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1 Introduction

General relativity (GR) is successful in many fields but leaves a few issues up in the air.
Both phenomenological and theoretical investigations reveal modifications to GR under
certain circumstances. Higher curvature terms may serve as these modifications and many
investigations start from them but out of various considerations. However, they may lead
to higher derivatives in equations of motion rather than second ones, which are gener-
ally difficult to be solved. f(R) theory of gravitation [1, 2], one of the simplest higher
derivative generalizations of GR, is possible to be analytically explored in some situations.
Although f(R) theory is an effective theory, its success in many fields has attracted exten-
sive attention.

On the other hand, the brane world scenario provides an alternative approach to ad-
dress outstanding issues in four dimensions. Remarkably, the brane world model with a
warped extra dimension pioneered by Randall and Sundrum [3] has drawn wide attention
since it exhibits the possibility of an infinite fifth dimension without violating known exper-
iments of gravitation. The general brane world sum rules indicate some particular classes
of five-dimensional brane world models in f(R) gravity [4]. Moreover, due to the inevitable
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appearance of higher derivatives in equations of motion, investigation on junction condi-
tions of f(R) gravity in the brane world scenarios opens the possibility of a new class of
thin brane solutions [5–11].

Thick branes, domain walls [12] with a warp spacetime background, can preferably
circumvent the requirements of the junction conditions and naturally remove the diver-
gence of curvature. Recent reviews including f(R) thick branes refer to refs. [13–15]. To
avoid solving higher derivative equations, f(R) gravity within the context of brane worlds
has been considered via the conformal equivalence between f(R) theory and GR with a
scalar field [5, 16]. However, this approach needs to transform the solutions of second
derivative equations of motion back to the physical frame. Thick branes in the higher-
order frame were explored by numerical or approximate approaches [17–20]. In ref. [20],
thick branes with constant curvature were investigated, but these solutions may not lead
to the usual four-dimensional gravitation. Nontrivial analytical thick brane solutions with
nonconstant curvature in f(R) theory were first investigated in ref. [21] and further con-
sidered in refs. [16, 22–32]. Unlike the approach by introducing background scalar fields
to construct thick branes, pure geometric frameworks (without background matter fields)
were taken into account in refs. [16–19, 22, 33].

Most of the related works are investigated in five-dimensional spacetime. It is worth
noting that the known thick f(R) branes in higher spacetime dimensions [18, 19, 22] are
constructed in pure gravity without background scalar fields. However, to localize a bulk
fermion field on the brane, the Yukawa coupling between the fermion field and a background
scalar field is usually needed. Moreover, in five dimensions, the pure gravitational trapping
mechanism of vector fields remains problematic and there is no remarkable proposal for the
fermion mass hierarchy in the Standard Model. These issues may employ higher dimensions
to address. Our goal is to investigate brane solutions with nonconstant curvature in the
context of six-dimensional f(R) gravity with a real scalar field.

Before exploring solutions in a background spacetime, we should first consider its per-
turbation stability. Considering four-dimensional Poincaré symmetry, the decomposition
of perturbations will give rise to massless and massive graviton Kaluza-Klein (KK) modes.
A localized massless graviton KK mode contributes to the four-dimensional Newtonian po-
tential and the massive ones lead to corrections to the Newtonian potential. Gravitational
resonant modes, a class of massive KK modes, have been studied for various solved f(R)
models in brane world scenarios [25, 34]. More complete analyses on perturbations with
extra spatial dimensions in the context of GR have been achieved in refs. [35–41]. The
linear stability of the tensor perturbation of f(R) brane models was firstly investigated in
ref. [42]. Other related investigations can also be seen in refs. [16, 27, 29–32, 43]. Scalar
perturbations within the context of pure f(R) gravity have been elaborated by the trans-
formation of the f(R) theory to a scalar-tensor theory [16, 32] and directly studied in the
higher-order frame [43]. However, scalar perturbations in f(R) gravity with background
scalar fields are difficult to be analyzed because of the coupling between the scalar modes
of the metric perturbations and background scalar fields, and the resolution was given in
ref. [44]. For our research, we investigate the linear stability of higher-dimensional f(R)
gravity in brane world scenarios against tensor perturbations.
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This paper is organized as follows. In section 2, we consider f(R) gravity in a D-
dimensional spacetime and give the equations of motion under a concrete metric describing
flat branes. In section 3, we investigate the linear stability of this background spacetime
against tensor perturbations. In section 4, the graviton KK modes are discussed. In
section 5, we seek for analytic solutions of thick branes in a six-dimensional bulk spacetime.
Exact solutions of the scalar field with a domain wall configuration are studied. In section 6,
we discuss the effective potential in solved f(R) models in higher dimensions. Finally,
discussions and conclusions are given in section 7.

Throughout the paper, capital Latin letters M,N, . . . represent the D (= 4 + 1 +
d)-dimensional coordinate indices running over 0, 1, 2, 3, 5, 6, . . ., lower-case Greek letters
µ, ν, . . . represent the four-dimensional Minkowski coordinate indices running over 0, 1, 2, 3,
and lower-case Latin letters i, j, . . . represent the extra-spatial Euclidean coordinate indices
running over 6, 7, . . .. We use the definitions RPMQN = ∂QΓPMN − ∂NΓPMQ + ΓPQLΓLMN −
ΓPNLΓLMQ and RMN = RLMLN . The metric signature is (−,+,+, · · · ,+).

2 f(R) gravity in D-dimensional spacetime

We start with the following D-dimensional action within the context of f(R) gravity (for
reviews see refs. [1, 2]),

S = 1
2κ2

D

∫
dDx

√
−g(D)f(R) + Sm , (2.1)

where g(D) ≡ det gMN , and κ2
D = 8πG(D)

N = 1/MD−2
(D) with G(D)

N the D-dimensional grav-
itational constant and M(D) the D-dimensional fundamental scale. The variation of the
action (2.1) with respect to the metric gMN yields the following field equation

fRRMN −
1
2fgMN −∇M∇NfR + gMN�

(D)fR = κ2
DTMN , (2.2)

where fR denotes df/dR, �(D) = gAB∇A∇B is the D-dimensional d’Alembert operator,
and TMN = − 2√

−g(D)
δSm
δgMN is the energy-momentum tensor.

Specifically, a particular example of an anisotropic (4 + 1 + d)-dimensional spacetime
M4×R1×Ed is considered, whereM4 is a four-dimensional Minkowski manifold, R1 is a
special manifold with a noncompact extra spatial dimension, and Ed is a Euclidean manifold
with d extra spatial dimensions. In this paper, we are interested in a four-dimensional static
flat spacetime embedded in the (4 + 1 + d)-dimensional bulk, which takes the form

ds2 = e2A(y)ηµνdxµdxν + dy2 + e2B(y)δijdx̂idx̂j . (2.3)

Here eA(y) and eB(y) are warp factors which give rise to the warped geometry, ηµν and δij
are metrics in theM4 and the Ed, respectively, and y = x5 is the spacial extra-dimensional
coordinate. With the coordinate transformations dz = e−A(y)dy and dwi = eB(y)−A(y)dx̂i,
the above metric can be rewritten as

ds2 = e2A(z)
(
ηµνdxµdxν + dz2 + δijdwidwj

)
. (2.4)
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Denoting a(y) = eA(y) and b(y) = eB(y) and using the metric ansatz (2.3), eq. (2.2) is
reduced to

(µ,ν) : 1
2f+

(
3a
′2

a2 + a′′

a
+d

a′b′

ab

)
fR−

(
3a
′

a
+d

b′

b

)
f ′R−f ′′R =−κ

2
D

4
ηµν

a2 Tµν , (2.5a)

(y,y) : 1
2f+

(
4a
′′

a
+d

b′′

b

)
fR−

(
4a
′

a
+d

b′

b

)
f ′R =−κ2

DT
5
5 , (2.5b)

(i, j) : 1
2f+

[
(d−1)b

′2

b2
+ b′′

b
+4a

′b′

ab

]
fR−

[
4a
′

a
+(d−1)b

′

b

]
f ′R−f ′′R =−κ

2
D

d

δij

b2
Tij , (2.5c)

where the prime denotes the derivative with respect to the extra-dimensional coordinate y.
To explore the stability of this configuration and effective gravitation in theM4, we would
like to examine perturbations concerning this background spacetime.

3 Linear stability

In D-dimensional spacetime, pure f(R) = R + αRn gravity (without matter) has been
considered for thick brane solutions [18, 19]. Nevertheless, the perturbative stability of
spacetime is still unknown. We mainly focus on the linear stability of spacetime under
perturbations and begin with gravitational perturbations for general f(R) gravity in D-
dimensional spacetime (for general perturbations see appendix A). For a deformation of
eq. (2.2), the linearized field equation is

δfRGMN + fRδGMN = 1
2 [(δf − δR fR −RδfR) gMN + (f −RfR) δgMN ]

+ δ (∇M∇NfR)− δ
(
gMN�

(D)fR
)

+ κ2
DδTMN , (3.1)

where the δ denotes a linear perturbation. This equation can also be derived by variation
with respect to the action including quadratic terms of perturbations.

With the help of the expansions of ∇M∇NfR and gMN∇A∇AfR:

∇M∇NfR =
(
∂M∂N − ΓPNM∂P

)
fR , (3.2a)

gMN�
(D)fR = gMN∇A∇AfR = gMNg

AB (∇A∇BfR) , (3.2b)

one can write the two terms δ (∇M∇NfR) and δ
(
gMN∇A∇AfR

)
on the right hand side of

eq. (3.1) as

δ (∇M∇NfR) =
(
∂M∂N −ΓPNM∂P

)
δfR−δΓPNM∂P fR , (3.3a)

δ
(
gMN�

(D)fR
)

= δ
(
gMNg

AB∇A∇BfR
)

= δgMN�
(D)fR+gMNδg

AB (∇A∇BfR)+gMNg
ABδ (∇A∇BfR) . (3.3b)

We investigate perturbations under the background metric (2.3) in the following. For
an observer localized on theM4, the perturbations of the metric (2.3) and bulk fields can be
decomposed into the transverse-traceless (TT) tensor mode, transverse vector modes, and
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scalar modes according to the four-dimensional Lorentz transformation. The perturbations
of the metric couple to the perturbations of bulk fields. Each type of these perturbation
modes obeys independent equations of motion at the linearized level [35, 37, 38, 40, 41].
For instance, the perturbations of a scalar field in the bulk does not appear in the equation
of motion of the tensor mode. In refs. [35, 37, 38, 40, 41], the linear perturbation stability
analysis was applied for the line element (2.4) in GR. Taking a step further, we examine
the following linear tensor perturbations in the context of f(R) gravity:

ds2 = a2(y)(ηµν + hµν)dxµdxν + dy2 + b2(y)δijdx̂idx̂j , (3.4)

where hµν represents the TT tensor mode obeying

∂µh
µ
ν = 0 , h = ηµνhµν = 0 . (3.5)

Some fundamental quantities of spacetime under such a perturbation can be calculated
accordingly. They are collected in appendix B.

The (µ, ν) components of δ (∇M∇NfR) and δ
(
gMN�(D)fR

)
under the perturba-

tions (3.4) are calculated as

δ (∇µ∇νfR) = a2
(
a′

a
+ 1

2f
′
R∂y

)
hµν , (3.6a)

δ
(
gµν�

(D)fR
)

= a2
[(

4a
′

a
+ d

b′

b

)
f ′R + f ′′R

]
hµν . (3.6b)

Plugging the expression of δGµν (B.7) (see appendix B) into eq. (3.1), and considering
δ (∇µ∇νfR) and δ

(
gµν�(D)fR

)
in eq. (3.6), the (µ, ν) component of eq. (3.1) is worked

out to be[
1
2f +

(
3a
′2

a2 + a′′

a
+ d

a′b′

ab

)
fR −

(
3a
′

a
+ d

b′

b

)
f ′R − f ′′R + κ2

D

4
ηαβ

a2 Tαβ

]
hµν

+ 1
2fR

[ 1
a2�

(4)hµν + 1
b2

∆̂(d)hµν +
(

4a
′

a
+ d

b′

b

)
h′µν + h′′µν

]
+ 1

2f
′
Rh
′
µν = 0 . (3.7)

Here, �(4) = ηµν∂µ∂ν and ∆̂(d) = δij∂i∂j are the d’Alembert operator in the M4 and
the Laplace operator in the Ed, respectively. Taking the background equation (2.5a) into
account, the main perturbed equation (3.7) for the TT tensor mode is reduced to[ 1

a2�
(4) + 1

b2
∆̂(d) +

(
4∂ya
a

+ d
∂yb

b

)
∂y + ∂y∂y

]
hµν + ∂yfR

fR
∂yhµν = 0 . (3.8)

Since
�(D) = 1

a2�
(4) + 1

b2
∆̂(d) +

(
4∂ya
a

+ d
∂yb

b

)
∂y + ∂y∂y, (3.9)

for the curved background (2.3), the above equation (3.8) can be written as

�(D)hµν = − (∂y ln fR) ∂yhµν . (3.10)

In the coordinates
(
xµ, z, wi

)
, eq. (3.8) turns into[

∂2
z + ∂z ln

(
a3bdfR

)
∂z + ∆(d) +�(4)

]
hµν = 0 , (3.11)
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where ∆(d) = δij∂wi∂wj represents the Laplace operator in the Ed regarding the transformed
extra-dimensional coordinates wi.

Next, we perform the following separation of variables

hµν
(
xµ, z, wi

)
= εµν (xµ)

[
a3(z)bd(z)fR(z)

]−1/2
ψ (z) ξ(wi) . (3.12)

Then we obtain the Klein-Gordon equation for the four-dimensional part εµν(xµ):(
�(4) −m2

)
εµν (xµ) = 0 , (3.13)

the Schrödinger-like equation for the fifth-dimensional spatial part ψ(z):[
−∂2

z +W (z)
]
ψ(z) =

(
m2 − l2

)
ψ(z) , (3.14)

and the Helmholtz equation for the extra d-dimensional spatial part ξ(wi):(
∆(d) + l2

)
ξ(wi) = 0 . (3.15)

Here the effective potential W (z) is of the following form

W (z) = 1
4

(
3(∂za)2

a2 +d(d−2)(∂zb)2

b2
− (∂zfR)2

f2
R

)
+ 1

2

(
3d∂za

a

∂zb

b
+3∂za

a

∂zfR
fR

+d∂zb
b

∂zfR
fR

)
+ 1

2

(
3∂z∂za

a
+d∂z∂zb

b
+ ∂z∂zfR

fR

)
= Ω2+∂zΩ (3.16)

with
Ω = 1

2∂z ln
(
a3bdfR

)
. (3.17)

Both m2 < 0 and l2 < 0 are not physically reasonable, they will lead to the solu-
tion (3.12) either evolving exponentially in time or increasing exponentially in space. Essen-
tially, the Schrödinger-like equation (3.14) can be factorized as a supersymmetric quantum
mechanics form

QQ†ψ(z) =
(
m2 − l2

)
ψ(z) (3.18)

with
Q = ∂z + Ω , Q† = −∂z + Ω , (3.19)

which ensures m2 − l2 > 0. We conclude that this system is stable under tensor pertur-
bations. However, the condition m2 − l2 > 0 does not ensure that there are no lower
energy states which are apparent tachyons. If one demands that apparent tachyon states
are absent in the M4, m2 > 0 should be satisfied. The two conditions m2 − l2 > 0 and
m2 > 0 are significant for the stability. We give a brief discussion for several cases:

• there are no any apparent tachyon states in the M4 if m2 − l2 > 0 and m2 > 0 are
satisfied;

• the case m2 − l2 > 0 and m2 < 0 will result in some apparent tachyon states of the
graviton in theM4;
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• it is worth stressing that m2 = 0 and l2 = 0 will lead to a zero energy state which
stands for the graviton zero mode; however, a zero energy state does not indicate
m2 = 0 and l2 = 0 for the case of m2 = l2.

Until now, the above analyses of tensor perturbations are independent of the explicit
background spacetime. It is worth noting that the above results are applicable for d > 0.
For d = 0, namely the five-dimensional case, it was reported in ref. [42]. In the case of
d > 0, the effective potential compared with the one with d = 0 will be corrected due
to the presence of the warp factor b. Moreover, the above derivation can also be done
with the line element (2.4). Some related works in the context of GR can be seen in
refs. [35, 37, 38, 40, 41].

Furthermore, f(R) gravity suffers from instabilities on account of ghosts or tachyons [1,
2]. Stability conditions, i.e., the ghost-free condition df(R)

dR > 0 and the tachyon-free con-
dition d2f(R)

dR2 > 0, should be fulfill physically to make sure that f(R) theory is viable.
Nevertheless, the ghost-free condition is a local condition only for short wavelength modes.
There is the possibility of the existence of other linear instabilities in the spacetime con-
sidered here.

4 The KK modes of the graviton

In what follows, we discuss the KK modes of the tensor perturbations which will help us to
analyze the four-dimensional effective theory. For a four-dimensional observer in the M4,
the KK modes of the tensor perturbations reflect the configuration of extra dimensions.
We use h(ml)

µν (xM ) to denote the KK modes with ξ(l)(wi) and ψ(ml) (z) their wi- and z-
coordinate parts. If a KK mode is normalizable, it corresponds to a four-dimensional
graviton. There are a series of modes with m2 − l2 > 0 in terms of the Schrödinger-like
equation (3.14). Regardless of the value of l2, these modes are called massless if m2 = 0
and massive if m2 6= 0. One can find a special set of modes ψm2=l2(z) with m2 = l2. If
we impose periodic boundary conditions on the Ed, the condition l2 > 0 will be satisfied.
There is a special mode ψ(00)(z) withm2 = l2 = 0 corresponding to the graviton zero mode.

We clarify the condition that one can obtain a four-dimensional effective gravitational
theory from the perspective of action reduction. To quadratic order in tensor perturbations,
the gravitational part of the action (2.1) is

Sg = 1
2κ2

D

∫
dDx

[
f(R) δ(2)

√
−g(D)+

√
−g(D)

(
fRδ

(2)R+ 1
2fRR(δR)2

)
+fRδR δ

√
−g(D)

]
,

(4.1)

where δ(2) denotes second-order quantities in tensor perturbations and fRR denotes
df2/dR2. Taking the TT condition (3.5) and the separation of variables (3.12) in the
coordinates

(
xµ, z, wi

)
into account, one may obtain a four-dimensional effective theory

with the Einstein-Hilbert action and some additional terms:

Seff ⊃
MD−2

(D)
2

∫
d4x ∂αερλ (xµ) ∂αερλ (xµ)

∫
ddw ξ2(wi)

∫
dz ψ2(z) . (4.2)
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Such a four-dimensional effective action is anticipated to describe gravitation observed
experimentally. The four-dimensional effective Planck mass MPl is expressed as follows

M2
Pl = MD−2

(D)

∫
Ed

ddw ξ2(wi)
∫ +∞

−∞
dz ψ2(z) , (4.3)

where
∫
Ed

ddw ≡ V is the volume of the Ed. Since ξ(wi) is a plane wave solution, one only
needs that the integral domain is finite. If the volume V is finite, an arbitrary KK mode
is normalizable if and only if the following normalization condition is satisfied∫ +∞

−∞
ψ2(z) dz =

∫ +∞

−∞
ψ2(z(y)) a−1(y) dy <∞ . (4.4)

As a consequence, one can obtain a four-dimensional effective action from the higher-
dimensional f(R) gravity (2.1) under the metric ansatz (2.3). Specifically, the localized
massless zero mode results in a four-dimensional GR and hence the four-dimensional New-
tonian potential. Therefore, the zero mode must satisfy the normalization condition (4.4).
Regarding to the massive KK modes, they should not lead to unacceptable corrections even
if they are localized. We do not discuss here what the magnitude of the corrections is.

The z-coordinate part of a KK mode ψ(ml)(z) satisfies the Schrödinger-like equa-
tion (3.14) and one can find a general solution with zero eigenvalue m2 = l2 (see ap-
pendix C):

ψm2=l2(z) =
[
a3(z)bd(z)fR(z)

]1/2 [
C1 + C2

∫ 1
a3(z)bd(z)fR(z)dz

]
, (4.5)

where C1 and C2 are integration constants. There exists the possibility of the normaliza-
tion of KK modes with this general solution. Moreover, the KK modes of the graviton
propagating in the bulk are subjected to boundary conditions [45]. For our case, the van-
ishing of the variation of the action of KK gravitons at the boundary ∂Σ of the bulk along
the fifth dimension z leads to the boundary condition

δhµν∂zhµν
∣∣
∂Σ = 0 . (4.6)

Note that hµν is assumed to vanish at the four-dimensional boundary xρ → ±∞ and the
extra d-dimensional boundary wi → ±∞, and corresponding boundary terms are automat-
ically zero. Furthermore, the Schrödinger-like equation (3.14) is a Sturm-Liouville equation
and ψml(z) satisfies the following orthonormal condition∫

dz ψ(ml)(z)ψ(m′l′)(z) = δl l′δm m′ . (4.7)

Accordingly, the boundary condition (4.6) can again be satisfied by imposing either

Dirichlet condition:
[
a3(z)bd(z)fR(z)

]−1/2
ψ(ml) (z)

∣∣∣∣
∂Σ

= 0 , (4.8)

or Neumann condition: ∂z

{[
a3(z)bd(z)fR(z)

]−1/2
ψ(ml) (z)

} ∣∣∣∣
∂Σ

= 0 . (4.9)
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The solutions of the Schrödinger-like equation (3.14) need to satisfy these boundary con-
ditions.

The Dirichlet condition may allow the modes with the second particular solution

ψm2=l2(z) = C2
[
a3(z)bd(z)fR(z)

]1/2 ∫ 1
a3(z)bd(z)fR(z)dz . (4.10)

The Neumann condition leads to the modes with the general solution (4.5). Particularly,
the first particular solution

ψm2=l2(z) = C1
[
a3(z)bd(z)fR(z)

]1/2
(4.11)

always meets the Neumann condition for arbitrary warp factors and the form of f(R).
For an AdS bulk or an asymptotically AdS one, the warp factors may be exponentially
divergent at the fifth-dimensional boundary z → ±∞ and this particular solution may
still not be normalizable. Thus, only the (asymptotically) behavior of the bulk is not be
sufficient enough. As long as the particular solution (4.11) is normalizable, one can get a
four-dimensional effective theory. It is worth noting that there is the graviton zero mode
ψ(00)(z) with the first particular solution (4.11)

ψ(00)(z) = C1
[
a3(z)bd(z)fR(z)

]1/2
. (4.12)

Consequently, the mode ψ(00)(z) should satisfy the normalization condition (4.4). In this
case, the four-dimensional effective Planck mass MPl is given by

M2
Pl = MD−2

(D) V

∫
dz a3(z)bd(z)fR(z) . (4.13)

Essentially, one does not rule out the possibility that the general solution (4.5) or the
second particular solution (4.10) met the boundary condition (4.6) is normalizable for
some warp factors and the specific form of f(R). Furthermore, additional conditions, such
as several kinds of instabilities of f(R) theory, impose restrictions on these solutions of the
graviton zero mode. In the following, we investigate brane solutions in the first particular
solution (4.12) of the graviton zero mode.

5 Brane solutions in six-dimensional spacetime

In this section, we will seek brane solutions satisfying the above restrictive conditions. As
an example, we consider a background real scalar field within the context of six-dimensional
f(R) gravity. Different from the line element with two compact extra dimensions [46, 47],
we consider the following one

ds2 = a2(y)ηµνdxµdxν + dy2 + L2b2(y)dθ2 , (5.1)

where θ ∈ [0, 2π) is a compact dimension. The background scalar field φ is merely a
function of y for a static flat brane. From eq. (2.5), we obtain the following equations in
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six dimensions

(µ, ν) : 1
2f +

(
3a
′2

a2 + a′′

a
+ a′b′

ab

)
fR −

(
3a
′

a
+ b′

b

)
f ′R − f ′′R = κ2

6

[1
2φ
′2 + V (φ)

]
, (5.2a)

(y, y) : 1
2f +

(
4a
′′

a
+ b′′

b

)
fR −

(
4a
′

a
+ b′

b

)
f ′R = −κ2

6

[1
2φ
′2 − V (φ)

]
, (5.2b)

(θ, θ) : 1
2f +

(
b′′

b
+ 4a

′b′

ab

)
fR − 4a

′

a
f ′R − f ′′R = κ2

6

[1
2φ
′2 + V (φ)

]
. (5.2c)

The equation of motion for the background scalar field is

φ′′ +
(

4a
′

a
+ b′

b

)
φ′ − ∂V

∂φ
= 0 . (5.3)

The combination of eq. (5.2) yields three transformed equations
(

3a
′2

a2 − 3a
′b′

ab
+ a′′

a
− b′′

b

)
fR +

(
a′

a
− b′

b

)
f ′R = 0 , (5.4a)(

3a
′2

a2 + a′b′

ab
− 3a

′′

a
− b′′

b

)
fR + a′

a
f ′R − f ′′R = κ2

6φ
′2 , (5.4b)

4
(
a′b′

ab
− a′′

a

)
fR + b′

b
f ′R − f ′′R = κ2

6φ
′2 . (5.4c)

Here, only three of the four equations in (5.3) and (5.4) are independent because the energy
momentum tensor is conserved. If the two warp factors satisfy a(y) = b(y), we have only
two independent equations.

For the following tensor perturbations

ds2 = a2(y)(ηµν + hµν)dxµdxν + dy2 + L2b2(y)dθ2 , (5.5)

the main perturbed equation is

fR

[ 1
a2�

(4)hµν + 1
L2b2

∂θ∂θhµν +
(

4∂ya
a

+ ∂yb

b

)
∂yhµν + ∂y∂yhµν

]
+ ∂yfR∂yhµν = 0 .

(5.6)

The relationship between the four-dimensional effective Planck scale MPl and the six-
dimensional fundamental scale M(6) is

M2
Pl = M4

(6)2πL
∫

dy a2(y)b(y)fR(y) . (5.7)

So far, for six-dimensional f(R) gravity within brane world scenarios, we have obtained
background equations of motion and have analyzed linear stability for tensor perturbations.
We will solve analytical solutions in the following subsections with eqs. (5.3) and (5.4).

– 10 –



J
H
E
P
1
2
(
2
0
2
0
)
1
3
0

5.1 Starobinsky gravity

First, we consider the Starobinsky gravity

f(R) = R+ αR2, (5.8)

which is the first model of inflation in four dimensions and also gives rise to cosmic accel-
eration which ends when the term αR2 is smaller than R [48]. Here, we seek thick brane
solutions in the six-dimensional Starobinsky gravity.

In general, the superpotential method is not available for higher-order differential equa-
tions. In order to avoid solving higher-order equations directly, we would like to adopt the
reconstruction technique [31, 49, 50], which seeks a reasonable action of background fields
to satisfy fixed configurations reasonable for brane models. As mentioned above, for sim-
plicity we set the warp factors a(y) and b(y) as

a(y) = b(y) = sechn(ky) , (5.9)

where k is a parameter with dimension mass. For ky → ±∞, a(y) = b(y)→ e−nk|y|, which
implies that the metric (5.1) reduces an AdS one at the boundary. The AdS curvature
relates to the parameters k and n. The length scale 1/k corresponds to the thickness of
the thick brane.

From three independent equations in eqs. (5.3) and (5.4), we obtain the following
analytic solution

φ(y) =±
2
√
n
√
q

κ6

{
i
[
E
(

iky, p
q

)
−F

(
iky, p

q

)]
+
√

1+ p

q
sinh2(ky) tanh(ky)

}
, (5.10a)

V (φ(y)) = k2

κ2
6
2n
[
(5n+1)p sech2(ky)+(5n+2)ξ sech4(ky)

]
, (5.10b)

with three dimensionless parameters

p = 1− 10k2α(n+ 1)(3n+ 2) , q = 1 + 10k2α(5n+ 1) , ξ = 5k2α(n+ 3)(3n+ 1) .

Here F and E are the first and second elliptic integrals, respectively. The signs ± in
eq. (5.10a) stand for two solutions with opposite values. That the solution (5.10a) is real
requires

− 1
10(5n+ 1) < k2α 6

1
10(n+ 1)(3n+ 2) . (5.11)

For the sake of clarity, we introduce the following dimensionless quantities

ȳ = ky, ᾱ = k2α, φ̄ = κ6φ, V̄ = κ2
6V/k

2. (5.12)

The parameter space allowing brane solutions is shown in figure 1. Moreover, the scalar
field φ(y) and the scalar potential V (φ) in (5.10) are shown in figure 2. It is shown that
an AdS domain wall solution is characterized by a function φ̄(ȳ) that approaches to the
two different vacua of the potential as ȳ → ±∞. This solution also indicates a length scale
corresponding to the thickness of the brane.
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Figure 1. The domain of existence of the solution (5.10a) in the (ᾱ, n) parameter space. The
blue dashed line stands for the lower bound and is not an available curve of the parameter. The
orange solid line stands for the upper bound and is an available curve of the parameter. The region
between the blue dashed line and the orange solid line is an existence region of the solution for
n > 0. We only give a schematic diagram in the domain n ∈ (0, 2). It is worth noting that two
bound lines of ᾱ will approach to zero for n→∞.
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(a) The scalar field φ̄(ȳ).
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ϕ

V (ϕ)

(b) The scalar potential V̄ (φ̄).

Figure 2. Plots of the dimensionless scalar field φ̄(ȳ) and the corresponding dimensionless scalar
potential V̄ (φ̄) for the brane world solution (5.10). The parameter n is set to 1.

From figure 2(a), the scalar field (5.10a) is a double kink for small values of ᾱ but is a
single kink for large values of ᾱ. There is a critical value at which the double kink becomes
a single one. We can seek the critical value by requiring the third-order derivative of the
dimensionless scalar field (5.10a) with respect to ȳ to satisfy the following condition

d3φ̄(ȳ)
dȳ3

∣∣∣∣
ȳ=0

= 0 . (5.13)

The critical value of ᾱ is given by

ᾱc = − 1
30n(n+ 5) + 40 , (5.14)

at which

φ̄′(0) = ±2
√
n

√
(n+ 3)(3n+ 1)
3n(n+ 5) + 4 . (5.15)
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(a) The scalar field φ̄(ȳ).
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(b) The scalar potential V̄ (φ̄).

Figure 3. Plots of the dimensionless scalar field φ̄(ȳ) at the critical value ᾱc and the corresponding
dimensionless scalar potential V̄ (φ̄). The parameter n is set to 1.

This means that when ᾱ exceeds the critical value ᾱc, the scalar field (5.10a) becomes
a single kink. We exhibit the critical solution of the scalar field and the critical scalar
potential in figure 3.

For the special value of ᾱ:

ᾱ = 1
10(n+ 1)(3n+ 2) , (5.16)

we obtain a concise solution

φ(y) = ±v tanh(ky) , (5.17a)

V (φ) = (5n+ 2)
4

k2

v2

(
φ2 − v2

)2
, (5.17b)

where

v = 1
κ6

√
4n(n+ 3)(3n+ 1)
(n+ 1)(3n+ 2) .

We depict the kink solution and the scalar potential in figure 4.
Next we explore the distribution of the energy density ρ along the extra dimension y:

ρ = TMNU
MUN , (5.18)

where UM = (1/a(y), 0, 0, 0, 0, 0). It is worth mentioning that the vacuum energy density
has to been deducted from the total energy density. We introduce the dimensionless energy
density ρ̄ = ρκ2

6/k
2. It is shown that there is a critical value of ᾱ blow which the energy

density will be split. Such critical value of ᾱ is

ᾱ0 = − 5n+ 2
10[n(31n+ 35) + 8] , (5.19)

which is solved from the following condition

d2ρ̄(ȳ)
dȳ2

∣∣∣∣
ȳ=0

= 0 . (5.20)
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Figure 4. Plots of the dimensionless scalar field φ̄(ȳ) and the corresponding dimensionless scalar
potential V̄ (φ̄) in eq. (5.17).

For the above solution (5.10), we plot the energy density of the thick brane in figure 5.
It is shown that, for various values of ᾱ, the maximum of the energy density increases
with n. On the other hand, the brane splits only when ᾱ is less than the critical value ᾱ0
(see figures 5(a) and 5(b)). For a fixed n, as shown in figure 6, the thickness of the brane
decreases with increasing ᾱ, which can also be seen from figures 5(a) and 5(b), and the
brane gradually splits as the decrease of ᾱ.

5.2 f(R) = R + αR3 gravity

In this subsection, we consider the following f(R) model

f(R) = R+ αR3 , (5.21)

where α has dimension [Length]−4. We also consider the warp factors given in eq. (5.9).
In this model, we take the dimensionless parameter

ᾱ = αk4 = − 1
900n2(5n+ 2) (5.22)

to solve the equations of motion (5.3) and (5.4). We show the parameter space of the
solution in figure 7. It should be noted that solutions in other parameter space out of the
blue line in figure 7 may exist. Our solution is given by

φ(y) = ± 1
κ6

√
1

15(5n+ 2)

[
c(y)d(y)sech2(ky) + (5n− 1)arctanh

(
c(y)
d(y)

)]
, (5.23a)

V (φ(y)) = 2k2(3n+ 1)
9κ2

6(5n+ 2)
sech6(ky)

[
3(5n+ 1)(5n+ 2) cosh(2ky)− 25n− 9

]
, (5.23b)

where the two functions c(y) and d(y) are

c(y) =
√

5(3n+ 1) sinh(ky) , d(y) =
√

4(5n+ 1) sinh2(ky) + 5n− 1 . (5.24)
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(a) ᾱ = − 1
10(5n+1)+1 . (b) ᾱ = 1

10(n+1)(3n+2) .

(c) ᾱ = ᾱ0 = − 5n+2
10[n(31n+35)+8] .

Figure 5. Plots of the dimensionless energy density ρ̄(ȳ) for the solution (5.10) regarding three
values of ᾱ. The energy density in figure 5(a) exhibits split behavior. A non-split energy density is
shown in figure 5(b). The energy density at the critical value ᾱ0 is shown in figure 5(c).

(a) n = 1/10. (b) n = 5.

Figure 6. Plots of the dimensionless energy density ρ̄(ȳ) for the solution (5.10) regarding two
values of n.
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gravity. The blue solid curve stands for the parameter range of our solution for n > 0. We only
give a schematic diagram in the domain n ∈ (0, 0.5). It is worth noting that the blue line of ᾱ
approaches to zero from an infinite negative value with increasing n.
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n

1

5

4

5

-3 -2 -1 0 1 2 3

0

2

4

6

8

10

V ( )

(b) The scalar potential V̄ (φ̄).

Figure 8. Plots of the dimensionless scalar field φ̄(ȳ) and the corresponding dimensionless scalar
potential V̄ (φ̄) in (5.23).

This solution requires n > 1/5. We plot the scalar field φ and the potential V (φ) in figure 8.
For a small n, φ is a double kink solution.

It is interesting that a simplified solution is obtained if n = 1/5:

φ(y) = ± 8
κ̄6

sgn(ky) tanh2(ky) , (5.25a)

V (φ(y)) = 32k2

3κ̄2
6

[9 cosh(2ky)− 7] sech6(ky) , (5.25b)

where a newly defined coupling constant κ̄6 = 3
√

5κ6 is adopted. In this special case, we
can obtain an analytical expression for the scalar potential V (φ):

V (φ) = k2

3κ̄2
6

[1 + κ̄6sgn(φ)φ] [8− κ̄6sgn(φ)φ]2 . (5.26)
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Figure 9. Plots of the dimensionless energy density ρ̄(ȳ) in eq. (5.23). The blue solid line and the
orange dashed line represent the split and non-split energy densities, respectively. The green long
dashed line represents the critical line of energy density split.

According to eq. (5.18), we plot the energy density in figure 9. It is shown that the
brane is split for a small n. There is a critical value

nc = (
√

65 + 3)/10 ' 1.106 ,

which satisfies the condition (5.20). The brane is not split for n > nc. Besides, the
maximum of the energy density increases with n.

6 Effective potentials

The above six-dimensional thick brane solutions can be generalized to a higher-dimensional
bulk. To explore the effective gravity on the brane in such a background, we discuss the
effective potential (3.16) for the above solved f(R) models in higher dimensions with the
warp factors (5.9). Here we only consider the case n = 1. For these two solved f(R)
models, the graviton zero mode (4.12) satisfies the normalization condition (4.4) when
n > 0 for the warp factors (5.9). As an example, we show a normalized graviton zero
mode in figure 10(d). The difference of the effective potential (3.16) between GR and f(R)
gravity is demonstrated in figure 10.

From figure 10, one can find that the effective potential in figure 10(b) has a double
well due to the curvature scalar correction concerning GR. Therefore, a correction term
for GR alters the effective potential for the graviton KK modes. This implies that the
graviton mass spectrum will be different for various gravity theories. Besides, the depth
of the effective potential is increased with the increase of the dimensions d of the extra
space. Therefore, the KK modes of the graviton may partially reflect the configuration of
extra dimensions.
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Figure 10. Plots of the dimensionless effective potential W̄ (z̄) in the Schrödinger-like equa-
tion (3.14) for various f(R) models and the zero mode for f(R) = R + αR2, where z̄ = kz and
W̄ (z̄) = W (z̄)/k2. In figures 10(b) and 10(d), we adopt ᾱ = k2α = −1/20. In figure 10(c), we
adopt ᾱ = k4α = −0.0025. All the effective potentials approach to zero at z̄ → ±∞.

7 Conclusions

In summary, we investigated f(R) gravity with extra spatial dimensions in brane world
scenarios. It was shown that the spacetime configuration is perturbatively stable. Further,
we found two sets of thick brane solutions in a six-dimensional spacetime. We showed
that the distribution of the energy density of the background scalar field concentrates on
the vicinity of the thick brane, which implies that there is no divergence of curvature.
Moreover, it was shown that the graviton zero mode is localized on the brane embedded
in higher dimensions. This implies that the four-dimensional Newtonian potential can be
recovered on the brane.

In this paper, we considered an extra d-dimensional Euclidean space Ed besides the
extra dimension y. A general extra d-dimensional Riemannian space is still interesting.
It is well known that f(R) theory is equivalent to a second-order scalar-tensor theory of
gravitation. In our exploration, we investigated branes only in f(R) gravity rather than
transform it into a scalar-tensor theory. So far, we considered a special six-dimensional
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example. Models in different dimensions can lead to novel features of the bulk spacetime.
The background metric ansatz (2.3) or (5.1) can also be replaced by other forms which
are from some interesting configurations of the bulk. We leave this in future works. In
this paper, we considered the brane with four-dimensional Poincaré symmetry. Naturally,
one can explore branes with other symmetries, such as four-dimensional dS or AdS branes.
Particularly, an investigation of spherically symmetric branes in the presence of f(R) grav-
ity was made in refs. [9, 51, 52]. Moreover, a complete investigation should include the
localization of matter fields on the brane. For some of the related references, one may refer
to [15, 53, 54]. We will not address this issue in this paper.
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A General perturbations

Suppose that a D-dimensional spacetime undergoes a small perturbation δgMN on a fixed
background gMN

g̃MN = gMN + ε (δgMN ) , (A.1)

where ε is a real parameter to indicate the degree of perturbation. In light of perturbation
theory, the inverse of the perturbed metric is

g̃MN = gMN − ε
(
δgMN

)
+ ε2

(
δgMLδgNL

)
+ · · · , (A.2)

where δgMN = gMP gNQδgPQ and ellipses correspond to the more higher-order pertur-
bations. Quantities determined by metric can be obtained accordingly. For the sake of
simplicity, one can omit the real parameter ε without confusing. We list some quantities
under the above metric perturbations as follows:

Γ̃LMN = ΓLMN + δΓLMN + · · · , (A.3)
R̃LMKN = RLMKN + 2∇[K|δΓLM |N ] + · · · , (A.4)

R̃MN = RMN + 2∇[L|δΓLM |N ] + · · · , (A.5)

where

δΓLMN = 1
2g

LP (∇MδgNP +∇NδgPM −∇P δgMN ) (A.6)

and square brackets “[M | |N ]” appearing in indices signify antisymmetrization in terms of
M and N . In the region of weak gravitational field, one can decompose the metric into a
small perturbation around a flat spacetime.
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B Explicit forms of perturbations of the fundamental quantities

To linear order, the perturbed forms of the fundamental quantities will be collected in
this appendix. Firstly, we keep both the zeroth and linear order of perturbed quantities
without considering the condition (3.5). Secondly, we give necessary simplified quantities
by introducing the condition (3.5), which will be used in this paper.

We list perturbed quantities up to the linear order without considering condition (3.5)
in the following. The nonvanishing components of the perturbation of the connection are

Γ̃λµν = 1
2
(
∂µh

λ
ν + ∂νh

λ
µ − ∂λhµν

)
, (B.1a)

Γ̃yµν = −a2
[
∂ya

a
(ηµν + hµν) + 1

2∂yhµν
]
, (B.1b)

Γ̃iµν = −1
2
a2

b2
∂ihµν , (B.1c)

Γ̃λµy = Γ̃λyµ = ∂ya

a
δλµ + 1

2∂yh
λ
µ , (B.1d)

Γ̃λµi = Γ̃λiµ = 1
2∂ih

λ
µ , (B.1e)

Γ̃yij = −b∂ybδij , (B.1f)

Γ̃ijy = ∂yb

b
δij . (B.1g)

The nonvanishing components of the perturbation of the Ricci tensor read as

R̃µν = −a2
[(

3(∂ya)2

a2 + ∂y∂ya

a
+ d

∂ya∂yb

ab

)
(ηµν + hµν)

+1
2

(
4∂ya
a

+ d
∂yb

b

)
∂yhµν + 1

2
∂ya

a
ηµν∂yh+ 1

2∂y∂yhµν + 1
2

1
b2

∆̂(d)hµν

]
+ 1

2
(
∂λ∂µh

λ
ν + ∂λ∂νh

λ
µ −�(4)hµν − ∂ν∂µh

)
, (B.2a)

R̃µy = 1
2∂y

(
∂λh

λ
µ − ∂µh

)
, (B.2b)

R̃µi = 1
2∂i

(
∂λh

λ
µ − ∂µh

)
, (B.2c)

R̃yy = −
(

4∂y∂ya
a

+ d
∂y∂yb

b

)
− 1

2∂y∂yh−
∂ya

a
∂yh , (B.2d)

R̃yi = −1
2

(
∂ya

a
− ∂yb

b

)
∂ih−

1
2∂y∂ih , (B.2e)

R̃ij = −b2
[(

(d− 1)(∂yb)2

b2
+ ∂y∂yb

b
+ 4∂ya∂yb

ab

)
+ 1

2
1
b2
∂i∂jh+ 1

2
∂yb

b
δij∂yh

]
, (B.2f)

where �(4) = ηµν∂µ∂ν and ∆̂(d) = δij∂i∂j are the d’Alembert operator in theM4 and the
Laplace operator in the Ed, respectively. The perturbed curvature scalar is

R̃ =−
[
4
(

3(∂ya)2

a2 + 2∂y∂ya
a

)
+ d

(
(d− 1)(∂yb)2

b2
+ 2∂y∂yb

b

)
+ 8d∂ya∂yb

ab

]

−
(

5∂ya
a

+ d
∂yb

b

)
∂yh− ∂y∂yh−

1
b2

∆̂(d)h+ 1
a2

(
∂λ∂µh

λµ −�(4)h
)
. (B.3)
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The nonvanishing components of the perturbation of the Einstein tensor are

G̃µν = a2
{[

3
(

(∂ya)2

a2 + ∂y∂ya

a

)
+d

(
(d−1)

2
(∂yb)2

b2
+ ∂yb

b

)
+3d∂ya∂yb

ab

]
(ηµν +hµν)

+1
2

[(
4∂y∂ya

a
+d

∂yb

b

)
∂yh+∂y∂yh+ 1

b2
∆̂(d)h− 1

a2

(
∂λ∂µh

λµ−�(4)h
)]
ηµν

−1
2

[(
4∂ya
a

+d
∂yb

b

)
∂yhµν +∂y∂yhµν + 1

b2
∆̂(d)hµν

− 1
a2

(
∂λ∂µh

λ
ν +∂λ∂νh

λ
µ−�(4)hµν−∂ν∂µh

)]}
, (B.4a)

G̃µy = 1
2∂y

(
∂λh

λ
µ−∂µh

)
, (B.4b)

G̃µi = 1
2∂i

(
∂λh

λ
µ−∂µh

)
, (B.4c)

G̃yy = 6(∂ya)2

a2 + d

2(d−1)(∂yb)2

b2
+4d∂ya∂yb

ab

+ 1
2

(
3∂ya
a
−d∂yb

b

)
∂yh+ 1

2
1
b2

∆̂(d)h− 1
2

1
a2

(
∂λ∂µh

λµ−�(4)h
)
, (B.4d)

G̃yi =−1
2

(
∂ya

a
− ∂yb

b

)
∂ih−

1
2∂y∂ih , (B.4e)

G̃ij = b2
{[

2
(

3(∂ya)2

a2 + ∂y∂ya

a

)
+(d−1)

(
(d−2)

2
(∂yb)2

b2
+ ∂y∂yb

b

)
+4(d−1)∂ya∂yb

ab

+1
2

(
5∂ya
a

+(d−1)∂yb
b

)
∂yh+ 1

2∂y∂yh−
1
2

1
a2

(
∂λ∂µh

λµ−�(4)h
)

+ 1
2

1
b2

∆̂(d)h

]
δij

−1
2

1
b2
∂i∂jh

}
. (B.4f)

Taking into account the condition (3.5), we list all components of the curvature scalar,
the Ricci tensor, and the Einstein tensor only in the linear order perturbation in the
following. All components of the perturbed Ricci tensor are simplified as

δRµν = a2
{
− 1

2

[(
4∂ya
a

+ d
∂yb

b

)
∂yhµν + ∂y∂yhµν + 1

a2�
(4)hµν + 1

b2
∆̂(d)hµν

]

−
(

3(∂ya)2

a2 + (∂ya)2

a
+ d

∂ya∂yb

ab

)
hµν

}
, (B.5)

δRµy = 0 , δRµi = 0 , δRyy = 0 , δRyi = 0 , δRij = 0 ,

and the perturbed curvature scalar vanishes

δR =0 . (B.6)

All components of the perturbed Einstein tensor are given by

δGµν = a2
{
−1

2

[(
4∂ya
a

+d
∂yb

b

)
∂yhµν +∂y∂yhµν + 1

a2�
(4)hµν + 1

b2
∆̂(d)hµν

]
+
[
3
(

(∂ya)2

a2 + (∂ya)2

a

)
+d

(
(d−1)

2
(∂yb)2

b2
+ ∂y∂yb

b

)
+3d∂ya∂yb

ab

]
hµν

}
, (B.7)

δGµy = 0 , δGµi = 0 , δGyy = 0 , δGyi = 0 , δGij = 0 .
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It is worth noting that the δ used here merely stands for linear order quantities under
perturbations.

C Two linearly independent solutions of the Schrödinger-like equation

We present some details about two linearly independent (nontrivial) solutions for the
Schrödinger-like equation (3.14) or (3.18) with zero eigenvalue, namely

QQ†ψ(z) = 0 . (C.1)

Using the following equation

(−∂z + Ω)ψ(z) = 0 , (C.2)

we obtain a solution as

ψ1(z) = C1
[
a3(z)bd(z)fR(z)

]1/2
, (C.3)

where C1 is an integration constant. Moreover, for the following equation

(∂z + Ω)ψ̌(z) = 0 , (C.4)

the corresponding solution is given by

ψc(z) = C ′
[
a3(z)bd(z)fR(z)

]−1/2
, (C.5)

where C ′ is an integration constant. If we require eq. (C.1) always holds, we will arrive at

(−∂z + Ω)ψ(z) = ψc(z) . (C.6)

Therefore, another solution for eq. (C.1) is

ψ2(z) = C2
[
a3(z)bd(z)fR(z)

]1/2 ∫ 1
a3(z)bd(z)fR(z)dz , (C.7)

where C2 is an integration constant. The general (nontrivial) solution for eq. (C.1) is
given by

ψ(z) =
[
a3(z)bd(z)fR(z)

]1/2 [
C1 + C2

∫ 1
a3(z)bd(z)fR(z)dz

]
. (C.8)
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