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particular larger than generic corrections from the entanglement of bulk quantum fields.
However, the correction becomes exponentially suppressed away from the transition. The
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1 Introduction

The Ryu-Takayanagi (RT) [1, 2] prescription, or more generally that of Hubeny-
Rangamani-Takayanagi (HRT) [3], computes the entanglement entropy in some region R

of a holographic CFT at leading order in the dual bulk Newton constant G. To this order,
the entropy is given by A/4G in terms of the area A of an extremal surface homologous
to R [4]. In addition, a well-known correction at order G0 is given by the entanglement of
bulk fields [5].

However, in the context of chaotic many-body systems it was recently noted that entan-
glement entropy can have extra correction terms near entanglement phase transitions [6, 7].
In particular, motivated by [6], Murthy and Srednicki studied energy eigenstates in sys-
tems satisfying the eigenstate thermalization hypothesis (ETH) [7]. Dividing the system
into two spatial regions of volume V1 and V2 then yields a nontrivial entanglement entropy
Sent(E). Taking a large-volume limit and ignoring terms that scale no faster than the area
of the interface between V1 and V2 allows one to define a corresponding partition of the
total energy, E = E1 + E2, between the two regions. In this context, for generic V1, V2,
they show the entanglement entropy Sent(E) to be approximated to exponential accuracy
by the lesser of the microcanonical entropies S1(E1), S2(E2) determined by the associated
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partition of the total energy E = E1 + E2 between the two regions. But there is a larger
correction of order

√
S1 =

√
S2 near the transition where S1(E1) = S2(E2). Furthermore,

the net effect of this correction is to make the entanglement a smooth function of all pa-
rameters, so that the apparent ‘phase transition’ in fact becomes a crossover already at
this level of analysis.1

Closely related physical settings have been considered in the holographic context for
some time. For example, one may consider a pure-state black hole, divide the boundary
into regions V1, V2, and compute the HRT entropy; see e.g. [8, 9]. One then finds that the
leading-order bulk RT/HRT computation describes a sharp RT/HRT phase transition with
no analogue of the corrections described in [6, 7]. This should not be a surprise as RT/HRT
entropy is of order 1/G so the above

√
S correction is only of order G−1/2. But such a

correction should appear in a more complete study, and one might expect similar O(G−1/2)
corrections to arise near more general RT/HRT transitions as well. These corrections are
too large to arise from the entropy of bulk fields, and so must arise from some other aspect
of the semiclassical approximation in the bulk. A related O(G−1/2) correction was recently
discussed in [10] for an analogous quantum RT transition.

Our goal below is to provide a general description of such corrections near RT/HRT
phase transitions using properties of the bulk fixed-area states introduced in [11] (see
also [12]). For simplicity, we focus on the time-symmetric (RT) case below where one may
use real Euclidean path integrals. However, we expect that the essential argument can
be generalized to the more general HRT context using the Schwinger-Keldysh techniques
of [13]. In particular, we decompose a general bulk into states in which we have simulta-
neously fixed the areas of all extremal surfaces satisfying the homology constraint (i.e., we
have fixed the areas of all candidate RT surfaces). For simplicity, we assume below that
there are precisely two such extremal surfaces in a given such fixed-area state, and that
their areas have been fixed to A1 and A2. We then argue that the entanglement S(A1, A2)
in the associated fixed-area state |A1, A2〉 is given by RT up to corrections of order G0,
so that

S(A1, A2) = 1
4G min(A1, A2) +O(G0). (1.1)

We also conjecture that — again up to corrections of order G0 — the entanglement in a
more general holographic state |ψ〉 =

∫
dA1dA2ψ(A1, A2)|A1, A2〉 can be computed using a

certain ‘diagonal approximation.’ When this conjecture holds, we show to leading order in
G that the von Neumann entropy is just the expectation value of S(A1, A2) in the natural
ensemble defined by the (normalized) state |ψ〉; i.e.

S =
∫
dA1dA2|ψ(A1, A2)|2S(A1, A2) +O(G0). (1.2)

Evaluating this expression then gives the desired contribution at order G−1/2, and with
properties directly analogous to the correction of [7]. Finally, we provide some evidence
in support of our diagonal approximation by demonstrating agreement with the results of
both [7] and [10].

1In the strict limit of large volume the crossover occurs very quickly and one recovers the expected sharp
phase transition.
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We begin in section 2 with a brief review of fixed area states. General arguments
for (1.2) and a statement of our diagonal-approximation conjecture are then given in sec-
tion 3. The rest of the paper is devoted to more detailed computations of the effect, and
to showing that our diagonal approximation reproduces results from [7] and [10]. Section 4
consists of a warm-up exercise in which we study fixed-area states associated with a single
interval in vacuum AdS3. While there is no phase transition in this context, results from
this simple context will be useful studying examples of the above phase transition in sec-
tion 5. The first example concerns a pair of intervals on the boundary of vacuum AdS3,
while the second involves a single interval on the boundary of the Bañados-Teitelboim-
Zanelli (BTZ) black hole [14, 15]. After taking a natural large volume limit, the latter
context allows us to demonstrate explicit agreement between our BTZ results and the pre-
dictions of [7]. A final part of section 5 shows that we can also reproduce the O(1/

√
G)

correction found in [10] for an analogous quantum RT transition. We close with some final
comments in section 6, and in particular discuss the cutoff dependence of fluctuations in
RT-areas.

Closely related work has been done independently by Xi Dong and Huajia Wang [16].
We have arranged with them to coordinate simultaneous postings of the original versions
of the papers to the arxiv.

2 Review of fixed area states

We now briefly review some basic properties of fixed area-states following [11]. In particular,
after defining the fixed-area states, we will review their connection with the probability
distribution P (A∗) for a holographic state to have RT-area A∗, features of the semiclassical
approximation for such states, and the simple form of their Renyi entropies. All of these
features will play important roles in the analysis of section 3.

We consider a CFT state |ψ〉 prepared by a Euclidean path integral over a manifold
MCFT with boundary ∂MCFT. It is thus natural to think of |ψ〉 as a state on the surface
∂MCFT.

We suppose that ∂MCFT is partitioned into regions R and R̄. For simplicity, we take
the state to be invariant under a time-reflection symmetry that leaves fixed the surface
∂MCFT. Under the AdS/CFT correspondence, we may identify MCFT with the boundary
of a bulk system, and we may similarly identify ∂MCFT, R, R̄ with corresponding (partial)
surfaces in that boundary. We will use ∂R to denote the boundary between R and R̄ within
∂MCFT. The correspondence also tells us that the norm 〈ψ|ψ〉 can be computed using a
Euclidean bulk path integral with boundary conditions defined by the closed manifold
Mdouble := M †CFTMCFT defined by sewing together MCFT and its CPT-conjugate M †CFT
along the common boundary ∂MCFT; see figure 1. The assumption of time-symmetry
requires M †CFT to be equivalent to MCFT, so that ∂MCFT is a surface of time-symmetry in
Mdouble.

Roughly speaking, given a state |ψ〉 defined as above, we wish to define associated
states |ψ〉A∗ of fixed RT area by restricting the domain of integration to metrics for which
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MCFT

M †CFT

R R̄

R R̄

Figure 1. The manifold MCFT (bottom) that we use in the Euclidean path integral to prepare
our holographic state |ψ〉 and the CPT-conjugate manifold M†CFT (top). Sewing the two together
along their boundaries defines the manifold Mdouble := M†CFTMCFT. If the state is time-symmetric,
then M†CFT is equivalent to MCFT, the two manifolds are exchanged by the relevant notion of time-
reversal, and this symmetry leaves invariant the boundary ∂MCFT = ∂M†CFT of MCFT, ∂M

†
CFT.

The surface ∂MCFT is partitioned into regions R (red) and R̄ (blue).

the area AγR of the RT surface2 γR takes on a definite value A∗, and by thus projecting |ψ〉
onto the subspace with area A∗. In this sense, the norm of a fixed area state is calculated
by the path integral

A∗〈ψ|ψ〉A∗ =
∫
Dg|AγR=A∗e

−I[g]

=
∫
Dgdµe−I[g]−iµ(AγR [g]−A∗).

(2.1)

In the second line we have introduced a Lagrange multiplier µ to enforce the constraint
on the area of γR. In practice, we will wish to restrict AγR to some window around A∗
where the width of the window is small compared to other scales of interest, but where the
window still contains many area-eigenvalues. As a result, one should think of the measure
dµ as being a broad Gaussian measure instead of being precisely flat. However, we will
take this measure to be sufficiently flat that its Gaussian nature can be ignored in the
saddle-point approximation used below.

Due to our projection, the path integral (2.1) is closely associated with the probability
P (A∗) for the holographic state |ψ〉 to have an RT area in the above window about A∗. In
particular, we have

P (A∗) = A∗〈ψ|ψ〉A∗
〈ψ|ψ〉

. (2.2)

Since we will study (2.1) in the saddle-point approximation, our task will be to find
on-shell solutions to the Euclidean equations of motion. As is well known,3 at this level the

2A better approach which avoids the need to define an RT surface for off-shell metrics may be to build
a path integral using the fixed-area action of [17]. This action singles out a preferred surface whose area is
to be fixed and then finds that the equations of motion require it to be an RT surface modulo imposition
of the homology constraint.

3Though see appendix A of [17] for a more complete justification.
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integral over µ and the term −iµAγR [g] in the exponent allow the insertion of an arbitrary
conical defect (aka ‘cosmic brane’) at the location of the RT surface. The defect angle is
to be chosen so that the saddle-point geometry g∗ satisfies the constraint AγR = A∗. In
the stationary phase approximation we thus find

A∗〈ψ|ψ〉A∗ ≈ e−I[g∗]. (2.3)

Note that I[g∗] is the full gravitational action for g∗ and in particular includes a contribution
from the delta-function curvature scalar on the conical singularity.

A priori, the form of (2.1) suggests an imaginary conical defect angle iµ, but as always
the relevant saddles may not lie on the original contour of integration. As a result, real
defect angles (with imaginary values of our µ) are allowed, and may arise with either sign.
Note that real µE = iµ is in fact generally required for the stationary point g∗ to satisfy
real Euclidean boundary conditions. Thus g∗ is typically a real Euclidean metric, though it
may contain either a conical deficit or a conical excess. As discussed in [11, 17], the location
of the conical deficit should be thought of as the RT surface in the conical geometry. We
will thus refer to it as such below.

Since the classical actions I(A∗) = I(g∗) are proportional to 1/G, in the semiclassical
limit G→ 0 the distribution P (A∗) becomes sharply peaked about the most likely value Ā.
This mostly likely values can be found by maximizing P (A∗), or equivalently by minimizing
the on-shell action with respect to A∗. But minimizing the action in this way imposes the
remaining Einstein equations on γR, and thus forbids any cosmic brane sources. As a result,
the most likely value Ā is just the area of γR in the dominant bulk saddle g0 associated with
the path integral that computes the norm 〈ψ|ψ〉 [11, 17] without any a priori specification
of areas.

Finally, we turn to considerations of entropy. Let us consider the normalized density
matrix ρA∗ on R defined by the CFT dual to the bulk fixed-area state |ψ〉A∗ . This density
matrix may be written in the form

ρA∗ = TrR̄ (|ψ〉A∗A∗〈ψ|)
A∗〈ψ|ψ〉A∗

, (2.4)

where in (2.4) we have used |ψ〉A∗ to also denote the CFT dual to the bulk fixed-area
state |ψ〉A∗ . In the above semiclassical approximation, the freedom to tune the conical
defect angle to enforce the constraint makes it straightforward to compute Renyi entropies
Sn(A∗) = 1

1−n ln TrRρnA∗ . In particular, the associated saddles gn(A∗) are just n-sheeted
branched covers of the saddle g∗ used in (2.3). A straightforward computation [18] then
finds I[gn(A∗)] = nI[g∗] + (n− 1)A∗4G , and thus Sn = A∗

4G . In particular, the Renyi entropies
Sn(A∗) are independent of n . However, as usual, if ∂R 6= ∅ the Renyis diverge and require
either a cutoff (say, defined using a certain boundary conformal frame) or renormalization
to give finite results.

In general, one expects the RT area AγR to define superselection sectors of the quantum
error correcting code associated with CFT reconstruction of the bulk entanglement wedges
of R and R̄ [19]. When this is the case, the density matrix on R of a CFT state |ψ〉 is

– 5 –



J
H
E
P
1
2
(
2
0
2
0
)
0
8
4

block-diagonal AγR , so that
ρ = ⊕A∗P (A∗)ρA∗ , (2.5)

with ρA∗ given by (2.4) in terms of the corresponding fixed-area state. The representa-
tion (2.5) motivates the idea that fixed-area states may be useful in studying the entropy
of |ψ〉. However, the arguments for (2.5) (see [19]) are based (in part via [20, 21]) on the
Faulkner-Lewkowycz-Maldacena result [5] that the leading correction to A/4G is of order
G0 and is given by bulk entanglement. As described above, we expect this to fail near an
RT phase transition.4 So while (2.5) may provide some motivation, we should take care
not to rely on it to hold exactly in the regime of interest.

We conclude this section with a remark about notation. Most of the explicit com-
putations in sections 4 and 5 will be for 3-dimensional bulk spacetimes. In such cases
codimension-2 extremal surfaces are geodesics and the associated ‘areas’ are in fact lengths.
We will thus introduce L∗ = A∗ and write all equations in those sections in terms of L∗,
referring to it as the fixed length of the RT surface. Once the reader is aware of this con-
vention, it should create no confusion. We will also generally drop the subscript ∗ below.

3 Corrections to holographic entanglement entropy near phase transi-
tions

We now turn to our main task of studying entropies of holographic states near RT phase
transitions. In particular, let us suppose our holographic state |ψ〉 is associated with a semi-
classical geometry g having two candidate RT surfaces γ1, γ2 associated with some partial
Cauchy surface R of the boundary spacetime. Thus γ1, γ2 are both extremal surfaces
anchored to the boundary ∂R of R, and both are homologous to R in the sense of [23].
Since our state is assumed to be pure, the surfaces γ1, γ2 are homologous to R̄ as well.

We will proceed by considering a holographic state |ψ〉 and fixing the areas of both γ1
and γ2. The probabilities P (A1, A2) to obtain areas A1 and A2 can then be computed in
direct analogy to the method described in section 2 for fixing the area of an RT surface.
In particular, we have

P (A1, A2) = A1,A2〈ψ|ψ〉A1,A2

〈ψ|ψ〉
, (3.1)

with 〈ψ|ψ〉 = eI+O(G0) and A1,A2〈ψ|ψ〉A1,A2 = eI(A1,A2)+O(G0) in terms of the Euclidean
actions I, I(A1, A2) of the leading saddles defined respectively by the path integral for
〈ψ|ψ〉 and by the corresponding path integral with the areas of γ1, γ2 fixed to take the
values A1, A2. Recall that in the latter case the action generally includes a delta-function
curvature contribution from both surfaces γ1 and γ2. As before, the most likely values
Ā1, Ā2 for our areas are just the values in the smooth saddle g0 that dominates the path
integral for the norm 〈ψ|ψ〉 (and with no a priori fixing of areas).

4Such a failure is natural as [5] builds on the semi-classical Lewkowycz-Maldacena argument [4], which
assumes a single RT surface to dominate. This assumption clearly breaks down at an RT phase transition,
and it is known that a proper treatment of cases with multiple extremal surfaces will be subtle; see e.g.
comments in [22] based on a talk by Matt Headrick, which was in turn based on private remarks by
Rob Myers.
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Below, we first describe some of the topological details of our setup that will prove
useful in the main argument. We then discuss and motivate our diagonal approximation
before computing the resulting O(G−1/2) correction in section 3.3.

3.1 Topological remarks

For convenience we will assume that while γ1 and γ2 are homologous, the two surfaces
lie in distinct homotopy classes,5 and that each is the minimal-area such extremal surface
within its homotopy class. Having a topological distinction between the surfaces provides
a natural definition of what we mean by the corresponding extremal surfaces γ1, γ2 in the
conically-singular spacetimes associated with fixing the area of these extremal surfaces.6

Furthermore, we will assume that — at least for small defect angles and near the phase
transition — in all other homotopy classes the minimal surface γ has area strictly greater
than either γ1 or γ2. This allows us to neglect such additional candidate RT surfaces in
the semi-classical approximation.

Even in Lorentz signature, two extremal surfaces anchored on the same boundary set
∂R are spacelike separated in the bulk and lie on a common Cauchy surface Σ [24]. We
note that this is the case even when ∂R = ∅. As a result, the associated RT area operators
Â1, Â2 for γ1, γ2 commute at all orders in the semi-classical expansion and — at least at
this level — can be simultaneously diagonalized. In particular, the possible obstruction
described in [25] does not arise. We may thus consider the doubly-fixed-area states |ψ〉A1,A2

in which the area of γ1 is A1 and the area of γ2 is A2. Here we introduce an appropriate
UV cutoff in the boundary to render A1, A2 finite. Since both are anchored on the same
set ∂R, we use the same cutoff to define both A1 and A2.

The homology constraint means that each surface γi (i ∈ {1, 2}) must partition Σ
into two (non-overlapping) parts ΣiR,ΣiR̄ where ∂ΣiR = γi ∪ R and similarly for ∂ΣiR̄;
see figure 2. We will further assume that Σ1R is contained in Σ2R. At least in the time-
symmetric case, this assumption can be made without loss of generality. To see this, note
that we must have either Σ1R ⊂ Σ2R, Σ2R ⊂ Σ1R, or that γ2 enters both Σ1R and Σ1R̄.
The first case fulfills our assumption, and in the second case the assumption can be fulfilled
by simply exchanging the labels 1↔ 2.

In the third case, the intersection γint = γ1∪γ2 partitions γ2 into two parts γ2R ⊂ Σ1R
and γ2R̄ ⊂ Σ1R̄. Similarly, we must also find that γ1 enters both Σ2R and Σ2R̄, so γint also
partitions γ1 into two parts γ1R ⊂ Σ2R and γ1R̄ ⊂ Σ2R̄. Note that γ1R and γ2R̄ must be
homologous but cannot be homotopic. Similarly, γ2R and γ1R̄ must be homologous but
cannot be homotopic.

For this case, let us choose the labels 1 and 2 so that γ2R has smaller area than γ1R̄ and
define a new surface γ3 = γ1R ∪ γ2R. Note that γ3 also satisfies the homology constraint,
but that it cannot be homotopic to either γ1 or γ2. While γ3 is not extremal, it has area

5Recall that homotopy is a more fine-grained equivalence relation than homology.
6This is merely a matter of convenience. One could alternatively simply consider all saddle-points of the

fixed-area action described in [17], which describe spacetimes with what one may call extremal codimension-
2 conical defects anchored to ∂R. It is not strictly necessary to label such conical defects as being associated
with one of the extremal surfaces γ1, γ2 in the original smooth spacetime.
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R R̄

γ1 γ2

Σ1R Σ2R̄Σ1R̄ ∩ Σ2R

Figure 2. An illustration of two competing RT surfaces γ1 and γ2 near a phase transition. In our
convention, we always let Σ1R ⊂ Σ2R, as a result Σ1R and Σ2R̄ are non-overlapping.

A3 satisfying A3 < A1. So the minimal surface within its homotopy class also has area less
than A1. But this contradicts the earlier assumption that the least-area extremal surface
in any other homotopy class must have area strictly greater than either A1 or A2. Thus
our 3rd case cannot exist in the time-symmetric case, and we can take Σ1R ⊂ Σ2R without
loss of generality.7

3.2 The diagonal approximation

Because the states |ψ〉A1,A2 are at least approximate eigenstates of Â1, Â2, any two such
states are semi-classically orthogonal unless they have fixed the same values for the areas
of both γ1 and γ2. The fixed-area states thus naturally define a decomposition of |ψ〉
according to

|ψ〉 =
∑
A1,A2

√
P (A1, A2)
〈ψ|ψ〉

|ψ〉A1,A2 . (3.2)

As in section 2, we take the states |ψ〉A1,A2
to be associated with finite intervals of A1, A2

that are small with respect to the semiclassical width of P (A1, A2) but large compared
with the spacing between adjacent area eigenstates. We thus take the intervals to be
polynomially small in G, but not exponentially small.

It now remains to compute the density matrix ρR on the region R by tracing |ψ〉〈ψ|
over the complementary region R̄:

ρR =
∑

A1,A2,A1′,A2′

√
P (A1, A2)

√
P (A1′, A2′)TrR̄

(
|ψ〉A1,A2A1′,A2′〈ψ|

〈ψ|ψ〉

)
. (3.3)

7It would be interesting to understand if this result continues to hold without time symmetry. If it does,
the rest of the argument generalizes in a straightforward way to the HRT case using the Schwinger-Keldysh
techniques of [13].
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In doing so, one must consider contributions from both diagonal terms (with A1 = A1
′

and A2 = A2
′) as well as contributions from off-diagonal terms (where either A1 6= A1

′

or A2 6= A2
′).

The diagonal terms give the average over the distribution P (A1, A2) of the (normal-
ized) density matrices ρR(A1, A2) defined by the normalized fixed-area states. Let us
therefore write

ρR =
∑
A1,A2

P (A1, A2)ρR(A1, A2) +ODR, (3.4)

where ODR is the result of summing all off-diagonal contributions.
Since A1 defines a Hermitian operator that can be reconstructed on R, we must have

ρR(A1, A2)ρR(A1
′, A2

′) = 0 for A1 6= A1
′. Note that the same need not always hold for A2

since it can be reconstructed on R only for A2 < A1. However, if we instead considered the
density matrices on R̄ that result from tracing over R, this would interchange the roles of
A1 and A2, suggesting that the full problem exhibits a greater symmetry. We will therefore
treat the ρR(A1, A2) below as if they live in orthogonal subspaces.8

Let us first discuss the contributions of the diagonal terms. In particular, we introduce
the von Neumann entropies

SD = − Tr (ρD ln ρD) for ρD := ⊕A1,A2P (A1, A2)ρR(A1, A2), (3.5)

S(A1, A2) = − Tr (ρR(A1, A2) ln ρR(A1, A2)) . (3.6)

Treating the diagonal terms as living in orthogonal subspaces, a standard computation
shows these quantities to be related by

SD =
∑
A1,A2

(P (A1, A2)S(A1, A2)− P (A1, A2) lnP (A1, A2))) , (3.7)

where the 2nd term is often called the entropy of mixing. The entropy of mixing is bounded
by the logarithm of the number of values that the pair (A1, A2) can take. Since each value
(A1, A2) labels an interval that is only polynomially small in G, this bound is of the form
C lnG + s(ψ) where C is an order-one constant and dependence on the state ψ appears
only through the order-one function s(ψ). We will thus neglect the entropy of mixing below
since it is parametrically smaller than the O(G−1/2) term we wish to study.

Now, before returning to the off-diagonal terms ODR, we also wish to compute
S(A1, A2). As reviewed in section 2, the fact that fixed-area states allow arbitrary con-
ical singularities at the associated extremal surfaces means that the semiclassical Renyi
entropies of such states are straightforward to compute. In particular, every n-sheeted
branched cover of the original Euclidean geometry defines a saddle for the nth Renyi prob-
lem. Furthermore, comparison with tensor networks suggests that all Renyi saddles are of
this form.

In our present case, the branching can occur at either surface γ1 or γ2, or on any of
their Renyi copies. Note that the surfaces γ1, γ2 partition the time-symmetric surface Σ

8We emphasize that this is an additional assumption and thank Geoffrey Penington for conversations
related to this point.
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γ1 γ2
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•

•

••

•

•

γ1

γ1

γ1

γ2

γ2

γ2

Σ(3)
int−

Σ(3)
int+

Σ(1)
int+

Σ(1)
int−

Σ(2)
int+

Σ(2)
int−

Figure 3. Left: a two-dimensional projection of an n = 1 solution with two extremal surfaces
γ1, γ2 (having areas A1 and A2) and a surface Σint stretching between them. Right: an n-fold cover
of the figure at left for the case n = 3 after cutting open a slit along Σint. The 2n copies of Σint are
labeled Σ(i)

int±, where i = 1, . . . , n. Saddles for the Rényi entropy are formed by identifying Σ(i)
int+

with Σ(π(i))
int− for some permutation π. After making such identifications, the number N2 = n − n2

of copies of γ2 that remain is the number C(π) of cycles generated by π, while the corresponding
N1 = n − n1 is C(τ ◦ π) where τ is the counterclockwise cyclic permutation. The asymmetry is
due to the numbering of replicas, which breaks the natural symmetry between the dashed lines
(separating replicas) and dotted lines (separating the two halves of each replica).

into 3 parts according to Σ = Σ1R ∪ Σint ∪ Σ2R̄ where Σint = Σ1R̄ ∩ Σ2R lies between γ1
and γ2. The possible saddles can then be constructed by the following procedure. First,
cut a slit along Σint in the original spacetime g0 to define a spacetime with an internal
boundary Σint+ ∪Σint−, where Σint± are the two sides of the newly-opened slit along Σint.
Next consider the n-fold cover of the result that winds n times around this slit; see figure 3.
Finally, sew the up the slit by making identifications between the n copies of Σint+ and
the n copies of Σint−. Since there are n! = Γ(n + 1) ways to pair up the copies of Σint+
and Σint−, this results in Γ(n+ 1) saddles.

However, as shown in [11] the fixed-area action of a branched cover depends only on the
action of the spacetime g0,0 that dominates the fixed-area path integral for A1,A2〈ψ|ψ〉A1,A2

and on the conical defects and areas of the branching surfaces. As a result, for a given
branched-cover the Euclidean action depends only on the numbers n1, n2 of times that it
branches over each of γ1, γ2, irrespective of the order in which those branchings occur. In
more detail, we take 2πn1 to be the sum of the conical excesses around all copies of γ1,
and similarly for n2.

The action for these saddles follows from the analysis of [11], which yields

I[gn1,n2 ] = nI[g0] + n1A1 + n2A2
4G . (3.8)

Here9 n1 + n2 ≥ n − 1, consistent with the fact that no branching occurs for n = 1.
To minimize the action, we will be interested in saddles that saturate this inequality (so

9We thank Geoffrey Penington for pointing out an error in a previous draft and for conversations related
to the comments below.
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that n1 + n2 = n − 1). To understand these saddles, we may describe the above sewing
by a permutation π of the copies of Σint− relative to the copies of Σint+. As shown in
figure 3, any numbering of the copies of Σint± breaks a natural symmetry between γ1 and
γ2. As a result, with the conventions of figure 3, the number N2 of copies of γ2 that
remain after these identifications is given by the number C(π) of closed cycles associated
with the permutation π (e.g., the permutation (12)(3) on 3 objects has C = 2), while the
corresponding N1 is given by the number C(τ ◦ π) where τ is the cyclic permutation that
maps copy i to copy i−1). Since the winding numbers n1, n2 defined above are n1 = n−N1,
n2 = n − N2, we have N1 + N2 = 2n − (n1 + n2) ≤ n + 1 and we wish to saturate this
bound. As described in appendix E of [10], the number of permutations on n objects that
do so (and thus which have N1 +N2 = C(π)+C(π◦τ) = n+1) is given by the nth Catalan
number Cn = 1

n+1
(2n
n

)
= Γ(2n+1)

(n+1)[Γ(n+1)]2 .
When A1 and A2 differ significantly, the nth Renyi is clearly dominated by a saddle

with action I = nI[g0] + n−1
4G min(A1,A2) and we find S(A1, A2) = min(A1,A2)

4G in direct
analogy with the case studied in [11] where only one area is fixed. On the other hand,
when A1 = A2 all of the Cn saddles with n1 + n2 = n− 1 have the same action10 I[gn−1,0]
and we find

Sn = 1
1− n ln Zn

Zn1
≈ lnCn + I[gn−1,0]− nI[g0]

1− n = A1
4G −

1
n− 1 ln

( Γ(2n+ 1)
(n+ 1)[Γ(n+ 1)]2

)
.

(3.9)
in terms of the nth Renyi partitions functions Zn. Note that the final term is of order G0

and has a finite limit −2Γ′(3)
Γ(3) + 1

2 + 2Γ′(2)
Γ(2) = −1

2 as n→ 1. Since it is clear that the largest
correction will occur for A1 = A2, we may thus write S(A1, A2) = min(A1,A2)

4G + O(G0) for
all A1, A2.

We now return to the off-diagonal term ODR in (3.4) and its contributions to the
Renyi entropies Sn(ρR). While we leave full consideration of such terms to future work,
we will give a plausibility argument suggesting that these contributions can be ignored for
our current purposes. To begin this plausibility argument note that, in the semiclassical
approximation, each such contribution can be written as e−I where I is the action of a
branched cover of g0 similar to those described above, but where the areas of the various
Renyi copies of γ1 can differ from each other,11 and similarly for the Renyi copies of γ2.
See figure 4. In particular, at least at the leading semiclassical order discussed here, such
contributions are associated with the possibility of breaking replica symmetry. Since a strict
breaking of replica symmetry is impossible at n = 1, it is plausible that their contribution
will be subleading in the limit where the replica number n is taken to 1. In particular, since
for any normalized ρR the diagonal terms yield Sn,diag = O(n − 1), it is plausible that off
diagonal contributions will be of order O

(
(n− 1)2) or of order G0 (from corrections to the

10Because the number Γ(n+ 1) −Cn of other saddles vanishes at n = 1, the other saddles can contribute
at most an O(1) correction to the von Neumann entropy. That is enough for us to drop such contributions.
But the interested reader can find more discussion in [10], and it appears that the contribution of such
saddles to the von Neumann entropy is in fact non-perturbatively small, being proportional to e−

A1,2
4G and

thus vanishing exactly when γ1,2 reach the boundary and A1,2 diverge.
11We thank Xi Dong, Geoffrey Penington, Xiaoliang Qi, and Douglas Stanford for discussions of this point.
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• •
A1 A2

• •
A′1 A2

Figure 4. Using the same projection as for the n = 1 figure at left in figure 3, we show two pieces
of a corresponding saddle that for A1 6= A′1 describes an off-diagonal contribution to the second
Rényi entropy S2. The full saddle is constructed by sewing the two pieces together along edges
of the same color; i.e., we may first identify the two green edges and then identify the two orange
edges. Note that this particular saddle contains only one copy of the surface γ2 and so cannot be
‘off-diagonal’ in A2.

leading semiclassical terms). For now, we simply assume that this is the case and follow
up by checking consistency with results from [7] and [10] in section 5.

With the above assumption, the von Neumann entropy S(ρR) is given by just the diag-
onal contributions SD(ρR) up to corrections of order G0 and, introducing a normalization
factor N , we write

S(ρR) := SD +O(G0) =
∑
A1,A2

min(A1,A2)
4G P (A1, A2) +O(G0)

=
∑
A1,A2

min(A1,A2)
4G Ne−(I(A1,A2)−I(Ā1,Ā2)) +O(G0)

=
∫
dA1dA2

min(A1,A2)
4G Ne−(I(A1,A2)−I(Ā1,Ā2)) +O(G0), (3.10)

where in the last step we may approximate the sum by an integral with error smaller than
O(G0) since the spacings between values of A1, A2 included in the sum were taken to be
small compared with the natural scale of variation of I(A1, A2).

3.3 The general form of corrections

The above section motivated the diagonal approximation (3.10) S(ρR) := SD+O(G0) (with
SD given by (3.7)) and derived the resulting simple form (3.10) for S(ρR) in terms of the
fixed-area actions. We will now show how this form gives an O(G−1/2) correction to the
RT entropy. This merely requires evaluating the final integral in (3.10) in the semiclassical
limit G→ 0.

Since the action I is proportional to 1/G, taking G → 0 concentrates the integral
near the areas Ā1, Ā2 that minimize the action. As usual, we can approximate I near that
minimum as quadratic:

I(A1, A2) = I(Ā1, Ā2) + 1
2

2∑
i,j=1

(
∂2I

∂Ai∂Aj

∣∣∣
Āi

)
(Ai− Āi)(Aj − Āj) +O

(
(A− Ā)3

)
, (3.11)
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where the cubic and higher terms in (3.11) will contribute to (3.10) only at order G0. We
may neglect all such terms since our goal is to study corrections at order G−1/2. It will
prove useful in analyzing the examples of section 5 that (3.11) involves only configurations
infinitesimally close to the smooth saddle g0,0 that dominates the path integral for 〈ψ|ψ〉,
and in particular which has vanishing cosmic brane tension (and thus vanishing conical
defect) on both γ1 and γ2.

For later reference, we introduce the covariance matrix C with components

Cij =
[
σ2

1 rσ1σ2
rσ1σ2 σ2

2

]
= G

[
σ̃2

1 rσ̃1σ̃2
rσ̃1σ̃2 σ̃2

2

]
(3.12)

defined by (C−1)ij = ∂2I
∂Ai∂Aj

∣∣∣
Āi
. Note that since ∂2I

∂Ai∂Aj
is of order 1/G, the covariance

matrix is of order G. The final form in (3.12) displays this G-dependence explicitly, and
the parameters σ̃1, σ̃2, r are all of order G0.

The integral defined by using (3.11) in (3.10) is naturally studied in terms of the
variables A± = A1±A2

2 for which we have min(A1, A2) = A+ − |A−| and the most likely
values are Ā± := Ā1±Ā2

2 . The integral over A+ is straightforward and gives

SD =
∫ ∞
−∞

dA−
(A− − Ā−)(σ̃2

1 − σ̃2
2) + 4(Ā+ − |A−|)σ̃2

−
16G3/2

√
2πσ̃3

−
exp

(
−(A− − Ā−)2

2Gσ̃2
−

)
+O(G0),

(3.13)
where 4σ̃2

− = σ̃2
1 − 2rσ̃1σ̃2 + σ̃2

2. We will also use σ2
− = Gσ̃2

− below.
The term linear in (A−− Ā−) integrates to zero by symmetry. The remaining integral

can be written in terms of the error function erf x := 2√
π

∫ x
0 dte

−t2 as

S(ρ) = Ā+
4G −

Ā−
4G erf

(
Ā−√
2Gσ̃−

)
− σ̃−

2
√

2πG
exp

(
−

Ā2
−

2Gσ̃2
−

)
+O(G0)

=
min

(
Ā1, Ā2

)
4G − σ̃−

2
√

2πG
Φ
(
Ā1 − Ā2

2σ̃−
√

2G

)
+O(G0),

(3.14)

where we have introduced

Φ(x) := e−x
2 +
√
π|x|(erf |x| − 1) (3.15)

following the notation of [7]. Note that Φ(x) is bounded by a constant of order G0, The
final expression in (3.14) thus makes manifest that we find a correction of order G−1/2

at the transition where Ā1 = Ā2, but that the correction is exponentially small at large
|A1−A2|/σ̃−

√
G = |A1−A2|/σ−. On the other hand, the first line in (3.14) shows that the

entropy at this order is a smooth function of Ā1 − Ā2; the supposed RT ‘phase transition’
is in fact already a crossover at this level of analysis.

4 Fixed length states for a single interval in the AdS3 vacuum

We now wish to perform explicit computations illustrating the above O(G−1/2) correction
and exploring the size of fluctuations in RT-areas in various examples. However, before
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doing so it is useful to analyze fixed-area states associated with a simple case in which
phase transition do not arise. We do so here, studying the particularly simple case where
we choose our boundary region R to be a single interval on the t = 0 slice of the boundary of
empty global AdS3. Since two of our examples in section 5 below will also involve intervals
on the boundary of either AdS3 or a BTZ quotient, we will be able to use results obtained
below to simplify the analysis of those phase transitions.

As usual, in order to find the probability that the RT surface for our single-interval
R has some fixed length L∗, we will use the saddle-point approximation and study the
action for the appropriate classical Euclidean solution. As discussed above, this solution
will have a conical defect (which in AdS3 takes the form of a spacelike cosmic string).
For pure Einstein-Hilbert AdS3 gravity, the fact that all solutions are locally equivalent to
AdS3 means that the solution with fixed length L∗ may be constructed from global AdS3
by inserting a conical singularity along the associated RT surface and tuning the conical
angle so that the length becomes L∗ as defined by using an appropriate cutoff with respect
to the desired conformal frame at infinity.

We thus begin by recalling that the Euclidean AdS3 vacuum can be described as the
Poincaré ball with metric

ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2

(1− r2/4)2 . (4.1)

In (4.1), the coordinate ranges are θ ∈ [0, π], φ ∈ [0, 2π), and r ∈ [0, 2). The AdS boundary
lies at r = 2 and we have set the bulk AdS length scale ` to 1.

It is then straightforward to address the case where the boundary region R is half of
a great circle on the boundary S2. With an appropriate Wick rotation, we may thus think
of this as half of the boundary circle at Lorentzian time t = 0. However, for our current
purposes it will be convenient to take this interval to be the half-circle θ ∈ [0, π] at φ = 0;
i.e., we take it to be the prime meridian instead of half of the equator.

By symmetry, the corresponding RT surface is then just the φ-axis. Fixed length
states for R will then be associated with similar Euclidean solutions in which this axis is a
conical singularity. General such solutions are then described by inserting a positive factor
α into (4.1) to yield

ds2 = dr2 + r2dθ2 + α2r2 sin2 θdφ2

(1− r2/4)2 . (4.2)

Note that we may also write (4.2) in terms of a rescaled angular coordinate φ̃ = αφ

with φ̃ ∈ [0, 2πα) to give a perhaps-more-familiar description of this conical metric. The
cases α < 1 describe conical deficits, while α > 1 is a conical excess. Using the Einstein
equations to interpret this conical defect as a (Euclidean) cosmic string, one finds that the
string has a tension µ such that

α = 1− 4µG. (4.3)

In particular, the string tension is negative for geometries with a conical excess.
We wish to fix the length of our defect cosmic string. Of course, the actual length of

the φ-axis diverges but, as mentioned above we in fact wish to specify an appropriately
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regularized notion of its length. We will do so by introducing a UV cutoff in the dual CFT,
which then defines a radial cutoff in the bulk. This requires specifying a conformal frame,
and it is natural to take this to be the frame in which the boundary geometry is given by
the round metric on the unit-radius S2.

For α 6= 1 this round conformal frame differs from the conformal frame naturally
associated with the bulk metric (4.2). In particular, for α 6= 1 multiplying (4.2) by (1 −
r2/4)2 and setting r = 2 would give a boundary metric with conical singularities at both
poles. Of course, this conical metric is related to the round metric by a conformal (aka
Weyl) rescaling of the metric. Both the associated conformal factor Ω and the polar
coordinate θ̃ associated with the standard presentation of the round metric can be found
by writing

dθ2 + α2 sin2 θdφ2 = Ω2(dθ̃2 + sin2 θ̃dφ2). (4.4)
Solving for Ω2 and θ gives

Ω2 =
(
α sin θ(1 + (tan θ

2)2/α)
2(tan θ

2)1/α

)2

(4.5)

and

θ = 2 tan−1
[(

tan θ̃2

)α]
. (4.6)

We take our UV cutoff to be given by a distance δ in the boundary as defined in
the round unit-sphere conformal frame. The associated bulk radial cutoff would then be
at z = δ where z is the Fefferman-Graham coordinate associated with the same round
conformal frame. However, for α 6= 1 the conical singularity in (4.2) makes it non-trivial to
write our metric in such coordinates. So instead of explicitly computing the transformation
between r, θ, φ and the desired Fefferman-Graham coordinates, we will use the well-known
fact that (to leading order in δ) the desired cutoff z = δ can be identified as the greatest
depth to which minimal surface anchored on a circle of size δ (as defined in the desired
conformal frame) hangs down into the bulk. In particular, since our conical singularity
lies on the φ-axis, it should be cutoff where it intersects the minimal surface anchored to a
circle of round-frame radius δ about the pole θ̃ = 0. Note that the bulk conical singularity
will prevent the minimal surface from being smooth, but that — as is most easily seen for
the case δ = π/4 — symmetry requires the surface to be invariant under an appropriate
Z2 reflection. This condition implies that the minimal surface must still intersect the axis
orthogonally.

In the conical boundary-conformal frame, we see from (4.6) that the surface is anchored
at θ = δα ≡ tan−1[(tan δ

2)α]. A short computation shows that the desired minimal surface
satisfies

1
r

+ r

4 = cos θ
cos δα

. (4.7)

The intersection with the θ = 0 axis occurs at rα = 2(sec δα − tan δα), so the cutoff RT
surface (i.e., the cutoff cosmic string) has length

L = 2
∫ rα

0

dr

1− r2/4 = 2 ln 1
tan(δα/2) = 2α ln 1

tan(δ/2)

≈ 2α ln 2
δ
.

(4.8)
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To study a fixed-length state with prescribed length L∗, we then use (4.3) and (4.8) to
determine the required tension µ of the cosmic string. Below, from (4.8) we keep only the
leading order term at small δ .

We may also use the above results to compute the (cutoff) length of a RT surface
defined by an interval R of any angular size 2λ. The point here is that the isometries of
global AdS3 act as conformal transformations on the boundary S2 and can be used to map
the interval [0, π] to the interval [0, 2λ]. Such isometries are easy to describe by embedding
Euclidean AdS3 into four-dimensional Minkowski space. In our coordinates this embedding
takes the form:

T = 4 + r2

4− r2 ,

X = 4r
4− r2 sin θ̃ sinφ,

Y = 4r
4− r2 cos θ̃,

Z = 4r
4− r2 sin θ̃ cosφ.

(4.9)

While the above embedding holds only for the case α = 1 (where θ̃ = θ), we have chosen
to write the embedding in terms of θ̃ as we will eventually apply the boundary conformal
transformation to cases with general α using the round conformal frame.

It will be convenient to take the new interval R to also lie along the boundary
great circle defined by φ = 0 and φ = π. Note that such intervals all lie at X = 0
in the embedding coordinates, and that they are thus invariant under the Z2 isometry
(T,X, Y, Z)→ (T,−X,Y, Z). We refer to this isometry as reflection in X.

Note that boosts in the Z, T plane preserve this Z2 symmetry while acting non-trivially
on the desired boundary great circle. In particular, a boost in the negative Z direction
with rapidity η acts on this circle as sin θ̃ → sin θ̃−η

1−η sin θ̃ . So to map the angular interval
θ̃ ∈ [π/2 − λ, π/2 + λ] at φ = 0 to the interval θ̃ ∈ [0, π] at φ = 0 we need only choose
η = sin λ.

Such a boost also acts on our cutoff, taking a cutoff δ associated with θ̃ ∈ [π/2 −
λ, π/2 + λ] to a new cutoff associated with θ̃ ∈ [0, π] given by

δb = 1
2

(
sin−1 sin(π2 − λ+ δ)− sin(π2 − λ)

1− sin(π2 − λ+ δ) sin(π2 − λ) − sin−1 sin(π2 − λ− δ)− sin(π2 − λ)
1− sin(π2 − λ− δ) sin(π2 − λ)

)

= δ

sin λ +O(δ2).
(4.10)

Applying the associated boundary conformal transformation to the general case α 6= 1,
we then find that boundary intervals of angular size λ are associated with bulk cosmic
strings of length given by (4.8) with δ replaced by (4.10) to yield

L = 2α ln 2 sin λ
δ

=: αL0(λ). (4.11)

where L0(λ) is the cutoff length of this same geodesic when there is no cosmic string.
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In section 5 below, we will also find it useful to allow different cutoffs δL and δR at the
two ends of the cosmic string. Generalizing the above arguments then yields

L = α ln 4 sin2 λ

δLδR
, (4.12)

where α again describes the defect on this string.
It is now straightforward to compute the Euclidean action I of our solutions as a

function of λ, δ, and L = L∗ = αL0. Since this computation is somewhat of an aside
from the main thrust of this work we have relegated the details to appendix A. Up to an
α-independent constant (which depends on the choice of boundary conformal frame, and
thus in a fixed frame may depend on δ and λ), the action can be written in terms of just
α and L0:

I = α(α− 2)L0
8G . (4.13)

Since there is no RT phase transition for single intervals, we can use the results of [19]
to write the density matrix of the dual CFT on our interval in the block-diagonal form

ρ = ⊕αP (α)ρα, (4.14)

where P (α) is the probability for the RT surface to have length αL0. As explained in
section 2, in the semiclassical approximation this probability is

P (α) = N exp(−I) =

√
L0

8πG exp
(
−(α− 1)2L0

8G

)
, (4.15)

where in the last step we have computed the appropriate normalization coefficient N so
that12 ∫∞

0 P (α)dα = 1. Furthermore, in this approximation reference [11] finds each ρα to
be a maximally mixed state in a subspace whose dimension agrees with the RT entropy
L0/4G. Thus we may write

ρα = e−
αL0
4G Iexp

(
αL0
4G

), (4.16)

where Iexp(S) is the identity matrix in a Hilbert space of dimension eS .
The physics of the result (4.16) is most easily seen as follows. Let us focus on the case

λ = π/2 for simplicity, and let us then identify the cutoff surface near θ̃ = 0 with the one
near θ̃ = π. Except for the conical singularity, the resulting spacetime is a Euclidean BTZ
black hole with horizon length L∗ = αL and energy EBTZ = r2

+
8G = L2

32π2G as defined in the
standard BTZ conformal frame. If we treat α (and thus E) as a discrete index, we may
then write the density matrix (4.14) as

ρ = NE

(
⊕Ee−βEIexp(SBTZ(E))

)
, (4.17)

where βBTZ = 4π2/L0 and SBTZ(E) =
√

2π2E/G is the entropy of a BTZ black hole

with energy E. The normalization coefficient NE is NE =
√

L0
8πGe

−L0/8G. In other words,

12In fact, we have used the value of N for which 1 =
∫∞
−∞ P (α)dα =

∫∞
0 P (α)dα + O

(
e−

L0
8G

)
. The

associated error is negligible in the semiclassical limit.
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the density matrix coincides with a canonical ensemble of BTZ microstates at inverse
temperature β. This is precisely what one expects from the general discussion of fixed-area
states in section 5 of [11].

Using the above results, it is of course straightforward to compute Rényi entropies.
We find

Trρn =
∫
P (α)ne−n

αL0
4G e

αL0
4G dα

=
√

8πG
nL0

(
L0

8πG

)n/2
exp

(
−L0

8G(n− 1
n

)
)
,

(4.18)

and thus
Sn := 1

1− n ln Trρn

= L0
8G

(
1 + 1

n

)
+O(ln(G))

= c

6

(
1 + 1

n

)
ln 2 sin λ

δ
+O(ln(c)),

(4.19)

where we used the Brown-Henneaux relation c = 3`
2G [26], with ` = 1. Of course, this

precisely matches the well-known results of [27, 28] for the dual CFT.

5 Examples

We now we consider several examples of the general framework discussed above. The first
two cases concern AdS3 and its BTZ quotients. In those cases we compute the covariance
matrix (3.12) by treating the conical defect as a small perturbation, working to linear order
in the (Euclidean) tension µ of the associated (spacelike) cosmic strings. As a result, the
effect of multiple such cosmic strings satisfy linear superposition, and results for general
configurations of strings can be computed from the one-interval results of section 4. In
practice, instead of the fixed-area action I, we find it convenient to study the action Idef =
Idefect for fixed tensions µ1, µ2 of the cosmic strings along the two RT surfaces. However,
the two are related by a Legendre transform I = Idef −µ1A1−µ2A2 (see e.g. [11, 17]). As
a result, the matrix ∂2I

∂Ai∂Aj
is the inverse of ∂2I

∂µi∂µj
and we have

Cij = ∂2Idef
∂µi∂µj

= − ∂

∂µi
〈Aj〉µ1,µ2

∣∣∣
µ1=µ2=0

= − ∂

∂µj
〈Ai〉µ1,µ2

∣∣∣
µ1=µ2=0

, (5.1)

where 〈Ai〉µ1,µ2 is the most likely value of Ai in the presence of cosmic strings with tensions
µ1, µ2. Here we have used the standard Legendre transform relation ∂Idef

∂µi
= −〈Ai〉µ1,µ2 .

5.1 Example 1: two intervals in the AdS3 vacuum

Our first example concerns the Euclidean global AdS3 vacuum as in section 4. However,
we now take the boundary region R to be given by a pair of non-overlapping intervals on
the great circle of the boundary S2 associated with φ = 0 and φ = π. For simplicity, we
choose the two intervals to be related by a π rotation. In particular, they are each of the
same angular size 2λ < π. We take both to be given by θ ∈ [π/2 − λ, π/2 + λ] and to
respectively lie at φ = 0 and φ = π.
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R2R1 γ11 γ22

γ12

γ21

Figure 5. Two competing extremal surfaces when R = R1 ∪ R2 is a pair of intervals on the
boundary of the AdS3 vacuum. The homotopic RT surface γd = γ11 ∪ γ22 and the non-homotopic
RT surface γo = γ12 ∪ γ21 are shown respectively in red and blue. The case shown sits precisely at
the RT phase transition, where γd and γo are related by a π/2 rotation.

As is well known, there are two locally-minimal surfaces that satisfy the required
boundary conditions. While both are homologous to the pair of boundary intervals R, only
one of them is homotopic to R. For reasons that will shortly become clear, we denote this
homotopic surface by γd = γdiagonal while the other will be denoted γo = γoff−diagonal.
Since the RT surfaces are one-dimensional, we will again use the terms length and area
interchangeably as in section 4. In particular, the total lengths of the above RT surfaces
are Ld and Lo.

Each of the above RT surfaces is disconnected, and in fact consists of two geodesics.
We label the four relevant geodesics γ11, γ12, γ21, γ22, with γd = γ11∪γ22 and γo = γ12∪γ21
as shown in figure 5. The corresponding lengths are L11 = L22, and L12 = L21. The
system undergoes an RT phase transition at λ = π/4, when γd and γo are related by a π/2
rotation. For vanishing cosmic-string tensions the solution is just global Euclidean AdS3
and the lengths of the RT surfaces are

L̄d = 2L̄11 = 2L̄22 = 4 ln 2 sin λ
δ

(5.2)

L̄o = 2L̄21 = 2L̄12 = 4 ln 2 cosλ
δ

. (5.3)

Due to the superposition principle mentioned in the introduction to this section, it
will be convenient to allow independent cosmic string tensions µij for all i, j ∈ {1, 2}. To
compute (5.1), we need only find the response functions ∆mnLij that describe how the
lengths Lij of the geodesics in figure 5 change at linear order under the addition of the
sources µmn. Of the 16 response functions ∆mnLij , the four terms ∆ijLij where we study
the change in length Lij along the same defect (with tension µij) are just the linearization
of the single-interval result (4.11) from section 4. Furthermore, the 8 terms ∆mnLij where
(m,n, i, j) are permutations of (1, 1, 1, 2) and (2, 2, 2, 1) (i.e., where 3 of the 4 indices
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γ11 γ22

γ12

γ21

Figure 6. The same geodesics as in figure 5 after applying an AdS3 isometry to move the boundary-
anchors γ11 to the poles θ = 0, π. This configuration allows us to compute changes in length by
applying results from section 4.

m,n, i, j coincide but the last is different) are all related to each other by symmetry (and
perhaps interchanging λ→ π/2−λ). Finally, the last 4 terms ∆ijLīj̄ (with ī 6= i and j̄ 6= j)
involve diametrically opposite geodesics. As representatives of these 3 classes of terms, we
will compute ∆11L11, ∆11L12, and ∆11L22.

Let us begin by computing ∆11L12, the first-order change in the length L12 due to the
source µ11. As in section 4, this is straightforward if we act with an AdS isometry to move
the boundary-anchors of γ11 to the poles θ = 0, π, so that γ11 runs along the φ-axis; see
figure 6 below. After this transformation, the two anchors of γ12 lie at the pole θ = 0 and
at θ = ϑ with

ϑ = sin−1 2 cosλ
1 + cos2 λ

. (5.4)

In the resulting (round) conformal frame, the cutoffs at the two ends of L12 will differ.
This occurs because the boundary conformal transformation associated with the above
AdS3 isometry fails to preserve the original symmetry between the endpoints. In the new
conformal frame the cutoffs are given by

δL ≈
δ

sin λ (5.5)

δR = 1
2

(
sin−1 sin(π2 − λ+ δ) + sin(π2 − λ)

1 + sin(π2 − λ+ δ) sin(π2 − λ) − sin−1 sin(π2 − λ− δ) + sin(π2 − λ)
1 + sin(π2 − λ− δ) sin(π2 − λ)

)

≈ 2 sin λ
3 + cos 2λδ, (5.6)

with δL being the cutoff at left end in figure 6, where γ12 meets γ11.
Now, the length of a geodesic in the position of γ12 with cutoffs δL, δR in pure AdS3

was studied in section 4. It was found there to be given by (4.12), where one should insert
the value α = 1 since there is no defect on γ12. And since the local metric near γ12 in
coordinates (r, θ, φ) does not change when we insert a string of tension µ11 = 1−α11

4G on
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L11, the length L12 in the presence of this defect can again be obtained from (4.12) with
α = 1. However, after the addition of the defect the coordinates (r, θ, φ) are associated
with the conical conformal frame on the boundary. As a result, we must insert into (4.12)
the θ-locations 0, ϑ̂ of the γ12 anchors and the cutoffs δ̂L, δ̂R as described in the conical
conformal frame. Using again the conformal transformation (4.6), we find

ϑ̂ = 2 tan−1
(

tanα11 ϑ

2

)
, (5.7)

δ̂L = 2 tan−1
(

tanα11 δL
2

)
≈ 2

(
δL
2

)α11

, (5.8)

and
δ̂R = tan−1

(
tanα11 ϑ+ δR

2

)
− tan−1

(
tanα11 ϑ− δR

2

)
≈ α11(3 + cos 2λ) sinα11−1 λ

2(1 + cos2α11 λ) δR.

(5.9)

Here the symbol ≈ indicates that we have dropped higher order terms in the original cutoff
δ. The first-order change in length is thus

∆11L12 = ln
4 sin2 ϑ̂

2
δ̂Lδ̂R

− ln
4 sin2 ϑ

2
δLδR

≈ 4µ11G

(
1− ln sin 2λ

δ

)
.

(5.10)

We now address the diametrically opposite case. In particular, we compute the change
∆11L22 in L22 when we add tension µ11 on γ11. As above, we apply an AdS3 isometry to
move the anchors of γ11 to the poles as shown in figure 6. Since this figure is symmetric
under exchange of the two ends of γ22, and since the left end of γ22 coincides with the right
end of γ12, after the transformation the cutoff at either end of γ22 becomes δ′ = δR as given
by (5.6) and the angular size of γ22 becomes 2λ′ = 2(π2 − ϑ) in terms of (5.4).

Once again, we wish to hold fixed the locations and cutoffs in the round conformal
frame when we insert the cosmic string on γ11. And again we wish to apply formulae
from section 4 that apply in the conical-frame coordinates r, θ, φ. We will thus need the
associated conical frame cutoff δ̂ = δ̂R and angular size 2λ̂ = 2(π2 − ϑ̂). The length change
is thus

∆11L22 = 2 ln 2 sin λ̂
δ̂
− 2 ln 2 sin λ

δ′

≈ 8µ11G

(
1 +

( 2
sin2 λ

− 1
)

ln cosλ
)
.

(5.11)

To complete our study of the 3 possible classes of changes we need only compute
∆11L11. From (4.11) we immediately find

∆11L11 = −8µ11G ln 2 sin λ
δ

. (5.12)

We are now ready to assemble the above results into complete expressions for the
first order changes in our lengths. As described above, our three representatives ∆11L11,
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∆11L12, and ∆11L22 can be used to obtain all other ∆mnLij by acting with appropriate
symmetries and/or replacing λ by π

2 − λ. After doing so, we wish to set the tension to be
constant along each of γd, γo. I.e., we impose µ11 = µ22 = µd, µ12 = µ21 = µo. Using the
notation 〈Ld〉µo,µd for the expectation value of Ld in the presence of sources, we have

〈Ld〉µo,µd = 2〈L11〉µo,µd = 2 (〈L11〉0,0 + ∆11L11 + ∆12L11 + ∆21L11 + ∆22L11) +O(µ2).
(5.13)

Thus we find

〈Ld〉µo,µd = 4 ln 2 sin λ
δ

+ 16µdG
(

1− ln sin 2λ+ 2 ln cosλ
sin2 λ

+ ln δ
)

+ 16µoG(1− ln sin 2λ+ ln δ) +O(µ2).
(5.14)

The corresponding expression for Lo is obtained from (5.14) by exchanging µd with µo and
replacing λ by π/2− λ. This yields

〈Lo〉µo,µd = 4 ln 2 cosλ
δ

+ 16µdG(1− ln sin 2λ+ ln δ)

+ 16µoG
(

1− ln sin 2λ+ 2 ln sin λ
cos2 λ

+ ln δ
)

+O(µ2).
(5.15)

The two point functions are thus

〈L2
d〉0,0 − 〈Ld〉20,0 = − ∂

∂µd
〈Ld〉µo,µd

∣∣∣
µo=0,µd=0

= −16G
(

1− ln sin 2λ+ 2 ln cosλ
sin2 λ

+ ln δ
)
,

(5.16)

〈L2
o〉0,0 − 〈Lo〉20,0 = − ∂

∂µo
〈Lo〉µo,µd

∣∣∣
µo=0,µd=0

= −16G
(

1− ln sin 2λ+ 2 ln sin λ
cos2 λ

+ ln δ
)
,

(5.17)

and

〈LdLo〉0,0 − 〈Ld〉〈Lo〉0,0 = − ∂

∂µd
〈µo,µdLo〉

∣∣∣
µo=0,µd=0

= −16G(1− ln sin 2λ+ ln δ). (5.18)

Combining these to find the variance of (L1 − L2) yields

4σ2
− = 〈(Ld − Lo)2〉0,0 − 〈Ld − Lo〉20,0

=
(
〈L2

d〉 − 〈Ld〉20,0
)

+
(
〈L2

o〉0,0 − 〈Lo〉20,0
)
− 2 (〈LdLo〉0,0 − 〈Ld〉0,0〈Lo〉0,0)

= −32G
( ln sin λ

cos2 λ
+ ln cosλ

sin2 λ

) (5.19)

Note that σ2
− is positive as required since cosλ and sin λ are less than or equal to one.

From (3.14), the O(G−1/2) correction to the entropy at the transition is thus

∆−1/2S =

√
σ̃2
−

8πG = σ−√
8πG

= 2

√
ln 2
2πG. (5.20)
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star

Σ

Figure 7. The Penrose diagram of a pure-state geometry in which matter (a ‘star’) collapses to
become a BTZ black hole. On the surface Σ the geometry displays a long ‘throat’ region where the
metric is very well-approximated by exact BTZ. On Σ, all details of the original star that collapsed
to form the black hole are hidden at the bottom of this throat.

The most interesting feature of (5.20) is that it is independent of the cutoff δ. This
was a direct result of the fact that, while the cutoff appeared in each of (5.16), (5.17),
and (5.18), it cancelled in the computation of σ̃−. A related observation is that σ2

− takes
on its minimal value 16G ln 2 at the phase transition point λ = π/4, though it diverges in
the degenerate limits λ→ 0 or λ→ π/2.

Such results are in fact very natural. Since γo and γd have the same boundary anchors,
the two curves will largely coincide near infinity. Contributions to the length of these
curves from the asymptotic region will thus be highly correlated and will tend to cancel in
computations of Ld−Lo. The results above show that the divergent parts of the fluctuations
cancel entirely. Thus σ− is determined by the regions of γd and γo that are widely separated.
Since the length of such regions diverges in the limits λ→ 0 or λ→ π/2 (where one curve
or the other degenerates), it is no surprise that σ− diverges in those limits as well. Further
discussion of divergences in RT-area fluctuations will be provided in section 6.

5.2 Example 2: BTZ black hole

Our next example is a generic pure microstate of a one-sided non-rotating BTZ black hole.
The RT phase transition in this context was previously studied in e.g. [8, 9, 29]. Since the
bulk spacetime has dimension 3, our RT surfaces will again be spacelike geodesics.

In the region outside the horizon, the corresponding bulk geometry should well-
described by the BTZ metric

ds2 = −(r2
BTZ − r2

+)dt2 + dr2
BTZ

r2
BTZ − r2

+
+ r2

BTZdϕ
2, (5.21)

where r+ is the horizon radius and the black hole has total energy E = r2
+

8G as in section 4.
Inside the horizon the geometry may reflect the details of the microstate. But as shown
in figure 7, any classical interior solution will evolve to have the same long throat at late
times, with any microstate-dependence hidden at the bottom of the throat. One thus
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R R̄γ1 γ2

Figure 8. Two competing candidate RT surfaces in the BTZ black hole spacetime.

expects such a long throat to be common to generic microstates. Noting that this throat
also appears in the two-sided eternal BTZ black hole, and that in the eternal BTZ case
spacelike geodesics starting and ending in the same boundary region never pass behind the
horizon (see e.g. [30]), it follows that all relevant geodesics will lie in the exterior region.
We thus restrict attention to the geometry described by (5.21).

By analytic continuation t→ iτ , the associated Euclidean solution will also contain a
region described by the metric

ds2 = (r2
BTZ − r2

+)dτ2 + dr2
BTZ

r2
BTZ − r2

+
+ r2

BTZdϕ
2, (5.22)

though this will not cover the entire spacetime. In particular, the metric (5.22) will gen-
erally hold only in some range τ ∈ (−τ−, τ+) where τ− and τ+ are not to be identified.13

We will consider single intervals R in the boundary at t = 0 = τ , for which the RT sur-
faces will also lie in the bulk surface t = τ = 0 that appears in both the Lorentzian and
Euclidean sections.

As shown in figure 8, we take γ1 to be the minimal curve in the t = τ = 0 surface that
is homotopic to R, and γ2 to be the corresponding minimal curve homotopic to R̄. Note
that both γ1 and γ2 are homolologous to both intervals R, R̄. Denoting the angular sizes
of R, R̄ respectively by π+ η and π− η, symmetry dictates that there will be an RT phase
transition at η = 0. As in section 5.1, we will insert cosmic strings on γ1, γ2 and compute
the induced changes in their lengths L1, L2. And just as in sections 4 and 5.1, we will again
use a UV regulator defined by a scale δ on the boundary in the conformal frame where the
boundary metric is dτ2 + dϕ2.

To compute the desired response functions ∂
∂µi
〈Lj〉µ1,µ2 , we must gain control not only

over the original BTZ metric (5.22), but also over solutions deformed by the addition of
cosmic strings. If we were to strictly confine our analysis to the region −τ− < τ < τ where
the metric (5.22) applies, this would require a choice of boundary condition at τ = τ±. We

13See e.g. [31–33] for discussions of particular such Euclidean geometries.
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·
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·

···

···

γ1,0

γ2,−1

γ2,0

γ1,−1

γ1,1

γ1,kγ2,k

Figure 9. RT surfaces in the AdS3 covering space of a BTZ black hole. One RT surface in BTZ
corresponds to infinitely many ones in the covering space. The dashed lines denote the horizon.
Since we are studying a one-sided black hole, only half of the space (we take it to be the left half)
is relevant to us.

do not wish to rely on an ad hoc such choice. But as noted above, in the relevant region
of the geometry one expects our spacetime to agree precisely with the eternal two-sided
BTZ black hole. We will therefore assume that this remains true after the addition of at
least weak-tension cosmic strings. As a result, we simply compute ∂

∂µi
〈Lj〉µ1,µ2 in the full

Euclidean BTZ geometry given by (5.22) and by taking τ to have the appropriate period
βBTZ = 2π

r+
.

As in well-known, the BTZ geometry is a quotient of global AdS3 [15]. Lifting the
geodesics γ1, γ2 to the AdS3 cover will allow us to directly apply our previous results
from section 4. In practice, this lift is accomplished by simply ignoring the fact that φ
is periodic identified in the BTZ metric.14 Taking the anchors of both geodesics γ1, γ2
to be at ϕ = ±(π+η

2 ), we see that γ1 lifts to an infinite set of geodesics γ1,k anchored
at ϕ = ±(π+η

2 ) + 2πk, while γ2 lifts to geodesics γ2,k anchored at ϕ = (π+η
2 ) + 2πk and

ϕ = −(π+η
2 ) + 2π(k + 1). Note that the geodesics γ2,−1, γ2,0 lie on either side of γ1,0.

The results of section 4 were written in terms of a different set of coordinates on
Euclidean AdS3. Taking the angular coordinate τ above to be proportional to φ of section 4,
one may solve for the relation between our (rBTZ, ϕ) and the (r, θ) of section 4. In particular,
on the AdS boundary one finds

θ(ϕ) = tan−1 (sinh(r+ϕ)) + π

2 . (5.23)

Thus if R is the interval −π
2 −

η
2 < ϕ < π

2 + η
2 at τ = 0, it also corresponds to the infinite

set of intervals π
2 − θk < θ < π

2 + θk with

θk = tan−1
(

sinh
((

π

2 + η

2 + 2πk
)
r+

))
. (5.24)

14Since the τ -circle is contractible in BTZ, the coordinate τ remains periodic with period βBTZ in the
AdS3 cover.
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γ1,0

γ2,0

γ2,k
γ1,k

Figure 10. The representative geodesics γ1,0, γ2,0, γ1,k and γ2,k from figure 9 are shown after
applying an AdS3 isometry to move γ1,0 into the standard position along the φ-axis.

For simplicity, we begin by focusing on the case k = 0. For this case, a cutoff δ defined
in terms of the angle ϕ at the endpoints of R maps to a cutoff

δ0 = 1
2

(
θ

(
π

2 + η

2 + δ

)
− θ

(
π

2 + η

2 − δ
))

≈
r+ cosh

(
(π2 + η

2 )r+
)

1 + sinh
(
(π2 + η

2 )r+
)δ (5.25)

in terms of the angle θ. With vanishing cosmic string tension the length of γ1 is thus

L̄1 := 〈L1〉µ1=0,µ2=0 = 2 ln 2 sin θ0
δ0

= 2 ln
2 sinh

(
(π2 + η

2 )r+
)

r+δ
. (5.26)

Since interchanging R and R̄ changes the sign of η, applying this transformation to (5.26)
yields the length of γ2:

L̄2 := 〈L1〉µ1=0,µ2=0 = 2 ln
2 sinh

(
(π2 −

η
2 )r+

)
r+δ

. (5.27)

We now compute the first-order changes ∆iLj (i, j ∈ {1, 2}) in the length change of
γj due to adding a cosmic string with tension µi on γi. In the covering space description,
we could compute the change in length of any of the geodesics γj,n. However, the covering
space description of inserting a cosmic string of tension µi on γi is to in fact insert cosmic
strings of this same tension µi on each of the geodesics γi,k. At linear order in µi we may
compute the effect of each such cosmic string separately and then simply sum the change
induced in our given γj,k.

However, performing the above sum is equivalent to inserting a cosmic string on a
given geodesic (say, γ1,0 or γ2,0), computing the first order change in length for each γ1,n
or each γ2,n, and again summing the results. We will find this perspective to be more
convenient in making use of our results from section 4. We will thus study the first-order
changes ∆1L1,k, ∆1L2,k in the lengths of γ1,k, γ2,k associated with putting a cosmic string
on γ1,0. We can then later then obtain results for strings on γ2,0 by changing the sign of η.
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We begin with ∆1L1,k. As in section 4, we apply an AdS3 isometry to move the anchors
of γ1,0 to the θ = 0 and θ = π so that γ1,0 now lies along the φ-axis; see figure 10. Before
applying this transformation, the angular coordinates θ of the endpoints of γ1,k are

θ
(k)
L/R = tan−1

(
sinh

[
r+

(
∓ π

2 ∓
η

2 + 2πk
)])

+ π

2 (5.28)

with φ = 0. After the transformation, they become

θ̃
(k)
L/R = π − sin−1 − sin(π − θ(k)

L/R) + cos θ1

1− sin(π − θ(k)
L/R) cos θ1

, (5.29)

with φ = π. The cutoffs will again become some δ̃(k)
L and δ̃(k)

R .
We now wish to add a cosmic string of tension µ1 = 1−α1

4G on the φ axis, holding fixed
both the cutoffs and the anchors for the geodesics in the round conformal frame. But we
will also need the values of these parameters in the conical frame, which by (4.6) are the
‘hatted’ values

θ̂
(k)
L/R = 2 tan−1

tanα1
θ̃

(k)
L/R

2

 (5.30)

δ̂
(k)
L/R ≈

2α1 cotα1
θ̃

(k)
L/R

2

sin θ̃(k)
L/R

(
1 + cot2α1

θ̃
(k)
L/R

2

) δ̃(k)
L/R. (5.31)

The above results allow us to read off the change in length by making appropriate use
of (4.12). This is most straightforward for the case k = 0 where geodesic γ1,0 of interest
lies on the conical singularity. That was the setting considered in the derivation of (4.11),
so we need only recall that our conical parameter is α1 = 1− 4µ1G and that at α1 = 1 the
length is L̄1 as given by (5.26). Eq. (4.11) then gives L1,0 = α1L̄1 from which we find

∆1L1,0 = −8µ1G ln
2 sinh

(
(π2 + η

2 )r+
)

r+δ
. (5.32)

In contrast, for k 6= 1 we study geodesics γ1,k with no conical singularity. In vacuum
AdS3, the length of such geodesics is given by (4.12) with α = 1 and cutoffs δR = δ̃R and
δL = δ̃L defined in the round frame. We wish to hold fixed these round-frame cutoffs when
computing ∆1L1,k. But when we add a conical singularity elsewhere in the spacetime, the
length of γ1,k is given by (4.12) (still with α = 1 in that expression) if we insert the cutoffs

δR = δ̂
(k)
R , δL = δ̂

(k)
L and the angular size λ = λ̂(k) := θ̂

(k)
L −θ̂

(k)
R

2 associated with the conical
frame. As a result, for k 6= 0 we find

∆1L1,k = ln
4 sin2 θ̂

(k)
L −θ̂

(k)
R

2

δ̂
(k)
L δ̂

(k)
R

− ln
4 sin2 θ̃

(k)
L −θ̃

(k)
R

2

δ̃
(k)
L δ̃

(k)
R

= 4µ1G

2 +
sin θ̃

(k)
L +θ̃(k)

R
2

sin θ̃
(k)
L −θ̃

(k)
R

2

ln
tan θ̃

(k)
L
2

tan θ̃
(k)
R
2

+O(µ2
1)


= 4µ1Gf(k, η) +O(µ2

1),

(5.33)
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where f(k, η) is

f(k, η) =2− 1− 2 cosh[2kr+π] + cosh[r+(π + η)]
2 sinh2[(π + η) r+

2 ]

× ln
(
cosh[(π + η) r+

2 ]− cosh[((4k − 1)π − η) r+
2 ]
)

sinh2[((2k + 1)π + η) r+
2 ](

cosh[(π + η) r+
2 ]− cosh[((4k + 1)π + η)ρ+

2 ]
)

sinh2[kr+π]
.

(5.34)
Note that f(k, η) vanishes exponentially as k → ∞. In particular, limk→∞ |f(k+1,η)

f(k,η) | < 1,
so the sum

∑∞
k=1 f(k, η) converges. Furthermore, (5.33) is completely independent of the

choice of cutoffs.
For k 6= −1, 0 the computation of ∆1L2,k proceeds in precisely the same way. Indeed,

it is identical to the computation of (5.33) with k replaced by k + 1/2 in all expressions
and with η replaced by −η in the expressions for θ(k)

L/R and the associated cutoffs (but with
η unchanged in the expressions for θ1 and δ1). As a result, we find

∆1L2,k = 4µ1Gg(k, η) +O(µ2
1), (5.35)

with

g(k, η) = 2− cosh[r+π]− 2 cosh[(1 + 2k)r+π] + cosh[r+η]
cosh[r+π]− cosh[r+η]

× ln er+η(e2kr+π − 1)(e2(1+k)r+π − 1)
(e(1+2k)r+π − er+η)(er+(1+2k)π+r+η − 1)

.

(5.36)

Note that g(k, η) is an even function of η as required by the symmetry of figure 9.
The remaining cases ∆1L2,0 and ∆1L2,−1 are identical by symmetry; see again figure 9.

Let us concentrate on ∆1L2,0. This case differs from the above in that γ2,0 meets the conical
singularity at the boundary. After using an AdS isometry to place the conical singularity on
the φ-axis as usual, the left anchor of γ2,0 becomes θ̃L = π and the right anchor becomes
θ̃R = θ̃

(1)
L . The transformed cutoffs are δ̃L = δ

sin θ0
(with θ0 again given by (5.24) with

k = 0) and δ̃R = δ̃
(1)
L . As usual, we hold these quantities fixed in the round conformal

frame, but we will need to insert the conical frame values into (4.11). After inserting the
cosmic string on γ(0)

1 , the conical frame parameters become

θ̂L = π, θ̂R = θ̂
(1)
L ,

δ̂L = 2
(
δ̃L
2

)α1

= 2
(

δ

2 sin θ0

)α1

and δ̂R = δ̂
(1)
L .

(5.37)

We thus find

∆1L2,0 = 4µ1G

(
1− ln cosh r+π − cosh r+η

r+δ sinh r+π

)
. (5.38)

Combining these results and applying symmetries as needed to obtain changes not
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directly computed above yields a complete first-order expression for the length of γ1:

〈L1〉µ1,µ2 = L̄1 + ∆1L1,0 + 2∆2L1,0 + 2
∞∑
k=1

∆1,kL1,0 + 2
∞∑
k=1

∆2,kL1,0 +O(µ2)

= (2− 8µ1G) ln
2 sinh

(
(π2 + η

2 )r+
)

r+δ
+ 8µ2G

(
1− ln cosh r+π − cosh r+η

r+δ sinh r+π

)
+ 8µ1G

∞∑
k=1

f(k, η) + 8µ2G
∞∑
k=1

g(k, η) +O(µ2) (5.39)

Since L2 can be obtained from L1 by changing the sign of η and exchanging µ1 and µ2, we
also find

〈L2〉µ1,µ2 = (2− 8µ2G) ln
2 sinh

(
(π2 −

η
2 )r+

)
r+δ

+ 8µ1G

(
1− ln cosh r+π − cosh r+η

r+δ sinh r+π

)
+ 8µ2G

∞∑
k=1

f(k,−η) + 8µ1G
∞∑
k=1

g(k, η) +O(µ2) (5.40)

It is now straightforward to compute the desired two-point functions:

〈L2
1〉0,0 − 〈L1〉20.0 = − ∂

∂µ1
〈L1〉µ1,µ2

∣∣∣
µ1=µ2=0

= 8G
(

ln
2 sinh

(
(π2 + η

2 )r+
)

r+δ
−
∞∑
k=1

f(k, η)
)

(5.41)

〈L2
2〉0,0 − 〈L2〉20,0 = − ∂

∂µ2
〈L2〉µ1,µ2

∣∣∣
µ1=µ2=0

= 8G
(

ln
2 sinh

(
(π2 −

η
2 )r+

)
r+δ

−
∞∑
k=1

f(k,−η)
)

(5.42)

〈L1L2〉0,0 − 〈L1〉0,0〈L2〉0,0 = − ∂

∂µ1
〈L2〉µ1,µ2

∣∣∣
µ1=µ2=0

(5.43)

= 8G
(

ln cosh(r+π)− cosh(r+η)
r+δ sinh(r+π) − 1−

∞∑
k=1

g(k, η)
)
. (5.44)

In particular, the variance of L− = (L1 − L2)/2 is

σ2
− = 2G

(
ln

4 sinh2(r+π) sinh
((
π
2 + η

2
)
r+
)

sinh
((
π
2 −

η
2
)
r+
)

(cosh(r+π)− cosh(r+η))2 + 2

−
∞∑
k=1

(f(k, η) + f(k,−η)− 2g(k, η))
)
.

(5.45)

While the full expressions above are somewhat complicated, one should recall that both
f and g fall off exponentially. As a result, at large r+ one can ignore the sum over images.
In particular, in that limit σ2

− is given by just the first line in (5.45). As in section 5.1, the
variance σ2

− is independent of the cutoff δ, though δ appears linearly in 〈L2
1〉0,0 − 〈L1〉20.0,

〈L2
2〉0,0 − 〈L2〉20.0, and 〈L1L2〉0,0 − 〈L1〉0,0〈L2〉0,0.
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5.3 Agreement with ETH

As described in section 5.2, we may think of the analysis performed there as applying to a
generic microstate of the BTZ black hole with some given energy E. From the perspective
of the dual CFT this is just a generic state with the given energy. Furthermore, as noted
in the introduction, when the volume of the CFT becomes large this reduces to the set-
ting analyzed by Murthy and Srednicki [7] using the eigenstate thermolization hypothesis
(ETH). We now confirm that our results coincide with theirs in the desired limit.

In particular, [7] considered a system of total volume V partitioned into two parts
with volumes V1 + V2 = V . In the limit where V1, V2 are both large, and ignoring terms
that scale with subleading powers of V , we may also identify separate energies E1, E2 and
density-of-states functions15 S1(E1), S2(E2) for the two parts that satisfy E ≈ E1 + E2
and S(E1, E2) ≈ S1(E1) + S2(E2). Here S(E1, E2) is the logarithm of the total number of
states with the given partition of the energy E, and we use the symbol ≈ to make explicit
that we have kept only terms that are extensive in the sense that they proportional to one
of the volumes V1 or V2. As in section 5.2, we take subsystem 1 to be associated with the
boundary interval R and subsystem 2 to be associated with R̄.

Typical microstates with energy E will have subsystem energies Ē1, Ē2 determined by
the constraint E = Ē1 + Ē2 and the usual thermodynamic equilibrium condition

1
T1

:= dS1
dE1
|Ē1

= dS2
dE2
|Ē2

=: 1
T2
, (5.46)

which allows us to define a temperature T = T1 = T2. The analysis of [7] found such states
to have entanglement

Sent(E) = min
(
S1(Ē1), S2(Ē2)

)
−

√
2K
π

Φ
(
S2(E − Ē1)− S1(Ē1)√

8K

)
, (5.47)

where Φ is again given by (3.15) and

1
K

:= T 2
(
d2S1
dE2

1
|Ē1

+ d2S2
dE2

2
|Ē2

)
. (5.48)

Comparing (5.47) with our expression (3.14), we see that they agree if

S1(Ē1) = L̄1
4G, S2(Ē2) = L̄2

4G, K =
σ̃2
−

32G. (5.49)

Our main task is thus to identify the functions S1(E1), S2(E2) for the relevant limit
of the BTZ system studied in section 5.2. Doing so requires an understanding of black
hole geometries that have independent energies E1, E2 in regions R and R̄ at the given
time t = 0 (though energy will flow between these regions under time evolution due to the
intrinsic couplings between the two). In particular, we must allow the energy densities at
t = 0 to differ between R and R̄.

15These are the usual thermodynamic entropies defined as the logarithm of the number of states of each
subsystem with the given energies.
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The limit studied by [7] involves taking a large volume. But since our system is to be
thought of as dual to a conformal field theory, any large volume limit is equivalent to the
limit of high temperatures (or, perhaps better, the limit of large energy densities) taken
with the volume V held fixed. We may then define the energy E1 of region R by integrating
the CFT energy density over R, and similarly for the energy E2 of R̄. To define a good
operator in the CFT we should also apply an appropriate smoothing at the boundary ∂R
between R and R̄, though this is often not needed if we simply discuss expectation values.
In either case, we find E ≈ E1 + E2 in the desired limit.

To leading order in the limit of large volumes or high temperatures, we can study
the thermodynamics of each region R and R̄ by treating the regions as homogeneous
independent CFTs. The density of states of each region is then given by the thermal
entropy of the CFT at energy Ei on a space of volume Vi; i.e.

Si(Ei) ≈ 2π

√
cEiVi

6 , (5.50)

where we have used the Cardy approximation appropriate to our high temperature limit
and c = 3

2G is the CFT central charge since we have set the bulk AdS scale ` to one.16

It is now manifest that we will find S1(Ē1) = Ā1
4G and S2(Ē2) = Ā2

4G , though this can also
be verified by direction computation using (5.26) and (5.27) in the limit of large E = r2

+
8G .

Furthermore, the standard deviation σ̃− of our fixed-area discussion is easily extracted from
the two-point functions (5.41), (5.42), and (5.43). At leading order in large r+ we find

σ̃2
−

32G ≈
(π2 − η2)r+

8Gπ . (5.51)

It thus remains only to compute (5.48) and compare with (5.51). In terms of the
parameter η from 5.2 and the bulk Newton constant G and the energy E1, Cardy’s for-
mula (5.50) becomes

S(Ē1) = π + η

4G

√
2π
π + η

E1, and (5.52)

S(Ē2) = π − η
4G

√
2π
π − η

(E − E1). (5.53)

16One can of course also derive this result from the AdS3 bulk. To do so, one notes that a general solution
to Einstein-Hilbert AdS3 gravity is just a BTZ black hole with some choice of conformal frame. As we are
interested in thermal entropies, so that the full CFT can be in a mixed state, one then computes the RT
entropies for R and R̄ using surfaces that are homotopic to R, R̄ as a function of the BTZ parameters
and this conformal transformation. Holding the UV cutoff fixed, at leading order in large energy density
maximizing the RT areas at fixed energies E1, E2 will give the desired result. Indeed, in a general theory
of gravity one should expect the generic high energy-density state with energies E1, E2 at t = 0 to strongly
resemble a black hole of total energy E1V

V1
in region R but to also strongly resemble a black hole of total

energy E2V
V2

in region R̄. This can be seen, for example, by considering the thermofield-double-like state
defined by a Euclidean path integral where the period of Euclidean time is tuned independently in R and R̄
to obtain the desired energies and using a Euclidean version [34] of the fluid-gravity correspondence [35–37].
The corresponding Renyi problem was recently discussed in [11].
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Using (5.48) then gives

K = (π2 − η2)r+
8Gπ , (5.54)

which agrees with (5.51) as desired. So in the relevant limit our analysis does indeed
reproduce the results of [7].

5.4 Comparison with a simple quantum RT transition

In the above sections we have examined corrections to the RT entropy near RT phase
transitions. However, such phase transitions are very similar to the phase transitions
associated with quantum extremal surfaces discussed in e.g. [10, 38–40]. Let us in particular
consider the simple model described in section 2 of [10], which considers a black hole in
Jackiw-Teitelboim gravity with an end-of-the-world brane behind the horizon. The end-
of-the-world-brane can appear in any of k flavors. There is then a quantum RT phase
transition associated with whether the entropy ln k of the state on the end-of-the-world
brane exceeds the Bekenstein-Hawking entropy SBH of the black hole. When SBH is the
larger of the two, the (quantum) RT surface is the emptyset and the entire spacetime lies
in the entanglement wedge of the boundary. In contrast, if the end-of-the-world brane
entropy is larger, the quantum RT surface lies instead at the black hole horizon and an
‘island’ [41] forms inside.

Although this is technically a quantum-RT transition, quantum mechanics plays very
little role in the discussion. In particular, for the non-trivial extremal surface the entropy
is well approximated by A/4G. And for the trivial extremal surface, the (generalized)
entropy is effectively a constant determined by the choice of end-of-the-world brane state.
It may thus be reasonable to expect that our arguments above would apply to this case as
well. We confirm this below, though we leave a full discussion of quantum phase transitions
for future work.

In particular, in the semiclassical limit of large temperature 1/(βG) � 1 and with
large end-of-the-world brane tension µEOW � 1/(βG) , the details of their phase transition
are studied in appendix F of [10] via a careful computation using the replica trick. At the
phase transition, the actual entropy is again found to be smaller than A/4G by a correction

∆−1/2S =
√

2π
βG

. (5.55)

We wish to verify that this result also follows from (3.14) if we simply set A2 = ln k
(without fluctuations). As a result, 4σ2

− = σ2
1 and it remains only to determine the width

of fluctuations in the horizon area A1.
This width can be extracted from their n-replica partition functions

Zn = eS0

∫
dsρ(s)y(s)n, (5.56)

where

ρ(s) = s

2π2 sinh(2πs), (5.57)

y(s) = e−
βGs2

2 21−2µEOW

∣∣∣∣Γ(µEOW −
1
2 + is

)∣∣∣∣2 . (5.58)
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In the limit µEOW � 1/βG, the integrand can be approximated by

ρ(s)y(s)n ∼ s

2π2 y(0)ne2πs−nβGs2/2. (5.59)

The saddle point is
s(n) = 2π

nβG
. (5.60)

We may thus define an on-shell action In by inserting s(n) into the exponent of (5.59)
to find

In = 2π2

nβG
. (5.61)

The n-replica saddle-points should represent smooth geometries, but taking a Zn quotient
of such geometries should give spacetimes with a single boundary and a Zn conical defect.
The fixed-defect-angle action I1(n) in such cases is generally In/n (see [4] and also [17] for
further details of such actions). We thus find

I1(n) := In
n

= 2π2

n2βG
, (5.62)

where the conical defect tension µ satisfies

n = 1
1− 4µG. (5.63)

It now straightforward to analytically continue the result (5.62) to all real µ. As in
section 3, the variance of the RT area A1 can be obtained by taking the second derivative
of I1 with respect to µ:

σ2
1 =

(
∂2I1
∂µ2

)
T→0

= 64π2G

β
. (5.64)

Inserting (5.64) into (3.14) gives (5.55) in agreement with [10]

6 Discussion

Our work above studied corrections to the Ryu-Takayanagi entropy of holographic systems
near an RT-phase transition in the semiclassical limit. Using a decomposition into fixed-
area states we found that, when a so-called diagonal approximation holds, the result can
be written in the form (3.14). In particular, at the phase transition where the mean value
Ā1− Ā2 vanishes, we find a correction of order G−1/2 controlled by the width σ− = G1/2σ̃−
of the fluctuations in (A1−A2)/2. This correction is parametrically larger than corrections
associated with the entropy of bulk quantum fields.

However, it also decays exponentially in |A1−A2| as one moves away from the transi-
tion. In particular, just as in [7], with this correction the entanglement becomes a smooth
function of all parameters. The RT ‘phase transition’ has thus become a crossover already
at this level of analysis, though in the limit G→ 0 the crossover happens very quickly and
one recovers the sharp transition of the standard classical RT-surfaces.
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This behavior is very different from the O(N) corrections described in [42] for 2d
Yang-Mills. Although that theory admits a ‘bulk’ closed string expansion, the strings are
light. As a result, they give rise to D-brane-like (and thus O(N)) contributions to general
entropies [43, 44], regardless of proximity to a phase transition. In contrast, stringy modes
appear to play no role in our effect.

The interesting question that we have not addressed is just when this diagonal ap-
proximation should hold. We conjecture that it holds for arbitrary holographic states, but
this remains to be verified. What we have done in this regard is to compare our (3.14)
with the exact results at this order that are known in two cases. The first was the large
mass limit of (pure microstates of) BTZ black holes. If we take the black hole to be in an
energy eigenstate, then since the dual theory is conformal this limit is equivalent to the
large volume limit studied by Murthy and Srednicki in [7]. We found in section 5.3 that
our results coincide with theirs in the desired limit.

Now, one might ask if the condition that the black hole is an energy eigenstate might
enforce our diagonal approximation even if the approximation were to fail more generally.
And indeed, for classical saddles that contribute to holographic Renyi computations, one
expects the areas A1, A2 to be functions of the energies E1, E2 of the two parts of the
system (R and R̄). As a result, since E1 + E2 = E is fixed, given two pairs of areas,
(A1, A2) and (A′1, A′2) either the pairs coincide (A1 = A′1 and A2 = A′2), or both areas
differ (A1 6= A′1 and also A2 6= A′2). But as described in section 3.2, the saddles that give
possible off-diagonal contributions require at least one area in each Renyi copy to coincide
with one area in the next. So there are no off-diagonal contributions with A1 6= A′1 and
also A2 6= A′2 and the diagonal approximation should hold.

On the other hand, one can give a state-counting argument that generalizes the argu-
ment of [7] to generic states with a given expectation value of the energy, but which leaves
the result unchanged.17 This removes the above constraint and allows off-diagonal saddles
to contribute. Yet we continue to find agreement with the computations of section 5.2.
Indeed, our analysis made no use of any assumption regarding the width of fluctuations in
the total energy of the black hole.

We take this as encouraging evidence in favor of our conjecture. However, one can
expect the diagonal approximation to fail for carefully chosen non-generic states, and there
remains the possibility that at least some holographic states are non-generic in just the
required way — though this cannot be the case for pure microstates of BTZ.

We also performed what appears to be an independent check on our conjecture by
comparing (3.14) with the results of [10] for their quantum RT-transition. While we have
not analyzed quantum transitions in detail, one would expect analogous results to hold,
and especially so for the special case considered in [10] where the quantum contributions
are fixed and do not fluctuate. And indeed we find our (3.14) to exactly reproduce the
G−1/2 correction of [10].

A by-product of the computations in our examples was to investigate the cutoff de-
pendence of fluctuations in RT-areas. In AdS3, we found RT-surfaces anchored to the

17We thank Chaitanya Murthy and Mark Srednicki for sharing their notes on this point.
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boundary to have fluctuations whose variance is of order − ln δ, and thus whose width is
of order

√
− ln δ. They thus diverge as δ → 0, but do so more slowly than the RT-lengths

themselves (which are of order ln δ). Furthermore, given two extremal surfaces γ1, γ2 an-
chored at the same boundary points, the difference in their lengths L1 − L2 has finite
(cutoff-independent) fluctuations as δ → 0.

It is straightforward to see that similar results must hold in complete generality and
in all dimensions. First, recall from section 5 that fluctuations are related to expected
RT-areas via

〈AiAj〉0,0 − 〈Ai〉0,0〈Aj〉0,0 = − ∂

∂µi
〈Aj〉µ1,µ2

∣∣∣
µ1=µ2=0

. (6.1)

In general, the divergences (or cutoff-dependences) of the variance RT-area fluctuations will
agree with those of RT-areas A at general tensions µ, so that the width of such fluctuations
scales like A1/2. This result is also to be expected physically, as the fluctuations should be
local. Since uncorrelated fluctuations add in quadrature, summing such fluctuations over
all area elements of the RT-surface must again give fluctuations in the total area A that
scale like A1/2.

In contrast, the cancellation of divergences that occurs in fluctuations of A1 − A2
occurs precisely because the surfaces γ1, γ2 largely coincide near the AdS boundary, so
that correlations between their area-fluctuations are naturally strong. That fluctuations
of A1 − A2 will always be finite can be seen by recalling that any two extremal surfaces
γ1, γ2 with the same boundary anchor set ∂R in fact coincide near the boundary to all
orders in the Fefferman-Graham expansion that give divergent contributions to A1 and
A2 [45]. Since this is the case for all smooth geometries with arbitrary matter sources, it
will remain true in the conical limit where the sources become cosmic branes. Thus A1−A2
is manifestly finite at general tensions µ1, µ2. Using (6.1) to write

〈(A1 −A2)2〉0,0 − 〈A1 −A2〉20,0 =
(
∂

∂µ2
− ∂

∂µ1

)
〈A1 −A2〉µ1,µ2

∣∣∣
µ1=µ2=0

, (6.2)

we see immediately that the desired fluctuations are finite as well. The same argument
indicates that one should be able to construct a holographically-renormalized bulk action
for spacetimes with finite-tension cosmic branes anchored on the boundary, and similarly
for spacetimes with boundary-anchored fixed-area surfaces. We hope to return to the
explicit construction of such actions in subsequent work.

It would also be interesting to explore other properties of fluctuations about holo-
graphic bulk saddles. In particular, we saw above that fluctuations smooth out the
classically-sharp RT phase transition of the entanglement entropy into a smooth crossover.
But in addition to this entropy, RT phase transitions also control the size and shape of the
bulk entanglement wedge that can be recovered from a given boundary region R. Fluctu-
ations in bulk geometry should thus play a key role in smoothing out such transitions in
the bulk reconstruction map. Indeed, a natural extrapolation of our use of the diagonal
approximation in section 3 would be to also assume that we may approximate the bulk
reconstruction map at any Ā1 − Ā2 by using ρD from (3.5), and taking the map to be the
standard one determined by min(A1, A2) for each term in the sum over fixed-areas A1, A2.
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This seems like to follow from the diagonal conjecture for entropy via a suitable general-
ization of the arguments in [20] and [21], though we leave exploration of the implications
this conjecture and full justification for future work.
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A Action calculations for one interval case

This appendix derives the Euclidean action (4.13) for the one-interval case. The action
contains three parts: the Einstein-Hilbert term, the Gibbons-Hawking term and the coun-
terterms. The action also depends on the choice of cutoff δ introduced in section 4.

While one could calculate the bulk action using the metric (4.2), it turns out to be
easier to use the cylindrical coordinates in which the metric takes the form

ds2 = (1 + r2)dx2 + dr2

1 + r2 + α2r2dφ2 (A.1)

Our cutoff spacetime is then bounded by the extremal surfaces x = −1
2αL0 and x =

1
2αL0, which in the Poincaré ball coordinates are anchored to the boundary cutoff surfaces
described in section 4. In order to arrive at a description where the coordinate ranges are
independent of α, we introduce x̃ = x/α ∈ [−L0/2, L0/2] which yields

ds2 = dr2

1 + r2 + α2
[
(1 + r2)dx̃2 + r2dφ2

]
. (A.2)

The metric (A.2) can be written in the Fefferman-Graham form by defining

z := 2
α

1
r +
√

1 + r2
, (A.3)

which yields
ds2 = 1

z2

(
dz2 + (1 + α2z2/4)2dx̃2 + (1− α2z2/4)2dφ2

)
. (A.4)

Here z = 0 is the AdS boundary and z = 2/α is the φ-axis. The associated boundary
metric is just a cylinder of length L0 and circumference 2π. For convenience, we may now
identify the extremal surfaces x̃ = ±L0/2 so that the boundary becomes a torus. While
actions I computed in this conformal frame may differ from those computed in the round
conformal frame, the difference arises only from the conformal anomaly. Since the anomaly
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is the same for each state (i.e., for each α), this contributes only an overall normalization
constant (which might depend on δ and λ) to our probabilities P (α) ∼ e−I , and in any
case the normalization must be later fixed to yield

∫
dαP (α) = 1.

We are thus free to use the above toroidal frame for any value of λ. The action consists
of an Einstein-Hilbert term (with a cosmological constant), a Gibbons-Hawking term, and
a counter-term. Since R− 2Λ = −4 + 16πµGδ(xµ−xµstring), the Einstein-Hilbert term may
be further divided into two parts. The contribution from string itself is clearly

Istring = −µαL0 = (α− 1)αL0
4G . (A.5)

Since a radial cutoff at z = ε yields r = 1
αε(1−α

2ε2/4 +O(ε4)), the Einstein-Hilbert (with
cosmological constant) contribution from the region away from the string is

IEH1 = − 1
16πG

∫
d3x
√
g(−4)

= αL0
2G

∫ r(ε)

0
αrdr = α2L0

4G

( 1
α2ε2

− 1
2

)
.

(A.6)

To calculate the Gibbons-Hawking term, we first need to calculate the extrinsic curvature
on the surface r = r(ε). The unit normal to that surface is

nµ∂µ =
√

1 + r2∂r, (A.7)

so the trace of the extrinsic curvature is

K = nρ∂ρ ln√g + ∂ρn
ρ

=
√

1 + r2∂r ln(αr) + ∂r
√

1 + r2 = 2 +O(r−4) = 2 +O(ε4)
(A.8)

Since a constant r surface has area 2πα2L0r
√

1 + r2 = 2πα2L0r
2√1 + r−2 = 2π

ε2 L0 +O(ε2),
the Gibbons-Hawking term is

IGH = − 1
8πG

∫
d2x
√
hK

= − L0
2Gε2 +O(ε2),

(A.9)

where
√
h is the area element of the induced metric on the surface r = constant. Finally,

the counterterm is
ICT = 1

8πG

∫
d2x
√
h

= L0
4Gε2 +O(ε2).

(A.10)

Summing these terms and taking ε→ 0 gives the total action (4.13).
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