 (2020) 211603 [arXiv:1912.10047] [INSPIRE].

[162] T. Banks, D.B. Kaplan and A.E. Nelson, Cosmological implications of dynamical
supersymmetry breaking, Phys. Rev. D 49 (1994) 779 [hep-ph/9308292] [INSPIRE].

[163] B. de Carlos, J.A. Casas, F. Quevedo and E. Roulet, Model independent properties and
cosmological implications of the dilaton and moduli sectors of 4-D strings, Phys. Lett. B
318 (1993) 447 [hep-ph/9308325] [INSPIRE].

[164] T. Banks, M. Berkooz and P.J. Steinhardt, The Cosmological moduli problem,
supersymmetry breaking, and stability in postinflationary cosmology, Phys. Rev. D 52
(1995) 705 [hep-th/9501053] [INSPIRE].

[165] S. Nakamura and M. Yamaguchi, Gravitino production from heavy moduli decay and
cosmological moduli problem revived, Phys. Lett. B 638 (2006) 389 [hep-ph/0602081]
[INSPIRE].

[166] M. Kawasaki, K. Kohri and T. Moroi, Big-Bang nucleosynthesis and hadronic decay of
long-lived massive particles, Phys. Rev. D 71 (2005) 083502 [astro-ph/0408426] [INSPIRE].

[167] M. Endo, K. Hamaguchi and F. Takahashi, Moduli-induced gravitino problem, Phys. Rev.
Lett. 96 (2006) 211301 [hep-ph/0602061] [INSPIRE].

[168] M. Blaszczyk, S. Groot Nibbelink, O. Loukas and S. Ramos-Sanchez, Non-supersymmetric
heterotic model building, JHEP 10 (2014) 119 [arXiv:1407.6362] [INSPIRE].

[169] S. Abel, K.R. Dienes and E. Mavroudi, Towards a nonsupersymmetric string
phenomenology, Phys. Rev. D 91 (2015) 126014 [arXiv:1502.03087] [INSPIRE].

– 100 –

https://doi.org/10.1007/JHEP02(2016)101
https://arxiv.org/abs/1512.02158
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.02158
https://doi.org/10.1088/1126-6708/2002/06/060
https://arxiv.org/abs/hep-th/0204254
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0204254
https://doi.org/10.1016/j.physletb.2014.04.015
https://arxiv.org/abs/1403.3269
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1403.3269
https://doi.org/10.1088/1126-6708/1998/12/027
https://arxiv.org/abs/hep-ph/9810442
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9810442
https://doi.org/10.1088/1126-6708/2000/04/009
https://doi.org/10.1088/1126-6708/2000/04/009
https://arxiv.org/abs/hep-th/9911029
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9911029
https://doi.org/10.1016/S0550-3213(00)00759-8
https://arxiv.org/abs/hep-ph/0011081
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0011081
https://doi.org/10.1088/1126-6708/2008/08/102
https://arxiv.org/abs/0806.2330
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0806.2330
https://doi.org/10.1007/JHEP09(2013)125
https://arxiv.org/abs/1307.3251
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1307.3251
https://doi.org/10.1007/978-3-642-29497-6
https://doi.org/10.1088/1126-6708/2001/11/002
https://arxiv.org/abs/hep-th/0105155
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0105155
https://doi.org/10.1103/PhysRevLett.124.211603
https://arxiv.org/abs/1912.10047
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.10047
https://doi.org/10.1103/PhysRevD.49.779
https://arxiv.org/abs/hep-ph/9308292
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9308292
https://doi.org/10.1016/0370-2693(93)91538-X
https://doi.org/10.1016/0370-2693(93)91538-X
https://arxiv.org/abs/hep-ph/9308325
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9308325
https://doi.org/10.1103/PhysRevD.52.705
https://doi.org/10.1103/PhysRevD.52.705
https://arxiv.org/abs/hep-th/9501053
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9501053
https://doi.org/10.1016/j.physletb.2006.05.078
https://arxiv.org/abs/hep-ph/0602081
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0602081
https://doi.org/10.1103/PhysRevD.71.083502
https://arxiv.org/abs/astro-ph/0408426
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F0408426
https://doi.org/10.1103/PhysRevLett.96.211301
https://doi.org/10.1103/PhysRevLett.96.211301
https://arxiv.org/abs/hep-ph/0602061
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0602061
https://doi.org/10.1007/JHEP10(2014)119
https://arxiv.org/abs/1407.6362
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1407.6362
https://doi.org/10.1103/PhysRevD.91.126014
https://arxiv.org/abs/1502.03087
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1502.03087


J
H
E
P
1
2
(
2
0
2
0
)
1
7
4

[170] J.M. Ashfaque, P. Athanasopoulos, A.E. Faraggi and H. Sonmez, Non-Tachyonic
Semi-Realistic Non-Supersymmetric Heterotic String Vacua, Eur. Phys. J. C 76 (2016) 208
[arXiv:1506.03114] [INSPIRE].

[171] M. Blaszczyk, S. Groot Nibbelink, O. Loukas and F. Ruehle, Calabi-Yau compactifications
of non-supersymmetric heterotic string theory, JHEP 10 (2015) 166 [arXiv:1507.06147]
[INSPIRE].

[172] S. Groot Nibbelink, O. Loukas and F. Ruehle, (MS)SM-like models on smooth Calabi-Yau
manifolds from all three heterotic string theories, Fortsch. Phys. 63 (2015) 609
[arXiv:1507.07559] [INSPIRE].

[173] S. Groot Nibbelink and E. Parr, Twisted superspace: Non-renormalization and fermionic
symmetries in certain heterotic-string-inspired non-supersymmetric field theories, Phys.
Rev. D 94 (2016) 041704 [arXiv:1605.07470] [INSPIRE].

[174] I. Florakis and J. Rizos, Chiral Heterotic Strings with Positive Cosmological Constant,
Nucl. Phys. B 913 (2016) 495 [arXiv:1608.04582] [INSPIRE].

[175] S. Abel and R.J. Stewart, Exponential suppression of the cosmological constant in
nonsupersymmetric string vacua at two loops and beyond, Phys. Rev. D 96 (2017) 106013
[arXiv:1701.06629] [INSPIRE].

[176] S. Groot Nibbelink, O. Loukas, A. Mütter, E. Parr and P.K.S. Vaudrevange, Tension
Between a Vanishing Cosmological Constant and Non-Supersymmetric Heterotic Orbifolds,
Fortsch. Phys. 68 (2020) 2000044 [arXiv:1710.09237] [INSPIRE].

[177] S. Abel, K.R. Dienes and E. Mavroudi, GUT precursors and entwined SUSY: The
phenomenology of stable nonsupersymmetric strings, Phys. Rev. D 97 (2018) 126017
[arXiv:1712.06894] [INSPIRE].

[178] M. McGuigan, Dark Horse, Dark Matter: Revisiting the SO(16)× SO(16)′
Nonsupersymmetric Model in the LHC and Dark Energy Era, arXiv:1907.01944 [INSPIRE].

[179] A.E. Faraggi, V.G. Matyas and B. Percival, Towards the Classification of Tachyon-Free
Models From Tachyonic Ten-Dimensional Heterotic String Vacua, Nucl. Phys. B 961
(2020) 115231 [arXiv:2006.11340] [INSPIRE].

[180] H. Verlinde and M. Wijnholt, Building the standard model on a D3-brane, JHEP 01 (2007)
106 [hep-th/0508089] [INSPIRE].

[181] J.P. Conlon, A. Maharana and F. Quevedo, Towards Realistic String Vacua, JHEP 05
(2009) 109 [arXiv:0810.5660] [INSPIRE].

[182] S. Krippendorf, M.J. Dolan, A. Maharana and F. Quevedo, D-branes at Toric Singularities:
Model Building, Yukawa Couplings and Flavour Physics, JHEP 06 (2010) 092
[arXiv:1002.1790] [INSPIRE].

[183] M.J. Dolan, S. Krippendorf and F. Quevedo, Towards a Systematic Construction of
Realistic D-brane Models on a del Pezzo Singularity, JHEP 10 (2011) 024
[arXiv:1106.6039] [INSPIRE].

[184] S. Franco, A. Hanany and A.M. Uranga, Multi-flux warped throats and cascading gauge
theories, JHEP 09 (2005) 028 [hep-th/0502113] [INSPIRE].

[185] S. Franco, D. Galloni, A. Retolaza and A. Uranga, On axion monodromy inflation in
warped throats, JHEP 02 (2015) 086 [arXiv:1405.7044] [INSPIRE].

– 101 –

https://doi.org/10.1140/epjc/s10052-016-4056-2
https://arxiv.org/abs/1506.03114
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1506.03114
https://doi.org/10.1007/JHEP10(2015)166
https://arxiv.org/abs/1507.06147
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.06147
https://doi.org/10.1002/prop.201500041
https://arxiv.org/abs/1507.07559
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.07559
https://doi.org/10.1103/PhysRevD.94.041704
https://doi.org/10.1103/PhysRevD.94.041704
https://arxiv.org/abs/1605.07470
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.07470
https://doi.org/10.1016/j.nuclphysb.2016.09.018
https://arxiv.org/abs/1608.04582
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.04582
https://doi.org/10.1103/PhysRevD.96.106013
https://arxiv.org/abs/1701.06629
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1701.06629
https://doi.org/10.1002/prop.202000044
https://arxiv.org/abs/1710.09237
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.09237
https://doi.org/10.1103/PhysRevD.97.126017
https://arxiv.org/abs/1712.06894
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.06894
https://arxiv.org/abs/1907.01944
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.01944
https://doi.org/10.1016/j.nuclphysb.2020.115231
https://doi.org/10.1016/j.nuclphysb.2020.115231
https://arxiv.org/abs/2006.11340
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.11340
https://doi.org/10.1088/1126-6708/2007/01/106
https://doi.org/10.1088/1126-6708/2007/01/106
https://arxiv.org/abs/hep-th/0508089
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0508089
https://doi.org/10.1088/1126-6708/2009/05/109
https://doi.org/10.1088/1126-6708/2009/05/109
https://arxiv.org/abs/0810.5660
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0810.5660
https://doi.org/10.1007/JHEP06(2010)092
https://arxiv.org/abs/1002.1790
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1002.1790
https://doi.org/10.1007/JHEP10(2011)024
https://arxiv.org/abs/1106.6039
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1106.6039
https://doi.org/10.1088/1126-6708/2005/09/028
https://arxiv.org/abs/hep-th/0502113
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0502113
https://doi.org/10.1007/JHEP02(2015)086
https://arxiv.org/abs/1405.7044
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1405.7044


J
H
E
P
1
2
(
2
0
2
0
)
1
7
4

[186] A. Retolaza and A. Uranga, Orientifolds of Warped Throats from Toric Calabi-Yau
Singularities, JHEP 07 (2016) 135 [arXiv:1605.01732] [INSPIRE].

[187] P. Ouyang, Holomorphic D7 branes and flavored N = 1 gauge theories, Nucl. Phys. B 699
(2004) 207 [hep-th/0311084] [INSPIRE].

[188] S. Kuperstein, Meson spectroscopy from holomorphic probes on the warped deformed
conifold, JHEP 03 (2005) 014 [hep-th/0411097] [INSPIRE].

[189] H.-Y. Chen, P. Ouyang and G. Shiu, On Supersymmetric D7-branes in the Warped
Deformed Conifold, JHEP 01 (2010) 028 [arXiv:0807.2428] [INSPIRE].

[190] R.C. Myers, Dielectric branes, JHEP 12 (1999) 022 [hep-th/9910053] [INSPIRE].

[191] C.P. Burgess, M. Cicoli, D. Ciupke, S. Krippendorf and F. Quevedo, UV Shadows in EFTs:
Accidental Symmetries, Robustness and No-Scale Supergravity, Fortsch. Phys. 68 (2020)
2000076 [arXiv:2006.06694] [INSPIRE].

[192] J. Polchinski, String theory. Vol. 2: Superstring theory and beyond, Cambridge Monographs
on Mathematical Physics, Cambridge University Press (2007) [DOI] [INSPIRE].

[193] J. Polchinski and M.J. Strassler, The String dual of a confining four-dimensional gauge
theory, hep-th/0003136 [INSPIRE].

[194] P. Candelas and X. de la Ossa, Moduli Space of Calabi-Yau Manifolds, Nucl. Phys. B 355
(1991) 455 [INSPIRE].

[195] S. Gukov, C. Vafa and E. Witten, CFT’s from Calabi-Yau four folds, Nucl. Phys. B 584
(2000) 69 [Erratum ibid. 608 (2001) 477] [hep-th/9906070] [INSPIRE].

[196] D. Marolf, L. Martucci and P.J. Silva, Fermions, T duality and effective actions for
D-branes in bosonic backgrounds, JHEP 04 (2003) 051 [hep-th/0303209] [INSPIRE].

[197] D. Marolf, L. Martucci and P.J. Silva, Actions and Fermionic symmetries for D-branes in
bosonic backgrounds, JHEP 07 (2003) 019 [hep-th/0306066] [INSPIRE].

[198] L. Martucci, J. Rosseel, D. Van den Bleeken and A. Van Proeyen, Dirac actions for
D-branes on backgrounds with fluxes, Class. Quant. Grav. 22 (2005) 2745 [hep-th/0504041]
[INSPIRE].

[199] M. Graña, D3-brane action in a supergravity background: The Fermionic story, Phys. Rev.
D 66 (2002) 045014 [hep-th/0202118] [INSPIRE].

[200] D.S. Freed and E. Witten, Anomalies in string theory with D-branes, Asian J. Math. 3
(1999) 819 [hep-th/9907189] [INSPIRE].

[201] E. Cremmer, B. Julia, J. Scherk, S. Ferrara, L. Girardello and P. van Nieuwenhuizen,
Spontaneous Symmetry Breaking and Higgs Effect in Supergravity Without Cosmological
Constant, Nucl. Phys. B 147 (1979) 105 [INSPIRE].

[202] J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton University Press (1992).

[203] V.S. Kaplunovsky and J. Louis, Model independent analysis of soft terms in effective
supergravity and in string theory, Phys. Lett. B 306 (1993) 269 [hep-th/9303040]
[INSPIRE].

[204] A. Brignole, L.E. Ibáñez and C. Muñoz, Towards a theory of soft terms for the
supersymmetric Standard Model, Nucl. Phys. B 422 (1994) 125 [Erratum ibid. 436 (1995)
747] [hep-ph/9308271] [INSPIRE].

– 102 –

https://doi.org/10.1007/JHEP07(2016)135
https://arxiv.org/abs/1605.01732
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.01732
https://doi.org/10.1016/j.nuclphysb.2004.08.015
https://doi.org/10.1016/j.nuclphysb.2004.08.015
https://arxiv.org/abs/hep-th/0311084
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0311084
https://doi.org/10.1088/1126-6708/2005/03/014
https://arxiv.org/abs/hep-th/0411097
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0411097
https://doi.org/10.1007/JHEP01(2010)028
https://arxiv.org/abs/0807.2428
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0807.2428
https://doi.org/10.1088/1126-6708/1999/12/022
https://arxiv.org/abs/hep-th/9910053
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9910053
https://doi.org/10.1002/prop.202000076
https://doi.org/10.1002/prop.202000076
https://arxiv.org/abs/2006.06694
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.06694
https://doi.org/10.1017/CBO9780511618123
https://inspirehep.net/search?p=find+doi%20%2210.1017%2FCBO9780511618123%22
https://arxiv.org/abs/hep-th/0003136
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0003136
https://doi.org/10.1016/0550-3213(91)90122-E
https://doi.org/10.1016/0550-3213(91)90122-E
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB355%2C455%22
https://doi.org/10.1016/S0550-3213(00)00373-4
https://doi.org/10.1016/S0550-3213(00)00373-4
https://arxiv.org/abs/hep-th/9906070
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9906070
https://doi.org/10.1088/1126-6708/2003/04/051
https://arxiv.org/abs/hep-th/0303209
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0303209
https://doi.org/10.1088/1126-6708/2003/07/019
https://arxiv.org/abs/hep-th/0306066
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0306066
https://doi.org/10.1088/0264-9381/22/13/014
https://arxiv.org/abs/hep-th/0504041
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0504041
https://doi.org/10.1103/PhysRevD.66.045014
https://doi.org/10.1103/PhysRevD.66.045014
https://arxiv.org/abs/hep-th/0202118
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0202118
https://arxiv.org/abs/hep-th/9907189
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9907189
https://doi.org/10.1016/0550-3213(79)90417-6
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB147%2C105%22
https://doi.org/10.1016/0370-2693(93)90078-V
https://arxiv.org/abs/hep-th/9303040
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9303040
https://doi.org/10.1016/0550-3213(94)00068-9
https://arxiv.org/abs/hep-ph/9308271
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9308271

	Introduction
	Warped IIB closed-string sector
	Warped metric and closed-string sector supergravity
	Field localisation and 4-dimensional supergravity conditions
	Closed-string sector field localisation
	Conditions for a 4-dimensional supergravity formulation


	Warped D3- and D7-branes
	Pure D3- and D7-brane states
	Warped D3-branes
	D7-branes extending from the tip of a warped throat into the bulk
	D7-branes at the tip of warped throats

	D3-/D7-brane intersecting states
	D3-brane and D7-brane extending from the throat tip into the bulk
	D3-brane and D7-brane at the tip of the throat
	A 6-dimensional description of the intersecting states


	Warped anti-D3- and D7-branes
	Pure anti-D3-brane
	Anti-D3-brane supersymmetry breaking
	Anti-D3-brane constrained multiplets
	Anti-D3-brane supergravity

	Anti-D3-/D7-brane intersecting states
	Anti-D3-/D7-brane constrained superfields and couplings
	Anti-D3-brane with D7-brane from the throat tip into the bulk
	Anti-D3-brane and D7-brane at the tip of the throat

	Moduli stabilisation and anomaly mediation
	Moduli stabilisation via perturbative and non-perturbative corrections
	Anomaly mediation


	Overview on the extension to non-Abelian theories
	Non-Abelian anti-D3-branes
	Particle content
	Supergravity formulation

	Non-Abelian anti-D3-/D7-brane systems
	Anti-D3-/D7-branes at orbifold singularities
	Outline of the gauge group breaking and massless spectrum
	Outlook on a supergravity formulation


	Analysis of the mass hierarchies
	Pure D7- and anti-D3-brane states
	Anti-D3-/D7-brane intersecting states and stable Kähler modulus
	Sample mass scales

	Conclusions
	Dimensional reduction in warped compactifications
	Warped closed-string sector in type IIB string theory
	General D-brane action
	Dirac-Born-Infeld action
	Chern-Simons action
	Further remarks
	D3, anti-D3- and D7-brane kinetic and mass terms


	Soft terms for linear and non-linear supersymmetry
	Classification of superfields in IIB low-energy supergravity
	Theories with linearly realised supersymmetry
	Theories with linearly and non-linearly realised supersymmetry

	Geometry of warped 4-cycles
	Products of 2- and 4-cycles
	Complex structure Kähler metrics


