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1 Introduction

The Sachdev-Ye-Kitaev (SYK) model consists of N Majorana fermions with random all-
to-all interactions [1–3]. It has recently gained substantial attention as a simple toy model
that is both solvable and maximally chaotic [4–8]. Moreover, the SYK model has a nearly
conformal symmetry in the IR, and fluctuations around it are described by a Schwarzian
effective action, which is the same dynamics that describes JT gravity on AdS2 [9–12]. Thus
the SYK model has emerged as a tractable example of AdS2/CFT1 holography [2, 3, 13, 14],
creating a basic setup to study the problems of quantum gravity, including black hole
thermodynamics and the information paradox [15–20].

The SYK model is typically studied in the large N limit, with the length of the inter-
action is taken to be fixed, where to leading order in N only melonic diagrams contribute
to the 2-point function, and ladder diagrams to the 4-point function. Higher point correla-
tion functions in the conformal limit were also computed [21]. Additionally, the model has
seen several generalizations, including complex fermions [22, 23], fermions in higher dimen-
sions [24–28], similar tensor models without disorder [29, 30], and others [31, 32]. The fine
grain level spacing of the model (after unfolding the spectrum) has also been studied, with
a complete classification of the adjacent level spacing statistics through random matrix
theory universality classes [33–35], and its applications to the long time behavior of the
spectral form factor [17, 36, 37].

The SYK model has also been studied in the double scaled limit, where the length
of the interaction is taken to scale as

√
N . In this limit the model has a well defined

asymptotic density of states, which can be calculated through the tools of random matrix
theory [17, 38–40]. Correlation functions have been calculated in this limit using the
technique of chord diagrams [40, 41]. We note that recently this limit has been connected
to q-Brownian motion processes [42].

The SYK model has natural N = 1 and N = 2 supersymmetric extensions [43],
which have applications to the study of supersymmetric black holes. The N = 1 model
is very similar to the regular SYK model, as the supersymmetric charge is simply the
regular SYK Hamiltonian with an odd interaction length. As such, its correlation functions,
asymptotic density of states, and classifications of level spacing statistics are similar to the
regular SYK model, and have been studied extensively [25, 33, 34, 38, 43–46]. The N = 2
supersymmetric SYK model, on the other hand, has not been studied in the double scaling
limit, and is much less understood. This model has many interesting features that are
absent from the N = 1 model, including a U(1) R-symmetry and a large amount of exact
ground states which leave the supersymmetry unbroken at finite N .

In this paper we primarily focus on the N = 2 supersymmetric SYK model in the
double scaled limit, extending the chord diagram and transfer matrix methods in [40, 41]
to treat this model as well. This requires the introduction of new tools from q-brownian
motion, namely the Hilbert space metric associated with such processes, which turns out
to be highly degenerate in our case (which is a key fact in solving the model). Our main
result is an analytic expression for the asymptotic density of states in the double scaled
limit. We also present an analysis of the number of ground states at finite N .
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Additionally, we use this formalism to calculate the 2-point functions in the double
scaled limit. We note that the simple conformal ansatz assumed for such correlators —
1/x2∆ and its finite temperature counterpart — does not hold in this model due to the
large number of degenerate ground states, and we show how to correct it. Finally, we
connect our results to the quantum group slq(2|1).

The paper is organized as followed: in section 2 we review the chord diagrammatic
treatment of the (Majorana) SYK model in the double scaled limit, which directly gener-
alizes to the N = 1 supersymmetric SYK model. The main novelty in the latter case, is
that the effective Hamiltonian is built from q-deformed fermionic creation and annihilation
operators.

We proceed to define the N = 2 supersymmetric SYK model in section 3, followed by
a brief summary of known results. In section 4 we build the chord diagram and transfer
matrix formalism for the N = 2 model. A priori the chord Hilbert space is exponentially
more complex than the N = 0, 1 cases. It is reduced to a tractable size by constructing a
canonical metric on the space of chords (which is a variant of the metric used for multi-
species chord diagrams in the discussions of q-brownian motion) and eliminating the zero
norm states.

Our main results are attained in section 5, where we calculate the moments using the
transfer matrix formalism, and find an analytical expression for the asymptotic density of
states. Additionally in this section we present an analysis of the supersymmetric states at
both finite N and in the double scaled limit. In particular, the number of ground states con-
stitutes a finite fraction of the total number of states in the double scaled limit. Section 6 is
dedicated to relating the transfer matrix to the Hamiltonian of the super Liouville theory,
showing it agrees with the super-conformal limit of the model. In section 7 we use the trans-
fer matrix formalism to compute 2-point correlation functions of random charged operators
in the theory. We provide an exact expression for the additional contribution of the ground
states, which does not have the standard falloff behavior usually assumed in the SYKmodel.
Finally, we relate the transfer matrix formalism to the quantum group slq(2|1) in section 8.

2 Majorana SYK and N = 1 super-symmetric SYK

In this section we review the original Majorana SYK model, and its combinatorial solution
in the double scaled limit (following [39–41]). In parallel we discuss the N = 1 super-
symmetric version of it, which is similar in nature. Readers who are familiar with the
chord diagram method for calculating the spectrum of the SYK model in the double scaled
limit can skip to the next section for the N = 2 SYK model.

Definitions. The (Majorana) SYK model is a quantum mechanical model of N Majorana
fermions that satisfy the canonical anti-commutation relations

{ψi, ψj} = δij , (2.1)

and the Hamiltonian is given by

H = ip/2
∑

1≤i1<···<ip≤N
Ci1i2···ipψi1 · · ·ψip (Majorana SYK), (2.2)
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where the Ci1···ip are independent random couplings with distribution specified below. In
fact, let us use a shorthand notation where J = {i1, . . . , ip} stands for an index set of p
distinct sites, and

ΨJ ≡ ψi1ψi2 . . . ψip , 1 ≤ i1 < i2 < . . . < ip ≤ N, J = {i1, . . . , ip}. (2.3)

In this notation we can write compactly H = ip/2
∑
J CJΨJ .

The N = 1 super-symmetric SYK model is defined very similarly; the super-symmetric
charge takes the form of

Q = i(p−1)/2∑
J

CJΨJ , (2.4)

and the Hamiltonian is simply

H = Q2 = ip−1 ∑
J1,J2

CJ1CJ2ΨJ1ΨJ2 (N = 1 SYK). (2.5)

Evidently the Majorana SYK Hamiltonian and the N = 1 supercharge Q take the same
form, and therefore we will discuss the two in parallel. The only difference between them
is that for Majorana SYK p is even, while for Q, p is odd (and the overall phase is chosen
appropriately).

The random couplings CJ are taken to be real Gaussian, with zero mean, and variance

〈CJCJ ′〉C =

2
(N
p

)−1J 2 for Majorana SYK,
2
(N
p

)−1J for N = 1 SYK.
(2.6)

We will work in a double scaled limit in which

N →∞, p→∞, λ ≡ 2p2

N
= fixed, (2.7)

and we will find it useful to define the parameter

q ≡ e−λ. (2.8)

Moments and chord diagrams. Since we are dealing with a random Hamiltonian, we
are interested in calculating the expected spectral density function in the double scaled
limit. To do so, it is sufficient to calculate the moments mk =

〈
tr
(
Hk
)〉

C
, and from them

infer the eigenvalue distribution. The moments mk are given by

mk = ikp/2
∑

J1,J2,··· ,Jk

〈CJ1 · · ·CJk〉Ctr [ΨJ1 · · ·ΨJk ] for Majorana SYK, (2.9)

while

mk = i2k(p−1)/2 ∑
J1,J2,··· ,J2k

〈CJ1 · · ·CJ2k〉Ctr [ΨJ1 · · ·ΨJ2k ] for N = 1 SYK. (2.10)

By Wick’s theorem for the couplings’ averaging, we should sum over all possible Wick
contractions of the CJi ’s. We represent each configuration of Wick contractions by a
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Figure 1. An example of a chord diagram (left: on a circle, right: on a line).

chord diagram (see left hand side of figure 1) — in the Majorana SYK (or N = 1 SYK)
we mark k (2k respectively) nodes on a circle, each node corresponding to an Hamilto-
nian (supercharge) insertion, and we connect pairs of nodes by chords, representing the
Wick contractions. (The chords here have no orientation, contrary to the case of complex
fermions, which we discuss below.)

Each chord diagram is evaluated as follows. We commute ΨJ ’s across one another
so that contracted pairs appear next to each other. This should therefore be done for
each intersection of chords. When commuting ΨJ with ΨJ ′ , from the fermionic algebra
we get a factor of (−1)p2−|J∩J ′| = ±(−1)|J∩J ′| where |J ∩ J ′| is the number of sites in the
intersection J ∩ J ′, with the plus sign corresponding to the Majorana SYK and the minus
one to N = 1 SYK (because of the difference in the parity of p). Each such intersection
is Poisson distributed (with mean p2/N) as explained in [39] (or see also [40, 41]), so that
summing over the Poisson weight we get that each chord intersection is assigned a value
of ±

∑
|J∩J ′| PPois(p2/N)(|J ∩ J ′|)(−1)|J∩J ′| = ±q. Therefore, the k’th moment is given by

mk = 〈trHk〉C = J k
∑
π

(±q)c(π) , (2.11)

where the sum runs over all chord diagrams (with k vertices for Majorana SYK case, and
2k vertices for N = 1 SYK), and c(π) is the number of intersections in the chord diagram.

Transfer matrix. It will also be useful for us to review the transfer matrix method to
evaluate the sum over chord diagrams, following [40] (see also [41]). We can draw the same
chord diagrams (Wick contractions) on a line rather than a circle (picking an arbitrary
starting point), see the right hand side of figure 1 for an example. Then we can provide an
effective description of the system in another form. Between each two nodes on the line,
the state of the system is determined according to the number of open chords l. Thus, we
construct an auxiliary Hilbert space spanned by the basis |l〉 for l = 0, 1, 2, · · · , where the
state |l〉 represents having l chords. As we scan the line, the state |l〉 can become either
|l − 1〉 or |l + 1〉 after passing by a node. Each such transition is assigned a power of ±q
according to the number of chords that intersect in case a chord is closed, that is, going
from |l〉 to |l − 1〉. Thus, each node (Hamiltonian or supercharge insertion) is represented
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in the auxiliary Hilbert space by a transfer matrix given be

T =



0 1−q
1−q 0 0 · · ·

1 0 1−q2

1−q 0 · · ·
0 1 0 1−q3

1−q · · ·
0 0 1 0 · · ·
...

...
...

... . . .


for Majorana SYK, (2.12)

or

Q =



0 1+q
1+q 0 0 · · ·

1 0 1−q2

1+q 0 · · ·
0 1 0 1+q3

1+q · · ·
0 0 1 0 · · ·
...

...
...

... . . .


for N = 1 SYK. (2.13)

(The sign in the numerator of the terms above the diagonal is alternating in Q.) The
Hamiltonian in the N = 1 case corresponds to the matrix Q2.

Since we start and end with no open chords, that is the state |0〉, the sum over chord
diagrams is given by

mk =

J k〈0|T k|0〉 for Majorana SYK,
J k〈0|Q2k|0〉 for N = 1 SYK.

(2.14)

These transfer matrices can be written in terms of q-deformed oscillators (see [41]
and [42]). For the Majorana SYK we have T = aq+a†q, where aq, a†q are q-deformed creation-
annihilation operators that satisfy aqa†q − qa†qaq = 1. In the N = 1 case Q = bq + b†q where
bq, b

†
q are q-deformed fermionic creation-annihilation operators that satisfy bqb†q+qb†qbq = 1.
Thus far we reviewed Majorana SYK and mentioned its analogy in N = 1 SYK,

and from now on in this section we concentrate on getting the density of states for the
N = 1 model. The matrices in the auxiliary Hilbert space were diagonalized in [40, 41]
(the analysis there is valid for any sign of q), leading to the following result for the N = 1
moments

mk =
∫ π

0

dθ

2π (−q, e±2iθ;−q)∞

(
2
√
J cos(θ)√
1 + q

)2k

. (2.15)

The energies are therefore

E(θ) = 4J cos(θ)2

1 + q
, (2.16)

which are indeed positive definite, and the density of states is

ρ(E) = 1 + q

4πJ (−q, e±2iθ;−q)∞
1

sin(2θ) , θ = arccos

√E(1 + q)
4J

 . (2.17)

In the Majorana double-scaled SYK model, one can take the q → 1 limit (corresponding
to the usual SYK model where p is kept fixed) and reproduce the Schwarzian results by
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taking the energies to be small and scaling them appropriately with λ → 0 [17]. We can
do the same for N = 1 SYK, by using the triple scaling

λ→ 0,
√
E/J
λ

= fixed. (2.18)

This can be implemented by going to the variable y which is defined by1

θ = π

2 − λy (2.19)

so that y is kept fixed as λ→ 0. Indeed, its relation to the energy is

sin(λy) =

√
E(1 + q)

4J ⇒ λy ≈

√
E

2J . (2.20)

Let us evaluate the density of states in this triple scaling. In terms of the y variable

ρ = 1 + q

4πJ
(
−q,−e±2iλy;−q

)
∞

1
sin(2λy) , (2.21)

which for small λ is approximately2

ρ ∝ e−2λy2

sin(λy) cosh(πy) ∝ 1√
E

cosh
(
π

λ

√
1

2J
√
E

)
. (2.22)

As was mentioned, for p being independent of N , the low energy of SYK is described
by the Schwarzian action. The degrees of freedom of the Schwarzian theory are elements of
Diff(S1)/SL(2, R), that is, monotonic functions φ(τ) such that φ(τ + 2π) = φ(τ) + 2π. The
SL(2,R) acts on f = tan φ

2 by f → af+b
cf+d . This space is a symplectic manifold, and this fact

was used in [11] to obtain the exact partition function of the theory, with the result being
in agreement with that found using the triple-scaled limit [17]. (The path integral of the
theory with the symplectic measure, can be written as the path integral over the original
degrees of freedom φ(τ) together with additional fermionic fields that behave as dφ(τ),
with the usual measure; the obtained action has a fermionic symmetry, so that fermionic
localization can be used to evaluate it.) The case of the N = 1 super Schwarzian theory
was evaluated in [11] as well. The density of states that is found there for this case is

ρ(E) ∝ cosh(2π
√

2CE)
E1/2 , E ≥ 0 (2.23)

where C is the coupling of the super Schwarzian theory. For energies approaching zero,
the density of states grows as E−1/2. In the double-scaled limit of Majorana SYK, the
spectrum is symmetric around E = 0, while in the N = 1 case it is cut at E = 0 as we saw,
accounting for the decrease in density with increasing energy. We see that the triple-scaled

1Note that the reference point here is θ = π/2 rather than π which is used in Majorana double-scaled
SYK, since the lowest energy here is E = 0.

2Recall that in the Schwarzian, describing the low energy of the Majorana SYK model, we find instead
that the density of states is a sinh with an argument proportional to

√
E.
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N = 1 result (2.22) indeed agrees with that of N = 1 super Schwarzian with the symplectic
measure [11].

We note that any sign of the discrete level spacing in not seen in this analysis, as we
only consider single trace quantities that are averaged over the random couplings. Recent
progress has been made in analyzing the level spacing in the SYK model, JT gravity, and
their relation to random matrix theory ensembles [17, 33–35, 37, 47]. Such analysis requires
considering double trace quantities,3 which is beyond the scope of this paper.

3 Definition and review of the N = 2 model

3.1 Model definitions

Consider N complex fermions ψi, i = 1, · · · , N which satisfy the canonical anti-
commutation relations {

ψi, ψj

}
= δij , {ψi, ψj} = 0. (3.1)

Denote by J ≡ (j1, · · · , jp) , 1 ≤ j1 < j2 · · · < jp ≤ N , a collection of p ordered indices,
with p an odd number, and denote the chain ΨJ = ψj1 · · ·ψjp , ΨJ = ψjp · · ·ψj1 . Define
the supercharges Q,Q† to be

Q =
∑
J

CJΨJ , Q† =
∑
J

C∗JΨJ , (3.2)

where the summation is over all possible ordered index sets J . The coefficients CJ ∈ C are
independent random Gaussian variables, with zero mean value and normalized variance.
We denote the average over the couplings CJ by 〈·〉C , with

〈CJ〉C = 0,
〈
CJ1C

∗
J2

〉
C

=
(
N

p

)−1

2pJ 2δJ1J2 . (3.3)

Without loss of generality we will set J = 1, while noting that J can be reintroduced later
using dimensional analysis. This specific choice of normalization for

〈
C2
J

〉
C will ensure that

〈tr (H)〉C = 1 when we normalize the trace operation by 2−N such that tr (1) = 1. The
N = 2 SUSY-SYK model is then defined by the Hamiltonian

H = 1
2
{
Q,Q†

}
. (3.4)

This model has a U(1) R symmetry given by ψi → eiαψi, ψ̄i → e−iαψ̄i. The symmetry
is generated by the operator

γ = 1
2p

N∑
i=1

(
ψ̄iψi − ψiψ̄i

)
, (3.5)

with the normalization so that the SUSY charge Q†, has a fixed U(1) charge of 1. We
will be interested in coupling this charge to a chemical potential, with a grand canonical
Hamiltonian of the form

− βHGC = −β2
{
Q,Q†

}
− µγ. (3.6)

3This is the same as two replicas of the SYK model, similar to [37].
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In distinction from [43], we will work in a double scaled limit in which

N →∞, p→∞, λ ≡ 2p2

N
= fixed. (3.7)

We will assume that both the chemical potential, µ, and the inverse temperature, β, are
fixed in this limit. We will find it useful to define the parameter

q ≡ e−λ . (3.8)

3.2 A short review of known results

The N = 2 SYK model was introduced in [43], which mainly focused on its emergent super-
reparametrization symmetry in the IR. The authors showed that in the IR the model can
be described by an N = 2 super-Schwarzian effective action. They also demonstrated that
the model has a large amount of exact ground states that are unbroken at finite N , which
they computed numerically when p = 3.

The IR correlation functions of the N = 2 SYK model were computed in [48]. Using
the conformal ansatz, the conformal dimension of a single fermion was found to be ∆f = 1

2p ,
while its bosonic partner has dimension ∆b = ∆f+1/2. To compute the four point function,
they wrote it as a sum of ladder diagrams, where each rump of the ladder can be either
the bosonic or the fermionic field. This results in two kernels that they diagonalized — a
diagonal kernel and an antisymmetric kernel.4 We note that the paper did not discuss the
large amount of supersymmetric ground states and their effects on correlation functions.

The partition function of the super-Schwarzian action, along with its density of states,
were computed independently in [11] and [49] using different methods. [11] showed that the
Schwarzian theory is one loop exact, using fermionic localization arguments, which allowed
them to compute the exact partition function for both the original Schwarzian theory, as
well as its supersymmetric extensions. In particular they found that the density of states
in the N = 2 Super-Schwarzian theory is (equation 3.53 in [11])

ρn(E) = cos(πq̂n)
1− 4q̂2n2

[
δ(E) +

√
an
E
I1
(
2
√
anE

)]
, an = 2π2

(
1− 4n2q2

)
, (3.9)

where q̂ is the interaction length in the SYK model which we call p, and n is the complex
chemical potential. By considering the Fourier transform of the above quantity with respect
to n, they find that the ground states (which are proportional to δ(E) ) exist only for charges
|m| < q̂/2, and that the continuum spectrum has a lowest energy of E0 = 1

2C

(
|m|
2q̂ −

1
4

)2
.

We will replicate these results in the double scaled limit.
Reference [49] used a different approach, relating quantities in the Schwarzian theory

to objects in 2-d Liouville theory. This allowed them to compute the partition function
and density of states in the N = 2 Schwarzian theory by summing the relevant characters
of 2-d super Liouville, taking into account the spectral flow. They matched the density
of states with a chemical potential given above, while also finding the density of states at

4This is different from the Majorana SYK model where there is a single diagonal kernel.
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fixed charge sector to be

ρ(E,Q) = 1
8N

sinh
(

2π
√
E − E+

0

)
E

Θ(E − E+
0 ) + (+→ −)

+ δ(E) 2
N

cos
(
πQ

N

)
Θ (2|Q| −N) ,

(3.10)

where Q is the charge, N is an integer dual to p, and E±0 =
(
Q

2N ±
1
4

)2
. We will replicate

these results as well in the double scaled limit.
The model was also considered in [34], which analyzed the level spacing statistics of

the model using random matrix theory universality classes. [34] also computed the number
of ground states in each charge sector using a cohomology argument, and verified this
numerically. Though [34] mostly considered the p = 3 case, we extend this method to any
value of p, and in particular show that it agrees with the chord diagram computation in
the double scaled limit. We note that the level spacing statistics are not accessible by just
considering single trace quantities, and so are tangent to this work.

4 The chord partition function and the transfer matrix

Our first interest will be to calculate the expected spectral density function in the double
scaled limit, for the N = 2 model. To do so, it is sufficient to calculate the moments
mk =

〈
tr
(
Hk
)〉

C
, and from there infer the expected eigenvalue distribution in the large

N limit. Calculating the moments will be the objective of the next few sections. In the first
step we will carry out the average over the C’s, reducing the expression to a sum over chord
diagrams, each of them determining a specific trace of fermionic operators. In the second
step we will carry out these traces and obtain the appropriate weight on each chord diagram,
providing an expression for the moments in terms of specific chord partition function.

The main complication in the computation, relative to the Majorana SYK or the N = 1
models, is that the expression that we need to evaluate is made out of a string of Q and Q†’s.
This means that at each stage, in the transfer matrix approach, we can either add one of two
types of chords — one type from Q and the other type from a Q†, or close one of two types,
i.e., there are two types of basic chords. This means that if we consider states with n chords,
there are a-priori 2n different states. This is in contrast to the situation in the Majorana
SYK or the N = 1 where there is only one state with a given number of chords. This is
actually a situation which arises in a generic multi-dimensional q-brownian motion [42, 50–
52], and we borrow from there the notion of a Hermitian metric on the space of multi-species
chords. In the first two subsections we rewrite the moments as a chord partition function
with two species of chords. In the subsequent subsections we use the chord Hilbert space
construction to show that most of the states there are null states, and modding out by
them gives a tractable reduced Hilbert space that can be treated using the transfer matrix
approach. We will actually encounter another problem that the naive transfer matrix will
be non-local (for fixed chemical potential) and we will see how to remedy this.

The outline of this section is the following: we first use Wick contractions to write
the moments as a sum of oriented chord diagrams in section 4.1. The contribution of each
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oriented chord diagram is evaluated in section 4.2, resulting in a chord partition function
for the moments. We rewrite the moment mk in terms of sub-moments, which can be
assessed locally in section 4.3. We then define the auxiliary Hilbert space of partial chord
diagrams in section 4.4, and construct a transfer matrix that implements the sub-moments
discussed before. To make the transfer matrix local, we introduced an auxiliary parameter,
θ. We relate this parameter to the charge in section 4.5, showing that the transfer matrix
for every charge sector is local. In section 4.6 we define the inner product on the auxiliary
Hilbert space using a Hermitian metric on the space of multi-species chords. Finally, in
section 4.7 we show that under this inner product there are many null states, and by
modding them out we obtain a physical Hilbert space that is tractable.

4.1 Reduction to oriented chord diagrams (OCD) (or X-O diagrams)

Plugging the Hamiltonian into the definition of mk gives

mk = 〈trHk〉C = 21−k
〈
Tr
((
QQ†

)k)〉
C

= 21−k ∑
J1, · · · , Jk
I1, · · · , Ik

〈
CJ1C

∗
I1 · · ·CJkC

∗
Ik

〉
C
tr
(
ΨJ1ΨI1 · · ·ΨJkΨIk

)
, (4.1)

where we used the nilpotency of Q,Q† to obtain the second equality.
Let us now focus on the term

〈
CJ1C

∗
I1
· · ·CJkC∗Ik

〉
C
. If any CJ appears without a

corresponding C∗J , the entire term will vanish on average. As was shown in [39], the only
relevant contributions to the moment mk, in the limit N → ∞, come from summands in
which the CJ ’s are contracted only into pairs — this is just a Wick contraction when the
C’s are Gaussian, but it also holds under weaker assumptions on the distribution. This
means that every index set Ji has a partner Ij such that Ji = Ij . Higher coincidences,
where the ordering is not pair-wise, are suppressed in the large N limit.

The averaging over the CJ ’s depends only on the number of pairs k, and based on (3.3)
we see that it gives 2kp

(N
p

)−k. Now the moment becomes

mk = 21−k+kp 1(N
p

)k ∑
J1, · · · , Jk
π ∈ Sk

tr
(
ΨJ1ΨJπ(1)ΨJ2 · · ·ΨJπ(k)

)
, (4.2)

where Sk is the group of permutations of {1, · · · , k}.
To understand the terms in this sum better we can present each trace pictorially as an

oriented chord diagram (OCD), or X-O diagram, as shown in figure 2a. Each such diagram
represents some ordering of pairs of Ψ,Ψ operators inside a trace, such that

• O nodes correspond to Ψ,

• X nodes correspond to Ψ,
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Figure 2. (a) — Chord diagram representing the term tr(Ψ1Ψ6Ψ2Ψ1Ψ3Ψ3Ψ4Ψ5Ψ5Ψ4Ψ6), con-
tributing to m6. (b) — Disentangled form of the diagram (a). Note that the chord directionality is
maintained in the disentangling process. (c) — The same diagram, represented as an open chord
diagram, where the 6’th node is chosen to be the first node.

• a chord drawn between the X − O nodes means they have the same index set. We
draw arrows in the direction of going from O to X .

The cyclical structure of this diagram matches that of the trace.
We can now rewrite (4.2) in a more suggestive form, as

mk = 21−k+kp 1(N
p

)k ∑
π∈CD(k)

∑
J1,··· ,Jk

tr
(
ΨJ1ΨJπ(1) · · ·ΨJkΨJπ(k)

)
, (4.3)

where CD(k) are chord diagrams with k chords, and π(·) is the ordering given by the chord
diagram.

4.2 The chord partition function

To assess each such chord diagram, we will need to bring it to a disentangled form, i.e
— nodes of the same chord are adjacent, for all chords, as seen in (2b). In this form the
trace can be easily computed, as will be shown below. This disentangling corresponds to
permuting fermion chain operators. The commutation relations between such operators
ΨI ,ΨJ are dictated by the number of fermions they share (i.e. |I ∩ J |.)

The number of indices in the intersection of two random index sets of size p ∼
√
N

admits Poisson statistics [39]. As a result, in the N → ∞ limit, an index i appears in at
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most two index sets with finite probability, namely Ja∩Jb∩Jc = ∅ for almost all index sets
Ja, Jb, Jc. Non-zero triple intersections will generate sub-leading corrections of order 1/N
to the moments. We call this property — no triple intersections. This fact alone allows us
determine if two specific index sets can share indices or not irrespective of any other set. If
two index sets can share indices we will refer to them as friends, and otherwise — enemies.

To see how such restrictions come about, let I, J be some index sets. We see that ΨI

and ΨJ must appear in one of the forms

(i) tr
(
ΨI · · ·ΨJ · · ·ΨI · · ·ΨJ · · ·

)
(ii) tr

(
ΨI · · ·ΨJ · · ·ΨJ · · ·ΨI · · ·

) } enemy configuration

(iii) tr
(
ΨI · · ·ΨI · · ·ΨJ · · ·ΨJ · · ·

)
friend configuration

(4.4)

with all other forms equivalent due to cyclicality of the trace.
Let us now consider the different cases:

• (i), (ii) — Take some fermion ψj in the intersection j ∈ I ∩ J . Assuming no triple
intersections (so ψj does not appear in any other fermion chain besides ΨI and ΨJ),
we are free to anti-commute the ψj ’s next to each other, resulting in a trace of zero
(as ψ2

j = 0). We see that such configurations can contribute to the moment only
when I ∩ J = ∅.

• (iii) — In distinction from the above case, there is no problem for ΨI and ΨJ to share
fermions.

To make progress, and as in [40, 41], it is convenient to use an alternative representa-
tion, in which each chord diagram is represented by nodes on a line rather than on a circle,
which we will call an open chord diagram. An example of this is presented in figure (2c). We
note that the cyclicity of the trace is broken in this representation, but the end of the day
result is of course independent of which point is chosen to be the first in line. Open chord
diagrams will allow us to think in terms of nested diagrams. Later on we will also use open
chord diagrams to construct a transfer matrix that builds all the possible chord diagrams.

Disentangling a chord diagram. We shall now describe the disentangling process of
an oriented chord diagram.

Starting with an open oriented chord diagram, we are assured to have a chord con-
necting some (ΨJ ,ΨJ) such that it is enemies with all chords opening or closing under
it, i.e all the operators separating ΨJ ,ΨJ are of the form of ΨI in (4.4(i),(ii)). We shall
refer to corresponding chords of this form as minimal chords. For simplicity, let us assume
ΨJ appears to the left of ΨJ , meaning this is a right pointing chord.5 For each ΨI or ΨI

between ΨJ and ΨJ we have that {ΨJ ,ΨI} = {ΨJ ,ΨI} = 0, since they are enemies by
assumption. This allows us to (anti-)commute ΨJ to the ΨJ , at the cost of the number of
operator crossings, which is the number of chords intersecting the minimal chord. Thus

tr(· · ·ΨJ · · ·ΨJ · · · ) = (−1)ΨJ intersecctionstr(· · ·ΨJΨJ · · · ). (4.5)
5The process for a left pointing chord is identical to the one described here.
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Figure 3. Disentanglement of a specific chord diagram, according to the algorithm presented above,
going from top to bottom. The minimal chords — ones that are separated only by enemy chords,
are colored in orange. In the next step these chords taken to the left edge, and we have new minimal
chords. For example, see that in the first step chord 2 is not minimal, as it is friends with chord
4, nested in it. In the second step chords 1 and 2 are both minimal, as they are enemies. Primed
notation means that a chord has the original indices, excluding the ones it shared when passing
through friends. For example, the indices of 3′ are the indices of 3, excluding the ones shared with 1.

Once the operators ΨJ and ΨJ are adjacent, we can commute the pair to the far left
of the open diagram. Notice that

ΨIΨJΨJ = ΨJΨJΨIδ|I∩J |,0, ΨIΨJΨJ = ΨJ/IΨJ/IΨI , (4.6)

where J/I is the set of indices in J that are not in I. Thus we may lose some pairs of
fermions from ΨJΨJ while commuting them to the left, however as ψψ̄ψψ̄ = ψψ̄ the value
of the trace does not change if a pair of indices appears in more than a single index set.

If the diagram is not completely disentangled, we are now assured to have new minimal
chords, and can repeat this process until the diagram is completely disentangled. This
process is demonstrated in figure 3. Once a diagram is disentangled and all the operator
pairs are adjacent to each other, we can simply pair the individual fermions up.

If we denote the total number of intersections in a chord diagram π by #int(π), in the
end of the process we get

tr
(
ΨJ1ΨJπ(1) · · ·ΨJkΨJπ(k)

)
= (−1)#int(π)tr

 ∏
i∈J1∪...∪Jk

ψiψ̄i

 = (−1)#int(π) 2−|J1∪...∪Jk|,

(4.7)
as tr(ψ̄iψi) = 1/2.

Since we assume no triple intersection of index sets, we can express the number of dis-
tinct indices d = |J1∪. . .∪Jk| as d = kp−

∑
1≤i<j≤kmij , wheremij ≡ |Ji∩Jj | is the number
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of mutual indices in Ji and Jj . Combining this with (4.7) reduces the moments (4.3) to

mk = 21−k 1(N
p

)k ∑
π∈CD(k)

∑
J1,··· ,Jk

(−1)# int(π) ∏
1≤i<j≤k

2mij . (4.8)

The final step in evaluating the moment mk involves the summation over all index
sets {Ji}ki=1 in a given chord diagram. As mentioned above, in the large N limit the index
overlapmij admits Poisson statistics, which allows us to move to a summation over it. That,
along with the fact that only friend configurations can have a nontrivial intersection gives us

∑
J1,···Jk

tr
(
ΨJ1ΨJπ(1) · · ·ΨJkΨJπ(k)

)
=
(
N

p

)k
2−kp (−1)# int(π) (4.9)

×

 ∏
(i,j) friends

∞∑
mij=0

λmij

mij !
e−λ/2

 ∏
(i,j) enemies

e−λ/2

 .
Summing the above series, we see that each pair of friendly chords gives us a factor of

q−1/2 = eλ/2, while each pair of enemy chords gives a factor of q1/2 = e−λ/2. The moment
mk is thus written fully as the chord partition function

mk = 2−k
∑
π(k)

(−1)# int(π) q(#e−#f)/2, (4.10)

where π (k) are chord diagrams with k chords, and #e/f is the number of enemies and
friends respectively. We note that we allow chord diagrams to start either with a Q or a
Q†, hence the additional factor of 1/2 compared to (4.9).

Graphically we can see there are 12 possible configurations for a pair of directional
chords, and the chord partition function gives a weight for each such configurations, as
shown in the figure 4. Note there are six more relations, not shown in the figure, in which
we switch X ↔ O. We denote six configurations in the figure by I, · · · ,VI, and the reversed
ones by Ī, · · · , V̄I

4.3 Localizing the chord partition function

We would like to express the chord partition function in terms of a local transfer. However
out of the 12 possible configurations I, Ī, III, ¯III are non-local, meaning — when going from
left to right we must have information about closed chords in order to account for them
properly. It seems that if we want to count the number of these diagrams using a transfer
matrix, it must be non-local, meaning — must have information about currently closed
chords. Yet, there is more we can do if we use relations between quantities. These will
enable us to write the chord partition function in terms of local relations, which in turn
can be evaluated using a local transfer matrix.

Notice that the number of pairs of chords is fixed for diagrams contributing to the k’th
moment, so

#e + #f =
(
k

2

)
. (4.11)
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I II.

III IV.

V VI.

Figure 4. Six possible chord configurations. According to the chord partition function (4.10)
configurations I, II are friends, thus receiving a factor of q−1/2. The rest are enemies, and given a
factor of q1/2. Configurations V,VI intersect, so they receive an extra factor of (−1). There are six
more diagrams, which can be obtained from the ones above by X ↔ O.

This enables us to compute the moment mk using only the number of friend chords. This
takes care of diagram III, but we still need to find an alternative way of counting diagrams
I and Ī.

If we restrict ourselves to a subspace in which the number of right and left pointing
chords, (n→, n←), is fixed, we can use

NI +NIV +NV I =
(
n→
2

)
, N I +N IV +NV I =

(
n←
2

)
. (4.12)

This allows us to express the amount of non-local diagrams using only local ones, as
#f = NI +NII + N̄I + N̄II . We will find it easier to work with the set of variables (k,m),
defined to be

k = n→ + n←, m = n→ − n←. (4.13)

Now we can plug the relations (4.11), (4.12) into the chord partition function (4.10) and get

mk = qk/4

2k
∑

m=−k,−k+2,··· ,k
q−m

2/4 ∑
π(k;m)

(−1)#i q−NII−NII+NIV +NIV +NV I+NV I

= qk/4

2k
∑

m=−k,−k+2,··· ,k
q−m

2/4mk;m.

(4.14)

We see that we have managed to write the non-local chord partition function using a sum
over local partition functions in fixed (k,m) subspaces. Now we are in a suitable position to
define a Hilbert space and a local transfer matrix that will compute these subspace moments
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Figure 5. An example of a vector in Haux, and its representation in terms of chords.

mk,m. We note that having a local transfer matrix is desirable also because we interpret the
transfer matrix as the Hamiltonian of the gravitational theory, or at least the generalization
of the Hamiltonian of the Schwarzian system, and so we require it to be local in time.

4.4 Auxiliary Hilbert space and transfer matrix

Define the auxiliary Hilbert space Haux =
⊕∞

n=0 {|X〉 , |O〉}
⊗n, where |O〉 and |X〉 represent

chords emanating from Q,Q† respectively. Denote the empty state to be |∅〉. The inner
product on this vector space will be defined later. An example of a vector in Haux is given
in the figure 5.

Define the transfer matrix T : Haux → Haux. By acting with T on a vector we wish to
get all possible results of adding a pair QQ† to a diagram, where any Q,Q† can be either
a start or endpoint of a chord.

It remains for us to restrict ourselves to a specific k,m subspace. k is already known,
as we act with T k on |∅〉, and project onto |∅〉. We can fix the value of m using an auxiliary
real variable θ. Whenever we open a new right pointing chord let us multiply the diagram
by a factor of eiθ, and whenever we open a new left pointing chord let us multiply by a
factor of e−iθ. Now we can easily project onto a fixedm subspace using a Fourier transform.

This gives us the defining relation for the transfer matrix T

mk;m =
∑

π(k;m)
(−1)#i q−NII−NII+NIV +NIV +NV I+NV I = 1

2π

∫ 2π

0
dθ e−imθ

〈
∅
∣∣∣T k (θ)

∣∣∣ ∅〉 .
(4.15)

Rules of the transfer matrix. Let us now construct T (θ) explicitly. At each step we
have a Q followed by a Q†, so we can split the transfer matrix into two parts.

1. When we encounter a Q, we can either:

(a) Add a “O” to the lowest cell, with a factor of eiθ.
(b) Delete some “X” from the vector, and multiply by the factor

(−1)#Obelow+#Xbelowq−#O above+(#X−1), (4.16)

where #Oabove is the number of open right-moving chords above the chord we
close, and #X is the total number of open left-moving chords.

With a slight abuse of notation, we will define the operator Q acting in Haux by these
steps.
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2. When we encounter a Q†, so we can either:

(a) Add a “X” to the lowest cell and multiply by a factor of e−iθ.
(b) Delete some “O” from the vector, and multiply by the factor

(−1)#Obelow+#Xbelowq−#X above+(#O−1), (4.17)

where #X above is the number of open left-oriented chords above the chord we
close, and #O is the total number of open right-oriented chords.

Similarly, we will use these steps to define the operator Q† acting in the auxiliary
Hilbert space.

We define the transfer matrix to be T (θ) = Q†Q+QQ†.

4.5 Chemical potential and fixed charge sectors

We shall now add a chemical potential, and calculate the grand canonical moments

mk(µ) ≡
〈

tr
[
Hke−µγ

]〉
C
. (4.18)

The general derivation of the chord partition function (equation (4.10)) via Wick contrac-
tions is still valid for the grand canonical moments, aside from a few extra factors which
we derive bellow.

To derive these additional factors, let us focus on some Wick contraction in mk(µ):

tr
[
ΨJ1ΨJπ(1)ΨJ2ΨJπ(2) . . .ΨJkΨJπ(k)

N∏
i=1

e−µγi

]
, (4.19)

where π is a permutation of (1, . . . , k). Then every fermion index i = 1, . . . , N is in one of
the following categories:

1. i /∈ J1 ∪ J2 ∪ . . . ∪ Jk: in this case γi commutes with the Wick contraction. We can
first evaluate the chord diagram, using the method described above. Then we are
left with tr(e−µγi) for each non-participating index. As tr(γi) = 0 and γ2

i = 1/(4p2)
we have that

tr
(
e−µγi

)
=
∞∑
k=0

(−µ/(2p))k

k! tr
(
(γi)k

)
=

∑
k even

(−µ/(2p))k

k! = cosh
(
µ

2p

)
, (4.20)

and thus the site will contribute a factor of cosh
(
µ
2p

)
.

2. i ∈ Jj for one j ∈ (1, . . . , k): in this case we have two options, if Jj comes in the form
ΨJjΨJj then

tr
(
. . .ΨJj . . .ΨJj . . . e

−µγi
)

= e−µ/(2p)tr
(
. . .ΨJj . . .ΨJj . . .

)
. (4.21)

Similarly, if the pairing Jj comes in the opposite orientation, ΨjΨJj , then we will get
a factor of eµ/2p.
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3. i ∈ Jj1 , Jj2 for two index set: in this case the two index sets must be in one of the
“friends” configurations, and then as

(
ψ̄iψi

)2
= ψ̄iψi it will contribute one of the

same two factors as before.

We can account for factors (1) and (2) by multiplying mk,m by an overall factor of

[cosh (µ/(2p))]N−kp · eµm/2 N→∞−−−−→ e
µ2
4λ+µm

2 +O
(
N−1). (4.22)

The additional correction due to factor (3) is sub-leading in the double scaled limit. Thus
the grand canonical moments are given by

mk(µ) = 2−ke
µ2
4λ q

k
4

k∑
m=−k,−k+2

eµm/2q−
m2
4 mk;m. (4.23)

We can move to a fixed charge sector by taking a Fourier transform of the moments
with respect to iµ, that is

mk(s) ≡
1

2π

∫ ∞
-∞

dµ eiµsmk(iµ) = 2−k
√
λ

π
qs

2+ k
4

k∑
m=−k,−k+2

qmsmk;m. (4.24)

To continue, we notice that the transfer matrix element
〈
∅
∣∣∣T k(θ)∣∣∣ ∅〉 has terms

proportional to einθ only for n = −k,−k + 2, . . . , k − 2, k. Thus mk;m 6= 0 only for
m = −k,−k + 2, . . . , k − 2, k, so we can extend the sum over m to any additional integers
and (4.24) will not change. Then we define z ≡ eiθ and consider the θ integral in (4.15) as
a contour integral in the complex plane over the unit circle. This allows us to write

mk(s) = 2−k
√
λ

π
qs

2+ k
4

1
2πi

∮
|z|=1

dz

z

N2∑
m=−N1

(
z−1e−λs

)m 〈
∅
∣∣∣T k(θ)∣∣∣ ∅〉 , (4.25)

for arbitrary N1, N2 > k + 1. For s > 0 we can extend N2 →∞ and find that

mk(s) = 2−k
√
λ

π
qs

2+ k
4

1
2πi

∮
|z|=1

dz

(
zeλs

)N1

z − e−λs
〈
∅
∣∣∣T k(θ)∣∣∣ ∅〉 = 2−k

√
λ

π
qs

2+ k
4
〈
∅
∣∣∣T k(iλs)∣∣∣ ∅〉 ,

(4.26)
as the only simple pole in the unit circle is at z = e−λs. The same result holds for s < 0
by inverting the contour, and for s = 0 by noting that

∑∞
m=−∞ e

−imθ = 2πδ(θ). This is a
surprising result: the transfer matrix in a fixed charge sector is local!6 We therefore define
the fixed charge transfer matrix, Ts ≡ T (iλs). It obeys the same rules as the local transfer
matrix T (θ), only whenever we open a new right-pointing chord we multiply the diagram
by a factor of qs, and whenever we open a new left-pointing chord we multiply by a factor
of q−s. The fixed charge moments get the compact transfer matrix form

mk(s) = 2−k
√
λ

π
qs

2+ k
4
〈
∅
∣∣∣T ks ∣∣∣ ∅〉 . (4.27)

6Whereas this is not the case for a fixed chemical potential.
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Furthermore, we can now sum over charge sectors, rather than the auxiliary parameter θ,
to calculate the full Hilbert space moments:

mk(µ) = 2−kq
k
4

√
λ

π

∫ ∞
-∞

ds qs
2
e−µs

〈
∅
∣∣∣T ks ∣∣∣ ∅〉 . (4.28)

Finally we note that the fractional number of states in a given charge subspace is

dim(Hs)
dim(H) = 1

2N

(
N

N/2 + sp

)
=
√

2
πN

e−λs
2 +O(N−3/2) = ds

√
λ

π
qs

2
, (4.29)

where the infinitesimal increment ds is just 1/p =
√

2/(Nλ). Thus we see that the function
of s in front of the matrix element is just the measure of the subspace, and we can really
think of Ts as the complete transfer matrix in a fixed charge sector.

4.6 Inner product

Although the transfer matrix is now strictly local, we still have to deal with the exponential
growth of Haux as a function of n — i.e. — for n chords there are 2n states. In this section
we will show that we can define a semi-positive inner product such that all states apart
for 2 for each value of n > 0 are null states, and that these null states decouple under the
action of the transfer matrix. Modding out by the null states we get a physical Hilbert
space of a manageable size, which is similar in complexity to the N = 0 and N = 1 cases.
In this inner product Q and Q† are Hermitian conjugates of each other.

The auxiliary Hilbert space of partial chord diagrams described in section 4.4 is similar
to the Fock space construction by Pluma and Speicher in [42]. There they define an
inner product for the auxiliary Hilbert space of multiple copies of the original SYK model.
In their paper they consider r identical copies of the regular SYK model, and construct
an inner product on the auxiliary Hilbert space of r different flavors of chords, Haux =⊕∞

n=0 {|hi〉
r
i=1}

⊗n, under which Ti’s are Hermitian. To compute the inner product of two
states, we sum over all possible pairings of chords of the same flavor between the two states,
and for each such pairing we assign a weight of q# intersections. If the states have a different
number of chords of any flavor, then no such pairing exists and the states are orthogonal
under this inner product. This inner product has a straightforward pictorial representation,
an example of which can be seen in the figure 6. The explicit formula for the inner product is

〈hi1 ⊗ . . .⊗ hin |hj1 ⊗ . . .⊗ hjm 〉 = δm,n
∑

pairings of hik ’s and hjk′ ’s
of the same flavor

q#intersections . (4.30)

This inner product is derived by constructing the Fock space from r creation and
annihilation operators, a†i and ai, that satisfy the relations

aia
†
j − qa

†
jai = δij , (4.31)

and demanding that a†i is the Hermitian conjugate of ai (see [50, 52]). Note that at this
stage, nothing is assumed about the commutation relations of the ai among themselves (or
the a†i ).
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Figure 6. An example for a product of 3 flavors of chords for (4.30), denoted by X,O,∆. The left
diagram has a single intersection, and the right one has four, which means that 〈XO∆X|OX∆X〉 =
q + q4.

We will follow the procedure in [50] to define the inner product on the auxiliary Hilbert
space under which Q† is the Hermitian conjugate of Q. We start with vectors |v〉 =
|e1e2 . . . en〉 ∈ Haux, where ei ∈ {X,O} represents the two types of chords we have, and nv
is the number of chords in |v〉. We will denote by X(v) and O(v) the number of X/O chords
in |v〉. We assume that the inner product of 〈v |u〉 is proportional to δO(v),O(u)δX(v),X(u),
impose that Q† is the Hermitian conjugate of Q, and arrive at the inner product

〈v |u〉 = δO(v),O(u) δX(v),X(u) q
s(X(v)−O(v))+ (X(v)−O(v))2−X(v)−O(v)

2

×
∑

pairing of X/O’s in |v〉
with X/O’s in |u〉

(−1)#intersectionsq# X − O intersections . (4.32)

This formula can be understood in the same way as (4.30) up to a normalization factor,
we sum over all possible pairings of X’s and O’s in |v〉 with X’s and O’s in |u〉7 and to
each pairing assign a value which depends on the intersections of chords. Each pairing
receives a factor of (−1) for any intersection of chords, and an additional factor of q for
each intersection of a chord connecting X’s with a chord connecting O’s. See appendix B
for the full calculation.

This inner product can be thought of as a generalization of (4.30), to a case where we
have a more general algebra of creation and annihilation operators. In particular, we can
generalize the relations (4.31) to

aia
†
j − qija

†
jai = δij , (4.33)

with qij = qji and qij ∈ [−1, 1] (see [51]). Then the inner product on the Fock space under
which a†i is the Hermitian conjugate of ai is

〈hi1 ⊗ . . .⊗ hin |hj1 ⊗ . . .⊗ hjm 〉 = δm,n
∑

pairings of hik ’s and hjk′ ’s
of the same flavor

∏
1≤i≤j≤r

q
#intersections of i and j chords
ij .

(4.34)
The inner product we found for the auxiliary Hilbert space, (4.32), is of the form (4.34)

up to a global normalization of the vectors and with qij = (q − 1)δij − q. We will later see
in section 8 that the algebra of the fermionic creation and annihilation operators indeed
satisfies relation (4.33) with the given qij .

7We only connect X’s to X’s and O’s to O’s, connecting an X to an O is not allowed.
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Figure 7. An example for two diagrams contributing to the state Q† |· · ·OO · · · 〉. As can be seen
in section 4.4, the two diagrams have the same contribution, up to a minus sign coming from the
intersection in the right diagram. This means that their sum will vanish. We see that we cannot
bring diagrams of this type to an empty chord diagram. This means that any diagram with two
consecutive X’s or O’s will not contribute to the element

〈
∅|T k

s |∅
〉
.

As a side remark, we note that within the double scaled SYK model (without SUSY)
it is possible to create generalized statistics, as given by (4.33). Taking multiple SYK
operators with different double scaling limits λi = limN→∞

2p2
i

N results in generalized
statistics with qij = e−

√
λiλj (similar to the correlation functions in [40, 41]). We can

also consider the tensor product of m SYK models, and operators that are tensor prod-
ucts of SYK operators, Hi = H

(1)
i ⊗ H

(2)
i ⊗ . . . ⊗ H

(m)
i , each with different double

scaling limit α(a)
i = limN→∞

√
2/Np(a)

i . In this case the generalized statistics will be
qij = e−

∑m

a=1 α
(a)
i α

(a)
j . This is similar to the model considered in [31].

4.7 Reduction to the physical Hilbert space

Notice that based on the inner product in the auxiliary Hilbert space any vector v with
two adjacent X’s or O’s has the property that 〈v |w 〉 = 0, for any vector w. This is because
for any chord between v and w there is also the chord diagram where the two adjacent
chords are flipped, which has the same weight with an opposite sign. Thus we can define
a physical Hilbert space by modding out all these null states, and the inner product will
reduce to this physical Hilbert space as well.

Note that we can ignore vectors with adjacent X’s or O’s directly from the rules of the
transfer matrix. Whenever we have two adjacent open chords of the same type, for every
chord diagram there is a corresponding chord diagram in which at the point when one of
those chords is closed, we replace it by closing the other chord. This diagram has the same
value with an opposite sign because of the additional intersection of chords. This is similar
to the inner product argument, but expressed directly in terms of the chord diagrams. This
argument is demonstrated in figure 7.

Thus states with two adjacent X’s (or O’s) will not contribute to the moments mk ∼〈
∅
∣∣∣T k∣∣∣ ∅〉.
We can therefore restrict the calculation of moments to the much smaller physical

Hilbert space which only contains states of alternating O’s and X’s. This space can be
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characterized by vectors of the form

|n,O〉 ≡
n pairs︷ ︸︸ ︷

|OXOX . . . OX〉 (4.35)

and states |n,X〉 which start with an X instead of an O. We will also include fermionic
states |n+ 1/2, X/O〉 that start and end with the same chord (of length 2n+ 1). All in all
we can write the physical Hilbert space as

Hphys =
{
|n,X〉 , |n,O〉 ,

∣∣∣∣n− 1
2 , X

〉
,

∣∣∣∣n− 1
2 , O

〉
, |∅〉

}∞
n=1

. (4.36)

We note that this is a much smaller space than the original Hilbert space, with only 2L+1
states up to length L.

We can calculate the inner product formula directly for physical states, however this
requires summing over all chords between the vectors, which is complicated. We can instead
calculate it directly from the physical Hilbert space, relying on the fact that states with
different number of chords are also orthogonal, and that the required inner product is such
that Q and Q† are adjoint of each other. This is done in appendix C, and the result is:

〈n,O |n,O 〉 = q−n
(
q2; q2

)
n−1

, 〈n,X |n,X 〉 = q−n
(
q2; q2

)
n−1

,〈
n+ 1

2 , O
∣∣∣∣n+ 1

2 , O
〉

= q−s−n
(
q2; q2

)
n
,

〈
n+ 1

2 , X
∣∣∣∣n+ 1

2 , X
〉

= qs−n
(
q2; q2

)
n
,

〈n,O |n,X 〉 = −
(
q2; q2

)
n−1

. (4.37)

This inner product is positive definite.
Based on the sub-diagrams we want to count, and the simple structure of this Hilbert

space, we can compute how the transfer matrix acts on each of the base states. For the
SUSY charge operators, the rules from before imply that when acting with Q on a physical
state we get

Q |n,X〉=−qn−1
∣∣∣∣n− 1

2 ,O
〉
, Q |n,O〉= q−1

∣∣∣∣n− 1
2 ,O

〉
+qs

∣∣∣∣n+ 1
2 ,O

〉
,

Q

∣∣∣∣n+ 1
2 ,O

〉
= 0, Q

∣∣∣∣n+ 1
2 ,X

〉
= qn |n,O〉+ |n,X〉+qs |n+1,X〉 . (4.38)

And when acting with Q† on a state we get

Q† |n,O〉=−qn−1
∣∣∣∣n− 1

2 ,X
〉
, Q† |n,X〉=q−1

∣∣∣∣n− 1
2 ,X

〉
+q−s

∣∣∣∣n+ 1
2 ,X

〉
,

Q†
∣∣∣∣n+ 1

2 ,X
〉

=0, Q†
∣∣∣∣n+ 1

2 ,O
〉

=qn |n,X〉+|n,O〉+q−s |n+1,O〉. (4.39)

The full transfer matrix, T ≡ QQ†+Q†Q, can be computed by the same rules. Acting
with T on the vacuum gives us

T |∅〉 = |1, X〉+ |1, O〉+
(
qs + q−s

)
|∅〉 . (4.40)
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We can then act on an arbitrary base state |n,X〉 and |n,O〉, and see that

T |n,X〉 = |n+ 1, X〉+
(
qsq−1 + q−s

)
|n,X〉+

(
q−sqn − q−sqn−1

)
|n,O〉

+
(
q−1 − q2(n−1)

)
|n− 1, X〉+

(
qn−2 − qn−1

)
|n− 1, O〉 ,

(4.41)

and

T |n,O〉 = |n+ 1, O〉+
(
q−sq−1 + qs

)
|n,O〉+

(
qsqn − qsqn−1

)
|n,X〉

+
(
q−1 − q2(n−1)

)
|n− 1, O〉+

(
qn−2 − qn−1

)
|n− 1, X〉 .

(4.42)

5 Spectrum

To compute the chord partition function, we will work in the physical sector of the auxiliary
Hilbert space of partial chord diagrams. Our main goal will be to compute the matrix
elements

〈
∅
∣∣∣T ks ∣∣∣ ∅〉. We define the bosonic sector to be B ≡ Sp {|∅〉 , |n,X〉 , |n,O〉}∞n=1, and

the fermionic sector to be F ≡ Sp
{∣∣∣n+ 1

2 , X
〉
,
∣∣∣n+ 1

2 , O
〉}∞

n=0
. Note that this has little to

do with the definition of bosonic or fermionic in the microscopic theory. Rather it is in the
auxiliary space, which we interpret as the Hilbert space of the gravitational excitations.

5.1 Diagonalization of T

To find the spectrum of T , we can use an asymptotic analysis.8 As 0 < q < 1, we can look
at the asymptotic form of the matrix in the limit qn → 0. Notice that the asymptotic form
of the matrix decouples the X and the O sectors, giving us

Tasy |n,X〉 = |n+ 1, X〉+
(
qsq−1 + q−s

)
|n,X〉+ q−1 |n− 1, X〉 ,

Tasy |n,O〉 = |n+ 1, O〉+
(
q−sq−1 + qs

)
|n,O〉+ q−1 |n− 1, O〉 .

(5.1)

This is a tri-diagonal matrix, immediately giving us the eigenvalues

Λ±,k = q±s−1 + q∓s − 2
√
q

cos
(

πk

L+ 1

)
→ q±s−1 + q∓s − 2

√
q

cos(φ), (5.2)

for φ ∈ (0, π) uniformly distributed. The eigenvalue Λ+ is an eigenvalue of the X sector
while Λ− is an eigenvalue of the O sector. As Λ+(s) = Λ−(−s), we will call Λs(φ) ≡ Λ+(s)
with Λ−s(φ) = Λ−(s). An alternative way to write these eigenvalues would be

Λs(φ) = 2q−1/2[cosh(λs− λ/2)− cos(φ)]. (5.3)

Furthermore, notice that Λs(φ) ≥ 0 as expected from a super-symmetric theory.
With the spectrum of T in hand, we move on to diagonalize the transfer matrix. As T is

a bosonic operator it is sufficient to diagonalize T on the bosonic sector in order to calculate
the desired matrix elements.9 Let us define the subspaces B ≡ QF and B̄ ≡ Q†F . As

8This is true so long as there are no bound states at small values on n. Later when we find the
eigenvectors of T we will see that this is indeed the case.

9The spectrum in the fermionic sector will be identical to the bosonic sector due to SUSY.
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these are T invariant subspaces, T can be diagonalized separately in each subspace. From
SUSY considerations, it follows that the only bosonic states not in B ⊕ B̄ must be ground
states. Furthermore, from the asymptotic matrix analysis we see that Λ(φ) > 0 for all
states but a set of measure zero (only when s = ±1/2 do we have a single zero energy state
at the edge of the spectrum), which shows that T is positive definite. Therefore T has no
ground states and B = B ∪ B̄.

Diagonalizing T over the spaces B = Sp
{
Q
∣∣∣n+ 1

2 , X
〉}∞

n=0
and B̄ =

Sp
{
Q†
∣∣∣n+ 1

2 , O
〉}∞

n=0
proves to be relatively simple. Denote

|bn〉 ≡ Q
∣∣∣∣n+ 1

2 , X
〉
,

∣∣∣bn〉 ≡ Q† ∣∣∣∣n+ 1
2 , O

〉
. (5.4)

In terms of these states the transfer matrix acts by

T |bn〉 = q−1
(
1− q2n

)
|bn−1〉+

(
q−s + q−1qs

)
|bn〉+ |bn+1〉 ,

T
∣∣∣bn〉 = q−1

(
1− q2n

) ∣∣∣bn−1
〉

+
(
qs + q−1q−s

) ∣∣∣bn〉+
∣∣∣bn+1

〉
.

(5.5)

Using the asymptotic matrices, we see that the eigenvalues of T restricted to B are
Λs (φ), while the eigenvalues of T restricted to B̄ are Λ−s (φ). Denote the eigenvector
corresponding to the eigenvalue Λs (φ) by |v (φ)〉, which is an element of B. Therefore
we can write |v (φ)〉 =

∑∞
n=0 αn |bn〉, for some constants αn. The eigenvalue equation

T |v (φ)〉 = Λs (φ) |v (φ)〉 gives
∞∑
n=0

Λs (φ)αn |bn〉 =
∞∑
n=0

[(
q−s + q−1qs

)
αn |bn〉+ q−1

(
1− q2n

)
αn |bn−1〉+ αn |bn+1〉

]
=
∞∑
n=0

[(
q−s + q−1qs

)
αn + q−1

(
1− q2(n+1)

)
αn+1 + αn−1

]
|bn〉 , (5.6)

from which we obtain the recursion relation over the coefficients αn
2
√
q

cos(φ)αn = q−1
(
1− q2(n+1)

)
αn+1 + αn−1. (5.7)

If we momentarily allow n = −1, and define α−1 = 0, we can redefine αn to be

αn = q
n
2

(q2; q2)n
an a−1 = 0, a0 = 1, (5.8)

such that the above relation becomes

2 cos(φ)an = an+1 +
(
1− q2n

)
an−1, a−1 = 0, a0 = 1. (5.9)

We see that the a’s hold the recursion relation satisfied by the continuous q-Hermite poly-
nomials Hn

(
cosφ|q2) [53], hence the α’s hold

αn (φ) = qn/2

(q2; q2)n
Hn

(
cosφ|q2

)
. (5.10)

Note that T
∣∣
B
, T
∣∣
B̄

are symmetric under the assignment |bn〉 →
∣∣∣bn〉 , s → (−s) ; which

means that the eigenvector |u (φ)〉 ∈ B̄ with the eigenvalue Λ−s(φ) is given by |u(φ)〉 =∑
αn
∣∣∣bn〉 , with the same αn’s.
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5.2 Calculating the moments and the density of states

To calculate the matrix elements
〈
∅
∣∣∣T ks ∣∣∣ ∅〉 we insert a complete set of eigenvectors. How-

ever, we first need to normalize the eigenvectors. Trivially 〈v(θ) |u(φ)〉 = 0 as they live
in orthogonal subspaces. We can calculate the inner product of two |v(φ)〉 vectors using
the orthogonality relations of q-Hermite polynomials and the inner product defined in the
previous section. See appendix C for the full calculation. The result is

〈
v(φ)

∣∣v(φ′)
〉

= qsΛs (φ) 2πδ (φ− φ′)
(q2, e±2iφ; q2)∞

. (5.11)

The inner product 〈u(φ) |u(φ′)〉 is the same only with s→ −s.
Then plugging this in, the matrix element becomes〈
∅
∣∣∣T ks ∣∣∣ ∅〉 =

∫ π

0

dφ

2π
(
q2, e±2iφ; q2

)
∞

[
q−sΛk−1

s (φ) + qsΛk−1
−s (φ)

]
, for k > 0, (5.12)

and for k = 0 the matrix element is just 1.
We can then plug this into the formula for the moments and see that

mk(µ) = 2−kq
k
4

√
λ

π

∫ ∞
-∞

ds qs
2
e−µs

∫ π

0

dφ

2π
(
q2, e±2iφ; q2

)
∞

[
q−sΛk−1

s (φ) + qsΛk−1
−s (φ)

]
= q−

k−1
4

√
λ

π

∫ ∞
-∞

ds q(s+1/2)2 cosh(µs)
∫ π

0

dφ

2π
(
q2, e±2iφ; q2

)
∞

(5.13)

× (cosh[λ(s+ 1/2)]− cos(φ))k−1 ,

m0(µ) = 1.

The energies depend on the charge s and an angle φ, and are given by

E(s, φ) = q−1/4 (cosh[λ(s+ 1/2)]− cos(φ)) , (5.14)

with the continuous density of states (coupled to a chemical potential) given by

ρc(E;µ) = cosh(µ/2) q1/4

π3/2
√
λ

∫ π

0
dφ

(
q2, e±2iφ; q2

)
∞

E
√(

q1/4E + cosφ
)2 − 1

× exp
{
− 1
λ

[
cosh−1

(
q1/4E + cosφ

)]2}

× cosh

µ cosh−1
(
q1/4E + cosφ

)
λ

Θ
(
q1/4E + cosφ− 1

)
.

(5.15)

A plot of the continuous energy distributions (without a chemical potential) for some values
of λ is given in figure 8.

As can be seen by integrating ρ(E, 0) over the entire spectrum, the density integral
does not amount to 1. This since the density includes only the continuous part of the
spectrum, and misses any δ functions contributions at zero. Contributions of the form
D · δ(E) appear as a missing density when we integrate the above density of states over
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Figure 8. The density of states (continuous part) for various values of λ.

E, which is simply looking at the zeroth moment of the continuous distribution without
a chemical potential. After re-summing this moment (see appendix D for the complete
calculation) we find that

1−D(λ) = m0 =
∫
dEρc(E, 0) = 2

∞∑
k=0

(−1)kerfc
((

k + 1
2

)√
λ

)
, (5.16)

with the ground state density given by

D(λ) =
∫ 1/2

−1/2
ds ϑ2

(
πs, e−

π2
λ

)
. (5.17)

This is in agreement with the density of ground states found using a cohomology argument,
which is done in the next section.

We can take the Fourier transform in the chemical potential of equation (5.15) to find
the continuous spectrum in a fixed charge sector (ignoring the δ function at zero) to be

ρc(E; s) =
√
λ

2π1/2

∫ π

0
dφ

(
q2, e±2iφ; q2

)
∞

×
(
q(s−1/2)2

E
δ (E − E(s, φ)) + q(s+1/2)2

E
δ (E − E(−s, φ))

)
.

(5.18)

This continuous spectrum in a fixed charge sector has a minimal energy

Emin(s) = q−1/4
[
cosh

(
λ

(
|s| − 1

2

))
− 1

]
≈ λ2

2

(
|s| − 1

2

)2
, (5.19)

in the λ → 0 limit. Translating to the Schwarzian result in [11], we have that iµ = 2πnq̂
and sµ = 2πmn, so s = m

q̂ , and we obtain the exact same result. This also agrees with [49].
It is interesting that the spectrum starts at zero only for the sector with charge s = ±1/2,
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which has precisely p/2 fermions. This is also the extremal charge sector that contains
ground states.

Finally, we look at how the density of states changes when we vary λ. In the limit
λ → 0 we have that ρ(E) → δ(E − 1). This concentration of measure around E = 1 can
be seen in figure 8, and is also found in the exact computation when setting q = 1. This
is similar behavior to the N = 1 model, when the density is also concentrated at E = 1.
In the limit λ → ∞ almost all states become ground states, and ρ(E) → δ(E). This can
be seen in figure 9 which shows the density of ground states approaching 1 as λ→∞. We
can think of the transition between long interactions and short interaction as a quantum
phase transition, similar to [39].

5.3 Supersymmetric ground states

We shall now present an analysis of the number of ground states in every charge sector. This
is an extension of the analysis done in [34]. The ground states, or super-symmetric states
are the zero energy states |ψ〉 such that Q |ψ〉 = Q |ψ〉 = 0. These are also the states in the
cohomology of Q, that is states in ker (Q)/Im(Q). We can calculate the cohomology directly
using combinatorial arguments. We expect this analysis to be valid for almost all realiza-
tions of the couplings, except for a small set of coupling of measure zero (in the Gaussian
measure of the space of random couplings). We do not have a full proof of this statement,
but rather provide a heuristic argument. We will see that this analysis misses an O(1)
number of ground states with charge s = ±1/2, but otherwise this argument seems exact.

The full Hilbert space of this model, which we shall denote H, consists of the tensor
product of N complex fermions, and has 2N states. This Hilbert space is spanned by
basis states which are represented by a set of spins, up or down, for each site. The U(1)
charge of each base state is linearly related to the number of up spins in the state, m, with
0 ≤ m ≤ N , by s = (m−N/2)/p. Let us denote the subspace with m up spins as Hm, and
note that dim (Hm) =

(N
m

)
.

We will start from a state with r up spins such that 0 ≤ r < p, and consider the long
exact sequence:

0 Q−→ Hr
Q−→ Hr+p

Q−→ Hr+2p
Q−→ . . .

Q−→ Hr+(M−1)p
Q−→ Hr+Mp

Q−→ 0, (5.20)

with M = bN−rp c. Let us start by calculating the image of Q, and denote

l(m; r) ≡ dim (ImQ)
∣∣
Hr+mp . (5.21)

For m = 0 we see immediately that l(0; r) = 0. For m = 1 notice that as dim(Hr+p) >
dim(Hr) and there are no states in Hr that must be sent to zero, so for a generic realization
of the couplings l(1, r) =

(N
r

)
. For m = 2 the same argument holds, only now we do have a

subspace of exact states that must be sent to zero. This tells us that l(2, r) =
( N
r+p
)
−
(N
r

)
.

Continuing on with the sequence we see that

l(m; r) =
m−1∑
n=0

(−1)m−1−n
(

N

r + np

)
, (5.22)
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at least for r +mp < N/2, and that all the cohomologies must be zero except for the one
closest to N/2.

Let us now start calculating the kernel of Q from the other side of the long exact
sequence, and denote

S(m; r) ≡ dim (ker(Q))
∣∣
Hr+mp . (5.23)

This time we get for free that S(M, r) =
( N
r+Mp

)
. For m = M −1 we expect that the image

of Hr+Mp−p will be all of Hr+Mp as it is a larger vector space and Q is random, so we
should have that S(M − 1; r) =

( N
r+Mp−p

)
−
( N
r+Mp

)
. Continuing down the chain with the

same argument we get that

S(m; r) =
M−m∑
n=0

(−1)n
(

N

r + (m+ n)p

)
, (5.24)

at least for r+mp > N/2, and again all the cohomologies must be zero except for the one
closest to N/2. Thus for every value of r we get only a single charge sector with a nonzero
cohomology and that will be the charge sector with the least charge. We will get a non-zero
number of ground states only for charges |s| < 1/2. The dimension of this cohomology,
call it D(r) will be

D(r) = S(mc; r)− l(mc; r) = (−1)mc−1
M∑
n=0

(−1)n
(

N

r + np

)
, (5.25)

with mc the critical m value for which the cohomology is non-zero.
This analysis may break down slightly, missing an O(1) number of states, in the par-

ticular case where for a specific r and N we have that (N ± p)/2 is an integer and so both
cases are marginal, as there is no closest m value. This is precisely the charge sectors
s = ±1/2. This analysis predicts that the cohomology of this sector will be zero, but in the
p = 3 case it was found numerically to be 0, 1, or 3, which in the large N case is negligible.
For all other cases this formula replicates exactly the numerical results found for p = 3
in [43], as well as the analytical results for p = 3 in [34].

We can take the double scale limit of this formula by plugging in the U(1) charge
definition, and then normalizing by the size of the Hilbert space. Then we get that

D(s)ds = 2−N
bM/2c∑

n=−bM/2c
(−1)n

(
N

N/2 + (s+ n)p

)

= 2−N
∞∑

n=−∞
(−1)n

(
N

N/2 + (s+ n)
√
λN/2

)
N→∞−−−−→

√
2
Nπ

∞∑
n=−∞

(−1)ne−λ(n+s)2 +O(N−3/2)

= ds

√
λ

π

∞∑
n=−∞

(−1)ne−λ(n+s)2
,

(5.26)
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where we substituted ds = 1/p =
√

2/(Nλ). This is just a Jacobi theta function (the
conventions we use appear in (A.10)), and in particular we get

D(s) =

√
λ

π
qs

2
ϑ4(iλs, q). (5.27)

Using the modular transformation (A.11) gives us the final form

D(s) = ϑ2

(
πs, e−

π2
λ

)
, (5.28)

which is the infinitesimal fraction of ground states at charge s.
We can now integrate this over s ∈ (−1/2, 1/2) to get the fraction of the Hilbert space

that is a ground state:

D =
∫ 1/2

−1/2
ds ϑ2

(
πs, e−

π2
λ

)
. (5.29)

We expect this to also be the value multiplying δ(E) in the normalized density of states,
which agrees with what we have shown above.

We can also easily take the λ→ 0 limit as

D(s) ≈ 2e−
π2
4λ cos(πs)

(
1 +O

(
e−

2π2
λ

))
. (5.30)

This result agrees with the number of ground states found through the Schwarzian analysis
in [49]. We can also integrate this over s ∈ [−1/2, 1/2] to get the full number of ground
states in this limit:

D(λ) = 4
π
e−

π2
4λ
(
1 +O(e−4π2/λ)

)
. (5.31)

At finite N and p this would approximate the number of ground states as

D(s; p,N) ≈ 2
p

cos(πs)
(

2e−
π2
8p2

)N
. (5.32)

When p = 3 the actual number of ground states is 2/3 ∗ cos(πs) 3N/2. Already we see that

2e−
π2
8p2 ≈

√
3 to within 1 percent. For p = 5 the agreement is better, with

D(s; p = 5) ≈ 2
5 cos (πs)

(
5 +
√

5
2

)N/2
, (5.33)

at large N , up to exponentially small terms. Here the agreement with the infinite p limit
is to within less than 0.1%.

We present a plot of D(λ) as a function of λ in figure 9, as well as a comparison
to the small λ approximation. We see that the small λ approximation is a very good
approximation up until λ ≈ 5, which is somewhat surprising. We also see that at finite λ
the number of ground states represents a finite fraction of the total number of states, and
that for large λ most states are supersymmetric.
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Figure 9. The density of ground states as a function of λ.

5.4 The Schwarzian limit of the distribution

We now look at the super conformal limit of the distribution, which is the low energy
short interactions limit. We expect our results to reduce to the super-Schwarzian density
of states in the so called triple scaling limit (see [17]) E → 0, λ→ 0.

We start by considering only the density of states ρ(E,µ = 0) under this double limit.
We will take E = ε/2. The Heaviside forces us to have ε/2 + cosφ ≥ 1, which limits the
integration domain. Since cosφ is decreasing close to the origin we see that the integration
limit should be taken up to φ =

√
ε+O(ε), which means that E → 0⇒ φ→ 0. With this

the Heaviside becomes 1. In this limit we can use two useful approximations [40]:

q1/4
(
q2, e±2iφ; q2

)
∞
≈ 8 sinφ

√
π

λ
e
− 1
λ

[
π2+(φ−π2 )2

]
sinh

(
πφ

λ

)
sinh

(
π(π − φ)

λ

)
, (5.34)

and

e−
1
λ(cosh−1(q1/4E+cosφ))2

≈ e−
1
λ(ε−φ2) +O

(
ε2
)
, (5.35)

under which the density of states, (5.15), becomes

ρ

(
ε

2

)
= e−

π2
4λ

πλε

∫ √ε
0

dφ
φ√
ε− φ2 sinh

(
πφ

λ

)
= e−

π2
4λ

2λ
√
ε
I1

(
π
√
ε

λ

)
, (5.36)

which is the Super-Schwarzian density of states.
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Next we will add the chemical potential. To compare to the Schwarzian results in [11]
we look at the low energy λ→ 0 limit, which as before gives us the density

ρ0

(
ε

2;µ
)
≈ 4 cosh(µ/2)√

λε
e
µ2
4λ−

π2
4λ

∫ ∞
-∞

dx e−x
2 1
2π

∫ π

0
dφ e−

φ2
λ sinφ

× sinh
(
πφ

λ

)
δ

(
ε− φ2 −

(
x
√
λ+ µ/2

)2
)

= 2 cosh(µ/2)
λ
√
επ

e−
π2+4ε

4λ

∫ π

0
dt

∫ ∞
0

dr r2 sin t cosh
(√

εµ

λ
r cos t

)

× sinh
(
π
√
ε

λ
r sin t

)
δ
(
1− r2

)
= cosh(µ/2)

λ
√
επ

e−
π2+4ε

4λ

∫ π

0
dt sin t cosh

(√
εµ

λ
cos t

)
sinh

(
π
√
ε

λ
sin t

)
.

(5.37)

It remains to evaluate the integral

I(a, b) ≡
∫ π

0
dt sin t cosh (a cos t) sinh (b sin t) . (5.38)

We will define ρ2 ≡ a2 + b2 and tanϕ ≡ b
a , so that a cos t + b sin t = ρ cos(t + ϕ). Then

using trigonometric identities we see that

I(a, b) =
∫ π

0
dt sin t sinh (ρ cos(t+ ϕ))

= 1
2 sin(ϕ)

∫ π

−π
dt exp (ρ cos(t) + it)

= π√
1 + a2

b2

I1
(√

a2 + b2
)
.

(5.39)

Together this gives

ρ0

(
ε

2;µ
)
≈ cosh(µ/2)

λ

√
ε
(
1 + µ2

π2

)e−π2+4ε
4λ I1

π
λ

√
ε

(
1 + µ2

π2

) , (5.40)

which is in agreement with the Schwarzian result from [11] when taking µ = i2πnq̂.
We can also take the Schwarzian limit of the energy distribution in a fixed charge

sector, from equation (5.18). This involves taking the low energy λ → 0 limit of∫ π
0 (q2, e±2iφ; q2)∞δ(E − E0(s) + cosφ) which is the same limit as in the regular SYK
model [17], giving us that the continuous spectrum in a fixed charge sector is

ρc(E, s) ∝
sinh(2π

√
E − E0(s))
E

Θ(E − E0(s)) + (s→ −s), (5.41)

where E0(s) = λ2

2

(
s− 1

2

)2
. This is in agreement with the Schwarzian results from [49].

We note that the number of ground states in each charge sector is also in agreement with
the Schwarzian results from [49], as was shown in the previous section. Thus the spectrum
of the double scaled N = 2 SUSY SYK model exactly reduces to the super-Schwarzian
density of states in this limit.
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6 Reduction to the Liouville action

It is well known that the low energy Schwarzian theory of the SYK model reduces to
Liouville quantum mechanics (see [7, 8, 49]). As such we expect that the transfer matrix
also reduces to the Hamiltonian of Super-Liouville quantum mechanics in the low energy
continuum limit, when we additionally take the limit q → 1. A similar reduction was seen
in the transfer matrix of the regular SYK model [40].

We will concentrate on a fixed charge sector s, and work with the basis of exact states
({|bn〉}, {

∣∣∣b̄n〉})∞n=0 from (5.4). If we now act on a general vector |u〉 =
∑
un
∣∣∣b̄n〉 with the

transfer matrix, we see that the n’th component of the new vector is

(Ts |u〉)n =
(
q−1 − q2n+1

)
un+1 +

(
e−λs + q−1eλs

)
un + un−1. (6.1)

As the asymptotic matrix is a constant tri-diagonal matrix, in order to focus on the low
energy states we introduce the twist (along with a rescaling) ũn = (−1)nq−n/2un, and get

√
q (Ts |ũ〉)n = −

(
1− q2n+2

)
ũn+1 +

(
e−λsq1/2 + q−1/2eλs

)
ũn − ũn−1. (6.2)

We now take the continuum limit by defining the variable q2n+2 ≡ eφ, and the continuum
function ũn ≡ u(φ). Using these definitions we have ũn±1 = e∓2λ∂φu (φ). This gives us

√
qTsu(φ) =

[
eφe−2λ∂φ +

(
e−λ(s+

1
2) + eλ(s+

1
2))− (e−2λ∂φ + e2λ∂φ

)]
u(φ). (6.3)

Finally, we take the limit q → 1−, or λ → 0. We do this by first shifting the variable
φ by defining a variable ϕ through φ = ϕ+ 2 log λ. Then expanding the transfer matrix in
the small parameter λ, and keeping only terms up to order λ2, we get

Tsu(ϕ) = λ2
[
eϕ − 4∂2

ϕ +
(
s+ 1

2

)2
]
u(ϕ) +O(λ3), (6.4)

which is the Liouville Hamiltonian. If we choose a vector in the other T invariant subspace,
namely |v〉 =

∑
vn |bn〉, then the same manipulations would give a Liouville Hamiltonian

acting on the continuum function v(φ) (which is the continuum analog of the rescaled
vectors ṽn). This Liouville Hamiltonian would be similar, only with s→ (−s). This means
that in the continuum Schwarzian limit we have two bosonic functions u and v, with the
transfer matrix acting on each as a Liouville Hamiltonian:

Tsv = λ2
[
eϕ − 4∂2

ϕ +
(
s− 1

2

)2
]
v,

Tsu = λ2
[
eϕ − 4∂2

ϕ +
(
s+ 1

2

)2
]
u.

(6.5)

To compare to the Super Liouville, notice that charge s is just the quantum number of
a global U(1) symmetry, which can be replaced by a derivative of a different bosonic field,
s→ ∂τσ. This gives us the Hamiltonian

T = λ2
[
eϕ + 4p2

ϕ +
(
pσ + 1

2

)2
]

+O(λ3), (6.6)

which is the bosonic part of the Super Liouville Hamiltonian.
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We now turn to the fermionic sector of the Hilbert space. We will show that the action
of T on a fermionic vector is the same as its action on a bosonic vector. To see this consider
a fermionic vector |n+ 1/2, X〉. Recall that |bn〉 = Q |n+ 1/2, X〉, so we have

(QT |n+ 1/2, X〉) = (TQ |n+ 1/2, X〉) = T |bn〉 = Q
∑

m=±1,0
dm,n |m+ n+ 1/2, X〉 , (6.7)

where dm,n corresponds to the action of T over a bosonic vector, given by (5.5). As the
space Span{|n+ 1/2, X〉}n∈Z is orthogonal to the kernel of Q, it follows that

T |n+ 1/2, X〉 =
∑

m=±1,0
dm,n |m+ n+ 1/2, X〉 . (6.8)

Thus the action of T on fermions is identical to the action of T on bosons, which means
that on the fermionic sector we again get (6.6). In other words the fermionic sector is just a
fermion zero mode times the bosonic sector. This is in agreement with the Super Liouville
quantum mechanics, which has two fermionic zero modes.

7 2-pt function

Finally we would like to apply the techniques above to the computation of the 2-pt
functions. The main upshot of this section is to show how to consistently include the
ground states of the theory in the 2-pt function. As in [40, 41], we are interested in
operators in a similar statistical class as the Hamiltonian. A natural choice would be an
operator of the form

A =
∑
|I|=p′

C̃IΨI . (7.1)

where C̃I are independent random Gaussian variables, and the length p′ determines
the charge of the operator. We will call this class of operators single chord operators.
Furthermore, we will be interested in the double scaled limit, namely

p′ →∞, with λ̃ = λ
p′

p
fixed. (7.2)

Again we will find it useful to define

q̃ = e−2 pp
′

N . (7.3)

These operators can be generalized into a more generic class of operators of the form

Op,p′ =
∑

|I|=p′,|J |=p′′
OI,JΨIΨJ , OI,J i.i.d Gaussian. (7.4)

The length p′− p′′ determines the charge of these operators, and we expect that p′′+ p′ —
in the IR and for an appropriate class of operators — determines the conformal dimension
of the operator. We will call this class of operators double chord operators.

An underlying assumption is that these coefficients are uncorrelated with the ones
that appear in the Hamiltonian. We can also compute correlators of descendants of these
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operators, where the coefficients are clearly correlated with the ones in the supercharges.
This is a manageable slight generalization of our computations, which we will not do here.

In either cases we would like to evaluate〈
tr
(
e−

β
2HO(τ)e−

β
2HO(0)

)〉
C

=
〈
tr
(
e(τ−β/2)HOe−(τ+β/2)HO

)〉
C
, (7.5)

which amounts to evaluating the moments

mk1,k2;q̃ =
〈
tr
[
OHk1OHk2

]〉
C
. (7.6)

By the subscript C we also mean averaging over the random coefficient of the operator A
or O. We will focus on calculating the moments without a chemical potential, though our
results can be slightly modified by adding a chemical potential term to the integral over
fixed charge sectors to include it (say in equation (7.8)).

The section is organized as follows. We first compute the moments of simple operators
described by (7.1), and then exponentiate these moments to find the full 2-point function
in section 7.1. Afterwards we analyze the conformal limit of the two point function of
such operators. Finally we discuss the 2-point function of more general operators of the
form (7.4) in section 7.2. The main novelty in the result is that the ground states generate
a substantial contribution to the 2-point function, even in the Schwarzian limit. Thus the
conformal ansatz for the 2-point function of the form 1/x2∆ is inconsistent, even in this
regime, and should be altered to include additional contributions from the ground states.

7.1 Single chord operators

We will first compute the two point function of single chord operators. The moments that
we consider are of the form

mk1,k2;q̃ =
〈

tr
[
AHk1AHk2

]〉
C
. (7.7)

Translating to chord diagrams, this amounts to connecting the A and the A operators with
a new type of chord. It is also convenient to open the chord diagram right before the
insertion of the single “A” chord. See figure 10 for an example of such a chord diagram.

The contribution to each chord diagram will be the contribution of the chord diagram
without the additional chord, with an additional factor of q̃−1/2 for every Q chord that is
friends with an A chord, and a factor of q̃1/2 for every Q chord that is enemies with an A
chord, see figure 11. These factors change the local transfer matrix.

There is a simple way to change the transfer matrix without a need to re-diagonalize it,
at the cost of adding a local operator at the A insertion point. This can be done by changing
the factors q±s when we open a chord, which is the same as changing the charge sector. If we
open a chord parallel to the operator chord inside the operator region (configurations I, II
in figure (11)), it is an enemy of the operator chord. If a chord anti-parallel to the operator
chord opens inside the operator region (configurations III, IV there), it is friends with the
operator chord, if they do not intersect. We can account for the factors due to diagrams
I, II, III by changing the charge inside the operator region (and similarly the factors due to
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(a).

(b).

Figure 10. Two different representations of a diagram contributing to the moment m1,2;q̃. In figure
(a) we can see the chord diagram representation, and in (b) we have the same diagram represented as
an open chord diagram. The operator region is defined to be the region between the two dashed lines.

I II.

III IV.

V VI.

Figure 11. Possible chord relations between an operator chord (dashed line) and a regular Hamil-
tonian chord (solid line). Diagrams I, II, IV,VI are enemy configurations, which result in a q̃1/2

factor. The rest are friend configurations, which result in a q̃−1/2 factor.
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diagrams V,VI by changing the charge outside the operator region), and correct the factors
due to diagram IV through an operator insertion on the boundary between the two regions.

To implement this idea we should change s→ s− ≡ s− λ̃
2λ inside the operator region,

and s → s + λ̃
2λ ≡ s+ outside this region. To count the number of type (IV) intersections

we can add the operator q̃N̂ on the boundary between the two regions, with N̂ being the
number operator defined by N̂ |n,X/O〉 = n |n,X/O〉 for n ∈ N/2. Note that N̂ is defined
only on the physical Hilbert space. This change in the transfer matrix is consistent with
the charge formalism, as the A operator has a normalized charge of λ̃/λ = p′/p, which is
exactly the change in the charge when we insert the A chord.

Now we can compute the moment by

mk1,k2;q̃ = q(k1+k2)/4

2k1+k2

√
λ

π

∫ ∞
−∞

ds e−λs
2 〈∅ ∣∣∣T k1

s− q̃
N̂T k2

s+

∣∣∣ ∅〉 , (7.8)

We can compute the moments in a fixed charge sector by stripping the integral over s, or
add a chemical potential eiµs to the integral.

The number operator is diagonal over the number basis, so we can insert a complete
set of number states to get

mk1,k2;q̃ = q(k1+k2)/4

2k1+k2

√
λ

π

∫ ∞
−∞

ds e−λs
2 ∑
n±

q̃n
〈
∅
∣∣∣T k1
s−

∣∣∣n±〉〈n± ∣∣∣T k2
s+

∣∣∣ ∅〉 , (7.9)

Since the number states are not eigenstates of the transfer matrix, it will be easier to find
the value of

〈
n±
∣∣∣T ks ∣∣∣ ∅〉 by inserting a complete set of T eigenstates. This gives us〈

n±
∣∣∣T ks ∣∣∣ ∅〉 =

∫
dφdφ′

|〈vs (φ) |vs (φ)〉|2
〈n±|vs (φ)〉

〈
vs (φ)

∣∣∣T ks ∣∣∣ vs (φ′)〉 〈vs (φ′) |∅〉+ (v → u)

=
∫
dφ

(
q2, e±2iφ; q2

)
∞

2π q−sΛk−1
s (φ) 〈n±|vs (φ)〉+

(
v → u

s→ (−s)

)
, (7.10)

where we use

〈v (φ) |∅〉 = 1,
〈
vs (φ) |vs

(
φ′
)〉

= qsΛs (φ) 2πδ (φ− φ′)
(q2, e±2iφ; q2)∞

, (7.11)

and Λs(φ) are the eigenvalues of the transfer matrix, defined in (5.3). To compute the sum∑
n± q̃

n
〈
∅
∣∣∣T k1
s−

∣∣∣n±〉〈n± ∣∣∣T k2
s−

∣∣∣ ∅〉 we will use the projection of the T eigenstates over the
number basis (see appendix C)

〈n±|us (φ)〉 = 1√
2 (q2; q2)n−1 (1∓ qn)

×
[
Hn

(
cosφ|q2

)
+ (1∓ qn) q−s 1

√
q
Hn−1

(
cosφ|q2

)]
, (7.12)

〈n±|vs (φ)〉 = ± 1√
2 (q2; q2)n−1 (1∓ qn)

×
[
Hn

(
cosφ|q2

)
+ (1∓ qn) qs 1

√
q
Hn−1

(
cosφ|q2

)]
. (7.13)
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Each summand is composed of four different terms. Using q-Hermite polynomials orthog-
onality relations we get

∑
n±

q̃n
〈
n±|vs+

(
φ′
)〉 〈

n±|vs− (φ)
〉

= q−sq̃1/2Λs− (φ)
(
q̃2, q2)

∞(
q̃ei(±φ±φ′); q2)

∞∑
n±

q̃n
〈
n±|us+

(
φ′
)〉 〈

n±|us− (φ)
〉

= qsq̃1/2Λ−s− (φ)
(
q̃2, q2)

∞(
q̃ei(±φ±φ′); q2)

∞∑
n±

q̃n
〈
n±|vs− (φ)

〉 〈
n±|us+

(
φ′
)〉

=
(
q̃2; q2)

∞(
q̃qei(±φ±φ′); q2)

∞∑
n±

q̃n
〈
n±|us− (φ)

〉 〈
n±|vs+

(
φ′
)〉

= 0,

(7.14)

This gives us

mk1,k2;q̃ = q(k1+k2)/4

2k1+k2

√
λ

π

(
q̃2, q2

)
∞

∫
dse−λs

2 dφ′dφ

(2π)2

(
q2, q2, e±2iφ, e±2iφ′ ; q2

)
∞

×
[

qsq̃1/2(
q̃ei(±φ±φ′); q2)

∞

(
Λ
s+ λ̃

2λ

(
φ′
)

+ Λ
s− λ̃

2λ
(φ)
)

Λk2−1
s− λ̃

2λ
(φ) Λk1−1

s+ λ̃
2λ

(
φ′
)

+ Λk2−1
s− λ̃

2λ
(φ) Λk1−1

−
(
s+ λ̃

2λ

) (φ′) q̃−1(
q̃qei(±φ±φ′); q2)

∞

]
.

(7.15)

These moments are correct so long as k1, k2 6= 0. The full moments read

mk1,k2;q̃ =


mc
k1,k2;q̃, k1, k2 > 0,
m1
k1;q̃, k1 > 0, k2 = 0,

m1
k2;q̃, k1 = 0, k2 > 0,
1, k1 = k2 = 0,

(7.16)

with mc
k1,k2;q̃ given by equation (7.15), and

m1
k;q̃ = q1/4

2

√
λ

π

∫ ∞
−∞

ds qs
2−s+s20

∫ π

0

dφ

2π
(
q2, e±2iφ; q2

)
∞

cosh (2λs0s)
(
q1/4Λs

2

)k−1

.

(7.17)
To compute the two point function we simply exponentiate the moments, however we

will get multiple terms as the moments are not analytically continued from k1, k2 > 0 to
k1, k2 = 0. This happens as the ground states only contribute to the moments when k1 = 0
or k2 = 0, resulting in the following expansion:

〈
tr
[
Ae(τ−β/2)HAe−H(τ+β/2)

]〉
C

=
∞∑

k1,k2=0

(τ−β/2)k2(−τ−β/2)k1

k1!k2! mk1,k2;q̃ (7.18)

= 1+I1(τ−β/2)+I1(−τ−β/2)+Ic(τ−β/2,−τ−β/2),
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where we define

Ic(x, y) ≡
∞∑

k1,k2=1

xk1yk2

k1!k2! m
c
k1,k2;q̃

=

√
λ

π

∫
ds e−λs

2 dφ′dφ

(2π)2

(
q̃2, q2, q2, e±2iφ, e±2iφ′ ; q2

)
∞

×
[qsq̃1/2

(
Λ−1
s− λ̃

2λ
(φ) + Λ−1

s+ λ̃
2λ

(φ′)
)

(
q̃ei(±φ±φ′); q2)

∞

e− yq1/42 Λ
s− λ̃

2λ
(φ)
− 1

e−xq1/42 Λ
s+ λ̃

2λ
(φ′)


+ q̃−1(
q̃qei(±φ±φ′); q2)

∞

e− yq1/42 Λ
s− λ̃

2λ
(φ)
− 1

e−xq1/42 Λ
−s− λ̃

2λ
(φ′)
], (7.19)

and

I1(x) ≡
∞∑
k=1

xk

k!m
1
k;q̃

= q1/4

2

√
λ

π

∫ x

0
dx′

∫ ∞
−∞

ds qs
2−s+s20

∫ π

0

dφ

2π
(
q2, e±2iφ; q2

)
∞

× cosh (2λs0s) exp
(
x′
q1/4Λs(φ)

2

)
.

(7.20)

The different terms in (7.18) correspond to the different contributions to the 2-point
function. The 1 is simply the zero-zero moment. The I1’s are the sum of the zero-k and k-
zero moments, and so must involve the ground states. Note that the two time parameters in
the two intervals are ±τ −β/2 and an I1 function that depends only on one of them means
that we have inserted the ground states as intermediate states in the other interval. Ic, on
the other hand, involves the rest of the moments and thus contains the contribution from
the continuous spectrum. We note that any conformal limit of the two point function must
be realized in Ic, as the conformal ansatz ignores the large amount of exact ground states.

As a check of (7.15), we can verify that it converges tomk1+k2 given by (5.13) under the
limit q̃ → 1 (while keeping q fixed), which corresponds to inserting the identity operator.
This trivially reduces to the moments if k1 = 0 or k2 = 0, so we only need to check the
continuous part, mc. Since limq̃→1

(
q̃2; q2) = 0, the only non-zero contribution to mk1,k2;q̃

can arise from singular terms. The only such term is
(
q̃ei(±φ±φ

′); q2
)−1

∞
, and we get

lim
q̃→1

(
q̃2, q2)

∞(
q̃ei(±φ−φ′); q2)

∞
= 2π

(q2, e±2iφ; q2)δ
(
φ− φ′

)
. (7.21)

This indeed shows us that limq̃→1mk1,k2;q̃ = mk1+k2 .

7.1.1 Conformal limit of the 2-pt function

We now turn to analyze the two point function given by (7.18) in the conformal regime.
The conformal limit is attained for low temperatures/long times, together with q → 1− ⇔
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λ → 0. In particular we expect to recover the conformal limit when λ � βλ2, tλ2 � 1.
As we are interested in the short interaction length limit, we shall scale the length of the
operator with the length of the supercharge, and take p̃ = αp, which gives us q̃ = qα, with
α finite as λ→ 0. The calculations mirror those done in [40] for the Majorana SYK model,
and the detailed calculation of this limit is given in appendix E. We will simply present
the results of this computation.

We shall start by concentrating on the Ic term in (7.18), as it is connected to the
continuum spectrum, and split Ic(x, y) into two parts, Ic(x, y) = I1

c (x, y) + I2
c (x, y) with

I1
c and I2

c given by the third and forth lines of (7.19) respectively. We focus on each of
these separately, and further divide each into a contribution from the continuous spectrum
(which depends on the two time separations), a mixed contribution (which depends on a
single time separation), and a constant coming solely from the ground states (see (E.1)
and (E.3)). Note that the only part of I1,2

c that can have a standard conformal form is the
contribution from the continuous spectrum.

Focusing on these continuum contributions, and after a lengthy calculation detailed
in appendix E.1, we find that the two different terms in I1

c and I2
c have a conformal form

with conformal dimension α/2 and (α + 1)/2, given by (E.21) and (E.15) respectively. In
general we expect that an operator with αp fermions will have a conformal dimension of
(αp)/(2p) = α/2, which is indeed the conformal dimension of the first term. At long times
it dominates. We can think of the second term as this operator’s super-partner, as it has
a conformal dimension of α/2 + 1/2.

However, these are not the only substantial contributions in the conformal limit. Both
I1
c and I2

c have contributions relating to the ground states, as is the I1 contribution given
by (7.20). The conformal limit of these terms is computed in appendix E.2.

To summarize, we divide the 2-pt function (7.18) into I1
c +I2

c +I1, where in general the
Ic’s receive contribution both from the continuum states and from the ground states, and
I1 only receives contribution from the ground states. To see which contribution dominates
the conformal limit we inspect their λ scaling. The contribution to each term is as follows:

I1
c ∼


λα

β5/2 e
−π

2
4λ+ π2

16β̃ continuum contribution

λ1−αe
−π

2
4λ+π2

2β̃ ground states contiburion

I2
c ∼


λα

β1/2 e
−π

2
4λ+ π2

16β̃ continuum contribution

λ1−αe
−π

2
4λ+π2

2β̃ ground states contiburion

I1 ∼ e
−π

2
4λ+π2

2β̃ ground states contribution

(7.22)

By comparison to the λ scaling of the continuous part, we see that the ground state
contribution cannot be neglected in the conformal limit. Thus it seems that the conformal
ansatz for the 2-point function is not consistent in this model, as it fails to account for the
large amount of ground states.
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Figure 12. An example for a diagram contributing to the moment m2,1;q̃ for a double chord
diagram.

7.2 Double chord operators

We now turn to analyze the more general double chord operators. We will not fully
compute the correlation functions, as we did for single chord operators. Rather we will
derive the rules to compute these 2-point functions in terms of the transfer matrix and the
auxiliary Hilbert space, and provide a general discussion on the results. We consider general
operators of the form (7.4). The charge of such operators is s0 = p′−p′′

p , and we define

q̃ ≡ e−
2p(p′+p′′)

N . (7.23)

Let us start with the two point function of uncharged double chord operators, as they
will end up being simpler than general double chord operators. These operators are of the
form (7.4) with p′′ = p′. Again it is sufficient to only consider the moments

mk1,k2;q̃ =
〈

tr
[
OHk1OHk2

]〉
C
, (7.24)

which correspond to opening the chord diagram right before the insertion of the double
line. For example, one of the chord diagrams contributing to the k1 = 2, k2 = 1 moment is
given in figure 12.

The contribution to each chord diagram will be the contribution of the chord diagram
without the additional double chord, with an additional factor of q̃−1/4 for every Q chord
that is friends with a O chord, and a factor of q̃1/4 for every Q chord that is enemies with a
O chord. However every Q chord that doesn’t intersect the O double-chord is friends with
one of the O chords and enemies with the other one, and so gives an overall factor of 1. Thus
we really only care about the number of intersections, as intersecting chords are enemies
with both O chords. All in all, we simply need to add a factor of q̃

1
2 for each intersection

between a Q chord and the O double chord. We note there is an overall factor of e
p′2
N as

the two O chords are friends which will be omitted as the operators can simply be rescaled.
In the auxiliary Hilbert space language this translates to calculating

mk1,k2;q̃ = q
k1+k2

4

2k1+k2

√
λ

π

∫ ∞
-∞

ds e−λs
2 〈∅ ∣∣∣T k1

s q̃N̂ T k2
s

∣∣∣ ∅〉 , (7.25)

where N̂ is the number operator. Computing this element can be done using insertions
of complete sets, the same as in the previous section. The cases k1 = 0 or k2 = 0 will
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again differ from the analytic continuation of the other moments, leading to terms that
involve and do not involve the ground states which are similar to those found for single
chord operators.

We can now analyze the general double chord operators. Such operators are defined
by (7.4) with general p′ and p′′. As with single chord operators, the transfer matrix will
change in relation to the charge of the operator. Similarly, we will need a factor of q̃N̂ to
account for the Q chords that intersect the double O chord. All in all this will result in
the 2-point function

mk1,k2;q̃,s0 = q
k1+k2

4

2k1+k2

√
λ

π

∫ ∞
-∞

ds e−λs
2 〈∅ ∣∣∣T k1

s−s0/2 q̃
N̂ T k2

s+s0/2

∣∣∣ ∅〉 . (7.26)

We note that this result differs from (7.8) because in the above q̃ and s0 are independent
while in the single chord case q̃ = qs0 . The evaluation of (7.26) will be similar to that
of (7.8), by inserting a complete set of states and using the orthogonality of q-Hermite
polynomials.

8 Deformed algebra and the relation to quantum groups

The standard SYK model has a low energy SL(2,R) conformal symmetry [4]. In the double
scaled limit this symmetry undergoes a quantum deformation related to the quantum group
slq(2), which is seen in the algebra of the transfer matrix, as well as in the structure of
the four point function [41]. Similarly, the low energy theory of the N = 2 SYK model
has an SU(1, 1|1) super conformal symmetry [43]. We will show that in the doubled scaled
limit this super symmetry also undergoes a quantum deformation, this time related to the
quantum super group slq(2|1). Specifically we will show that the graded algebra of the
transfer matrix is a contraction of the quantum super group slq(2|1).

The superalgebra sl(2|1) is the algebra of 3 × 3 matrices with a (2|1) grading and
supertrace zero. The bosonic sector forms the Lie algebra sl(2) ⊕ u(1), and the fermionic
sector consists of two pairs of generators, one in the fundamental and one in the anti-
fundamental representations of sl(2). This superalgebra can be described by the Cartan
matrix (for the fermionic generators)

(aij) =
(

0 1
−1 0

)
. (8.1)

The Cartan matrix contains all the information on the commutation relations of the
fermionic generators, X1,2, Y1,2, and the elements in the Cartan, H1,2. We can de-
fine the remaining two bosonic raising and lowering operators via the adjoint actions
X3 = {X1, X2}, and Y3 = {Y1, Y2}. The remaining commutation relations are fixed via
the Cartan matrix as well.

One way to construct quantum groups is to start with the Cartan matrix of a simple
Lie algebra, and define a q deformed Hopf algebra structure on the generators of the Lie
algebra. We will follow this method to construct slq(2|1) using the Cartan matrix (8.1).
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We refer the reader to [54] for more information on quantum groups and their constructions
from simple Lie algebras.

Using the above Cartan Matrix, (8.1), the quantum super-group slq(2|1) can be de-
scribed using the same generators X1,2, Y1,2, H1,2, with the (anti–)commutation relations

[H1, H2] = {X1, Y2} = {X2, Y1} = [H1, X1] = [H2, X2] = [H1, Y1] = [H2, Y2] = 0,

[H1, X2] = X2, [H1, Y2] = −Y2,

[H2, X1] = −X1, [H2, Y1] = Y1,

{X1, Y1} = K2
1 −K−2

1
q2 − q−2 , {X2, Y2} = K2

2 −K−2
2

q2 − q−2 ,

(8.2)

whereX1,2, Y1,2 are still fermionic generators, H1,2 are bosonic generators, andK1,2 ≡ qH1,2 .
These generators must also obey the generalized Serre relations

X2
1X2 = q2X2X

2
1 , X2

2X1 = q−2X1X
2
2 ,

Y 2
1 Y2 = q−2Y2Y

2
1 , Y 2

2 Y1 = q2Y1Y
2

2 .
(8.3)

We then define the additional bosonic operators via the q-adjoint action:

X3 ≡ X1X2 + qX2X1, Y3 ≡ Y2Y1 + q−1Y1Y2, K3 ≡ K1K2. (8.4)

The remaining relations between X3, Y3, and the rest of the generators are fixed from the
above relations. We note that in the limit q → 1 this algebra reduces to that of sl(2|1).We
direct the reader to [55] and [56] for a full discussion on constructing the q deformed algebra
slq(2|1), and its quantum oscillator realizations.

Next we will show that the algebra of the transfer matrix is a contraction of the
quantum group slq(2|1). As we are interested in the graded algebra of Q and Q†, we can
break Q (and Q†) into two fermonic creation/annihilation operators:

Q = a+ b†, Q† = a† + b, (8.5)

with a and b lowering operators and a† and b† raising operators. That is, they are defined
by breaking the action of Q,Q† in (4.38) and (4.39) into operators that lower and raise the
number of chords.

From this definition, we find the q anti- commutator of a and a† to be

aa† + qa†a = q−s+M , (8.6)

where M is a “fermionic” number operator satisfying

M |n,X/O〉 = 0, M |n+ 1/2, X〉 = |n+ 1/2, X〉 , M |n+ 1/2, O〉 = − |n+ 1/2, O〉 .
(8.7)

Similarly we notice that b and b† satisfy the q commutation relation

bb† + qb†b = qs−M . (8.8)
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The operator M and the fermionic operators obey the commutation relations

[M,a] = −a, [M,a†] = a†, [M, b] = b, [M, b†] = −b†. (8.9)

As a side note, we can redefine our operators a and b as a1 ≡ q−M/2+s/2a and a2 ≡
qM/2−s/2b, so that a1 and a2 obey the algebra

aia
†
j + [q + (1− q)δij ]a†jai = δij , (8.10)

which is of the form (4.33) with qij = (q − 1)δij − q. This is in agreement with the inner
product formula in the auxiliary Hilbert space, (4.32).

As before, we define the bosonic creation/annihilation operators by the q-adjoint action
of the fermionic operators,

A ≡ ab+ qba, A† ≡ b†a† + qa†b†. (8.11)

They obey the commutation relation

AA† −A†A = q2N+M
(
q−1 − q

)
, (8.12)

where N the number operator, N |n,X/O〉 = n |n,X/O〉 for n ∈ N/2. We can finish the
bosonic commutation relations by noting that M commutes with both N and A, and that
N and A obey the canonical relations [N,A] = −A, [N,A†] = A†. It remains to find the
relations between the bosons and the fermions to close the algebra. The number operator
acts nicely with the fermions, as they are raising/lowering operators, thus

[N, a] = −1
2a, [N, a†] = 1

2a
†, [N, b] = −1

2b, [N, b†] = 1
2b
†. (8.13)

We finish closing the algebra by noting the last q relations:

Aa− q−1aA = 0, A†a− q−1aA† = 0,
Aa† − qa†A = 0, A†a† − qa†A† = 0,
Ab− qbA = 0, A†b− q−1bA† = qs−M (q − q−1)a†,

Ab† − qb†A = qs−M (q−1 − q)a, A†b† − q−1b†A† = 0.

(8.14)

This graded algebra has four fermionic operators, {a, a†, b, b†}, and four bosonic oper-
ators, {A,A†,M,N}. This already seems similar to the quantum super group slq(2|1), and
indeed this algebra is a contraction of slq(2|1), with the contraction being:

a = lim
ε→0

εq−(s+1)/2
√
q−2 − q2X1q

N , a† = lim
ε→0

εq−(s+1)/2
√
q−2 − q2qNY1,

b = lim
ε→0

εq(s−1)/2
√
q−2 − q2X2q

N , b† = lim
ε→0

εq(s−1)/2
√
q−2 − q2qNY2,

H1 = −N + M

2 , H2 = N + M

2 , (8.15)

q−N+M/2 = lim
ε→0

εK−1
1 , q−N−M/2 = lim

ε→0
εK2.
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We note that the SUSY charges Q and Q† form the basic operator of the transfer
matrix, with

“T 1/2” = Q+Q† = a+ b+ a† + b†, (8.16)

a kind of super-coordinate operator, in analogy to T = A+A† in the regular SYK [41].
We suspect the connection to quantum groups to be deeper than just the algebra of the

transfer matrix, and for the quantum group structure to appear also in higher order corre-
lation functions, like in the regular double scaled SYK [41]. It remains an open question if
this connection can be utilized to reformulate the SYK model in a quantum deformation
setting, or if this connection can shed light on the gravity dual of the double scaled SYK.

9 Summary and discussion

The main result of this paper is the derivation of an analytical expression for the asymptotic
spectrum of the N = 2 SYK model in the double scaled limit, both in fixed charge sectors
and in the presence of a chemical potential. Furthermore, we compared our results to
an exact calculation of the number of ground states in each charge sector, as well as to
the density of states of the super-Schwarzian theory in the relevant limit. We used the
same combinatorial methods of chord diagrams to compute exact two point functions at
all energy scales. Finally, we connected our results to a quantum deformation related to
the quantum group slq(2|1).

A future direction of research would be to use the full spectrum and correlation func-
tions in the double scaled limit of this model, to connect it to a full 2-d dual theory of
quantum gravity. The added supersymmetry can help constrain the dual 2-d theory, and
so may make the process more feasible. In particular, the number of ground states in
each charge sector that we computed should be the same as the number of supersymmetric
(BPS) states in the dual 2-d theory, which might give a check of such a duality and of the
idea that the chord description is the gravitational one. Furthermore, if the techniques
above can be pushed to the case of N = 4, say to quiver models, then one can perhaps
make contact with the black hole microstate program and perhaps quantify more precisely
which states have a gravitational description and which do not.

Additionally, it would be interesting to find simple rules for computing higher order
correlation functions, maybe using the rigid structure of the quantum deformation slq(2|1).
Specifically computing the four point function is of great interest as it allows to find the
Lyapunov exponent. It is not clear if the N = 2 theory is maximally chaotic in the
Schwarzian regime. Computing the chaos exponent using ladder diagrams may be possible,
though it is unclear what the correct form of the 2-point function in the ladder kernel should
be; as we showed the conformal ansatz of the two point function is inconsistent in the IR
due to the large number of ground states.

Finally, the connection between the double scaled limit of the SYK model and quantum
deformations is still not well understood. We suspect this connection to also appear in
higher order correlation functions, and that this connection may lead to a systematic way
to compute them. The quantum deformation may also be related to the gravity dual of the
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double scaled SYK model, or at least allow us to understand more of its features beyond
the gravitational sector.
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A Special functions

In this section we will define various special functions we use in the text, and state their
relevant properties. We will assume that |q| < 1 throughout this section.

The q-Pochhammer symbol is defined as

(a; q)n ≡
n∏
k=1

(
1− aqk−1

)
. (A.1)

We use the shorthand notation (a1, . . . , am; q)n = (a1; q)n . . . (am; q)n. The infinite q-
Pochhammer symbol (a; q)∞ = limn→∞(a; q)n is well defined for |q| < 1.

The continuous q-Hermite polynomials are a set of orthogonal polynomials defined via
the q-Pochhammer symbol as

Hn(cosφ|q) ≡
n∑
k=0

(q; q)n
(q; q)k(q; q)n−k

ei(n−k)φ. (A.2)

Hn(cosφ|q) are polynomials in both cosφ and q. They satisfy the recursion relation

2 cosφHn(cosφ|q) = Hn+1(cosφ|q) + (1− qn)Hn−1(cosφ|q), H−1 = 0, H1 = 1, (A.3)

the φ orthogonality∫ π

0

dφ

2π
(
q, e±2iφ; q

)
∞
Hn(cosφ|q)Hm(cosφ|q) = (q; q)mδmn, (A.4)

and the n orthogonality

∞∑
n=0

tnHn(cosφ|q)Hn(cosφ′|q)
(q; q)n

= (t2; q)∞
(tei(±φ±φ′); q)∞

. (A.5)

Choosing t = 1 gives the orthogonality relation

∞∑
n=0

Hn(cosφ|q)Hn(cosφ′|q)
(q; q)n

= 2π [δ(φ− φ′) + δ(φ+ φ′)]
(q, e±2iφ; q)∞

. (A.6)
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We will use the following conventions for the Jacobi theta functions (following chapter
21 of [57]):

ϑ1(z, q) =
∑

n∈Z+1/2
(−1)n+1qn

2
e2niz = 2q1/4 sin(z)

(
e±2iz, q2; q2

)
∞
, . (A.7)

ϑ2(z, q) =
∑

n∈Z+1/2
qn

2
e2niz = 2q1/4 cos(z)

(
−e±2iz, q2; q2

)
∞
, (A.8)

ϑ3(z, q) =
∑
n∈Z

qn
2
e2niz =

(
−q−1e±2iz, q2; q2

)
∞
, (A.9)

ϑ4(z, q) =
∑
n∈Z

(−1)nqn2
e2niz =

(
q−1e±2iz, q2; q2

)
∞
. (A.10)

and recall their modular transformation properties

ϑ1
(
z, eiπτ

)
= −i√
−iτ

e−
iz2
πτ ϑ1

(
−z
τ
, e−

iπ
τ

)
, (A.11)

ϑ2
(
z, eiπτ

)
= 1√
−iτ

e−
iz2
πτ ϑ4

(
−z
τ
, e−

iπ
τ

)
. (A.12)

B Calculation of the inner product in the auxiliary Hilbert space

Let us allow a non-zero inner product 〈u|v〉 only between two states u, v with the same
number of X’s and O’s. Let us denote a state u with n X’s and m O’s by un,m. If we
do not assume anything about the inner product other than that, then to check that the
representation of Q† inHaux is the conjugate transpose in this inner product of that of Q, we
need to check four options (since all the others give vanishing matrix elements of Q or Q†):

1. un,m and vn+1,m. In this case there are only two non-zero inner products involving
Q,Q†, leading to the condition

〈u|Qv〉 = 〈Q†u|v〉. (B.1)

In 〈Q†u|v〉 there is only one (potentially) non-zero product given by adding to u at
its end one X. In 〈u|Qv〉 there are several non-zero products obtained by deleting
one X from v. This gives us the condition

〈uX|v〉 = qs
∑

X∈v deleted
(−1)#belowq#other X−#O above〈u|v (one X deleted)〉 (B.2)

where uX means appending an X to u (and all the number of X’s or O’s below or
above the deleted X is with respect to the same vector, which is v in this case).

2. un,m and vn−1,m. In this case the only condition is

〈u|Q†v〉 = 〈Qu|v〉 (B.3)

leading to

〈u|vX〉 = qs
∑

X∈u deleted
(−1)#belowq#other X−#O above〈u (one X deleted)|v〉. (B.4)
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Figure 13. An example of a diagram contributing to 〈u, v〉.

3. un,m and vn,m+1. In this case the only condition is

〈Qu|v〉 = 〈u|Q†v〉 (B.5)

leading to

〈uO|v〉 = q−s
∑

O∈v deleted
(−1)#belowq#other O−#X above〈u|v (one O deleted)〉. (B.6)

4. un,m and vn,m−1. In this case the only condition is

〈u|Qv〉 = 〈Q†u|v〉 (B.7)

leading to

〈u|vO〉 = q−s
∑

O∈u deleted
(−1)#belowq#other O−#X above〈u (one O deleted)|v〉. (B.8)

These conditions fix uniquely the inner product up to normalization. We will normalize
〈∅, ∅〉 = 1. For instance, in conditions 1 and 3, we essentially pair the last X or O with
another one (of the same kind) in v (we go over all possibilities in the sum). We can thus
represent it in the following way. u is written as a string of X’s and O’s, and similarly for
v placed below it. The pairing above is represented by lines, each one connects an X from
u to an X from v and similarly for O. One such diagram is shown in figure 13.

The solution is then the following. For u, v each having n X’s and m O’s, 〈u|v〉 is
given by summing all diagrams of this form, each assigned a value

qs(n−m)(−1)#intersectionsq
n(n−1)

2 +m(m−1)
2 −nm+#X-O intersections (B.9)

where (#X-O intersections) is the number of intersections of a line connecting X’s with a
line connecting O’s.

Let us show that this is indeed the solution. Consider the first condition, equa-
tion (B.2), above. On the l.h.s., we have a sum over the possible diagrams. Let us pick
a particular diagram, such as the one shown in figure 13. In the context of condition 1,
as mentioned above, the line ending on the last X of u is singled out; see the left hand
side of figure 14. Denote the X to which it is connected in v by Xi. Removing this line,
we obtain naturally a diagram contributing to the term in the sum on the r.h.s. of (B.2)
corresponding to removing Xi in v; see the right hand side diagram of figure 14. By this,
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Figure 14. The corresponding diagrams on both sides of (B.2).

we are matching each diagram on the l.h.s., to a particular diagram for a term in the sum
on the r.h.s. We will now show that the value assigned to each such diagram is the same
on both sides, and therefore in particular the two sides are equal.

To show this, notice that the diagram on the l.h.s. of (B.2) is assigned the value (B.9).
On the r.h.s., the diagram from which the Xi line is removed, comes with a pre-factor

qs(−1)#belowq#other X−#O above (B.10)

(where all qualifiers are relative to Xi in v); this is multiplied by the value of the diagram
itself which equals

qs(n−1−m)(−1)#intersections without Xiq
(n−1)(n−2)

2 +m(m−1)
2 −(n−1)m+#(X-O intersections without Xi).

(B.11)
The product of these two expressions indeed equals to (B.9). The powers of (−1) are the
same, because the number of intersections of the line Xi is exactly the number of X’s and
O’s below it (note that the state here is represented from left to right, while usually we
were drawing it from top to bottom). The (s independent) power of q matches because
#other X = n− 1, and

#(X-O intersections)−#(X-O intersections without Xi) =
= #(O that Xi intersects) = #O below = m−#O above.

(B.12)

In addition, since (B.9) is symmetric between u, v, condition 2 follows. Similarly,
as (B.9) is symmetric between X and O (taking s→ −s), conditions 3,4 follow as well.

C Computations in the physical Hilbert space

The inner product in the physical Hilbert space. We can use the inner product
formula for the full Hilbert space to find the inner product for physical states, however
this requires summing over all chords between the vectors, which is complicated. We can
instead calculate it directly from the physical Hilbert space, as we know it is well defined
and that states with a different number of chords are orthogonal. This leaves us with five
families of undetermined parameters:

〈n,O |n,O 〉 ≡ An, 〈n,X |n,X 〉 ≡ Bn, 〈n,O |n,X 〉 ≡ Cn,〈
n+ 1

2 , O
∣∣∣∣n+ 1

2 , O
〉
≡ an,

〈
n+ 1

2 , X
∣∣∣∣n+ 1

2 , X
〉
≡ bn, .

(C.1)
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Notice that the full inner product requires that
〈
n+ 1

2 , X
∣∣∣n+ 1

2 , O
〉

= 0, as they
have a different number of right-moving and left-moving chords. Then we can calculate the
matrix elements and require Hermiticity of Q and Q†, resulting in the following relations:10

−qnan = q−sCn+1, qsan = qnCn +An,

q−1an = q−sAn+1, qnAn + Cn = 0,
qnBn + Cn = 0, q−sbn = qnCn +Bn,

−qnbn = qsCn+1, q−1bn = qsBn+1.

(C.2)

We immediately find the recursion relation for An:(
1− q2n

)
An = qAn+1, (C.3)

and can relate all the other coefficients to An via

An = Bn = −q−nCn = 1
1− q2n q

−sbn = 1
1− q2n q

san. (C.4)

The solution to the recursion relation is

An = q−n
(
q2; q2

)
n−1

. (C.5)

The inner product matrix in the subspace with a given number of chords, n, is

An

(
1 −qn

−qn 1

)
, (C.6)

which has the eigenvalues and eigenvectors

λ± = An (1∓ qn) , x± =
(

1
±1

)
. (C.7)

As these are always positive for any n, the inner product is positive definite, and well
behaved. It also allows us to define the orthonormal basis

|n±〉 ≡
1√

2An(1∓ qn)
(|n,O〉 ± |n,X〉) ,

∣∣∣∣n+ 1
2 ,±

〉
≡ q±s/2√

qAn+1

∣∣∣∣n+ 1
2 , O/X

〉
,

(C.8)
which we use in calculations of the two point function.

Normalization of the eigenvectors. We wish to calculate the inner product
〈v(φ′) |v(φ)〉. Using the expansion of the eigenvectors |v(φ)〉 =

∑∞
n=0 αnQ |n+ 1/2, X〉,

it follows that

〈
v(φ′) |v(φ)

〉
=
∞∑
n=0

αn(φ′)
〈
n+ 1

2 , X
∣∣∣∣∣Q†Q

∞∑
m=0

αm(φ)
∣∣∣∣∣m+ 1

2 , X
〉

=
∞∑

n,m=0
αn(φ′)αm(φ)Λs(φ)

〈
n+ 1

2 , X
∣∣∣∣m+ 1

2 , X
〉
,

(C.9)

10Note that all the coefficients must be real except Cn, and these relations trivially imply Cn is real as
well (say from the first equation), so we replaced C∗n with Cn.
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as this is just the transfer matrix acting on a fermionic eigenvector. Then we use the
inner product formula, (4.37), as well as the definition of αm, (5.10), and the orthogonality
relation of q-Hermite polynomials, (A.6), to see that

〈
v(φ′) |v(φ)

〉
= qsΛs (φ)

∞∑
n=0

1
(q2; q2)n

Hn

(
cosφ|q2

)
Hn

(
cosφ′|q2

)
= qsΛs (φ) 2π (δ (φ− φ′) + δ (φ+ φ′))

|(e2iφ; q2)∞|
2 (q2; q2)∞

.

(C.10)

Since the integration domain is φ, φ′ ∈ [0, π] we are assured that δ(φ+ φ′) 6= 0, and we get

〈
v
(
φ′
)
|v (φ)

〉
= qsΛs (φ) 2πδ (φ− φ′)

(q2, e±2iφ; q2)∞
. (C.11)

The norm 〈u (φ′) |u (φ)〉 is given by the same expression with s→ (−s).

The inner product of eigenvectors and number states. Our goal is to compute
the overlap 〈n± |v (φ)〉 and 〈n± |u (φ)〉. We use the same definition of |u(φ)〉, as well as
equations (C.8), (4.37), (5.10), to compute the overlap

〈n± |u (φ)〉 = 〈n,O| ± 〈n,X|√
2An (1∓ qn)

(∑
m

αm (φ)
(
qm |m,X〉+ |m,O〉+ eλs |m+ 1, O〉

))

= 〈n,O| ± 〈n,X|√
2An (1∓ qn)

[
αn (φ) (qn |n,X〉+ |n,O〉) + αn−1e

λs |n,O〉
]

=
q−n

(
q2; q2)

n−1√
2An (1∓ qn)

[(
1− q2n

)
αn (φ) + (1∓ qn) q−sαn−1 (φ)

]
= Hn

(
cosφ|q2)+ (1∓ qn) q−1/2q−sHn−1

(
cosφ|q2)√

2 (q2; q2)n−1 (1∓ qn)
.

(C.12)

Similarly we find that the other overlap is

〈n± |v (φ)〉 = ±Hn
(
cosφ|q2)+ (1∓ qn) q−1/2qsHn−1

(
cosφ|q2)√

2 (q2; q2)n−1 (1∓ qn)
. (C.13)

D The ground state density

We can integrate the continuous density over E to find the missing density at zero. It is
simpler to take the expression for m0 =

∫
ρ(E)dE, which is

m0 = q1/4
√
π

∫ ∞
-∞

dx e−x
2
∫ π

0

dφ

2π
(
q2, e±2iφ; q2

)
∞

(
cosh

(
x
√
λ
)
− cosφ

)−1
. (D.1)

Let us take the φ integral first. In this case we need to compute

I(x; q) =
∫ π

0

dφ

2π
(
q2, e±2iφ; q2

)
∞

(
cosh

(
x
√
λ
)
− cosφ

)−1

=
∞∑
n=0

(
cosh

(
x
√
λ
))−n−1 ∫ π

0

dφ

2π
(
q2, e±2iφ; q2

)
∞

cosn φ.
(D.2)
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From [41] appendix B we have that

∫ π

0

dφ

2π
(
q2, e±2iφ; q2

)
∞

cosn φ =
{

1
2n cn/2,n, n even,

0, n odd,
(D.3)

with

cn,2n =
n∑
j=0

(−1)jq2j+2(j2) 2j + 1
2n+ 1

(
2n+ 1
n− j

)
. (D.4)

Thus we get

m0(λ) = q1/4
√
π

∫ ∞
-∞

dx e−x
2
∞∑
n=0

(
cosh

(
x
√
λ
))−2n−1

2−2ncn,2n. (D.5)

We can now take the integral over x explicitly by noticing that∫ ∞
-∞

dx e−x
22−2n cosh−2n−1(ax) = 2

√
π
∞∑
m=0

(
m+ 2n

2n

)
(−1)me(m+n+1/2)2a2

× erfc
((2m+ 2n+ 1)a

2

)
.

(D.6)

Thus we can write m0 as the triple sum

m0(λ) = 2
∞∑

m,n=0

n∑
j=0

q−(m+n)2−(m+n)+j(j+1)erfc
((

m+ n+ 1
2

)√
λ

)

× (−1)m+j 2j + 1
2n+ 1

(
m+ 2n

2n

)(
2n+ 1
n− j

)

= 2
∞∑
k=0

(−1)kerfc
((

k + 1
2

)√
λ

)
q−k(k+1)

×
k∑

n=0

n∑
j=0

qj(j+1)(−1)−n+j (2j + 1)(k + n)!
(k − n)!(n− j)!(n+ j + 1)!

= 2
∞∑
k=0

(−1)kerfc
((

k + 1
2

)√
λ

)
q−k(k+1)

k∑
j=0

qj(j+1)(2j + 1)

×
k−j∑
l=0

∣∣∣∣
l=n−j

(−1)l (k + l + j)!
(k − l − j)!(l)!(l + 2j + 1)! .

(D.7)

Now notice that the sum

k−j∑
l=0

(−1)l (k + l + j)!
(k − l − j)!(l)!(l + 2j + 1)! = 0, k 6= j. (D.8)

Thus we are left with only the case j = k, so the sum simplifies to

m0(λ) = 2
∞∑
k=0

(−1)kerfc
((

k + 1
2

)√
λ

)
. (D.9)

– 52 –



J
H
E
P
1
2
(
2
0
2
0
)
1
1
0

We expect this to agree with the exact density of ground states. We can show that
this is indeed the case by calculating 1−D and showing that it matches m0:

1−D = 1−

√
λ

π

∫ 1/2

−1/2
ds

∞∑
n=−∞

(−1)ne−λ(n+s)2

=

√
λ

π

∫ 1/2

−1/2
ds

∞∑
n=−∞

e−λ(n+s)2 (1− (−1)n)

= 4

√
λ

π

∫ 1/2

−1/2
ds
∞∑
k=0

e−λ(2k+1+s)2

= 2
∞∑
k=0

(−1)kerfc
((

k + 1
2

)√
λ

)
= m0,

(D.10)

as expected.

E Conformal limit of 2-point function: computations

In this appendix we give the detail calculation of the conformal limit of the 2-point func-
tion. Our calculations follow the calculation of the conformal limit in [40]. The conformal
limit is attained for low temperatures together with q → 1− ⇔ λ → 0. We shall scale the
length of the operator insertion accordingly, and take p̃ = αp, which gives us q̃ = qα. Fol-
lowing [40], we expect to recover the conformal limit when λ� βλ2, tλ2 � 1. Throughout
the computation we will use (x, y)↔ (β+ it.β− it) interchangeably. Furthermore, we shall
analyze the terms in (7.18) separately.

We shall start by concentrating on the Ic term in (7.18), as it is connected to the
continuum spectrum whereas the I1 terms are connected to the ground states. We expect
the conformal part of the 2-point function to arise from the continuum spectrum, and
therefore for Ic to behave like a conformal propagator. After we show this, we analyze the
rest of the terms, which are connected to the ground states, in this limit.

E.1 The conformal part of the 2-point function

We shall start by concentrating on the Ic term in (7.18), and will further split Ic(x, y) into
two parts, Ic(x, y) = I1

c (x, y) + I2
c (x, y) with I1

c and I2
c given by the third and forth lines

of (7.19) respectively. Furthermore, We can rewrite I1
c as

I1
c (x, y) = A1(x, y;α)−A1(x, 0;α)−A1(0, y;α) +A1(0, 0;α), (E.1)

where α = λ̃/λ is the charge of the operator we inserted, and A1 is given by

A1(x,y;α) = 2q−1/4

√
λ

π

∫
ds e−λs

2 dφ′dφ

(2π)2

(
q2α, q2, q2,e±2iφ,e±2iφ′ ;q2

)
∞

qs+α/2(
qαei(±φ±φ′);q2)

∞

×
(

1
Λs−α2 (φ) + 1

Λs+α
2

(φ′)

)
exp

{
−yq

1/4

2 Λs−α2 (φ)− xq
1/4

2 Λs+α
2

(
φ′
)}
. (E.2)
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Notice that A1(x, y;α) is the portion that explicitly captures the long time/conformal
regime associated with transition between generic states, while the other terms are related
to transitions between the continuous spectrum states and the ground states, induced by
the inserted operator. We can similarly rewrite I2

c in the same form:

I2
c (x, y) = A2(x, y;α)−A2(x, 0;α)−A2(0, y;α) +A2(0, 0;α), (E.3)

with

A2(x, y;α) = q1/4

2

√
λ

π

∫
ds e−λs

2 dφ′dφ

(2π)2

(
q̃2, q2, q2, e±2iφ, e±2iφ′ ; q2

)
∞(

qα+1ei(±φ±φ′); q2)
∞

× q−α

Λs−α2 (φ) Λ−s−α2 (φ′) exp
{
−yq

1/4

2 Λs−α2 (φ)− xq1/4

2 Λ−s−α2
(
φ′
)}

.

(E.4)

Our main goal of this subsection will be to show that A1,2 have a conformal form in the late
time/Schwarzian regime, with a conformal dimension of α/2 and α/2 + 1/2 respectively.
In the next subsection we will show that the parts pertaining to the ground states are not
negligible in this limit, and must be taken into account.

A2(x, y;α). We will start the analysis from A2(x, y;α). As both x, y � 1, the will
localize us to small energies, so we can approximate Λ by

Λs (φ) ≈ λ2
(
s− 1

2

)2
+ φ2, (E.5)

where φ and φ′ are localized around zero. We then approximate (E.4) in the regime
λ� λ2y, λ2x� 1 as

A2(x, y;α) ≈ 2
λ4

√
λ

π

(
q̃2, q2, q2; q2

)
∞

∫
ds
dφ′dφ

(2π)2

× 1(
(s− α+1

2 )2 + ϕ2
) (

(s+ α+1
2 )2 + ϕ′2

)
(
e±2iφ, e±2iφ′ ; q2

)
∞(

qα+1ei(±φ±φ′); q2)
∞

(E.6)

× exp
{
−y2

(
λ2
(
s− α+ 1

2

)2
+ φ2

)
− x

2

(
λ2
(
s+ α+ 1

2

)2
+ φ′2

)
− λs2

}
.

with ϕ = φ/λ. We can neglect the exponential terms that couple to s, as they are small,
and then take the s integral by closing the contour in the complex plane and residues∫ ∞

-∞
ds

1(
(s− α+1

2 )2 + ϕ2
) (

(s+ α+1
2 )2 + ϕ′2

) = π(ϕ+ ϕ′)
ϕϕ′ [(α+ 1)2 + (ϕ+ ϕ′)2] . (E.7)

Furthermore, in this we can use the approximations(
e±2iφ,e±2iφ′ ;q2

)
∞(

qzei(±φ±φ′);q2)
∞
≈
(
ei(±φ±φ

′);q2
)
z/2

4φφ′

φ2−φ′2
·

sinh
(
πφ
λ

)
sinh

(
πφ′

λ

)
sinh

(
π(φ−φ′)

2λ

)
sinh

(
π(φ+φ′)

2λ

)e− 1
2λ(φ2+φ′2),

(E.8)
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as well as (
eiλ(±ϕ±ϕ′); q2

)
z/2
≈ λ2z

(
ϕ2 − ϕ′2

)z
, (E.9)

and (
q2α, q2, q2; q2

)
∞
≈ π3/22α−1

λα+1/2Γ(α)
e−

π2
4λ . (E.10)

Plugging (E.7), (E.8), (E.9), and (E.10) into (E.6), and do the change of variables
ϕ = φ/λ and ϕ′ = φ′/λ we arrive at

A2(x, y;α) ≈ 2αλα

Γ(α) e
−π

2
4λ

∫ ∞
0

dϕ′dϕ

(
ϕ2 − ϕ′

)α (ϕ+ ϕ′)
[(α+ 1)2 + (ϕ+ ϕ′)2]

× sinh (πϕ) sinh (πϕ′)
sinh

(
π(ϕ−ϕ′)

2

)
sinh

(
π(ϕ+ϕ′)

2

)e−λ2 (ϕ2+ϕ′2)− ỹϕ2
2 −

x̃ϕ′2
2 ,

(E.11)

where x̃ = λ2x and the same for ỹ.
We can neglect the terms proportional to λ in the exponent, as λ � x̃, ỹ � 1. Then

we can think of (ϕ2 −ϕ′2)α as α derivatives with respect to τ̃ = x̃− ỹ, so explicitly we get

A2(x, y;α) ≈ 22αλα

Γ(α) e
−π

2
4λ (−1)α∂ατ̃

∫ ∞
0

dϕ′dϕ
ϕ+ ϕ′

[(α+ 1)2 + (ϕ+ ϕ′)2]

× sinh (πϕ) sinh (πϕ′)
sinh

(
π(ϕ−ϕ′)

2

)
sinh

(
π(ϕ+ϕ′)

2

)e− β̃2 (ϕ2+ϕ′2)− τ̃2 (ϕ2−ϕ′2),
(E.12)

with β̃ = x̃+ ỹ.
Following [40], we move to relative coordinates η = ϕ−ϕ′, ρ = ϕ+ϕ′, and approximat-

ing three of the sinh’s as positive exponents, as well as changing the η limits to (−∞,∞)
as it only receives contributions from finite η, we get

A2(x, y;α) ≈ 22α−2λα

Γ(α) e−
π2
4λ (−1)α∂ατ̃

∫ ∞
0

dρ

∫ ∞
-∞

dη
ρ

[(α+ 1)2 + ρ2]
1

sinh
(πη

2
)e−β̃ρ2− τ̃2 ηρ+πρ

2 .

(E.13)
As we are interested in Lorentzian time, we shall Wick rotate τ taking it̃ = τ̃ . Then

notice that the η integral is simply the Fourier transform of 1/ sinh(x), which is proportional
i tanh(ω), and taking one of the t̃ derivatives and get

A2(x, y;α) ≈ 22α−2λα

Γ(α) e−
π2
4λ iα−1∂α−1

t̃

∫ ∞
0

dρ
ρ2e−β̃ρ

2+πρ
2

[(α+ 1)2 + ρ2]
1

cosh2
(
t̃ρ
2

) . (E.14)
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We can approximate this last integral in by a saddle point calculation: calling w =√
β̃(ρ− π

4β̃ ) we see that

A2(x, y;α) ≈ 22α−2λα

Γ(α)
√
β̃
e
−π

2
4λ+ π2

16β̃ iα−1∂α−1
t̃

∫ ∞
− π

4
√
β̃

dw

(
π +

√
β̃w

)2
e−w

2

16β̃2(α+ 1)2 + (π +
√
β̃w)2

× 1

cosh2
(

t̃
8β̃

(
π +

√
β̃w

))

≈ π1/222α−2λα

Γ(α)
√
β̃

e
−π

2
4λ+ π2

16β̃ iα−1∂α−1
t̃

 1
cosh2

(
t̃π
8β̃

)
 .

(E.15)

From here we can read off the conformal dimension as follows (see [40]): we shift
t→ 4iβ+ t to turn the cosh into a sinh, which at late times becomes the power law ∼ 1/t2.
Then the derivatives in time tell us that we have a power law behavior of 1/t1+α, so the
conformal dimension of this operator is α+1

2 .

A1(x, y;α). We now turn to approximate A1(x, y;α) in the conformal limit. We fol-
low the same procedure conducted above for A2. The energies can still be approximated
by (E.5), reducing (E.2) to

A1(x, y;α) ≈ 2

√
λ

π

∫
ds
dφ′dφ

(2π)2

(
q̃2, q2, q2, e±2iφ, e±2iφ′ ; q2

)
∞(

qαei(±φ±φ′); q2)
∞

×

 1

λ2
(
s− α+1

2

)2
+ φ2

+ 1

λ2
(
s+ α−1

2

)2
+ φ′2

 (E.16)

× exp
{
−y2

(
λ2
(
s− α+ 1

2

)2
+ φ2

)
− x

2

(
λ2
(
s+ α− 1

2

)2
+ φ′2

)}
.

As before, we can take the s integral by neglecting the exponent to leading order, and
we get

A1(x, y;α) ≈ 1
2λ1/2π3/2

∫
dφ′dφ

(
q̃2, q2, q2, e±2iφ, e±2iφ′ ; q2

)
∞(

qαei(±φ±φ′); q2)
∞

(φ+ φ′)
φφ′

e−
y
2φ

2−x2φ
′2
. (E.17)

Then the Pochhammer symbols can be approximated using (E.8), (E.9), and (E.10).
Plugging these in, equation (E.17) becomes

A1(x, y;α) ≈ 2αλα

Γ(α) e
−π

2
4λ

∫
dϕ′dϕ(ϕ+ ϕ′)

(
ϕ2 − ϕ′2

)α−1

× sinh(πϕ) sinh(πϕ′)
sinh

(
π(ϕ+ϕ′)

2

)
sinh

(
π(ϕ−ϕ′)

2

)e−λ2 (ϕ2+ϕ′2)− ỹ2ϕ
2− x̃2ϕ

′2
,

(E.18)

where again x̃ = λ2x, ϕ = φ/λ, and the same for ỹ and ϕ′.
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We now use the same tricks as before: the λ term in the exponent is neglected, the
term

(
ϕ2 − ϕ′2

)α−1 becomes derivatives in τ̃ = x̃ − ỹ, and we move to relative coordinate
ρ = ϕ + ϕ′ and η = ϕ − ϕ′. Furthermore, we can extend the integration domain of η by
the same arguments as above and in [40]. Then (E.18) reduces to

A1(x, y;α) ≈ 2α−2λα

Γ(α) e−
π2
4λ (−1)α−1∂α−1

τ̃

∫ ∞
0

dρ

∫ ∞
-∞

dη
ρ

sinh
(πη

2
)e− β̃2 ρ2− τ̃2 ηρ+πρ

2 . (E.19)

As before, we shall move to Lorentzian time τ̃ = it̃, allowing the exact evaluation of
the η integral. Then, after taking one of the derivatives in t, (E.19) takes the form

A1(x, y;α) ≈ 2α−2λα

Γ(α) e−
π2
4λ iα−2∂α−2

t̃

∫ ∞
0

dρ
ρ2

cosh2
(
t̃ρ
2

)e− β̃2 ρ2+πρ
2 . (E.20)

Following the procedure for A2, we complete the square in the exponent, and approxi-
mate this integral by the saddle point ρ = π/(4β̃), giving us the conformal form of the two
point function:

A1(x, y;α) ≈ 2α−6λα

Γ(α)
π5/2

β̃5/2 e
−π

2
4λ+ π2

16β̃ iα−2∂α−2
t̃

 1
cosh2

(
πt̃
8β̃

)
 . (E.21)

The conformal dimension of A1(x, y) can be read from equation (E.21) via the same
method used for A2(x, y;α). This results in A1 having a conformal form with dimension
α/2.

Notice that in the long time regime A2(x, y) decays much faster than A1(x, y), and
so can be neglected. Thus the leading conformal dimension of this operator is α/2. We
expect an operator consisting of α fermions to have a leading conformal dimension of α/2,
and this is indeed what we get.

E.2 The contributions from the ground states

Now that we have found the conformal form of the 2-point functions, we turn to analyze the
contributions from the ground states in this limit. We will show that these contributions
are not negligible in comparison to the conformal part, and thus cannot be excluded from
the analysis of correlation functions in this limit. The terms involving the ground states
are A1,2(x, 0;α), A1,2(0, y;α) (from (E.1) and (E.3)), and I1(x/y) (from (7.18)). We will
show that they are all of similar order in this limit, and are also of the same order as
the conformal part, and that they do not cancel each other. Thus we must take the into
account in the conformal regime.

Notice that A1,2(x, 0;α) and A1,2(0, y;α) have the same exact form in this limit, so we
will only focus on later one. Furthermore, we shall ignore the constant contribution of the
ground state, as it is independent of time, and in particular of the conformal limit.
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A1,2(0, y;α). We will start with A2(0, y;α) in the conformal regime λ � λ2y � 0.
Recall that

A2(0, y;α) = 2q−1/4

√
λ

π

∫
ds e−λs

2 dφ′dφ

(2π)2

(
q̃2, q2, q2, e±2iφ, e±2iφ′ ; q2

)
∞

(E.22)

× q−α(
qα+1ei(±φ±φ′); q2)

∞ Λs−α2 (φ) Λ−s−α2 (φ′)
exp

{
−yq

1/4

2 Λs−α2 (φ)
}
.

In the conformal regime λ� λ2y � 1 only one of the energies will be localized around
zero, while the other will take finite values. Thus the eigenvalues from (E.22) can be
approximate as

Λs−α2
(
φ′
)
≈ 2(1− cosφ′), Λs−α2 (φ) ≈ λ2

(
s− α+ 1

2

)2
+ φ2. (E.23)

We can ignore the exponential factor of e−λs2 as λ � λ2y, and take the s integral.
Thus (E.22) reduces to

A2(0, y;α) ≈ 1
4λ1/2π3/2

∫ π

0
dφ′dφ

(
q̃2, q2, q2, e±2iφ, e±2iφ′ ; q2

)
∞(

qα+1ei(±φ±φ′); q2)
∞

erfc
(√

y/2φ
)

(1− cosφ′) φ . (E.24)

We can now use the approximation from [40] for the Pochhammer symbol

q1/4
(
q2, e±2iφ; q2

)
∞
≈ 8 sinφ

√
π

λ
e
− 1
λ

[
π2+(φ−π2 )2

]
sinh

(
πφ

λ

)
sinh

(
π (π − φ)

λ

)
, (E.25)

to write (E.24) as

A2(0, y;α) ≈
(
q̃2, q2, q2; q2)

∞
4λ1/2π3/2

∫ π

0
dφ′dφ

erfc
(√

y/2φ
)

φ(1− cosφ′)
(
ei(±φ±φ

′); q2
)
α+1

2

× sinφ sinφ′

sin
(
φ+φ′

2

)
sin
(
φ−φ′

2

) sinh
(
πφ
λ

)
sinh

(
πφ′

λ

)
sinh

(
π(φ+φ′)

2λ

)
sinh

(
π(φ−φ′)

2λ

)
×

sinh
(
π(π−φ)

λ

)
sinh

(
π(π−φ′)

λ

)
sinh

(
π(2π−φ−φ′)

2λ

)
sinh

(
π(2π−φ+φ′)

2λ

)e− 1
λ

(
φ2
2 + (φ′−π)2

2 −π
2
2

)
.

(E.26)

We can see that in the above equation that the main contribution comes from when φ is
localized around zero and φ′ is localized around π. Thus we define new coordinates ϕ = φ/λ,
ϕ′ = (π − φ′)/λ, and expand (E.26) in λ by taking the leading order approximations for
sin and cos and taking the relevant exponent in the sinh’s. Furthermore, we use (E.10), as
well as the Pochhammer symbol approximation(

ei(±λϕ±(π−λϕ′)); q2
)
z/2
≈ 22z, (E.27)

under which (E.26) becomes

A2(0, y;α) ≈ 22αλ2−α

Γ(α) e−
π2
4λ

∫ ∞
0

dϕ′dϕ ϕ′ sinh (πϕ) sinh
(
πϕ′

)
e−

λϕ′2
2 −πϕ

′erfc
(√

y/2λϕ
)
.

(E.28)
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The integrals in (E.28) can easily be evaluated in the regime λ � λ2y � 1, giving us
the final result

A2(0, y;α) ≈ 22α−1λ1−α

πΓ(α) e−
π2
4λ e

π2
2ỹ , (E.29)

where, as above, ỹ = λ2y. We see that this expression not negligible in comparison to the
conformal parts, (E.21) and (E.15), and actually seems parametrically larger.

The analysis for A1(0, y;α) is identical. Starting with (E.2), we can use (E.23) to
approximate the energies, so

A1(0, y;α) ≈ 2

√
λ

π

∫
ds
dφ′dφ

(2π)2 e
−λs2

 1

λ2
(
s− α+1

2

)2
+ φ2

+ 1
2(1− cosφ′)

 (E.30)

×

(
q̃2, q2, q2, e±2iφ, e±2iφ′ ; q2

)
∞(

qαei(±φ±φ′); q2)
∞

exp
{
−y2

(
λ2
(
s− α+ 1

2

)2
+ φ2

)}
.

Again we can take the s integral in the approximation λ� λ2y � 1 be neglecting the
exponent, leading to

A1(0, y;α) ≈ 2

√
λ

π

∫
dφ′dφ

(2π)2

(
q̃2, q2, q2, e±2iφ, e±2iφ′ ; q2

)
∞(

qαei(±φ±φ′); q2)
∞

×
(
π

λφ
erfc

(√
y/2φ

)
+ e−

y
2φ

2
√
π√

2yλ2(1− cosφ′)

)
.

(E.31)

As λ � λ2y � 1, we can neglect the second part of the sum in (E.31). Then we use
the same approximations from before for the Pochhammer symbols, namely (E.27), (E.25)
and (E.10). As a result φ is still localized around zero and φ′ around π, allowing us to do
the change of variable ϕ = φ/λ and ϕ′ = (π− φ′)/λ. After all this, and approximating the
resulting trigonometric and hyperbolic functions, (E.31) becomes

A1(0, y;α) ≈ 22αλ2−α

Γ(α) e−
π2
4λ

∫ ∞
0

dϕ′dϕϕ′ sinh(πϕ) sinh(πϕ′)e−
λ
2 (ϕ2+ϕ′2)−πϕ′erfc

(√
ỹ/2φ

)
.

(E.32)
This is identical to the result for A2(0, y;α), (E.29), so in the conformal regime limit

A1(0, y;α) ≈ A2(0, y;α), and both give significant contributions.

I1(x). There is an additional contribution from the ground states from summing the
m0,k and mk,0 moments, given by (7.20). We will analyze it in the same conformal regime
λ � λ2x, λ2y � 1. Notice that from (7.20) I1(x) takes the form I1(x) = Ic1(x) + C for
some constant C, and

I1(x) =

√
λ

π

∫ ∞
−∞

ds qs
2−s+s20

∫ π

0

dφ

2π
(
q2, e±2iφ; q2

)
∞

cosh (2λs0s)
Λs(φ) e−x

q1/4Λs(φ)
2 . (E.33)

We shall ignore the constant term in the following computations.
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As x is large, we can approximate the energies using (E.5), resulting in

I1(x) ≈

√
λ

π

∫ ∞
−∞

ds qs
2−s+s20

∫ π

0

dφ

2π
(
q2, e±2iφ; q2

)
∞

cosh (2λs0s)
λ2(s− 1/2)2 + φ2 e

−xλ
2(s−1/2)2+φ2

2 .

(E.34)
As before, in the conformal regime φ is localized around zero, so we can take the s

integral by ignoring the exponents proportional to λ, after which (E.34) becomes

I1(x) ≈ 1
2
√
λπ

∫ π

0

dφ

φ

(
q2, e±2iφ; q2

)
∞
erfc

(√
x/2φ

)
. (E.35)

The Pochhammer symbol can be approximated using (E.25), and after the change
of variable ϕ = φ/λ, and approximating one of the sinh’s as a positive exponent (E.35)
reduces to

I1(x) ≈ 2e−
π2
4λ

∫ ∞
0

dϕ sinh (πϕ) e−λϕ2erfc
(√

x̃/2ϕ
)
, (E.36)

with x̃ = λ2x. Neglecting the exponent with λ, we can integrate (E.36) by parts, resulting in

I1(x) ≈ 23/2√x̃
π3/2 e−

π2
4λ

∫ ∞
0

dϕ cosh (πϕ) e−
x̃
2ϕ

2

= 4
π
e−

π2
4λ e

π2
2x̃ .

(E.37)

The result for A1, given by (E.37), is simply the Schwarzian partition function Z(x),
which is not surprising as the moments we exponentiated are the regular moments of the
distribution. However, we see that this is also of the same order of magnitude as the other
terms, and thus is not negligible.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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