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1 Introduction

Transverse momentum dependent (TMD) distributions extend the parton model, including
the transverse motion of hadron’s constituents. Any TMD distribution is a function of two
dynamical variables x and b. The variable x is the fraction of hadron’s momentum carried
by the parton. The variable b is the transverse distance that is Fourier conjugated to the
transverse momentum of parton kT . In the limit b→ 0, which corresponds to integrated or
unobserved transverse momentum, a TMD distribution turns to the corresponding collinear
parton distribution functions (PDFs) or fragmentation function (FFs). Technically, this
relation, which is also known as the matching between TMD parton distribution functions
(TMDPDFs) and PDFs (or TMD fragmentation functions (TMDFFs) and FFs), is obtained
by the operator product expansion, and its leading power term is very well studied. In
the present work, we extend this formalism beyond the leading power term and compute
matching of TMDPDFs to PDFs of twist-2 and twist-3 at all powers of b2-expansion.

The matching of TMDPDFs to PDFs is an important part of the TMD factorization
approach. The review of various aspects of TMD factorization can be found in [1–3]. On the
theory side, the matching establishes the connection with the resummation formalism and
allows interpolation between TMD factorized cross-section and fixed order computations,
see f.i. [4–6]. On the phenomenological side, the matching essentially reduces the parametric
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freedom for TMD ansatzes. The modern phenomenology of TMD distributions is grounded
on the matching relations and demonstrates perfect agreement with a large amount of
experimental data [7, 8].

So far, all studies of matching relations were restricted to the leading power term
only. The leading power term is the most simple and numerically dominant contribution.
Nonetheless, several aspects make the study of power corrections interesting. First of all,
such a study carries a significant amount of methodological novelty. Indeed, the power
corrections are generally considered as a complicated field, and their computation is an
interesting theoretical task. In this work, we have computed the whole series of power
correction with PDFs of twist-2 and twist-3, which is almost unprecedented. Methodolog-
ically, the closest example of similar computation is the computation of kinematic power
corrections to Deeply Virtual Compton Scattering (DVCS) made by Braun and Manashov
in ref. [9]. The second point of interest is the derivation of the matching relations for polar-
ized TMD distributions. For many TMD distributions already, the leading power matching
involves twist-3 functions and requires a non-trivial computation. The computations for
different TMDPDFs have been made by different methods in refs. [10–13]. In ref. [14], all
polarized TMDPDFs were systematically computed in a single scheme, and the agreement
with previous computations had been shown. However, all these computations were unable
to find the non-trivial matching of the pretzelosity distribution, which is derived for the
first time in this work. The third point of interest is the comparison of the derived power
corrections to the extracted ones. There are many examples, where the part of the power
correction proportional to twist-2 PDFs (Wandzura-Wilczek approximation) is numerically
dominant [15, 16]. However, there are also known cases of opposite behavior [16]. In this
work, we demonstrate that Wandzura-Wilczek-type terms produce only a small part of the
kT -profile of TMD distributions, and the contribution of higher twist PDFs is essential.
The forth point of interest is the target-mass dependence of TMD distributions. At higher
powers of small-b series, the target mass is the only scale that compensates the dimension of
bn for twist-2 and twist-3 distributions. Thus, the corrections derived here are target-mass
corrections ∼ (M2b2). Their knowledge is essential since much of the experimental data is
measured on nuclei.

Formally, the matching is obtained by operator product expansion of the transverse
momentum dependent operator (defined explicitly in (3.1)) at small values of b. The latter
has the schematic form

OTMD(z, b) = O2(z) + bµOµ
3 (z) + bµ1bµ2

2 Oµ1µ2
4 (z) + . . . =

∞∑
n=0

bµ1 . . . bµn
n! Oµ1...µn

n+2 (z), (1.1)

where z is the distance among the fields of the operator along the light-cone. The operators
On(z) are light-cone operators with the collinear twist n. For example, the leading power
operator is O2(z) ∼ q̄(zn)[zn, 0]q(0), where n is the light-cone vector, [a, b] is the straight
gauge link, and q is the quark field. Each operator On is an integral convolution of a
coefficient function and an actual quantum-field operator. The coefficient functions for O2
are all known at next-to-leading order (NLO) in αs-expansion [17, 18], and NNLO [5, 19–
21]. The leading power coefficient function for unpolarized distribution has been recently
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computed at N3LO [22, 23]. Beyond the leading power the information is sparse. The
tree order matching for O3 has been derived in [14], see also [10–13] for particular cases.
The only NLO computation for O3 is made for the Sivers function [24]. In this work, we
derive only the tree order matching, ignoring the αs-suppressed terms in the coefficient
functions. For that reason, we do not specify the renormalization scales and omit the
corresponding arguments.

The operators with the collinear twist n can be presented as a sum of operators with
different geometrical twists,

On(z) =
n∑
t=2

Ct(z; {y})⊗Ot({y}), (1.2)

where we omit indices µ1 . . . µn for brevity. For shortness, we call this procedure as twist-
decomposition. Generally, operators Ot depend on many spatial points, which are parame-
terized by a set of variables {y}. They are mapped to the single variable z by the integral
convolution ⊗. The geometric twist has a strict definition as the “dimension minus spin”
of the operator. Operators with different geometrical twists have different transformation
properties and thus represent independent physical observables. The matrix elements of
operators with a given geometrical twist define a self-contained set of PDFs. Such a set
of PDFs does not mix with other sets, and their evolution is autonomous. For the intro-
duction to the twist decomposition see e.g. [25, 26], the review of modern development
can be found in [9]. Therefore, the central task is to derive the twist-decomposition for
each operator on the right-hand-side (r.h.s. ) of (1.1). In turn, the small-b expansion of
TMDPDFs in terms of collinear PDFs is obtained by evaluating the matrix element over
the derived operator relation.

In the case of FF, the twist-decomposition operation is not well defined. The main
reason is the absence of a local expansion for fragmentation operators. In ref. [27] it has
been shown that OPE for FF is defined up to terms that satisfy the Laplace equation
(for the twist-2 part). Therefore, alternative methods such as differential equations [27],
Feynman diagram correspondences [19, 28–30] and Lorentz invariant relations [13], should
be used. For that reason, we do not consider the matching of TMDFFs to FFs in the
present work. For an interested reader, we present some discussion on power corrections
for TMDFF in appendix B.

In this work, we compute only quark TMD distributions, since they are of the prime
practical interest. In total, there are eight TMDPDFs in the leading term of the factoriza-
tion theorem [31]. They can be split into two classes with respect to the structure of match-
ing relations. Four distributions, namely f1(unpolarized), g1L (helicity), h1 (transversity)
and h⊥1T (pretzelosity) have contributions of only even collinear twists

Feven(x, b) = f(x) +M2b2
4∑
t=2

C
(2)
t (x)⊗ Tt + (M2b2)2

6∑
t=2

C
(4)
t (x)⊗ Tt + . . . , (1.3)

where Tt is a collinear distribution of twist-t and T2(x) = f(x) is the twist-2 PDF. Another
four distributions, namely f⊥1T (Sivers), g1T (worm-gear T), h⊥1 (Boer-Mulders) and h⊥1L
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Figure 1. Ordering of parton distributions in the small-b series for TMD distributions (1.3) (left)
and (1.4) (right). f(x) denotes the ordinary PDFs. Tn denotes the parton distribution of twist-n,
which is generally a function of several variables. The gray boxes designate the terms computed in
this work.

(worm-gear L), have contributions of only odd collinear twists

Fodd(x, b) =
3∑
t=2

C
(1)
t (x)⊗ Tt +M2b2

5∑
t=2

C
(3)
t (x)⊗ Tt + . . . . (1.4)

The graphical representation of these sums is shown in figure 1. The parameter M
in (1.3), (1.4) is the mass of the hadron, which is inserted such that all coefficient functions
C

(n)
t are dimensionless. The sums (1.3) and (1.4) can be reorganized by collecting together

distributions of particular twist. For example, equation (1.3) takes the form

Feven(x, b) =
∞∑
n=0

(M2b2)nC(n)
2 (x)⊗ f (1.5)

+
∞∑
n=1

(M2b2)nC(n)
3 (x)⊗ T3 +

∞∑
n=1

(M2b2)nC(n)
4 (x)⊗ T4 + . . . .

In the present work, we derive the first and the second terms of this sum for all eight TMD
distributions. In figure 1, the shaded areas show the corresponding terms.

To perform this computation, we use the technique inherited from [32, 33], where it was
used for the analyses of twist-4 operators. The technique is based on the local equivalence
of the Lorentz transformation group to SL(2,C) group (so-called spinor formalism) [34].
Within the spinor formalism, the twist-decomposition can be elegantly formulated as the
action of a certain spinor-differential operator (see section 3.2). In ref. [9] this method
has been used to derivate kinematic power corrections (t/Q2) in deeply-virtual Compton
scattering. In contrast to ref. [9], TMD operators are essentially non-local. They contain
the gauge link along a staple contour. To overcome this difficulty, we introduce a formal
local expansion for the TMD operator. To our best knowledge, it is the first time when
the series of local operators successfully describes the infinite staple contours. Almost all
expressions presented in this article are novel. Only some of them, namely b0- and b1-terms,
can be found in literature and agree with it. Additionally, we demonstrate that the series
of corrections for the unpolarized TMDPDF f1 can be derived differently using the results
of ref. [35] and also agrees with it.
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The article is organized as follows. In section 2 we articulate all definitions used in
our work. This is an important part because we deal with functions that do not have a
common definition such as polarized distributions and PDFs of twist-3. In section 2.3 we
specify the conventions for the spinor formalism used in our work. Section 3 is devoted
to the detailed description of the computation method. It is split into three subsections
in accordance with three principal stages of the computation:(1.1), (1.2) and (1.3), (1.4).
So, in section 3.1 the expansion (1.1) of the TMD operator in the series of (local) collinear
operators is described. In section 3.2 we explain the method of the twist-decomposition and
derive it for TMD operators (1.2), with results for twist-3 part presented in the appendix A.
The particularities of the computation of matrix elements for twist-decomposed operators
are given in section 3.3. The result of the computation and the discussion are given in
section 4.

2 Definitions and conventions

In this work, we operate with eight TMD distributions. Three of them have leading match-
ing onto collinear twist-2 distributions, and four onto collinear twist-3 distributions, and
one (pretzelosity) matches onto collinear twist-4 distribution. They essentially depend
on the conventions related to P-odd structures, such as Levi-Civita tensor, γ5, etc. An
additional set of conventions is brought by the spinor formalism which is used for the
twist-decomposition. There is no commonly accepted convention for all these subjects in
the literature, e.g. compare conventions in refs. [12–14, 25, 34, 36–38]. Nicely, the final re-
sult is mostly independent on these agreements, because it is the relation between physical
distributions. Nonetheless, they play an important role in the intermediate steps. In order
to structure the presentation we collect all used definitions and conventions in this section.

2.1 Definition of TMD distributions

The light-cone decomposition plays the central role. It is defined by two light-like vectors
nµ and n̄µ (n2 = n̄2 = 0, (nn̄) = 1). We use the ordinary notation of vector decomposition

vµ = v+n̄µ + v−nµ + vµT , (2.1)

where v+ = (nv), v− = (n̄v), and vT is the transverse component (vTn) = (vT n̄) = 0.
In what follows, the direction n̄µ is associated with the large-component of the hadron
momentum pµ,

pµ = p+n̄µ + nµ

2
M2

p+ , (2.2)

where M is the mass of the hadron (p2 = M2). It is important, that the hadron’s mo-
mentum does not have a transverse component, which gives the physical definition of the
transverse plane. The spin of the hadron is parameterized by the spin-vector Sµ, (S2 = −1,
(pS) = 0). Its light-cone decomposition is

Sµ = λ
p+

M
n̄µ − λ M

2p+n
µ + sµT , (2.3)
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where the λ is the helicity of the hadron, and sµT is the transverse component of the spin,
s2
T = λ2 − 1.

The generic quark TMDPDF is defined as

Φij(x, b) =
∫
dz

2πe
−ixzp+ (2.4)

×〈p, S|q̄j (zn+ b) [zn+ b,∓∞n+ b][∓∞n+ b,∓∞n][∓∞n, 0]qi(0)}|p, S〉,

where the vector bµ is a transverse vector, (bp) = 0. The Wilson lines in the definition (2.4)
are straight Wilson lines. Rigorously, one should add the T- and anti-T-ordering within
the TMD operator. However, for the parton distributions (in contrast to fragmentation
functions) it can be safely omitted (see e.g. discussion in [24]). TMDPDFs that appear in
different processes have Wilson lines pointing into different direction, which is indicated
by ∓∞n in (2.4). So, the TMD distributions which appear in semi-inclusive deep-inelastic
scattering (SIDIS) have Wilson lines pointing to +∞n, while in Drell-Yan they point to
−∞n. In the following, we distinguish these cases, and the upper sign refers to the Drell-
Yan case, whereas the lower sign refers the SIDIS case.

The open indices (ij) of the TMD operator in eq. (2.4) are to be contracted with
different gamma-matrices, which we denote generically as Γ,

Φ[Γ] = 1
2Tr (ΦΓ) . (2.5)

There are only three Dirac structures that appear in the leading term of the TMD factor-
ization theorem, these are Γ = {γ+, γ+γ5, iσ

α+γ5}. Here, the index α is transverse and

σµν = i

2(γµγν − γνγµ), γ5 = iγ0γ1γ2γ3 = −i4! εµναβγ
µγνγαγβ , (2.6)

with ε0123 = −ε0123 = 1. In the naive parton model interpretation, these gamma-structures
are related to the observation of unpolarized (γ+), longitudinally polarized (γ+γ5) and
transversely polarized (iσα+

T γ5) quarks inside the hadron. The standard parameterization
of leading TMDPDFs in the position space reads

Φ[γ+](x, b) = f1(x, b) + iεµνT bµsTνMf⊥1T (x, b), (2.7)

Φ[γ+γ5](x, b) = λg1L(x, b) + ibµs
µ
TMg1T (x, b), (2.8)

Φ[iσα+γ5](x, b) = sαTh1(x, b)− iλbαMh⊥1L(x, b)

+iεαµT bµMh⊥1 (x, b)− M2b2

2

(
gαµT
2 − bαbµ

b2

)
sTµh

⊥
1T (x, b). (2.9)

The tensors gµνT and εµνT are defined as

gµνT = gµν − nµn̄ν − n̄µnν , εµνT = ε−+µν , (2.10)

such that g11
T = g22

T = −1, ε12
T = −ε21

T = 1, and the rest components are zero. The definition
of the TMDPDFs coincides with the conventional one in [14, 36, 39]. In the following, we
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also compare to refs. [9, 33, 37], where the definitions of ε and sT have opposite sign,
and ref. [14], where the definitions of ε and εT have opposite sign (so, component-wise
the tensor εµνT is the same). TMDPDFs defined in (2.7)–(2.9) are dimensionless functions
which depend only on the modulus of b, but not on the direction. The conventional
names for them are (see e.g. [36, 39]): unpolarized (f1), Sivers (f⊥1T ), helicity (g1L), worm-
gear T (g1T ), transversity (h1), worm-gear L (h⊥1L), Boer-Mulders (h⊥1 ) and pretzelosity
(h⊥1T ) distributions.

The position space representation of TMD distribution is advantageous, because the
TMD evolution is multiplicative in the position space. For that reason, the phenomeno-
logical studies that incorporate the TMD evolution are made in the position space, for the
most recent examples see [7, 8]. TMD distributions in the momentum space are obtained
by the Fourier transformation

Φ[Γ](x, pT ) =
∫

d2b

(2π)2 e
−i(bpT )Φ[Γ](x, b). (2.11)

The transformation rules for particular TMD distributions can be found in refs. [14, 39].

2.2 Definition of collinear distributions

The collinear distributions of twist-2 are defined as [25]

〈p, S|q̄(zn)[zn, 0]γ+q(0)|p, S〉 = 2p+
∫
dxeixzp

+
f1(x), (2.12)

〈p, S|q̄(zn)[zn, 0]γ+γ5q(0)|p, S〉 = 2λp+
∫
dxeixzp

+
g1(x), (2.13)

〈p, S|q̄(zn)[zn, 0]γ+iσα+γ5q(0)|p, S〉 = 2sαT p+
∫
dxeixzp

+
h1(x), (2.14)

where index α is transverse. These distributions are known as unpolarized (f1), helicity
(g1) and transversity (h1) PDFs. The variable x belongs to the range [−1, 1] and for x > 0
(x < 0) PDFs are interpreted as probability densities for (anti-)quarks.

There is no standard definition for the collinear distributions of twist-3. Here, we use
the definition used in [14]. We define

〈p, S|gq̄(z1n)Fµ+(z2n)γ+q(z3n)|p, S〉 (2.15)

= 2εµνT sνT (p+)2M

∫
[dx]e−ip+(z1x1+x2z2+x3z3)T (x1, x2, x3),

〈p, S|gq̄(z1n)Fµ+(z2n)γ+γ5q(z3n)|p, S〉 (2.16)

= 2isµT (p+)2M

∫
[dx]e−ip+(z1x1+x2z2+x3z3)∆T (x1, x2, x3),

〈p, S|gq̄(z1n)Fµ+(z2n)iσα+γ5q(z3n)|p, S〉 (2.17)

= 2εµαT (p+)2M

∫
[dx]e−ip+(z1x1+x2z2+x3z3)δTε(x1, x2, x3)

+2iλgµαT (p+)2M

∫
[dx]e−ip+(z1x1+x2z2+x3z3)δTg(x1, x2, x3),
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where we omit Wilson lines that connect the fields in operators for brevity. The definition of
the distributions T and ∆T coincides with [40] and [37], taking into account the difference
in conventions for the ε-tensor (explained after (2.10)). In ref. [40] one can also find
comparison with other definitions. The integration measure [dx] is defined as∫

[dx] =
∫ 1

−1
dx1dx2dx3δ(x1 + x2 + x3). (2.18)

The delta-function in this measure reflects the independence of the matrix element on
the global position (z1 + z2 + z3) of the field operator. Due to the delta-function in the
measure, the distributions of twist-3 effectively depends on only two variables. Nonetheless,
it is convenient to keep all three variables x1,2,3 as independent. It reveals the symmetry
properties [14]

T (x1, x2, x3) = T (−x3,−x2,−x1), ∆T (x1, x2, x3) = −∆T (−x3,−x2,−x1), (2.19)
δTε(x1, x2, x3) = δTε(−x3,−x2,−x1), δTg(x1, x2, x3) = −δTg(−x3,−x2,−x1). (2.20)

Each range of x1,2,3 ≶ 0 has a specific partonic interpretation [25].

2.3 Spinor formalism

The twist-decomposition for local operators consists in the decomposition of tensors with
many indices into irreducible representations of the Lorentz group SO(3,1). This procedure
is greatly simplified in the spinor formalism. The spinor formalism is used in many parts
of quantum field theory, for a review see [34, 38]. Here we remind only of the properties
that are necessary for the current work.

The spinor formalism is grounded on the local isomorphism of the Lorentz group to
the group of complex unimodular matrices SL(2,C). The isomorphism is realized by the
map of a four-vector to a hermitian matrix by the rule

xαα̇ = xµσ
µ
αα̇, (2.21)

where σµ = {1, σ1, σ2, σ3} with σi being the Pauli matrix. The scalar product of any two
vectors is xµyµ = xαα̇y

α̇α/2. In the spinor formulation one must distinguish dotted and
undotted indices because they are related to conjugated representations, (uα)∗ = ūα̇. The
scalar product of two spinors is defined as

(uv) = −uαvβεαβ = −(vu), (ūv̄) = −ūα̇v̄β̇ε
α̇β̇ = −(v̄ū), (2.22)

where ε12 = −ε1̇2̇ = 1 as in refs. [9, 32, 33].
The light-like vectors n and n̄ in the spinor formalism can be written as

nαα̇ = λαλ̄α̇, n̄αα̇ = µαµ̄α̇, (2.23)

where λ and µ are independent spinors normalized as (λ̄µ̄)(µλ) = 2. The spinors λ and µ
form the basis, which can be used to decompose any tensor. In particular, the decomposi-
tion (2.1) for an arbitrary four-vector is

xαα̇ = λαλ̄α̇x
− + µαµ̄α̇x

+ − λαµ̄α̇xT − µαλ̄α̇x̄T , (2.24)

– 8 –
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where xT and x̄T are transverse components. xT and x̄T are complex numbers, such that
(xT )∗ = x̄T and −2xT x̄T = gµνT xµxν < 0. The explicit expression for basis spinors and
vector components is not important for present work.1

The Dirac bi-spinors are written as composition of two-component spinors

q̄ =
(
χβ , ψ̄α̇

)
, q =

(
ψα

χ̄β̇

)
. (2.25)

The decomposition of these spinors in the basis (2.23) is

ψα = λαψ− − µαψ+
(µλ) , ψ̄α̇ = λ̄α̇ψ̄− − µ̄α̇ψ̄+

(λ̄µ̄)
, (2.26)

where ψ+ = (λψ), ψ− = (µψ), etc. In the same way, we write down the decomposition of
the gluon-strength tensor,

Fαα̇,ββ̇ = 2(fαβεα̇β̇ − εαβ f̄α̇β̇), (2.27)

where fαβ and f̄α̇β̇ are symmetric tensors, f̄ = f †. In our computation we face only the
gluon strength-tensor with one index transverse, and another contracted with the vector
n. The decomposition of such a tensor is

Fαα̇,+ = λαλ̄α̇

(
f+−
(µλ) + f̄+−

(λ̄µ̄)

)
− µαλ̄α̇

f++
(µλ) − λαµ̄α̇

f̄++

(λ̄µ̄)
, (2.28)

where f++ = fαβλ
αλβ , f+− = fαβλ

αµβ , etc. The first term in (2.28) corresponds to F−+
components, whereas the last two terms describe Fµ+ with µ being transverse index.

Using the definitions (2.25) and (2.26) we write down the decompositions for the bi-
spinor combinations. They are

q̄γ+q = ψ̄+ψ+ + χ+χ̄+, q̄γ+γ5q = −ψ̄+ψ+ + χ+χ̄+, (2.29)

q̄iσ(αα̇)+γ5q = −2
(
µαλ̄α̇

(µλ) χ+ψ+ + λαµ̄α̇

(λ̄µ̄)
ψ̄+χ̄+

)
, (2.30)

where the order of the fields on l.h.s. and r.h.s. is preserved. Let us note that only “plus”
components of quark fields appear in eqs. (2.29), (2.30). It is not accidental, but is part
of definition for the leading power TMD distributions. The components ψ+, χ+, etc,
are known as “good” components of quark field in contrast to “bad” components (ψ−, χ−,
etc) [25]. The operators made with only good components (including also good components
of the gluon field f++ and f̄++) are called quasi-partonic operators. Their geometrical twist
coincides with their collinear twist. All operators of twist-2 and twist-3 can be expressed
as quasi-partonic operators with the help of EOMs [35].

1An example of explicit realization for basis spinors with our conventions is λα = (21/4, 0), µα = (0, 21/4),
λ̄α̇ = (0,−21/4) and µ̄α̇ = (21/4, 0), assuming the standard representation for Pauli matrices. With this
choice the components of the vector decomposition (2.24) are

x± = x0 ± x3
√

2
, xT = x1 + ix2

√
2

, x̄T = x1 − ix2
√

2
.
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The last ingredient needed for our computation are the equations of motion (EOMs)
for the quark field 6Dq = 0 (for massless quarks). In the spinor notation EOMs read
Dα̇αψα = 0, χα←−Dαα̇ = 0, and similar for other spinors. Contracting these equations with
the basis spinors one obtains EOMs for particular components. For our purposes we need
the following EOMs

Dλλ̄ψ− = Dµλ̄ψ+, Dλλ̄χ̄− = Dλµ̄χ̄+, (2.31)

ψ̄−
←−−
Dλλ̄ = ψ̄+

←−−
Dλµ̄, χ−

←−−
Dλλ̄ = χ+

←−−
Dµλ̄, (2.32)

where Dab = Dαα̇a
αbα̇.

3 Twist-decomposition for TMD operators

In this section, we present the details of the twist-decomposition procedure. The method is
based on the results of refs. [32, 33], to which we refer for extended details and the theory
foundation. There are three principal steps of the computation:

1. The operator is presented as a series of local operators.

2. Local operators are sorted by irreducible representation of Lorentz group (twists),
and simplified using EOMs.

3. The series of operators with the same twists are summed back into the non-local
form.

This is a rather traditional approach. Examples of such evaluation for collinear operators
can be found in refs. [25, 32, 33, 35, 41, 42]. For TMD operators each of these steps has a
certain particularity. Let us list these particularities, and explain the methods that were
used to resolve them:

1. The TMD operator has the staple-shaped gauge link with infinite length. Therefore,
it is not possible to present it as a series of local operators directly. We regularize the
TMD operator by truncation of the length of Wilson lines by the parameter L. As the
result TMD operators are presented as a limit of triple series of local operators (3.11).

2. The local operators for TMDPDFs have three sets of indices (s, n, t). They correspond
to the number of light-cone derivatives acting on the anti-quark field (s), the number
of transverse derivatives (n) and the number of light-cone derivatives acting on the
quark field (t). Such structure somewhat complicates the twist-decomposition alge-
bra, in comparison to the case of local operators that describe (Mellin moments of)
collinear distributions, where all indices are alike. To simplify the twist-decomposition
procedure we use the method introduced in refs. [32, 33], which is based on the spinor
formalism. This method allows to perform the twist-decomposition for the most
general operators using only differential operations (compare to refs. [14, 43] where
off-light-cone generalizations of operators and integral equations are used, ref. [35]
where the differential equation are used, refs. [41, 42] where an explicit procedure of
index symmetrization is performed).
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3. The summation of the series of definite-twist operators is performed for the matrix-
elements, i.e. for distributions. It simplifies certain steps of the computation, and
helps to resolve potential ambiguities in the limit L→∞.

The following sections give the details for each step of this order. The results of the
computation are collected in section 4. We stress that such an approach is suitable only
for TMDPDFs, but does not apply for TMDFF. The discussion for TMDFFs case is given
in appendix B.

3.1 TMD operator as a series of local operators

Let us introduce the TMD operator in the form

OΓ
TMD(z, b) = q̄(zn+ b)[zn+ b,∓∞n+ b][∓∞b+ b,∓∞n]Γ[∓∞n, 0]q(0). (3.1)

The upper(lower) sign corresponds to Drell-Yan(SIDIS) induced TMD. The transverse
gauge link [∓∞n+ b,∓∞n] ensures the explicit gauge invariance of the operator.

At tree-order quantum fields can be treated as classical fields, and thus the small-b
expansion is an ordinary Taylor expansion. It is convenient to write it in the form (1.1)

OΓ
TMD(z, b) =

∞∑
n=0

bµ1 . . . bµn

n! OΓ
µ1...µn(z), (3.2)

with

OΓ
µ1...µn(z) = q̄(zn)[zn,−∞n]←−−Dµ1 . . .

←−−
DµnΓ[−∞n, 0]q(0), (3.3)

where Dµ is the covariant derivative
←−
Dµ = ∂µ + igAµ,

−→
Dµ = ∂µ − igAµ. (3.4)

The operators on r.h.s. of (3.2) have collinear twist n+2, which follows from their dimension.
At the same time, these operators do not have a definite geometrical twist, and therefore,
their matrix element is a complicated composition of collinear distributions with different
properties. Our goal is to perform the twist-decomposition and express these operators in
terms of operators with definite geometrical twist.

In contrast to collinear operators, the TMD operator (3.1) spans an infinite range
along the light cone. It is the most famous feature of TMD operators, and it leads to many
physical effects, such as rapidity divergences [44], double-scale nature of TMD evolution [40]
and the sign-change of P-odd distributions [45]. In the b→ 0 limit, the infinite Wilson lines
are partially compensated, due to the transitivity property of Wilson lines. For example,
at n = 0 the operator (3.3) simplifies to

OΓ(z) = q̄(zn)[zn,−∞n]Γ[−∞n, 0]q(0) = q̄(zn)[zn, 0]Γq(0). (3.5)

However, already at n = 1 the infinities enter the expressions,

OΓ
µ(z) = q̄(z)←−Dµ[zn, 0]Γq(0) + ig

∫ z

∓∞
dσ q̄(zn)[zn, τn]Fµ+(τn)[τn, 0]Γq(0), (3.6)
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where Fµν = ig−1[Dµ, Dν ] is the gluon-strength tensor. The operators on the r.h.s. of
these formulas are ordinary collinear operators. The infinite size of the TMD operator is
reflected in the limit of integration in the last term of (3.6).

In equation (3.6), the twist-decomposition of operators is straightforward. In ref. [14],
this decomposition has been made for all leading Γ-structures. Despite such method is
intuitive and explicitly reveals features of the TMD operator, it became algebraically
complicated for higher n. The main source of complication is new classes of non-
local operators introduced with increasing of n. For instance, at n = 2 the oper-
ators like q̄(zn)F+µ(τ1n)F+ν(τ2n)q(0), q̄(zn)[DνFµ+(τn)]q(0), q̄(zn)Fµ+(τn)Dνq(0) and
q̄(zn)←−Dµ

−→
Dνq(0) appear. The first operator is quasi-partonic and has geometric twist-4,

whereas other operators have indefinite geometric twist and should be processed using
EOMs to extract twist-2 and twist-3 components. At n = 3 the operators with two and
three derivatives in different composition arise. Each of these new cases requires individual
investigation to extract the lower geometrical twist component. Therefore, this approach
is ineffective.

To avoid these complications we operate directly with the operators (3.2) with the help
of the following formal procedure. We introduce the regularized operator,

OΓ
TMD(z, b;L) = q̄(zn+ b)[zn+ b, Ln+ b][Ln+ b, Ln]Γ[Ln, 0]q(0). (3.7)

This operator turns to the TMD operator in the limit L → ∓∞. Note, that the same
regularization also regularizes rapidity divergences and can be used to derive the non-
perturbative definition of the Collins-Soper kernel [46]. In the regularized form the opera-
tor (3.3) is

OΓ
µ1...µn(z;L) = q̄(zn)[zn, Ln]←−−Dµ1 . . .

←−−
DµnΓ[Ln, 0]q(0). (3.8)

This operator can be written as the formal expansion,

OΓ
µ1...µn(z;L) =

∞∑
s,t=0

zs1z
t
2

s!t! q̄
←−
D+

s←−−Dµ1 . . .
←−−
DµnΓ−→D+

tq(Ln), (3.9)

where all fields of the operator are positioned at the point Ln and

z1 = z − L, z2 = −L. (3.10)

In this way the TMD operator (3.1) is presented as a triple sum

OΓ
TMD(z; b) = lim

L→∓∞

∞∑
s,t,n=0

zs1
s!
zt2
t!

1
n!O

Γ
s,n,t(Ln), (3.11)

with

OΓ
s,n,t = q̄

←−
D+

s(b · ←−D)nΓ−→D+
tq. (3.12)

The r.h.s. of this expression is suitable for the twist-decomposition procedure.
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The limit L→ ∓∞ must be taken with caution. In particular, the summation over s
and tmust be done before the limiting operation, and the result of the summation should be
presented in the form that does not allow any ambiguity. The significant simplification of
the summation procedure comes from the possibility to neglect the total derivative terms.
The matrix element of a total-derivative operator is proportional to the momentum transfer,

〈p1|∂µO|p2〉 = i(p1 − p2)µ〈p1|O|p2〉. (3.13)

Consequently, the total derivative operators do not contribute to TMDPDFs, and we ne-
glect such terms in the following. After elimination of the total derivative contribution the
result of summation is independent on L in many cases. The simplest example is n = 0
case, where

∞∑
s,t=0

zs1
s!
zt2
t! O

Γ
s,0,t =

∞∑
s,t=0

zs1
s!

(−z2)t

t! OΓ
s+t,0,0 + total der. (3.14)

=
∞∑
s=0

(z1 − z2)s

s! OΓ
s,0,0 + total der. ,

with z1 − z2 = z being independent on L. Only in the cases of Sivers and Boer-Mulders
functions the limit L→ ∓∞ is not so straightforward. Let us also note that the direction
of the limit is the only difference between Drell-Yan (L → −∞) and SIDIS (L → +∞)
cases in the representation (3.11).

3.2 Twist decomposition in the spinor formalism

The twist-decomposition for the local operators (3.12) is equivalent to the decomposition
into irreducible representation of Lorentz group. The highest spin representation (com-
pletely symmetric and traceless in all vector indices) corresponds to the twist-2 term. The
next representation (anti-symmetric for one pair of indices, and symmetric and traceless for
all other vector indices) corresponds to the twist-3 term. Despite the twist-decomposition
is a straightforward operation, it is algebraically complicated, especially for the operators
with many transverse indices (for which one has to subtract traces). Additional compli-
cation is caused by EOMs, which could relate operators. In refs. [32, 33] it was observed
that the decomposition of higher-indices tensors over irreducible representations is simpler
in the spinor representation. The main simplification comes from the anti-symmetry of the
scalar product (2.22). Due to it, any symmetric tensor (in the spinor space) is automat-
ically traceless. The irreducible representations in SL(2,C) group are obtained by simple
symmetrization or anti-symmetrization of spinor indices. This operation can be presented
as a differential operator, what essentially simplifies the algebra. Here we present this
methods in a slightly modified form, which makes its application more explicit.

Let us consider an operator where all open indices are contracted with basis spinors:

OΛ = Λα...β1 (λ, µ)Λα̇...β̇2 (λ̄, µ̄)Oα...β;α̇...β̇ , (3.15)

where Λ1,2 are monomials of basis spinors, for example (3.27). The lowest geometrical
twist contribution can be obtained by the symmetrization of dotted and undotted indices
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(independently). It can be done for the operator, or for the tensor Λ. Due to the irre-
ducibility of the representation the symmetry properties of one are mapped to another
in the convolution. The symmetrization of the tensor Λ can be made by the following
operation

SnΛα...β(λ, µ) =
(
µ∂

∂λ

)n (λ∂
∂µ

)n
Λα...β(λ, µ), (3.16)

where

µ∂

∂λ
= µα

∂

∂λα
,

λ∂

∂µ
= λα

∂

∂µα
, (3.17)

and n is the number of spinors µ in the tensor Λ. The logic behind the construction
is the following. First, the action of derivatives (λ∂)/(∂µ) replaces all µ’s by λ’s. The
resulting tensor is automatically symmetric in indices. Next, the derivatives (µ∂)/(∂λ)
replace entries of λ by µ in the fully symmetric fashion.

The higher twist representations are obtained by anti-symmetrizing pairs of indices.
So, the anti-symmetrization of a single pair can be done by the operator

A1 = (µαλβ − λαµβ) ∂

∂µα
∂

∂λβ
= µ∂

∂µ

λ∂

∂λ
− µ∂

∂λ

λ∂

∂µ
+ µ∂

∂µ
, (3.18)

where (µ∂)/(∂µ) and (λ∂)/(∂λ) defined similarly to (3.17). The symmetrization of n pairs
is done by

An = (µα1λβ1 − λα1µβ1) . . . (µαnλβn − λαnµβn) ∂

∂µα1

∂

∂λβ1
. . .

∂

∂µαn
∂

∂λβn
. (3.19)

The operators S and A commute, [An, Sk] = 0, for any n and k. The complete decompo-
sition of a tensor with n entries of spinor µ then reads

Λα...β(λ, µ) =
n∑
k=0

cn,kAkSn−kΛα...β(λ, µ), (3.20)

where cn,k are numbers depending on the tensor Λ. Each term in this sum corre-
sponds to an irreducible representation, and the operators Sn−kAk are projectors onto
this representation.

To find the coefficients cn,k of the decompositions (3.20) we need to normalize the
operators AkSn, such that (AkSn)2 = AkSn. For example, for the symmetrization operator
we compute

SnSn = n!Sn
n−1∏
m=0

(
λ∂

∂λ
+ µ∂

∂µ
−m

)
. (3.21)

The operators (λ∂)/(∂λ) and (µ∂)/(∂µ) count the number of λ’s and µ’s in the tensor.
Therefore, Sn is indeed the projector to the totally symmetric representation, and the
normalization factor for Sn is (N − n)!/(n!N !) where N is the total number of indices
of the tensor. In the same way, one can check that AnSk are projectors, and find the
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corresponding normalization factors. For our computation we only need the first two terms
of the expansion (3.20). They are

Λα...β(λ, µ) =
((N − n)!

n!N ! Sn + (N − n− 1)!(N − 1)
(n− 1)!N ! A1Sn−1 + . . .

)
Λα...β(λ, µ), (3.22)

where N is the total number of indices, and n is the number of µ’s in the tensor Λ.
Using this construction we build the operators that extract a part with the certain

geometrical twist from the operator (3.15)

OΛ =
∞∑
n=2

T̂nOΛ. (3.23)

The projector to the twist-2 is

T̂2 =
(
µ∂

∂λ

)n ( µ̄∂
∂λ̄

)k (N − n)!
n!N !

(N̄ − k)!
k!N̄ !

×
(
λ∂

∂µ

)n( λ̄∂
∂µ̄

)k
, (3.24)

where n, k, N − n and N̄ − k are the numbers of µ, µ̄, λ and λ̄ in the operator. The
operator that projects onto twist-3 has two terms

T̂3 = T
(µλ)
3 + T̂

(µ̄λ̄)
3 , (3.25)

where T̂ (µλ)
3 anti-symmetrizes a pair (µ, λ), whereas T̂ (µ̄λ̄)

3 anti-symmetrizes a pair (µ̄, λ̄).
Explicitly T̂ (µλ)

3 reads

T̂
(µλ)
3 =

(
µ∂

∂λ

)n−1 ( µ̄∂
∂λ̄

)k (N − n− 1)!(N − 1)
(n− 1)!N !

(N̄ − k)!
k!N̄ !

×
(
µ∂

∂µ

λ∂

∂λ
− µ∂

∂λ

λ∂

∂µ
+ µ∂

∂µ

)(
λ∂

∂µ

)n−1 ( λ̄∂
∂µ̄

)k
, (3.26)

where n, k, N − n and N̄ − k are the numbers of µ, µ̄, λ and λ̄ in the operator. The
operator T̂ (µ̄λ̄)

3 is obtained by the interchange of barred and un-barred variables.
In this way, the twist-decomposition is reduced to purely algebraic manipulations with

monomials. One should distinguish the chiral-even (given in (2.29)) and chiral-odd (given
in (2.30)) compositions of spinors, because they have different number of barred and un-
barred spinors. Apart of this, the evaluation of all cases is alike. In the following we
demonstrate the results of the action of T2 and T3 on OΓ

s,n,t. For simplicity of presentation,
we replace the indication of the Dirac structure in OΓ

s,n,t, by the indication of the corre-
sponding spinor combination. Additionally, we write operators using spinor notation only.
For example

O
ψ̄+ψ+
s,n,t = ψ̄+

←−−
Dλλ̄

s(b←−−Dλµ̄ + b̄
←−−
Dµλ̄)n−−→Dλλ̄

tψ+ = (−1)n2s+t+nψ̄+
←−
D+

s(b · ←−D)nΓ−→D+
tψ+, (3.27)

where the prefactor is originated from the conventions (2.22)–(2.24). Also we eliminate all
total-derivative terms without indication.
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The twist-2 projection of the chiral-even operator is

T̂2O
ψ̄+ψ+
s,n,t =

n∑
k=0

(
µ∂

∂λ

)n−k ( µ̄∂
∂λ̄

)k (−1)tn!
k!(n− k)!

(s+ t+ k + 1)!
(s+ t+ n+ 1)!

×(s+ t+ n− k + 1)!
(s+ t+ n+ 1)! bk b̄n−kψ̄+

←−
Ds+t+n
λλ̄

ψ+, (3.28)

and the same for ψ̄+ψ+ → χ+χ̄+. For the chiral-odd operator, the twist-2 projection is

T̂2O
χ+ψ+
s,n,t =

n∑
k=0

(
µ∂

∂λ

)n−k ( µ̄∂
∂λ̄

)k (−1)tn!
k!(n− k)!

(s+ t+ k + 2)!
(s+ t+ n+ 2)!

×(s+ t+ n− k)!
(s+ t+ n)! bk b̄n−kχ+

←−
Ds+t+n
λλ̄

ψ+, (3.29)

and the same for χ+ψ+ → ψ̄+χ̄+. In equations (3.28), (3.29) we leave the derivatives with
respect (µ∂)/(∂λ) and (µ̄∂)/(∂λ̄) without evaluation for future convenience. Note, that
factor (−1)t is originated from reversing the derivative −→D t to ←−D t and elimination of total
derivatives, see (3.13).

The derivation of the twist-3 part is slightly more cumbersome, due to the reduction
procedure to the quasi-partonic form. We remind that the quasi-partonic operators consist
only of “good” components of fields and Dλλ̄. All twist-3 operators can be reduced to
this form. The reduction procedure is done as follows. After the action of A1 we obtain
operators of the form ψ̄+D

N
λλ̄
Dλµ̄D

M
λλ̄
ψ+ and ψ̄−DN

λλ̄
ψ+. Next, we commute the derivative

with the transverse index to the quark field, such that it can be replaced by an appropriate
EOM (2.31). After this procedure all “bad” components of quark field cancel, and the
twist-3 operator has the quasi-partonic form. The expressions for the twist-3 parts of
operators are simple but rather lengthy. For example,

T̂
(µ̄λ̄)
3 O

ψ̄+ψ+
s,n,t = 2ig

n∑
k=1

(
µ∂

∂λ

)n−k ( µ̄∂
∂λ̄

)k−1
(3.30)

× (−1)t(n− 1)!
(k − 1)!(n− k)!

(s+ t+ n− k)!(s+ t+ n)
(s+ t+ n+ 1)!

(s+ t+ k + 1)!
(s+ t+ n+ 1)!

×bk b̄n−k(λ̄µ̄)
{

(s+ t+ n+ 1)n
s−2∑
m=0

+(s+ t+ n+ 1)
s+n−2∑
m=s−1

(s+ n−m− 1)

−n
s+t+n−2∑
m=0

(s+ t+ n−m− 1)
}
ψ̄+
←−
Dm
λλ̄
f++
←−
Ds+t+n−m−2
λλ̄

ψ+.

Here, the summations over m are originated from the commutation procedure. Other
spinor combinations and action of T̂ (µλ)

3 differ from this example by ±1 terms in the
factorial factors and summation limits. For completeness these expressions are listed in
the appendix A.

3.3 Assembling the final result

The last step of the computation is to sum the operators over s and t to the non-local form
and perform the limit L→∞. This procedure can be done directly in terms of operators.
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However, it is not an effective approach, since it requires extra computation efforts to derive
the most general expression, while many parts of resulting operator do not contribute to
the matrix element due to symmetry relations (2.19), (2.20). To avoid these complications
we first compute the matrix element and then sum the expression. In this way, we eliminate
uninteresting (in the current context) terms without processing. The central trick, which
makes the approach described here simple, is that we compute matrix elements of operators
before we apply the derivatives (µ∂)/(∂λ) and (µ̄∂)/(∂λ̄). These derivatives then act on
the parameterization of the matrix element, which is given by powers of p+ and possibly
spin-vector and thus are simpler to compute. The process is identical for all distributions.
Here we demonstrate the computation for the case Γ = γ+, which contains unpolarized
and Sivers TMD distributions. The peculiarities of the computation for other cases are
discussed at the end of the section.

We start with the computation of twist-2 terms. The matrix element for the twist-2
operator with Γ = γ+ is expressed in the terms of the unpolarized PDF (2.12) as (2.29)

〈p, S|ψ̄+
←−
DN
λλ̄
ψ+ + χ+

←−
DN
λλ̄
χ̄+|p, S〉 = iNpN+1

λλ̄

∫
dxxNf1(x). (3.31)

Substituting it into (3.28), we observe that the derivatives (µ∂)/(∂λ) and (µ̄∂)/(∂λ̄) now
could act only on pλλ̄. At the same time, the vector pµ does not have a transverse part (by
definition), i.e. pλµ̄ = pµλ̄ = 0, and thus only the terms with n = 2k are non-zero:

(
µ∂

∂λ

)n−k ( µ̄∂
∂λ̄

)k
ps+t+n+1
λλ̄

= δn,2k
(s+ t+ n+ 1)!k!

(s+ t+ n− k + 1)!p
s+t+n−k+1
λλ̄

pkµµ̄. (3.32)

Now, we can pass to the vector notation, and the expression for the matrix element takes
the form

〈p, S|T̂2O
[γ+](z, b)|p, S〉 (3.33)

= p+ lim
L→∓∞

∞∑
n=0

1
n!

(
b2M2

4

)n ∞∑
s,t=0

zs1z
t
2(ip+)s+t

s!t!
(s+ t+ n+ 1)!
(s+ t+ 2n+ 1)!

∫
dxxs+t+2nf1(x),

where we used that bb̄ = −b2/2, pλλ̄ = 2p+ and pµµ̄ = 2p− = M2/p+. Presenting the
factorial factor by the beta-function (for n > 0) we evaluate the sum over s and t. The
summation produces the exponent exp(i(z1−z2)p+) that is independent on L due to (3.10).
Therefore, in this case the limit L→ ±∞ is trivial. The summed expression reads

〈p, S|T2O
[γ+](z, b)|p, S〉 (3.34)

= p+
∫
dxf1(x)eizp+x +

∫ 1

0
du

∫
dx

∞∑
n=1

un+1ūn−1x2n

n!(n− 1)!

(
b2M2

4

)n
eiuzp+xf1(x),

where ū = 1 − u. Finally, we apply the inverse Fourier transformation and compare
the result to the parameterization (2.7). We find that the twist-2 part of the operator
contributes only to the unpolarized TMD distribution. The final expression is convenient
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to present in the form of Mellin convolution (4.12)

f1(x, b) = f1(x) +
∞∑
n=1

∫ 1

0
du

∫
dy
δ(x− uy)
n!(n− 1)!

(
ū

u

)n−1
(
x2b2M2

4

)n
f1(y) +O(αs, tw4).

(3.35)
This is the complete part of the small-b expansion for f1(x, b) that matches twist-2 PDFs.
The corrections to this expression contain PDFs of higher twist, starting from twist-4
(the absence of twist-3 part is demonstrated later). Also each term in this sum receives
perturbative corrections. All these corrections are indicated by O(αs, tw4).

The computation of the twist-3 part follows the same pattern, but involves more terms.
We use the matrix elements (2.15), (2.16), and present them in the form of double moments

〈p, S|gψ̄+
←−
DN
λλ̄
f++
←−
DM
λλ̄
ψ+|p, S〉 (3.36)

= (−i)N iMpN+M+2
λλ̄

−iSλµ̄
2(λ̄µ̄)

∫
[dx]xN1 xM3 (T (x1, x2, x3) + ∆T (x1, x2, x3)) ,

and similarly for other spinor combinations. Now, the derivatives (µ∂)/(∂λ) and (µ̄∂)/(∂λ̄)
also act on the vector S, and thus the expression analogous to (3.32) contains two terms.
One with n = 2k − 1 that is proportional to transverse part of S, and another one with
n = 2k− 2 that is proportional to Sµµ̄ = −λM/p+. The parts proportional to λ add up to
zero for Γ = γ+, however, in the case of Γ = γ+γ5 they produce the twist-3 terms in the
helicity TMD distribution g1L. The summation over m reduces to geometric progressions.
The resulting expression is rather lengthy

〈p, S|T̂3O
[γ+](z, b)|p, S〉 (3.37)

= Mp+(bµεµνT Sν) lim
L→∓∞

∫
[dx]

∞∑
n=0

1
(2n+ 1)n!

(
b2M2

4

)n

×
∞∑

s,t=0

zs1z
t
2(ip+)s+t

s!t!
(s+ t+ n)!

(s+ t+ 2n+ 2)!
(s+ t+ 2n+ 1)(s+ t+ n+ 2)

(s+ t+ 2n+ 2)

×
{

(2n+ 1)
[
(−x1)sxt+2n+1

1

(
2− x2

x1

)
+(−x3)txs+2n+1

3

(
2− x2

x3

)]
T (x1, x2, x3)

x2
2

−(2n+ 1)
[
(−x1)sxt+2n

1 − (−x3)txs+2n
3

] ∆T (x1, x2, x3)
x2

−(s+ t+ 2n+ 2)(−x1)s(−x3)t(x2n+1
1 + x2n+1

3 )T (x1, x2, x3)
x2

2

}
,

where we have used that x1 +x2 +x3 = 0 for simplifications. The expression (3.37) is very
representative and demonstrates many features of the computation. Notably, there are two
types of contributions relative to the summation over s and t. The regular ones that are
in the third and forth lines, and the irregular one that is in the last line.

The regular contributions have a general form of (see also (3.14), (3.33))
∞∑

s,t=0

zs1(−z2)t

s!t! f(s+ t) =
∞∑
r=0

(z1 − z2)r

r! f(r), (3.38)
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and are explicitly independent on L, since z1 − z2 = z (3.10). For regular con-
tributions, the limit L → ∓∞ is trivial, and the resulting operators are spatially
compact. The final expression has an ordinary form with twist-3 distributions, see
eqs. (4.3), (4.4), (4.5), (4.7), (4.8). In the current example with Γ = γ+, these terms
do not appear in the final expression, due to symmetry properties (2.19). Indeed, the
change of variables {x1, x2, x3} → {−x3,−x2,−x1} flips the common sign of the prefactors
in square brackets, but leaves T/x2

2 and ∆T/x2 unchanged. Thus, the contribution of the
third and the fourth lines of (3.37) vanishes.

The evaluation of irregular terms requires special attention. The sums over s and t

lead to the following expression

〈p, S|T̂3O
[γ+](z, b)|p, S〉 (3.39)

= −Mp+(bµεµνT Sν) lim
L→∓∞

∫ 1

0
du

∫
[dx]

∞∑
n=0

(
b2M2

4

)n
e−iup

+(z1x1+z3x3)

× (uū)n

(2n+ 1)n!

(
δn,0δ(ū) + n

(n− 1)!
1 + (n− 1)u+ u2

ū

)
(x2n+1

1 +x2n+1
3 )T (x1, x2, x3)

x2
2

.

The limit L → ∓∞ is ill-defined, because (z1x1 + z3x3) = (zx1 + Lx2). To resolve this
ambiguity, we use the symmetry of the integration measure [dx] and transfer the variable
L to the limits of the integration∫

[dx]e−iup+(z1x1+z3x3) = (−ip+u)
∫

[dx]x2 e
−ip+uzx1

∫ L

−L+z
dτ
e−ip+uτx2

2 . (3.40)

Now, the limit L→ ∓∞ can be taken, and the last integral in (3.40) is the delta-function

lim
L→∓∞

(−ip+u)
∫ L

−L+z
dτ
e−ip+uτx2

2 = ∓iπδ(x2). (3.41)

It is important that the sign of this expression depends on the sign of the limiting direction.
This is how the famous sign-flip for the Sivers function appears in this computation. To
integrate over x2, we extract all entries of x2 in (3.40) with the help of relation

x2n+1
1 + x2n+1

3
x2

= −
n∑

m=0
(−x1x3)mx2n−2m

2
(2n+ 1)(2n−m)!
m!(2n− 2m+ 1)! . (3.42)

Only the term with m = 0 contributes to the integral (3.41). Performing the Fourier
transformation and comparing it to (2.7) we conclude that it is the contribution to the
Sivers function, which reads

f⊥1T (x, b) = ±π
[
T (−x, 0, x) +

∫ 1

0
du

∫
dy

∞∑
n=1

(
x2b2M2

4

)n
(3.43)

× δ(x− uy)
(n− 1)!(n+ 1)!

(
ū

u

)n 1 + (n− 1)u+ u2

ū
T (−y, 0, y) +O(αs, tw4)

]
.

This is the matching of the Sivers function at all orders of b2-expansion to collinear distri-
butions of twist-2 (which is null) and twist-3. Miraculously, only the Qui-Sterman function
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T (−x, 0, x) [47] contributes to this expression. As expected, the sign of the Sivers function
depends on the direction of the gauge contour.

The computation of other Lorentz structures is done in the same way. The differences
to the demonstrated computation are immaterial. The resulting expressions are not as
simple as for the case Γ = γ+. In particular, generally other distributions have entries
of both twist-2 and twist-3 PDFs. It happens due to non-vanishing contributions with
derivatives of the vector Sµ. For example, for Γ = γ+γ5 the analog of (3.31) has Sλλ̄ which
after the differentiation (3.32) produces the transverse components of S. These terms
result into twist-2 PDFs within worm-gear function. In all P-even cases only regular terms
contribute, whereas P-odd cases (i.e. Sivers and Boer-Mulders functions) are given by only
irregular terms. The results of our computation together with additional comments are
presented in the next section.

4 Results and discussion

Following the method derived in the previous section we routinely computed all (quark)
TMD distributions. Here is the list of expressions. The chiral-even distributions are

f1(x, b) = f1(x) +
∞∑
n=1

∫ 1

0
du

∫
dy
δ(x− uy)
n!(n− 1)!

(
x2b2M2

4

)n (
ū

u

)n−1
f1(y), (4.1)

f⊥1T (x, b) = ±π
[
T (−x, 0, x) +

∞∑
n=1

(
x2b2M2

4

)n ∫ 1

0
du

∫
dy

δ(x− uy)
(n+ 1)!(n− 1)! (4.2)

×
(
ū

u

)n 1 + (n− 1)u+ u2

ū
T (−y, 0, y)

]
,

g1L(x, b) = g1(x) +
∞∑
n=1

(
x2b2M2

4

)n ∫ 1

0
du

∫
dy

δ(x− uy)
n!(n− 1)! (4.3)

×
(
ū

u

)n−1 [(
1− 2nū

u
Ψn(u)

)
g1(y)− 2 ū

u

(
1− ū

u
Ψn+1(u)

)
Tg(y)

]
,

g1T (x, b) = x

∫ 1

0
du

∫
dyδ(x− uy)

{
g1(y) + Tg(y) +

∞∑
n=1

(
x2b2M2

4

)n 1
n!(n− 1)! (4.4)

×
(
ū

u

)n [
Ψn(u)g1(y) +

(
1
n

+ 1
n+ 1

(
ū

u

)2
Ψn+2(u)

)
Tg(y)

]}
.

The chiral-odd distributions are

h1(x, b) = h1(x) +
∞∑
n=1

(
x2b2M2

4

)n ∫ 1

0
du

∫
dy
δ(x− uy)
n!(n− 1)! (4.5)

×
(
ū

u

)n [(u
ū

+ ū

n+ 1

)
h1(y)− x2

(
(n+ u)− (n− 1)n

u
Ψn(u)

)
Th(y)

]
,

h⊥1 (x, b) = ∓iπ
[
δTε(−x, 0, x) +

∞∑
n=1

(
x2b2M2

4

)n ∫
dy

∫ 1

0
du
δ(x− uy)
n!(n− 1)! (4.6)

×
(
ū

u

)n−1
δTε(−y, 0, y)

]
,

– 20 –



J
H
E
P
1
2
(
2
0
2
0
)
1
4
5

h⊥1L(x, b) = −x
∞∑
n=0

(
x2b2M2

4

)n ∫ 1

0
du

∫
dy
δ(x− uy)
n!n! (4.7)

×
(
ū

u

)n [u+ n

n+ 1h1(y) +
(
u− nū

u
+ n2 ū

u2 Ψn+1(u)
)
Th(y)

]
,

h⊥1T (x, b) = −x2
∞∑
n=0

(
x2b2M2

4

)n ∫ 1

0
du

∫
dy
δ(x− uy)
n!(n+ 1)! (4.8)

×
(
ū

u

)n+1 (
(n+ u+ 1)− n(n+ 1)

u
Ψn+1(u)

)
Th(y).

In these expression ū = 1− u, and

Ψn(u) = Φ
(
u− 1
u

, 1, n
)

= (−1)n
(
u

ū

)n
ln u−

n−1∑
k=1

(−1)k

n− k

(
u

ū

)k
, (4.9)

where Φ is the Lerch function. The twist-3 PDFs are conveniently gathered into the
following combinations

Tg(x) =
∫

[dx]
[
δ(x− x3)

(∆T (x1,2,3)
x2

2
+ T (x1,2,3)−∆T (x1,2,3)

2x2x3

)
(4.10)

−δ(x+ x1)
(∆T (x1,2,3)

x2
2

− T (x1,2,3) + ∆T (x1,2,3)
2x2x3

)]
,

Th(x) =
∫

[dx]
[
δ(x− x3)

(
δTg(x1,2,3)

x2
2

− δTg(x1,2,3)
x2x3

)
(4.11)

−δ(x+ x1)
(
δTg(x1,2,3)

x2
2

− ∆Tg(x1,2,3)
x2x3

)]
,

where we use the shorthand notation (x1,2,3) = (x1, x2, x3). For Sivers and Boer-Mulders
functions the upper(lower) sign corresponds to the Drell-Yan (SIDIS) configuration. The
collinear distributions of the twist-2 and twist-3 are defined in (2.12)–(2.17). All these
expressions have the form of the Mellin convolution. For numerical computation it can be
rewritten as

[G⊗ F ](x) =
∫ 1

0
du

∫
dyδ(x− uy)G(u)F (y) =



∫ 1

x

dy

y
G

(
x

y

)
F (y), x > 0,

∫ 1

−x

dy

y
G

(−x
y

)
F (−y), x < 0.

(4.12)

The point u = 1 is regular for all integrals (4.1)–(4.8). The parameter of the expansion
x2M2b2/4 is negative, due to b2 < 0. Therefore, these sums are alternating series with
double factorial suppression, alike series for Bessel functions.

In the following we discuss particularities of each TMD.

Unpolarized TMD f1. The unpolarized TMD f1(x, b) is given in (4.1). The leading
term of this expression is well-known. Moreover, the perturbative corrections for the leading
term are know up to α3

s-order [22, 23]. Peculiarly, the contributions proportional to the
twist-3 are absent at all powers. So, the next contribution to f1 contains twist-4 PDFs.
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The series (4.1) can be summed to the Bessel function with the result

f1(x, b) = f1(x)− xM |b|
2

∫ 1

0
du

∫
dyδ(x− uy)

√
u

ū
J1

(
xM |b|

√
ū

u

)
f1(y) (4.13)

where |b| =
√
−b2. The value of the expansion parameter (xM |b|/2)2 is so small that the

numerical difference between the summed series and the first term is vanishing (for non-
extreme values of b). Moreover, since the cross-section for TMD observables is dominated
by small values of b (b < 1GeV−1), the derived corrections are negligible for many exper-
iments. For example, for the LHC, where typically x ∼ 10−2, the second term in (4.13)
produces ∼ 10−4 correction in the cross-section of Drell-Yan process. The comparison
of (4.13) truncated series (4.1) is shown in figure 2. Figure 2 also shows the unpolarized
TMDPDF f1(x, b) extracted in ref. [7]. The difference between theoretical and extracted
curves demonstrates that the target-mass corrections give negligibly small portion of power
corrections. The larger portion of corrections is given by the twist-4 (and higher) distribu-
tions. In ref. [48] it has been demonstrated that infrared renormalon poles for unpolarized
TMD f1 are proportional to (xM2b2)n, and therefore, higher-twist contributions must be
enhanced by at least a power of x−n.

The unpolarized distribution is the only case where the expression for target-mass
corrections can be compared to the literature. To make the comparison, we mention that
the twist-2 operators (at tree order) are not affected by the direction of the Wilson lines.
Therefore, to obtain the matching to the twist-2 operators (at the tree order), one could
ignore the staple contour of the TMD operator and connect the quark-fields by the straight
gauge link. This operator is the usual QCD string-operator, and the small-b expansion is
the ordinary x2-expansion used in DIS. The twist-2 part of such operators at all powers
of x2 can be found in eq. (5.1) of ref. [35], where it has been derived using differential
equations. The expression in [35] is given in the coordinate space, and after the Fourier
transformation coincides with (4.1). It gives a non-trivial check of the computation method
and results.

Sivers f⊥
1T and Boer-Mulders h⊥

1 functions. Sivers and Boer-Mulders functions are
given in (4.2) and (4.6) correspondingly. Both functions are P-odd, and thus they have a
different sign for Drell-Yan and SIDIS configurations [45]. In our computation, the sign-flip
arises due to the order of integration limits in the irregular terms (3.40). These are the
only terms where the infinite size of the Wilson lines (the parameter L) plays a role. The
leading power matching for the Sivers function is known for a long time [11, 12], whereas the
leading power matching Boer-Mulders function was derived in [14, 49]. Our computation
agrees with these references.

In the limit L→ ∓∞ the coefficient function reduces to δ(x2) and thus Sivers and Boer-
Mulders functions are expressed through T (−x, 0, x) and δTε(−x, 0, x) at all powers of b2.
The function T (−x, 0, x) is known as a Qiu-Sterman (QS) function [47], and δTε(−x, 0, x)
is the analog of QS function for the chiral-odd operator. Both TMDPDFs are expressed
via QS functions at all orders of b-expansion. This observation is a non-trivial fact because
the QS functions are not autonomous, and mix with the bulk of twist-3 distribution during

– 22 –



J
H
E
P
1
2
(
2
0
2
0
)
1
4
5

0 1 2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6

3.0

3.5

4.0

Figure 2. Unpolarized TMD (for d-quark) as the function of b at different orders of mass correc-
tions. The curve n = 0 corresponds to the leading term. The curves n 6 1, 2 correspond to the
partial sums (4.1) up to n = 1, 2. In all cases, the PDF is taken in the convolution with NNLO per-
turbative coefficient function. The curve labeled as “sum” is the summed expression for target-mass
corrections (4.13). The curve with a band is the extraction of non-perturbative TMD distribution
f1 made in ref. [7].

the evolution [37]. The NLO expression for the leading power coefficient function [24]
contains the non-QS but only in the logarithmic terms (i.e., the terms responsible for the
evolution effects), whereas the finite part is proportional to the QS function. Based on
this information, we make a conjecture that Sivers and Boer-Mulders functions can be
expressed entirely through the QS function, up to logarithmic terms.

Helicity g1L and transversity h1 TMDs. The helicity and tranversity TMDPDFs are
given in (4.3) and (4.5) correspondingly. These distributions have leading power matching
to the twist-2 distributions. The perturbative coefficients for the leading power matching
are known up to NLO [17, 18] (for helicity) and NNLO [20] (for transversity). In contrast
to the unpolarized TMD f1 (4.1), the distributions g1L and h1 have a non-zero contribution
of twist-3 PDFs. The expressions given in this work do not account the twist-4 PDFs, and
thus already the n = 1 term is incomplete and contains additional twist-4 contribution (see
also figure 1).

Worm-gear TMDs g1T and h⊥
1L. The worm-gear distributions g1T and h⊥1L are given

in (4.4) and (4.7), correspondingly. They have the generic structure of distributions with
the leading power matching at collinear twist-3 operator (see figure 1). The leading power
expressions for both distributions were derived in [13] (using Lorentz invariance relations)
and [14] (using the off-light-cone parametrization), and agree with our computation.

It is interesting to mention that both worm-gear TMDPDFs have the common factor
x, which suppresses them at small-x. Nonetheless, this is in a good agreement with the ex-
perimental observations. In particular, in ref. [16] it has been shown that the twist-2 part of
n = 0 term (multiplied by the shape-function in kT -space) for worm-gear functions success-
fully describe COMPASS measurements [50]. Also, in ref. [14] the qualitative agreement
between the integrals of n = 0 term and lattice measurements [51] is demonstrated.
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Pretzelosity TMD h⊥
1T . The expression for the pretzelosity TMD is given in (4.8). The

expression (4.8) demonstrates a non-trivial value for pretzelosity distribution for the first
time. The leading power term for the pretzelosity reads

h⊥1T (x, b) = −x2
∫ 1

0
du

∫
dyδ(x− uy)1− u2

u
Th(y). (4.14)

This expression is incomplete, because at the same level of accuracy PDFs of twist-4 could
contribute. Thus eq. (4.14) is only the Wandzura-Wilchek approximation to the full expres-
sion. Note, that unless Th(x) has some anomalously strong behavior, (that could happen
only at x → 0, since Th(1) = 0) the pretzelosity distribution is a very small function. At
x → 1 the convolution is suppressed by the factor (1 − u2), whereas at x → 0 there is
a common factor x2. This observation is in a general agreement with the experimental
data [52, 53], which is compatible with zero for the pretzelosity-involving observables.

There are no contributions of twist-2 PDFs. The absence of matching to twist-2 PDFs
is true for all orders of the perturbation theory that were checked in ref. [20] up to α2

s-order,
and discussed in ref. [54]. This fact can be proven by comparing the following combinations
of chiral-odd TMDPDFs

bαΦ[iσα+γ5](x, b) = (bsT )
(
h1(x, b) + M2b2

2 h⊥1T (x, b)
)
− iλb2Mh⊥1L(x, b), (4.15)

bαε
αβ
T Φ[iσβ+γ5](x, b) = (bαεαβsβ)

(
h1(x, b)− M2b2

2 h⊥1T (x, b)
)
− ib2Mh⊥1 (x, b). (4.16)

The non-zero pretzelosity appears only if the matrix element Φ[iσα+γ5] has terms with dif-
ferent parity (so the expressions in (4.15), (4.16) in brackets are different). At the twist-2
level there is only one PDF, and thus the pretzelosity is null. At the twist-3 level there are
pairs of operators with different parity: e.g. ψ̄+f++χ̄+ and ψ̄+f̄++χ̄+ which produce asym-
metry in (4.15), (4.16), because 〈p, S|ψ̄+f̄++χ̄+|p, S〉 = 0. Since QCD Lagrangian preserves
parity, these statements are generally preserved at any order of perturbative expansion in
a properly defined regularization scheme. In the dimension regularization the Levi-Civita
tensor is not uniquely defined and thus the symmetry between relations (4.15), (4.16) could
be violated. In this case, one observes the non-zero pretzelosity [17, 20] in the ε-suppressed
terms. However, it is only an artifact of the dimensional regularization, and it must vanish
at ε → 0. The same statement holds for the quasi-TMDs for which the non-trivial but
ε-suppressed matching to pretzelosity has been observed in ref. [55] at αs-order.

5 Conclusion

TMD distributions are related to the collinear distributions in the limit of small-b. In the
present work, we have studied this relation at all powers of b-expansion and derived the
contributions with twist-2 and twist-3 PDFs. Our computation includes all eight polarized
TMDs. From the perspective of the resummation approach, the computed corrections are
target-mass corrections. The summary of the here-derived and known results is presented
in table 1. It is the first study of the matching between TMDPDF and collinear PDFs
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Twist of Twist-2 Twist-3 Order of
Name Function leading distributions distributions leading power Ref.

matching in matching in matching coef.function
Unpolarized f1(x, b) tw-2 f1(x) — N3LO (α3

s) [22, 23]
Sivers f⊥1T (x, b) tw-3 — T (−x, 0, x) NLO (α1

s) [24]
Helicity g1L(x, b) tw-2 g1(x) Tg(x) NLO (α1

s) [17, 18]
Worm-gear T g1T (x, b) tw-2/3 g1(x) Tg(x) LO (α0

s) [13, 14]
Transversity h1(x, b) tw-2 h1(x) Th(x) NNLO (α2

s) [20]
Boer-Mulders h⊥1 (x, b) tw-3 — δTε(−x, 0, x) LO (α0

s) [14, 49]
Worm-gear L h⊥1L(x, b) tw-2/3 h1(x) Th(x) LO (α0

s) [13, 14, 49]
Pretzelosity h⊥1T (x, b) tw-3/4 — Th(x) LO (α0

s) eq. (4.8)

Table 1. Summary of the information on the collinear matching for quark TMDs.

beyond the leading power, to our best knowledge. Thus, many results and conclusions
made in this paper are novel.

The list of expression for TMDPDFs is presented in section 4. All expressions have
the following common structure

F (x, b) =
∞∑
n=0

(
x2b2M2

4

)n 1
n!n!

[(
ū

u

)n
Gn(u)⊗ f

]
(x), (5.1)

where F is a TMD distribution, f is a (combination of) collinear distribution, and ⊗ is
the Mellin convolution. In addition to the power-suppression, each term is accompanied
by the factor x2n. Due to its numerical value the computed correction is almost negligible.
The appearance of target-mass corrections in the combination (x2M2) justifies the usage
of proton TMDPDF for nuclei. For nuclear observables the target-mass is Z-times larger,
but the measured x is Z-times smaller (with Z being the atomic number). Together these
factors compensate each other, and thus the nuclear TMDPDF is roughly a nucleon TMD-
PDF. The knowledge of target-mass corrections is also essential for lattice computations
of polarized quasi-TMDPDFs [55, 56].

One of the central results of this work is the elaboration of the twist-decomposition-
method. The method is taken from [33, 37] and uses the simplifications of the spinor
formalism. In the present study, it is applied at the tree-order for quark operators, but
similarly it can be used together with loop-calculation and/or for gluon operators. Let us
note that the computation is made in the position space, which is the only straightforward
way to compute such power corrections. It is clear that each term with n > 0 of the
expansion (5.1) is power-divergent in the momentum space. Moreover, the resummed
series of power corrections (4.13) also has a divergent Fourier transform. It demonstrates
the well-known fact that at certain b, the perturbative series (in any form) fails to describe
non-local objects, and truly non-perturbative effects must be accounted.

For the first time, we derive the non-zero matching of pretzelosity distribution to
the collinear distributions. Its leading power expression contains twist-3 (given in (4.14))
and twist-4 PDFs (not computed). Previously there were unsuccessful attempts to find a
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non-zero matching of pretzelosity to twist-2 PDFs [17, 20]. In section 4 we provide the
argumentation of why the pretzelosity does not have a contribution of twist-2 PDFs at all
orders of power and αs corrections.

Acknowledgments

We thank Alexander Manashov and Vladimir Braun for numerous discussions and expla-
nations. The research was supported by DFG grant N.430824754 as a part of the Research
Unit FOR 2926.

A Twist-3 part of the operators Os,n,t

In this appendix, we collect the expressions for twist-3 parts of the operators Os,n,t. The
definition of operator T̂3 is given in (3.25), (3.26). The definition of the operator Os,n,t is
given in (3.12), (3.27). The route of derivation is explained in section 3.2.

The twist-3 part of chiral-even operators are

T̂
(µ̄λ̄)
3 O

ψ̄+ψ+
s,n,t = 2ig

n∑
k=1

(
µ∂

∂λ

)n−k ( µ̄∂
∂λ̄

)k−1
(A.1)

× (−1)t(n− 1)!
(k − 1)!(n− k)!

(s+ t+ n− k)!(s+ t+ n)
(s+ t+ n+ 1)!

(s+ t+ k + 1)!
(s+ t+ n+ 1)!

× bk b̄n−k(λ̄µ̄)
{

(s+t+n+1)n
s−2∑
m=0

+(s+ t+ n+ 1)
s+n−2∑
m=s−1

(s+ n−m− 1)

−n
s+t+n−2∑
m=0

(s+ t+ n−m− 1)
}
ψ̄+
←−
Dm
λλ̄
f++
←−
Ds+t+n−m−2
λλ̄

ψ+,

T̂
(µλ)
3 O

ψ̄+ψ+
s,n,t = −2ig

n∑
k=1

(
µ̄∂

∂λ̄

)n−k (µ∂
∂λ

)k−1
(A.2)

×(−1)s+n(n− 1)!
(k − 1)!(n− k)!

(s+ t+ n− k)!(s+ t+ n)
(s+ t+ n+ 1)!

(s+ t+ k + 1)!
(s+ t+ n+ 1)!

× b̄kbn−k(µλ)
{

(s+t+n+1)n
t−2∑
m=0

+(s+ t+ n+ 1)
t+n−2∑
m=t−1

(t+ n−m− 1)

−n
s+t+n−2∑
m=0

(s+ t+ n−m− 1)
}
ψ̄+
−→
Ds+t+n−m−2
λλ̄

f̄++
−→
Dm
λλ̄
ψ+,

and

T̂
(µ̄λ̄)
3 O

χ+χ̄+
s,n,t = T̂

(µλ)
3 O

ψ̄+ψ+
s,n,t {ψ̄+ψ+ → χ+χ̄+, a↔ ā}, (A.3)

T̂
(µλ)
3 O

χ+χ̄+
s,n,t = T̂

(µ̄λ̄)
3 O

ψ̄+ψ+
s,n,t {ψ̄+ψ+ → χ+χ̄+, a↔ ā}, (A.4)

where a↔ ā indicates that all barred and unbarred variables should be exchanged, namely
µ, λ, b and f++. The twist-3 part of chiral-odd operators have the same general form, but
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different coefficients in the sum

T̂
(µ̄λ̄)
3 O

ψ̄+χ̄+
s,n,t = 2ig

n∑
k=1

(
µ∂

∂λ

)n−k ( µ̄∂
∂λ̄

)k−1
(A.5)

× (−1)t(n− 1)!
(k − 1)!(n− k)!

(s+ t+ n− k + 1)!(s+ t+ n+ 1)
(s+ t+ n+ 2)!

(s+ t+ k)!
(s+ t+ n)!

× bk b̄n−k(λ̄µ̄)
{

(s+ t+ n+ 2)n
s−2∑
m=0

+(s+ t+ n+ 2)
s+n−2∑
m=s−1

(s+ n−m− 1)

−n
s+t+n−2∑
m=0

(s+ t+ n−m)
}
ψ̄+
←−
Dm
λλ̄
f++
←−
Ds+t+n−m−2
λλ̄

χ̄+,

T̂
(µ̄λ̄)
3 O

χ+ψ+
s,n,t = 2ig

n∑
k=1

(
µ∂

∂λ

)n−k ( µ̄∂
∂λ̄

)k−1
(A.6)

× (−1)t(n− 1)!
(k − 1)!(n− k)!

(s+ t+ n− k + 1)!(s+ t+ n+ 1)
(s+ t+ n+ 2)!

(s+ t+ k)!
(s+ t+ n)!

× bk b̄n−k(λ̄µ̄)
{

(s+ t+ n)n
s−2∑
m=0

+(s+ t+ n)
s+n−2∑
m=s−1

(s+ n−m− 1)

−n
s+t+n−2∑
m=0

(s+ t+ n−m− 1)
}
χ+
←−
Dm
λλ̄
f++
←−
Ds+t+n−m−2
λλ̄

ψ+,

and

T̂
(µλ)
3 O

ψ̄+χ̄+
s,n,t = −T̂ (µ̄λ̄)

3 O
χ+ψ+
s,n,t {χ+ψ+ → ψ̄+χ̄+, a↔ ā}, (A.7)

T̂
(µλ)
3 O

χ+ψ+
s,n,t = −T̂ (µ̄λ̄)

3 O
ψ̄+χ̄+
s,n,t {ψ̄+χ̄+ → χ+ψ+, a↔ ā}. (A.8)

B Power corrections for fragmentation functions

In the case of TMDFF the matching to the collinear FF is not entirely defined. The reason
is the absence of local-operator expansion for FF-type operators. Only indirect methods of
twist-decomposition for FF operators are possible, such as differential equations [27], Feyn-
man diagram correspondences [19, 28–30] and Lorentz invariant relations [13]. However,
all these methods are ambiguous, and allow an addition boundary contributions. This
appendix demonstrates the outcome of partially ignoring these problems. For detailed
discussion we refer to [27].

The quark TMDFF is defined as [1]

∆ij(x, b) = Trcolor
2xNc

∫
dz

2πe
−izp+/x (B.1)

×
∑
X

〈0|[∓∞n, 0]qi(0)|h(p, s)+X〉〈h(p, s)+X|q̄(zn+ b)[zn+ b,∓∞n+ b]|0〉,

where we use x for collinear fraction of momentum instead of traditional z to avoid the
clash of notation. The Wilson lines are connected to −∞ for SIDIS-like process, and to
+∞ for e+e−-annihilation-like processes. For spinless particles there are only two TMDFFs
that contribute to the leading term of the factorization theorem. They read

∆[γ+](x, b) = D1(x, b), ∆[iσα+γ5](x, b) = iεαµT bµMH⊥1 (x, b). (B.2)
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These functions are called unpolarized (D1) and Collins (H⊥1 ) functions. In contrast to
the TMDPDF operator, the TMDFF operator cannot be presented as a single T-ordered
operator. This is the central issue because it prevents application of OPE. The definition
of collinear FF of twist-2,

d1(x) = x
Trcolor
2Nc

∫
dz

2πe
−izp+/x (B.3)

×
∑
X

〈0|γ
+

2 [−∞n, 0]qi(0)|h(p, s) +X〉〈h(p, s) +X|q̄(zn)[zn,−∞n]|0〉.

Note, that the collinear FF is defined with relative factor x2 in comparison to TMDFF [1].
In the case of FF-type operators the procedure described in section 3 should be mod-

ified. The reason is the operator in (B.1) has two parts which could not be joined under
a single T-order sign. So, one must distinguish causal (indicated by (+)-sign) and anti-
causal (indicated by (−)-sign) fields which then interact by a cut-propagator. Altogether it
is known as Keldysh technique. In Keldysh technique the TMDFF-operator can be written
analogously to (3.1)

OΓ
TMDFF(z, b) = q̄(−)(zn+ b)[zn+ b,∓∞n+ b](−)Γ[∓∞n, 0](+)q(+)(0), (B.4)

where [a, b](±) is a Wilson line made with A(±). TMDFF operator can be decomposed into
the series (3.11) with

OΓ
FF ;s,n,t = q̄(−)

←−−
D

(−)
+

s(b · ←−D (−))nΓ
−−→
D

(+)
+

tq(+). (B.5)

Next, one can perform the twist-decomposition for this operator in complete analogy to
the TMDPDF operator. The final expressions for twist-2 part (3.28)–(3.29) are analogous,
with the only replacement Ds+t+n

λλ̄
→ (D(−)

λλ̄
)s+n(D(+)

λλ̄
)t. However, the expression for twist-

3 part is significantly modified by addition of extra terms with F
(+−)
µν = ig−1[D(+)

µ D
(−)
ν ].

These terms cannot be written in a “quasi-partonic” form. It is an unsolved issue.
The next principal difficulty appears when we combine operators to the non-local form.

We have not found a way to perform this procedure on the operator level such that the
limit L→ ±∞ can be taken. Alternatively, we can use the analog of (3.31)

Trcolor
Nc

∑
X

〈0|γ+−→DN
+ q|h(p, s)+X〉〈h(p, s)+X|q̄←−DM

+ |0〉 = 4iN+MpN+1
λλ̄

∫
dx

d1(x)
xN+M+1 . (B.6)

Let us note that this is not a very well defined expression, because it assumes that l.h.s. is
dependent on N + M only, which generally does not hold. Nonetheless, operating in this
way we receive the all-order expression for unpolarized TMDFF (compare to (3.31))

D1(x, b) = d1(x)
x2 +

∞∑
n=1

∫ ∞
1

du

∫
dy
δ(x− uy)
n!(n− 1)!

(
b2M2

4x2

)n (u− 1)n−1

u
d1(y). (B.7)

The most notable part here is the “improper” range of the integration over u. The am-
biguity in the definition of OPE for FF, allows us to add any function that satisfies the
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Laplace equation. For the detailed discussion we refer to section 3 and 4 of ref. [27], where
it is shown that for the unpolarized case a convenient addendum is expression (B.7) with
integration range for u extended to (0,∞). Subtracting this expression we get

D1(x, b) = d1(x)
x2 −

∞∑
n=1

∫ 1

0
du

∫
dy
δ(x− uy)
n!(n− 1)!

(
b2M2

4x2

)n (u− 1)n−1

u
d1(y). (B.8)

This expression satisfies the Gribov-Lipatov relation between diagrams of PDF and FF
kinematics [57]. This expression can be also derived from equations (3.23), (3.24) and
(5.17) of ref. [27], in the same fashion as (4.1) can be derived from [35] (see explanation
in section 4). In contrast to TMDPDF case, the target-mass corrections for TMDFF are
enhanced by 1/x2 factor. It makes them large for baryon FFs. For meson TMDFFs these
corrections remains small due to the small mass of mesons.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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