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In this addendum we re-assess the constraints on Non-Standard Interactions (NSI) from the
global analysis of neutrino oscillation data after including the new results released since the
publication of ref. [1], in particular those presented at the Neutrino2020 conference. The
new data considered here includes the total energy spectrum and the day-night asymmetry
of the 2970-day SK4 solar neutrino sample [2], as well as the latest results from long-
baseline (LBL) experiments T2K [3, 4] and NOvA [5, 6]. In addition, we have updated the
reactor experiments Double-Chooz [7, 8] to 1276/587 days of far/near detector data and
RENO [9, 10] to 2908 days of exposure.

The main effect driven by the new results concerns the analysis of solar and KamLAND
data discussed in section 3 of ref. [1]. As explained there, at the time of publication there
was a tension of ∆χ2 ∼ 7.4 between these two data sets within the context of the 3ν
oscillation analysis, arising from a combination of two effects: (a) the 8B measurements
performed by SNO, SK and Borexino did not show any evidence of the low energy spectrum
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Figure 1. Left: χ2
LMA(η) − χ2

no-NSI (full lines) and χ2
LMA-D(η) − χ2

no-NSI (dashed lines) for the
analysis of different data combinations (as labeled in the figure) as a function of the NSI quark
coupling parameter η. The full dark blue and light blue curves lie on top of each other. Right:
χ2

dark − χ2
light ≡ χ2

LMA-D(η)− χ2
LMA(η) as a function of η. See text for details.

turn-up expected in the standard LMA-MSW [11, 12] solution for the value of ∆m2
21 favored

by KamLAND, and (b) the observation of a non-vanishing day-night asymmetry in SK,
whose size was considerably larger than what predicted for the ∆m2

21 value indicated
by KamLAND. Such tension could be alleviated in presence of a non-standard matter
potential, thus leading to a sizable decrease in the minimum χ2 for the LMA solution for
most values of η (∆χ2 ∼ −7 → −11), as could be observed in the left panel in figure 4 of
ref. [1]. Correspondingly, in figure 2 of the same work, which showed the two-dimensional
projections on the matter potential parameters (εηD, ε

η
N ) of the 1σ, 90%, 2σ, 99% and 3σ

CL (2 dof) allowed regions from the analysis of solar and KamLAND data in the presence
of non-standard neutrino-matter interactions, the 3ν standard LMA oscillation scenario
(εηD = εηN = 0) was outside of such allowed regions for most values of η.

As discussed in ref. [13], with the updated SK4 solar data the tension between the best
fit ∆m2

21 of KamLAND and that of the solar results has decreased to ∆χ2
solar = 1.3. This

is due to both the smaller day-night asymmetry, and the slightly more pronounced turn-up
in the low energy part of the spectrum. So now in the left panel in figure 1 we see that for
the LMA solution the fit with NSI leads to a decrease of about 1 unit of χ2 for most values
of η. Correspondingly in figure 2 the 3ν standard LMA oscillation scenario, εηD = εηN = 0
lies inside the 1σ LMA allowed regions for most values of η. Concerning the status of the
LMA-D solution, the right panel in figure 1 shows that now LMA-D is allowed below 3σ for
η > −40◦ in the analysis of solar+KamLAND, for −38◦ . η . 87◦ in the global oscillation
analysis, and for −38◦ . η . 20◦ when including information from the total event rate
at COHERENT.1 From the left panel we read that the best fit for the global analysis of

1We remind the reader that, as discussed in section 5 of ref. [1], while oscillation constraints apply to
models where NSI are generated by arbitrarily light mediators, there is a minimum mediator mass for which
the bounds of COHERENT are relevant, which we estimate to be O(10–50)MeV (see also refs. [14, 15]).
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Figure 2. Two-dimensional projections of the 1σ, 90%, 2σ, 99% and 3σ CL (2 dof) allowed regions
from the analysis of solar and KamLAND data in the presence of non-standard matter potential
for the matter potential parameters (εηD, ε

η
N ), for sin2 θ13 = 0.022 and after marginalizing over the

oscillation parameters. The best fit point is marked with a star. The results are shown for fixed
values of the NSI quark coupling parameter η. The panels with a scale factor “[×N ]” in their
lower-left corner have been “zoomed-out” by such factor with respect to the standard axis ranges,
hence the grey square drawn in each panel always corresponds to max

(
|εηD|, |ε

η
N |

)
= 2 and has the

same size in all the panels. For illustration we also show as shaded green areas the 90% and 3σ CL
allowed regions from the analysis of the atmospheric and LBL data. Note that, as a consequence
of the periodicity of η, the regions in the first (η = −90◦) and last (η = +90◦) panels are identical
up to an overall sign flip.
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Figure 3. Dependence of the ∆χ2 function on the effective NSI parameters relevant for matter
effects in LBL experiments with arbitrary values of η, from the global analysis of solar, atmospheric,
LBL-CPC and reactor data (blue lines) and including also COHERENT (cyan lines). The upper
(lower) panels correspond to solutions within the LMA (LMA-D) subset of parameter space.

oscillations and also in combination with COHERENT corresponds to η ∼ −45◦ for LMA.
For LMA-D the best fit for OSC (OSC+COH) is obtained for η ∼ −15◦ (η ∼ −20◦).

In figure 3 we plot the dependence of the global χ2 on each NSI effective coupling rele-
vant for neutrino propagation in the Earth after marginalization over all other parameters
including η, so that the ∆χ2 functions plotted in the figure are defined with respect to the
absolute minimum for any η. When compared with the corresponding figure in ref. [1] we
observe that, following the discussion above, the minimum χ2 within LMA and LMA-D are
almost the same, while previously we had ∆χ2

min,LMA-D ∼ 3. The other observable differ-
ence is that including COHERENT has now a larger impact on the allowed ranges in LMA.

Finally, for the sake of convenience and comparison with previous results we list in
the first columns in table 1 the 95% CL ranges for NSI with up-quarks only, down-quarks
only, and protons. Generically the allowed ranges with in LMA are slightly reduced and,
as expected, the allowed ranges for εee − εµµ are now more symmetric around zero.
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OSC + COHERENT
LMA LMA⊕ LMA-D LMA = LMA⊕ LMA-D

εuee − εuµµ
εuττ − εuµµ

[−0.072,+0.321]
[−0.001,+0.018]

⊕[−1.042,−0.743]
[−0.016,+0.018]

εuee

εuµµ

εuττ

[−0.067,+0.547]
[−0.076,+0.455]
[−0.076,+0.455]

εueµ [−0.050,+0.020] [−0.050,+0.059] εueµ [−0.050,+0.020]
εueτ [−0.077,+0.098] [−0.111,+0.098] εueτ [−0.077,+0.099]
εuµτ [−0.006,+0.007] [−0.006,+0.007] εuµτ [−0.006,+0.007]

εdee − εdµµ
εdττ − εdµµ

[−0.084,+0.326]
[−0.001,+0.018]

⊕[−1.081,−1.026]
[−0.001,+0.018]

εdee

εdµµ

εdττ

[−0.063,+0.503]
[−0.072,+0.408]
[−0.072,+0.407]

εdeµ [−0.051,+0.020] [−0.051,+0.038] εdeµ [−0.050,+0.020]
εdeτ [−0.077,+0.098] [−0.077,−0.098] εdeτ [−0.078,+0.098]
εdµτ [−0.006,+0.007] [−0.006,+0.007] εdµτ [−0.006,+0.007]

εpee − εpµµ
εpττ − εpµµ

[−0.190,+0.927]
[−0.001,+0.053]

⊕[−2.927,−1.814]
[−0.052,+0.053]

εpee

εpµµ

εpττ

[−0.222,+1.801]
[−0.248,+0.282]⊕ [+0.625,+1.551]
[−0.248,+0.281]⊕ [+0.646,+1.548]

εpeµ [−0.145,+0.058] [−0.145,+0.145] εpeµ [−0.145,+0.058]
εpeτ [−0.238,+0.292] [−0.292,+0.292] εpeτ [−0.239,+0.293]
εpµτ [−0.019,+0.021] [−0.021,+0.021] εpµτ [−0.019,+0.021]

Table 1. 2σ allowed ranges for the NSI couplings εuαβ , εdαβ and εpαβ as obtained from the global
analysis of oscillation data (left column) and also including COHERENT constraints. The results
are obtained after marginalizing over oscillation and the other matter potential parameters either
within the LMA only and within both LMA and LMA-D subspaces respectively (this second case
is denoted as LMA ⊕ LMA-D). Notice that once COHERENT data are included the two columns
become identical in all cases since for NSI couplings to f = u, d, p the LMA-D solution is only
allowed above 95% CL.
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