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1 Introduction

Despite the high energy limit of Quantum Chromodynamics (QCD) (see eg. [1] for a review)
has been studied for over forty years, the confrontation of various small-x approaches and
experimental data is still not fully conclusive (here x ∼ 1/

√
s is the longitudinal fraction of

hadron momentum carried by a parton and s is the center-of-mass energy). On one hand,
the experimental data relevant to the small-x regime can be often explained by the collinear
factorization, supplemented however with parton showers or other type of resummations
and multi-parton interactions. On the other hand, certain types of reactions, for example
the Mueller-Navalet jet production [2] give strong hints towards the need of inclusion of
the small-x effects [3]. In addition, collisions of protons with heavy nuclei provide further
hints, as observed for instance in [4] for the forward dijet production case.

In order to provide more solid statements regarding the need of small-x approaches, one
needs higher order corrections for various components of small-x calculations, in particular
for high energy partonic amplitudes. As a matter of fact, in collinear factorization, any
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partonic amplitude can be at present calculated at NLO automatically using computer
software. This is still to be achieved in the small-x domain and our work is a step forward
towards that goal.

The key result in the small-x field is the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equa-
tion [5, 6], which describes evolution in energy (or x) of the gluon Green function in the
high energy limit. It can also be converted to the energy evolution of so-called uninte-
grated parton distribution functions, that unlike collinear PDFs, explicitly depend on the
parton transverse momentum kT . Other key results in the small-x QCD constitute the
kT -factorization (called also high energy factorization) [7, 8], as well as further develop-
ments that overcome the unitarity bound violation by the BFKL equation and lead to
the nonlinear evolution of Balitsky-Kovchegov (BK) equation [9, 10], B-JIMWLK equa-
tions [9, 11–18] and Color Glass Condensate (CGC) effective theory (see e.g. [19]). Some
key higher order results include: the next-to-leading order (NLO) BFKL kernel [20–22],
the NLO BK kernel [23], the B-JIMWLK equation at NLO [24, 25], the γ∗ → q̄q impact
factor at NLO [26–29] also with heavy quarks [30], partial inclusion of NLO for Higgs +
jet [31], single inclusive jet production in CGC at NLO [32], and also the recent calculation
of γ∗ → q̄qγ impact factor at NLO [33]. In addition, there are NLO calculations in the
context of the Lipatov’s effective action [34–39].

The concept of kT -factorization is based on analogy with the collinear factorization, but
here both a hard part and a soft hadronic part depend on theparton transverse momenta,
i.e. we have explicit higher powers kT /Q present in the hard matrix elements (here, Q is
the largest scale present in the process). Thus, instead of the leading twist, the accuracy
is set by the leading power in 1/

√
s. The momenta of partons defining the hard amplitude

may now be off-shell, with vector or spinor indices projected onto components dominating
in the high energy limit.

In the present work we shall consider multigluon amplitudes with a single gluon being
off mass shell. Such amplitudes are primarily used in the forward particle production (see
eg. [40]) and have large phenomenological impact (see eg. [41–49] for various application
in forward jet production processes at LHC). The momentum of the off-shell gluon has
the form

kµ = xpµ + kµT , (1.1)

where pµ is the light-like momentum typically associated with the colliding hadron, x is
the fraction of this momentum carried by the scattering parton, and kµT is the transverse
component satisfying kT · p = 0. The off-shell gluon couples eikonally, i.e. its vector index
is projected onto pµ (the propagator is included in the amplitude), see figure 1. The
standard diagrams contributing to off-shell amplitude defined in that fashion are however
not gauge invariant. The proper definition of such amplitudes can be done either within
the Lipatov’s high energy effective action [50, 51] or by explicitly constructing additional
contributions required by the gauge invariance, the high energy kinematics and the proper
soft and collinear behavior. The latter method is very useful in automated calculations
at tree level and a few approaches exist: using the Ward identities [52], embedding the
off-shell process in a bigger on-shell one [53] (see also [54] for earlier application to 2 → 2
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+
terms required for
gauge invariance

pµ

xp + kT

Figure 1. In high energy factorization for forward jets (hybrid factorization [40, 58]) the multigluon
amplitude has one incoming momentum off mass shell, with the off-shell propagator projected onto
light-like momentum pµ (typically the momentum of the hadron to which the gluon couples). The
momentum of the off-shell leg has only one longitudinal component in the high energy kinematics.
Such amplitude is in general not gauge invariant and additional terms are required to define it
properly.

process), using matrix elements of straight infinite Wilson lines [55]. In particular, the
embedding method [53] has proved to be very effective in numerical calculations and is
implemented in a Monte Carlo generator [56]. Also, it has been generalized to one-loop
level with a proof of concept given in [57]. The great advantage of this method is that it
can be used to extract the high energy off-shell amplitudes from existing one loop on-shell
results. We will review the method in detail in section 2.

In order to apply the embedding method at one-loop level, and in particular to validate
the general concept of [57], it is reasonable to start with the simplest one-loop helicity
amplitudes. In the on-shell case, these are the amplitudes with all helicities being the same,
say ‘plus’ (we use the convention that all momenta are outgoing). Such amplitudes vanish
at tree level, but are non-zero at loop level. Thus, in the present work, we shall calculate
one-loop amplitudes with all-plus helicity gluons and one off-shell gluon, consistent with
the gauge invariance and the high energy limit of QCD. Our result will be presented for
arbitrary number of gluons n. In particular, we find that for n = 3 our general result
coincides with the existing result obtained from Lipatov’s effective action [39].

As a basis for our calculation we shall use the existing one-loop results for (−+ · · ·+)
helicity on-shell amplitudes, where the first pair of particles is either gluon pair or quark-
antiquark pair. The particles with helicity +− will provide an auxiliary quark or gluon
line, with corresponding external spinors parametrized in a way that — upon taking a
proper limit — will guarantee both the high energy kinematics eq. (1.1) and the eikonal
coupling for the internal off-shell gluon attached to it.

We shall focus on the so-called color ordered amplitudes corresponding to planar dia-
grams and utilize the spinor helicity method (see [59] for a review). At tree level, the color
decomposition of a full gluon amplitude into color ordered amplitudes is

Ma1,...,an

λ1,...,λn
(k1, . . . , kn) =

∑
perm.(2···n)

Tr (ta1ta2 . . . tan) A
(
1(λ1), 2(λ2), . . . , n(λn)

)
, (1.2)

where ta are color generators, ki is momentum of i-th gluon with helicity projection λi
and the sum goes over all non-cyclic permutations of the arguments of the trace and the
arguments of the color ordered amplitudes A. At one-loop level, additional double trace
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terms are present. They can be however obtained as linear combinations of the leading
trace contributions.

It is known that the on-shell (±+ · · ·+) one-loop amplitudes have rather simple struc-
ture, given by a rational function of spinor products. Consider for instance the all-plus
on-shell leading trace color ordered amplitude. It has a remarkably simple form for ar-
bitrary number of gluons (conjectured by Z. Bern, G. Chalmers, L. J. Dixon and D. A.
Kosower in [60, 61] and demonstrated by G. Mahlon in [62]):

A(1)
n = gns

∑
1≤i<j<k<l≤n

〈ij〉[jk]〈kl〉[li]
〈12〉 · · · 〈n1〉 (1.3)

Above, the spinor products are defined as

〈ij〉 = u− (ki)u+ (kj) [ij] = u+ (ki)u− (kj) , (1.4)

where u±(k) are the spinors of helicity ± for an on-shell momentum k. The above result is
most easily understood within the unitarity methods (see eg. [63]), or — more generally —
the on-shell methods (see [64] for a comprehensive review). The off-shell gauge invariant
amplitudes we calculate in the present work inherit the rational structure.

Our paper has the following structure. In the next section, we will describe the em-
bedding method in more detail. Next, in section 3, we will present the main results for
the amplitudes. In section 4 we recalulate the amplitudes using the embedding method
with auxiliary gluon line as a verification of our results. In section 5 we will investigate the
on-shell limit of the obtained off-shell amplitudes. Finally, in section 6 we shall summarize
our work and discuss further perspectives.

2 The method

The method to obtain the off-shell amplitudes we are about to use has been developed
in [53]. Here we shall apply it to obtain one loop scattering amplitudes for arbitrary
number of positive helicity on-shell gluons and one off-shell gluon with the high energy
kinematics eq. (1.1) (called also the quasi-multi-Regge kinematics).

Let us briefly recall how the method works. The basic idea is to calculate the amplitude
with the off-shell gluon using an on-shell amplitude with an auxiliary quark-antiquark pair,
which follows specific kinematics. Ultimately, the auxiliary quark and antiquark spinors are
decoupled ensuring gauge invariance of the off-shell amplitude. Schematically, the method
can be summarized as (see also figure 2)

lim
Λ→∞

(
x|kT |
gsΛ

A (q̄(k1)q(k2)X )
)

= A∗ (g∗(k)X ) , (2.1)

where X stands for other on-shell particles involved in the hard scattering process and Λ
is a real parameter parametrizing momenta of the auxiliary quark pair (see below). The
gauge invariant off-shell amplitude is denoted A∗. The momenta of the auxiliary quarks
are taken to be the following:

kµ1 = Λpµ + αqµ + βkµT ,

kµ2 = kµ − kµ1 ,
(2.2)
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q

q̄

A

··
· X −−−−→

Λ→∞ g∗ A∗

· ·
· X

Figure 2. Gauge invariant off-shell amplitudes can be obtained by considering a process with an
auxiliary quark-antiquark pair, with momenta parametrized in terms of a parameter Λ in such a
way, that upon taking the limit Λ → ∞ the coupling to the quark line becomes eikonal and the
momentum of the off-shell gluon has the high energy form (see eq. (1.1)).

where
α = −β

2k2
T

2Λp · q , β = 1
1 +

√
1− x/Λ

(2.3)

and qµ is an arbitrary light-like momentum such that q · kT = 0, q · p > 0. Note, that kµ1
and kµ2 are light-like and they satisfy kµ1 + kµ2 = kµ, where the latter is the momentum
of the off-shell gluon as defined in eq. (1.1). In the limit Λ → ∞ the coupling of gluons
to the quark line becomes eikonal, consistent with the high energy limit. The factor 1/gs
in eq. (2.1) is to correct the power of the coupling, and the factor x|kT | is for the correct
matching to kT -dependent PDFs in a cross section. In particular, the factor |kT | makes
sure the amplitude is finite for |kT | → 0.

In practice, instead of using the above definitions of kµ1 and kµ2 , we will use their
expansion in Λ:

kµ1 = Λpµ +
(1

2 + x

8Λ

)
kµT −

k2
T

8Λp · q q
µ +O(Λ−2) ,

kµ2 = (x− Λ)pµ +
(1

2 −
x

8Λ

)
kµT + k2

T

8Λp · q q
µ +O(Λ−2) .

(2.4)

In order to use the helicity method, we need to express kµT in terms of spinors. It can be
decomposed as follows

kµT = −κ̄eµ − κ̄∗eµ∗ , (2.5)

with
eµ = 1

2〈p|γ
µ|q] , eµ∗ = 1

2〈q|γ
µ|p] (2.6)

and
κ̄ = κ

[pq] = 〈q|
/k|p]

2p · q , κ̄∗ = κ∗

〈qp〉
= 〈p|

/k|q]
2p · q . (2.7)

Realize that kµT is a four-vector with a negative square, and we have

k2
T = −κκ∗ . (2.8)

The spinors of kµ1 and kµ2 can be decomposed into those of pµ and qµ following

|1〉 =
√

Λ |p〉 − βκ̄∗√
Λ
|q〉 , |1] =

√
Λ |p]− βκ̄√

Λ
|q] (2.9)

|2〉 =
√

Λ− x |p〉+ βκ̄∗√
Λ
|q〉 , |2] = −

√
Λ− x |p]− βκ̄√

Λ
|q] . (2.10)
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Notice that
√

(Λ− x)/Λβ = 1− β. We see that the spinor products

〈12〉 = −κ∗ , [12] = −κ (2.11)

are independent of Λ. Further, the spinors for auxiliary quarks behave for large Λ as

|1〉 →
√

Λ |p〉 , |1]→
√

Λ |p] , |2〉 →
√

Λ |p〉 , |2]→ −
√

Λ |p] . (2.12)

In what follows, we shall call the above kinematics (together with taking the limit
Λ → ∞) the “Λ prescription”. Applying it to an amplitude with auxiliary partons gives
the gauge invariant off-shell amplitude.

Alternatively, the “embedding” method described above can be used with an auxiliary
gluon line, instead of the quark line. Indeed, the color decomposition for (n − 2)-gluon
amplitude with a quark-antiquark pair is given by

Mij a3,...,an

λ1,λ2,λ3,...,λn
(k1, . . . , kn) =

∑
perm.(3···n)

(ta3 · · · tan)ij A
(
q(λ1), q̄(λ2), 3(λ3), . . . , n(λn)

)
,

(2.13)
and can be projected onto (n− 1)-gluon amplitude by a contraction with (ta∗)ji, where a∗
represents the color index of the off-shell gluon. Now, for an auxiliary gluon pair instead of
a quark one, one simply needs to select only those permutations in eq. (1.2) that retains the
order of gluons 1 and 2 and substitute ta1ta2 → ta∗ . At one loop, the color decompositions
get more complicated and are given by eq. (1) in [65] and eq. (2.4-5) in [66] respectively. One
can however easily see that the same procedure goes through to extract a single gluon color
from a pair of colors. In [57] it has been shown that at tree level, the partial amplitudes
obtained using different pairs of auxiliary partons are identical. We will see here that the
same holds at one loop for the all-plus amplitudes.

3 All-plus off-shell gauge invariant amplitudes at NLO

In this section we present our results for one loop amplitudes for one off-shell gluon and
n − 1 on-shell positive helicity gluons. We begin with several low multiplicity examples,
starting with the simplest cases: n = 3 (the vertex), n = 4 and n = 5. Then, we will turn
to a general result for arbitrary n. For each case, we first present the known amplitude
with auxiliary quarks. Then, we apply the Λ prescription to it and give the result for the
off-shell amplitude.

3.1 3-point vertex

We first consider the 3-point vertex with one off-shell gluon and two positive helicity on-
shell gluons at one loop. Such vertex has been calculated for arbitrary helicity projection
in [39] from the Lipatov’s effective action.

In order to calculate it from the Λ prescription, we need the 4-point amplitude for
quark, anti-quark and two gluons. At one loop it has the following form [66]:

A(1)
4 (1−q̄ , 2+

q , 3+, 4+) = − ig4
s

16π2

[1
2

(
1 + 1

N2
c

)
+ 1

3

(
1 + ns − nf

Nc

)
s23
s12

] 〈12〉[24]
〈23〉〈34〉 , (3.1)
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where nf accounts for the number of Weyl fermions circulating in the loop, ns the number
of complex scalars and

∀i, j = 1, . . . , n, sij = 2ki · kj = 〈ij〉[ji] (in this section, n = 4). (3.2)

Applying the Λ prescription we get:

A∗(1)
3 (g∗, 3+, 4+) = − ig3

s

24π2

(
1 + ns − nf

Nc

)
x|kT |

p · k3
k2
T

κ∗[p4]
〈p3〉〈34〉

= − ig3
s

24π2

(
1 + ns − nf

Nc

)
x|kT |
κ2 p · k3

[p3][p4]
〈p3〉〈p4〉 ,

(3.3)

where we used that k2
T = −κκ∗, κ = 〈4|k/|p]/〈4p〉 and kµ = −kµ3 − k

µ
4 . We checked that

for ns = 0 the above result agrees with the one of [39, 67], up to an overall constant and a
factor xE/|kT |, where E is the energy component of pµ. This difference is due to the fact
that in the mentioned publications vertices rather than amplitudes are calculated (see also
the comparisons at tree-level in [53]).

3.2 4-point amplitude

The 5-leg amplitude with auxiliary quark pair is given by [66]:

A(1)
5 (1−q̄ , 2+

q , 3+, 4+, 5+) (3.4)

= − ig5
s

32π2

(
1 + 1

N2
c

) 〈12〉[23]〈31〉+ 〈14〉[45]〈51〉
〈23〉〈34〉〈45〉〈51〉

− ig5
s

48π2

(
1 + ns − nf

Nc

)( 〈13〉[34]〈41〉2

〈12〉〈34〉2〈45〉〈51〉 + 〈14〉〈24〉[45]〈51〉
〈12〉〈23〉〈34〉〈45〉2 + [23][25]

[12]〈34〉〈45〉

)
.

Applying the Λ prescription we find that the first term is of the order Λ−1 and thus vanishes.
Further calculation leads to the following result

A∗(1)
4 (g∗, 3+, 4+, 5+) =− ig4

s

48π2

x|kT |
(
1 + ns−nf

Nc

)
κ∗〈p3〉〈34〉〈45〉〈5p〉

×
[
〈p3〉2〈p4〉2 [34]

〈34〉 + 〈p4〉2〈p5〉2 [45]
〈45〉 −

κ∗

κ
sp3sp5

]
.

(3.5)

3.3 5-point amplitude

The amplitude with the auxiliary quark pair is given by [68]:

A(1)
6 (1−q̄ , 2+

q , 3+, 4+, 5+, 6+)

= ig6
s

32π2

(
1 + 1

N2
c

) ∑5
l=3 〈1| /K2...l/kl|1]

〈23〉〈34〉〈45〉〈56〉〈61〉

+ ig6
s

48π2

(
1 + ns − nf

Nc

)[〈14〉〈1|(2 + 3)(3 + 4)|1〉
〈12〉〈34〉2〈45〉〈56〉〈61〉 + 〈24〉〈15〉〈1|(4 + 5)(5 + 6)|1〉

〈12〉〈23〉〈34〉〈45〉2〈56〉〈61〉

− 〈25〉〈1|56|1〉
〈12〉〈23〉〈34〉〈45〉〈56〉2 + 〈1|3 + 4|2]2

〈34〉2〈56〉〈61〉〈5|3 + 4|2]

+ 〈2|4 + 5|6]〈1|4 + 5|6]2

〈12〉〈23〉〈45〉2〈3|4 + 5|6]s456
− [26]2[2|(3 + 4)(4 + 5)(3 + 4)(4 + 5)|6]

[12]〈34〉〈45〉〈5|3 + 4|2]〈3|4 + 5|6]s345

]
,

(3.6)
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where we defined

/Ka···b =
b∑
i=a

/ki , (3.7)

sijk = (ki + kj + kk)2 , (3.8)

and used

〈a|(i+ j)|b] = 〈ai〉[ib] + 〈aj〉[jb] (3.9)
〈a|(i+ j)(k + l)|b〉 = 〈ai〉[i|(k + l)|b〉+ 〈aj〉[j|(k + l)|b〉 . (3.10)

Above a, b, i, j, k, l = 1, . . . n, where n = 6 in the present section.
After we apply the Λ prescription we find that the term with the factor

(
1 + 1

N2
c

)
vanishes leading to

A∗(1)
5 (g∗, 3+, 4+, 5+, 6+)

=
(

1 + ns − nf
Nc

)
ig5
sx|kT |
48π2

[
〈p4〉(κ∗[p|3 + 4|p〉+ 〈p3〉[34]〈4p〉)

κ∗〈34〉2〈45〉〈56〉〈6p〉

+ 〈p4〉〈p5〉〈p|(4 + 5)(5 + 6)|p〉
κ∗〈p3〉〈34〉〈45〉2〈56〉〈6p〉

− 〈p5〉〈p|56|p〉
κ∗〈p3〉〈34〉〈45〉〈56〉2 + 〈p|3 + 4|p]2

〈34〉2〈56〉〈6p〉〈5|3 + 4|p]

+ 〈p|4 + 5|6]3

κ∗〈p3〉〈45〉2〈3|4 + 5|6]s456
− [p6]2[p|(3 + 4)(4 + 5)(3 + 4)(4 + 5)|6]

κ〈34〉〈45〉〈5|3 + 4|p]〈3|4 + 5|6]s345

]
.

(3.11)

3.4 n-point amplitude

Finally, in the following section we shall derive the general expression for one-loop ampli-
tude for one off-shell gluon and n − 1 on-shell gluons with all helicities positive. To this
end, we need the one loop amplitude for a quark-antiquark pair and n− 1 positive helicity
gluons. A suitable expression has been derived in [68]. It reads

A(1)
n+1(1−q̄ , 2+

q , 3+, · · · , (n+ 1)+) = ign+1
s

32π2

(
1 + 1

N2
c

) ∑n
l=3〈1| /K2···l/kl|1〉
〈23〉 · · · 〈(n+ 1)1〉

+ ign+1
s

48π2

(
1 + ns − nf

Nc

)
S1 + S2

〈12〉〈23〉 · · · 〈(n+ 1)1〉 ,
(3.12)

with

S1 =
n∑
j=3

〈2j〉〈1(j + 1)〉〈1| /Kj,j+1 /K(j+1)···(n+1)|1〉
〈j(j + 1)〉 ,

S2 =
n−1∑
j=3

n∑
l=j+1

〈1| /Kj···l /K(l+1)···(n+1)|1〉2〈2| /Kj···l /K(l+1)···(n+1)|1〉
〈1| /K(l+1)···(n+1) /Kj···l|(j − 1)〉〈1| /K(l+1)···(n+1) /Kj···l|j〉

×
〈(j − 1)j〉〈l(l + 1)〉〈1| /K2···(j−1)[F(j, l)]2 /K(l+1)···(n+1)|1〉
〈1| /K2···(j−1) /Kj···l|l〉〈1| /K2···(j−1) /Kj···l|(l + 1)〉sj···l

,

(3.13)
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where

F(j, l) =
l−1∑
i=j

l∑
m=i+1

/ki/km . (3.14)

After applying the Λ prescription we find that the term with the factor
(
1 + 1

N2
c

)
is of the

order Λ−1, whereas the other term is of order 1 and is the one contributing to the off-shell
amplitude. Eventually, we obtain the following expression for the off-shell amplitude:

A∗(1)
n (g∗, 3+, · · · , (n+ 1)+) = igns x|kT |

48π2

(
1 + ns − nf

Nc

)
U∗1 + U∗2 + U∗3

κ∗〈p3〉〈34〉 · · · 〈np〉 , (3.15)

with

U∗1 =
n∑
j=3

〈pj〉〈p(j + 1)〉〈p| /Kj,j+1 /K(j+1)···(n+1)|p〉
〈j(j + 1)〉 ,

U∗2 =
n−1∑
j=4

n∑
l=j+1

〈p| /Kj···l /K(l+1)···(n+1)|p〉3

〈p| /K(l+1)···(n+1) /Kj···l|(j − 1)〉〈p| /K(l+1)···(n+1) /Kj···l|j〉

×
〈(j − 1)j〉〈l(l + 1)〉〈p| /K ′3···(j−1)[F(j, l)]2 /K(l+1)···(n+1)|p〉
〈p| /K3···(j−1) /Kj···l|l〉〈p| /K3···(j−1) /Kj···l|(l + 1)〉sj···l

,

U∗3 =
n∑
l=4

〈p| /K3···l /K(l+1)···(n+1)|p〉3

〈p| /K(l+1)···(n+1) /K3···l|p〉〈p| /K(l+1)···(n+1) /K3···l|3〉

×
〈p3〉〈l(l + 1)〉[p|[F(3, l)]2 /K(l+1)···(n+1)|p〉

κ∗[p| /K3···l|l〉[p| /K3···l|(l + 1)〉s3···l
.

(3.16)

It can be readily checked that the above expression recovers the amplitudes calculated
previously for n = 3, 4, 5 in an independent way.

4 Verification with auxiliary gluon pair

In the following section we shall verify the off-shell gauge invariant amplitudes we obtained
in the previous section by applying the Λ prescription to the corresponding n-point ampli-
tude with an auxiliary gluon pair, instead of the auxiliary quark pair. This will provide a
nontrivial check of our calculations.

4.1 3-point amplitude

The 4-point one loop amplitude for one negative helicity gluon and three positive helicity
gluons is given by [66]

A(1)
4 (1−, 2+, 3+, 4+) = ig4

s

48π2

(
1 + ns − nf

Nc

) 〈24〉[24]3

[12]〈23〉〈34〉[41] . (4.1)

After applying the Λ prescription we indeed find that it leads to the same result as before:

A∗(1)
3 (g∗, 3+, 4+) = − ig

3
sx|kT |
24π2

(
1 + ns − nf

Nc

)
p · k3
k2
T

κ∗[p4]
〈p3〉〈34〉 , (4.2)

where we used p · k3 = −p · k4 since 0 = p · k = p · (−k3 − k4).
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4.2 4-point amplitude

The 5-point on-shell gluon amplitude we need is given by [65]

A(1)
5 (1−, 2+, 3+, 4+, 5+)

= ig5
s

48π2

(
1 + ns−nf

Nc

)
[12]〈23〉〈34〉〈45〉[51]

[
(s23 + s34 + s45)[25]2 − [24]〈43〉[35][25]

− [12][15]
〈12〉〈15〉

(
〈12〉2〈13〉2 [23]

〈23〉 + 〈13〉2〈14〉2 [34]
〈34〉 + 〈14〉2〈15〉2 [45]

〈45〉

)]
.

(4.3)

Applying the same procedure as before leads to the following off-shell amplitude

A∗(1)
4 (g∗, 3+, 4+, 5+) = ig4

s

48π2

x|kT |
(
1 + ns−nf

Nc

)
κ∗〈p3〉〈34〉〈45〉[5p]

×
[
sp3[p5]2 − κ[p5]

κ∗〈p5〉

(
〈p3〉2〈p4〉2 [34]

〈34〉 + 〈p4〉2〈p5〉2 [45]
〈45〉

)]
,

(4.4)

which turns out to be equal to eq. (3.5).

4.3 5-point amplitude

In order to derive 5-point off-shell amplitude we use the following 6-point on-shell one loop
amplitude [68]:

A(1)
6 (1−, 2+, 3+, 4+, 5+, 6+) = ig6

s

48π2

(
1 + ns − nf

Nc

)

×
[

〈1|2 + 3|6]3

〈12〉〈23〉〈45〉2s123〈3|1+2|6] + 〈1|3 + 4|2]3

〈34〉2〈56〉〈61〉s234〈5|3+4|2]

+ [26]3

[12][61]s345

( [23][34]
〈45〉〈5|3 + 4|2] −

[45][56]
〈34〉〈3|1 + 2|6] + [35]

〈34〉〈45〉

)
− 〈13〉3[23]〈24〉
〈23〉2〈34〉2〈45〉〈56〉〈61〉 + 〈15〉3〈46〉[56]

〈12〉〈23〉〈34〉〈45〉2〈56〉2

− 〈14〉3〈35〉〈1|2 + 3|4]
〈12〉〈23〉〈34〉2〈45〉2〈56〉〈61〉

]
. (4.5)

Applying the Λ prescription to the above on-shell result gives

A∗(1)
5 (g∗, 3+, 4+, 5+, 6+) = ig5

sx|kT |
48π2

(
1 + ns − nf

Nc

)

×
[

(κ∗[p6] + 〈p3〉[36])3

κ∗〈p3〉〈45〉2sk3〈3|k|6] + 〈p|3 + 4|p]3

〈34〉2〈56〉〈6p〉(sp3 + sp4)〈5|3 + 4|p]

+ [p6]2

κ∗s345

( [p3][34]
〈45〉〈5|3 + 4|p] −

[45][56]
〈34〉〈3|k|6] + [35]

〈34〉〈45〉

)
− 〈p3〉[p3]〈p4〉
〈34〉2〈45〉〈56〉〈6p〉 + 〈p5〉3〈46〉[56]

κ∗〈p3〉〈34〉〈45〉2〈56〉2

− 〈p4〉
3〈35〉(κ∗[p4] + 〈p3〉[34])

κ∗〈p3〉〈34〉2〈45〉2〈56〉〈6p〉

]
. (4.6)

This amplitude turns out to be equal to the one obtained with auxiliary quark line, eq. (3.6).
The comparison is detailed in appendix A.
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4.4 n-point amplitude

For the general case of n-point amplitude, the on-shell gluonic amplitude is taken from [68]

A(1)
n+1(1−, 2+, 3+, · · · , (n+ 1)+) = ign+1

s

48π2

(
1 + ns − nf

Nc

)
T1 + T2

〈12〉〈23〉 · · · 〈n1〉 , (4.7)

with

T1 =
n∑
j=2

〈1j〉〈1(j + 1)〉〈1| /Kj,j+1 /K(j+1)···(n+1)|1〉
〈j(j + 1)〉 ,

T2 =
n−1∑
j=3

n∑
l=j+1

〈1| /Kj···l /K(l+1)···(n+1)|1〉3

〈1| /K(l+1)···(n+1) /Kj···l|(j − 1)〉〈1| /K(l+1)···(n+1) /Kj···l|j〉

×
〈(j − 1)j〉〈l(l + 1)〉〈1| /K2···(j−1)[F(j, l)]2 /K(l+1)···(n+1)|1〉
〈1| /K2···(j−1) /Kj···l|l〉〈1| /K2···(j−1) /Kj···l|(l + 1)〉sj···l

.

(4.8)

Applying the Λ prescription to T2 gives the same result as for S2 in eq. (3.13). It turns
out that T1 is equal to S1 within the Λ description once you realize that the first term
in the sum over j in T1 is of the order Λ−1. In the end, applying the Λ prescription to
q̄−q+g+ · · · g+ or g−g+g+ · · · g+ gives the same expression, given by eq. (3.15).

5 On-shell limit

Now, that we have obtained the expression for A∗(1)
n (g∗, 3+, · · · , (n+1)+), we should verify

that in the on-shell limit, i.e. when |kT | → 0, we obtain the one loop on-shell amplitude with
the first gluon having the momentum xpµ. We expect that the limit consists of the sum of
the amplitudes for which the, now on-shell, gluon has either negative or positive helicity.
For tree-level amplitudes, this can be understood as follows. Firstly, at the on-shell limit,
the contributions to the amplitude that dominate have a propagator with denominator
k2
T = −κκ∗, and have exactly the form of the first term in figure 1. More precisely, they

have the form √
2 pµ x|kT |

κκ∗
Jµ (5.1)

where we use the planar Feynman rules as in eq. (10) of [69], where Jµ represents the off-
shell current, and where we included the factor x|kT | from the Λ-prescription. Using the
current conservation k · J = 0, we can see that projecting on pµ is equivalent to projecting
on −kµT /x. Secondly, using eq. (2.5) to eq. (2.7), we see that

kµT = − κ√
2
εµ−(p, q)− κ∗√

2
εµ+(p, q) , (5.2)

with polarization vectors

εµ−(p, q) = 〈p|γ
µ|q]√

2 [pq]
, εµ+(p, q) = 〈q|γ

µ|p]√
2 〈qp〉

. (5.3)

Thus we find
lim
|kT |→0

A∗(0)
n (g∗X ) = |kT |

κ∗
A(0)
n (g−X ) + |kT |

κ
A(0)
n (g+X ) , (5.4)
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where |kT |/κ∗ = eiφ for some angle φ, and |kT |/κ its complex conjugate, and where
A(0)
n (g±X ) = ε± ·J . In [69] it is explained how such a coherent sum of amplitudes becomes

an incoherent sum of squared amplitudes in a cross section.
When taking the on-shell limits in expressions consisting of spinor products and in-

variants involving the momentum pµ, the final step is to interpret this momentum as the
momentum of the now on-shell gluon, divided by x. Since the tree amplitudes are homoge-
neous in pµ of degree 1, this results in the overall factor 1/x equivalent to the one coming
from changing the projector pµ → −kµT /x above. The off-shell one-loop all-plus amplitudes
can easily be checked to be homogeneous in pµ of degree 1 too, and the same factor 1/x
will show up to cancel the factor x from the Λ-prescription.

We now verify that the same limit appears for the one-loop n-point all-plus amplitudes
we obtained in section 3.4. One can notice that U∗1 −−−−→|kT |→0

T 1 and U∗2 −−−−→|kT |→0
T 2, which

implies

lim
|kT |→0

A∗(1)
n (g∗, 3+, · · · , (n+ 1)+) = |kT |

κ∗
A(1)
n (xp−, 3+, · · · , (n+ 1)+)

+ igns x

48π2
limkT→0 (U∗3 |kT |/κ∗)
〈p3〉〈34〉 · · · 〈(n+ 1)p〉 .

(5.5)

So we already have the contribution from the amplitude with negative helicity gluon (the
first term in the expression above). We now need to show that the second term is actually
the contribution from the amplitude with a positive helicity gluon, i.e.

A(1)
n (1+, · · · , n+) = ign

48π2

(
1 + ns − nf

Nc

) ∑
1≤i<j<k<l≤n

〈ij〉[jk]〈kl〉[li]
〈12〉 · · · 〈n1〉 . (5.6)

To this end, we have to manipulate on the expression U∗3 . One can show that

U∗3 −−−−→|kT |→0

κ∗

κ[p(n+ 1)] [p|[F(3, n)]2|(n+ 1)] =κ∗

κ

∑
3≤i<j<k<l≤(n+1)

〈ij〉[jk]〈kl〉[li]

+ κ∗

κ

∑
3≤j<k<l≤(n+1)

〈pj〉[jk]〈kl〉[lp] .
(5.7)

Inserting this into eq. (5.5) leads to

lim
kT→0

A∗(1)
n (g∗, 3+, · · · , (n+ 1)+) = |kT |

κ∗
A(1)
n (xp−, 3+, · · · , (n+ 1)+)

+ |kT |
κ
A(1)
n (xp+, 3+, · · · , (n+ 1)+) .

(5.8)

More details on the above rather non-trivial calculation are given in appendix B. This
is exactly what we expect from the on-shell limit of an off-shell amplitude, based on the
limit for tree-level amplitudes (eq. (5.4)): a superposition of on-shell amplitudes, where
the off-shell gluon is replaced by a gluon with a positive and negative helicity.
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6 Summary

In this paper we have calculated expressions for amplitudes in high energy factorization
with one off-shell gluon and any number of plus-helicity gluons at one loop level. We also
obtained expressions for specific cases: 3, 4 and 5 point amplitudes. To obtain these results
we used the embedding method developed in [53, 57]. The method relies on identifying
pair of on-shell partons as auxiliary lines which can be decoupled in high energy limit,
leaving gauge invariant off-shell amplitude with proper high energy kinematics. We find
agreement with the existing calculation for the 3-point vertex with a Reggeized gluon
in [39]. Furthermore we explicitly demonstrated that we obtain the correct on-shell limit
for all calculated amplitudes. Thus, we conclude that the embedding method works at the
one-loop level, at least for amplitudes with same helicities.

Our future plans involve calculation of other QCD amplitudes and, in particular, ad-
dressing also the real corrections. The ultimate goal is to automatize the NLO calculations
in kT -factorization as well as the small-x improved TMD factorization (ITMD) [70, 71].
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A 5-point amplitude — Detailed calculation

In order to compare the off-shell gauge invariant 5-point amplitude obtained from the
auxiliary quark line q̄−q+g+g+g+g+ to the one obtained from the auxiliary gluon line
g−g+g+g+g+g+, we will rewrite both expressions. Let’s first rewrite the first term of the
amplitude with auxiliary quarks (before applying the Λ prescription, see eq. (3.6))

〈14〉〈1|(2 + 3)(3 + 4)|1〉
〈12〉〈34〉2〈45〉〈56〉〈61〉 = 〈14〉(〈12〉[23]〈31〉+ 〈1|2 + 3|4]〈41〉)

〈12〉〈34〉2〈45〉〈56〉〈61〉

= − 〈14〉[23]〈13〉
〈34〉2〈45〉〈56〉〈61〉 + 〈23〉〈45〉〈14〉2〈1|5 + 6|4]

〈12〉〈23〉〈34〉2〈45〉2〈56〉〈61〉

= − 〈14〉[23]〈13〉
〈34〉2〈45〉〈56〉〈61〉 + 〈24〉〈35〉〈14〉2〈1|5 + 6|4]

〈12〉〈23〉〈34〉2〈45〉2〈56〉〈61〉

− 〈25〉〈14〉2〈1|5 + 6|4]
〈12〉〈23〉〈34〉〈45〉2〈56〉〈61〉 .

(A.1)

Above, we have used the momentum conservation to write 〈1|2 + 3|4] = −〈1|5 + 6|4] and
the Schouten identity: 〈23〉〈45〉 = 〈24〉〈35〉+ 〈25〉〈43〉. It leads to

A(1)
5 (g∗, 3+, 4+, 5+, 6+)

= ig5x|kT |
48π2

[
− 〈p4〉[p3]〈p3〉
〈34〉2〈45〉〈56〉〈6p〉 + 〈35〉〈p4〉3〈p|5 + 6|4]

κ∗〈p3〉〈34〉2〈45〉2〈56〉〈6p〉
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− 〈p5〉〈p4〉2〈p|5 + 6|4]
κ∗〈p3〉〈34〉〈45〉2〈56〉〈6p〉 + 〈p|4 + 5|6]3

κ∗〈p3〉〈45〉2〈3|4 + 5|6]sk3

+ 〈p4〉〈p5〉(〈p4〉[4|5 + 6|p〉+ 〈p5〉[56]〈6p〉)
κ∗〈p3〉〈34〉〈45〉2〈56〉〈6p〉 − 〈p5〉〈p|56|p〉

κ∗〈p3〉〈34〉〈45〉〈56〉2

+ 〈p|3 + 4|p]2

〈34〉2〈56〉〈6p〉〈5|3 + 4|p] −
[p6]2[p|(3 + 4)(4 + 5)(3 + 4)(4 + 5)|6]
κ〈34〉〈45〉〈5|3 + 4|p]〈3|4 + 5|6]sk6

]

= ig5x|kT |
48π2

[
− 〈p4〉[p3]〈p3〉
〈34〉2〈45〉〈56〉〈6p〉 + 〈35〉〈p4〉3〈p|5 + 6|4]

κ∗〈p3〉〈34〉2〈45〉2〈56〉〈6p〉

+ 〈p|4 + 5|6]3

κ∗〈p3〉〈45〉2〈3|4 + 5|6]sk3
+ 〈p4〉〈p5〉2[56]〈6p〉
κ∗〈p3〉〈34〉〈45〉2〈56〉〈6p〉

− 〈p5〉2[56]〈6p〉
κ∗〈p3〉〈34〉〈45〉〈56〉2 + 〈p|3 + 4|p]2

〈34〉2〈56〉〈6p〉〈5|3 + 4|p]

− [p6]2[p|(3 + 4)(4 + 5)(3 + 4)(4 + 5)|6]
κ〈34〉〈45〉〈5|3 + 4|p]〈3|4 + 5|6]sk6

]
. (A.2)

Terms 4 and 5 can be combined using the Schouten identity

〈p5〉2[56]
κ∗〈p3〉〈34〉〈45〉2〈56〉2 (〈p4〉〈56〉 − 〈6p〉〈45〉) = 〈p5〉3〈46〉[56]

κ∗〈p3〉〈34〉〈45〉2〈56〉2 . (A.3)

Thus, finally, the amplitude reads

A(1)
5 (g∗, 3+, 4+, 5+, 6+)

= ig5x|kT |
48π2

[
〈p|4 + 5|6]3

κ∗〈p3〉〈45〉2〈3|4 + 5|6]sk3
+ 〈p|3 + 4|p]2

〈34〉2〈56〉〈6p〉〈5|3 + 4|p]

− [p6]2[p|(3 + 4)(4 + 5)(3 + 4)(4 + 5)|6]
κ〈34〉〈45〉〈5|3 + 4|p]〈3|4 + 5|6]sk6

− 〈p4〉[p3]〈p3〉
〈34〉2〈45〉〈56〉〈6p〉

+ 〈p5〉3〈46〉[56]
κ∗〈p3〉〈34〉〈45〉2〈56〉2 + 〈35〉〈p4〉3〈p|5 + 6|4]

κ∗〈p3〉〈34〉2〈45〉2〈56〉〈6p〉

]
.

(A.4)

Let us now rewrite the expression for the amplitude eq. (4.5). In the second term
we use

s234 = s23 + s24 + s34 −−−−−→
Λ prescr.

Λ(sp3+sp4) +O(1) = Λ(〈p3〉[3p]+〈p4〉[4p]) = Λ〈p|3 + 4|p] .

(A.5)
In the first term we use

〈1|2 + 3|6] = −〈1|4 + 5|6] −−−−−→
Λ prescr.

−Λ〈p|4 + 5|6] +O(1) (A.6)

For the factorized term in the second line, we can use the momentum conservation

s345 = sk6 . (A.7)

For the last term, before applying Λ prescription, we use:

〈1|2 + 3|4] = −〈1|5 + 6|4] −−−−−→
Λ prescr.

−Λ〈p|5 + 6|4] +O(1) (A.8)
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In the end, we have

A(1)
5 (g∗, 3+, 4+, 5+, 6+)

= ig5x|kT |
48π2

[
− 〈p|4 + 5|6]3

κ∗〈p3〉〈45〉2sk3〈3|k|6] + 〈p|3 + 4|p]2

〈34〉2〈56〉〈6p〉〈5|3 + 4|p]

+ [p6]2

κ∗sk6

( [p3][34]
〈45〉〈5|3 + 4|p] −

[45][56]
〈34〉〈3|k|6] + [35]

〈34〉〈45〉

)
− 〈p3〉[p3]〈p4〉
〈34〉2〈45〉〈56〉〈6p〉 + 〈p5〉3〈46〉[56]

κ∗〈p3〉〈34〉〈45〉2〈56〉2

+ 〈p4〉3〈35〉〈p|5 + 6|4]
κ∗〈p3〉〈34〉2〈45〉2〈56〉〈6p〉

]
.

(A.9)

Let us now compare eq. (A.4) and eq. (A.9). It is clear that the terms 2, 4, 5 and 6 are
the same. The first terms are also equal upon applying 〈3|4 + 5|6] = −〈3|k|6]. Let us now
work on the third term of eq. (A.4):

[p|(3 + 4)(4 + 5)(3 + 4)(4 + 5)|6]
〈34〉〈45〉〈5|3 + 4|p]〈3|4 + 5|6]

=[5|(3 + 4)(4 + 5)|6]
〈34〉〈45〉〈3|4 + 5|6] + [p|343(4 + 5)|6]

〈34〉〈45〉〈5|3 + 4|p]〈3|4 + 5|6]

= [53]〈3|(4 + 5)|6]
〈34〉〈45〉〈3|4 + 5|6] + [54]〈45〉[56]

〈34〉〈45〉〈3|4 + 5|6] + [p3]〈34〉[43]〈3|(4 + 5)|6]
〈34〉〈45〉〈5|3 + 4|p]〈3|4 + 5|6]

=− [35]
〈34〉〈45〉 + [45][56]

〈34〉〈3|k|6] −
[p3][34]

〈45〉〈5|3 + 4|p] .

(A.10)

If we put back the factor − [p6]2
κ∗sk6

(not writen in the calculation for simplicity), we recognize
the second line of eq. (A.9). Thus, both approaches give the same result.

B On-shell limit calculation

In this appendix we detail the calculation that leads to eq. (5.7) which implies the correct
on-shell limit for the n-point off-shell amplitude we presented in eq. (4.8).

In order to rewrite the expression for U∗3 so that the on-shell limit can be utilized, let
us come back to the expression for T2, see eq. (4.8) before applying the Λ prescription. We
focus on the first term in the sum over j (i.e. for j = 3), since it is the term that leads to
U∗3 when applying the Λ prescription. Let us call this term T3:

T3 =
n∑
l=4

〈1| /K3···l /K(l+1)···(n+1)|1〉3

〈1| /K(l+1)···(n+1) /K3···l|2〉〈1| /K(l+1)···(n+1) /K3···l|3〉

×
〈23〉〈l(l + 1)〉〈12〉[2|[F(3, l)]2 /K(l+1)···(n+1)|1〉
〈12〉[2| /K3···l|l〉〈12〉[2| /K3···l|(l + 1)〉s3···l

.

(B.1)

We have

〈1| /K3...l /K(l+1)...(n+1)|1〉 = −〈1| /K2
3...l|1〉 − 〈1| /K3...l|2]〈21〉 −−−−−→

Λ prescr.
Λκ∗

l∑
i=3

spi . (B.2)
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Similar, we have

〈1| /K(l+1)...(n+1) /K3...l|2〉 = −〈12〉[2| /K3...l|2〉 −−−−−→Λ prescr.
−Λκ∗

l∑
i=3

spi , (B.3)

〈1| /K(l+1)...(n+1) /K3...l|3〉 =− 〈1| /K2
3...l|3〉 − 〈12〉[2| /K3...l|3〉

=〈13〉s3...l − 〈1| /K
2
3...l|3〉 − 〈12〉[2| /K3...l|3〉 ,

(B.4)

which implies

〈1| /K(l+1)...(n+1) /K3...l|3〉 −−−−−→Λ prescr.
−
√

Λ
(
κ∗[p| /K3...l|3〉+ 〈p3〉s3...l

)
−−−−→
kT→0

−
√

Λ〈p3〉s3...l .

(B.5)
We may also notice that, for l = n, we have

[2| /K3...l|(l + 1)〉 = [2| /K3...n|(n+ 1)〉 = −[21]〈1(n+ 1)〉 −−−−−→
Λ prescr.

κ〈p(n+ 1)〉 . (B.6)

This is the only term in the sum over l that has κ in the denominator and that is the only
non vanishing term when kT tends to 0.

Putting all this together leads to

T3 −−−−−→
Λ prescr.

U∗3 =κ∗
n−1∑
l=4

(∑l
i=3 spi

)2
〈l(l + 1)〉[p|[F(3, l)]2 /K(l+1)···(n+1)|p〉

[p| /K3···l|l〉[p| /K3···l|(l + 1)〉s2
3···l

+ κ∗
(
∑n
i=3 spi)

2 〈n(n+ 1)〉[p|[F(3, n)]2|(n+ 1)]〈(n+ 1)p〉
[p(n+ 1)]〈(n+ 1)n〉κ〈p(n+ 1)〉s2

3···n

−−−−→
kT→0

κ∗

κ

(
∑n
i=3 spi)

2 [p|[F(3, n)]2|(n+ 1)]
[p(n+ 1)]s2

3···n
.

(B.7)

Notice that

s3···n = sp(n+1) = 〈p(n+ 1)〉[(n+ 1)p] = −
n∑
i=3
〈pi〉[ip] = −

n∑
i=3

spi . (B.8)

Back to U∗3 , we have

lim
kT→0

|kT |
κ∗

U∗3 = |kT |
κ[p(n+ 1)] [p|[F(3, n)]2|(n+ 1)]. (B.9)

This demonstrates the first relation in eq. (5.7). We now have to prove the second one
i.e. we need to show that the obtained expression corresponds to the numerator of the
amplitude for n− 1 gluons with positive helicity (up to some factor). Actually, we should
first rewrite this numerator∑

1≤i<j<k<l≤n
〈ij〉[jk]〈kl〉[li] = 1

[1n]
∑

1≤i<j<k<l≤n
〈ij〉[jk]〈kl〉[li][1n]

= 1
[1n]

∑
1≤i<j<k<l≤n

([1l]〈lk〉[kj]〈ji〉[in] + [1i]〈ij〉[jk]〈kl〉[ln])

= 1
[1n]

 ∑
2≤i<j<k<l<n

+
∑

1≤l<k<j<i≤n

 [1i]〈ij〉[jk]〈kl〉[ln].

(B.10)
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Now we can work on U∗3 . Let’s first express F in terms of a sum. For a direct
comparison, we should also use the expression of U∗3 with the following change in the
momenta label: p → 1, ∀i ∈ 3, . . . , n + 1, i → i − 1 (then momentum conservation
expresses the same way i.e.

∑n
i=1 ki = 0).

lim
kT→0

|kT |
κ∗

U∗3 = |kT |
κ[1n] [1|[F(2, n− 1)]2|n]

= |kT |
κ[1n]

∑
2≤i<j<n
2≤k<l<n

[1i]〈ij〉[jk]〈kl〉[ln]
(B.11)

We have then for both eq. (B.11) and eq. (B.10) a sum over the same expression. We can
then, to shorten the demonstration, forget about the summed term (i.e. [1i]〈ij〉[jk]〈kl〉[ln])
and work directly on the sums to show that they are the same in this context.
On one side we have∑

2≤i<j<n
2≤k<l<n

=
∑

2≤i<j<k<l<n
+

∑
2≤i≤k<j≤l<n

+
∑

2≤i≤k<l<j<n

+
∑

2≤k<i<j≤l<n
+

∑
2≤k<i≤l<j<n

+
∑

2≤k<l<i<j<n

(B.12)

on the other hand, we have

∑
2≤i<j<k<l<n

+
∑

1≤l<k<j<i≤n
=

∑
2≤i<j<k<l<n

−

 ∑
2≤k<l<j<i≤n

+
∑

2≤k<j≤l<i≤n
+

∑
2≤k<j<i≤l<n


=

∑
2≤i<j<k<l<n

+

 ∑
2≤i≤k<l<j<n

+
∑

2≤k<i≤l<j<n
+

∑
2≤k<l<i<j<n


+

 ∑
2≤i≤k<j≤l<n

+
∑

2≤k<i<j≤l<n
+

∑
2≤k<j<i≤l<n


−

∑
2≤k<j<i≤l<n

=
∑

2≤i1<j1<n
2≤i2<j2<n

(B.13)

The first equality is obtained by momentum conservation on the index l (in the second
term only) and the second one also by momentum conservation, on the index i this time
(for terms 2 and 3). This finally proves the second relation in eq. (5.7) which leads then
to the expected on-shell limit for the amplitude in eq. (3.15).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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