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1 Introduction

BV formalism is a generalization of the BRST formalism, based on the mathematical
theory of odd symplectic supermanifolds. In this formalism the path integral is interpreted
as an integral of a density of weight 1/2 over a Lagrangian submanifold. It turns out that
this “standard” formulation is not sufficient to describe string worldsheet theory. One has
to also consider integration over families of Lagrangian submanifolds. Indeed, the idea
of [1–3] was to interpret integration over the worldsheet metrics as a particular case of
integration over the space of gauge fixing conditions. Varying the worldsheet metric is a
particular case of varying the Lagrangian submanifold. Taking into account the worldsheet
diffeomorphism invariance requires an equivariant version of this integration procedure.
(In a sense, worldsheet metric is not necessarily a preferred, or “special”, object. Varying
the worldsheet metric is just one way to build an integration cycle, there are others. The
worldsheet diffeomorphisms, however, are special.)

The construction of equivariant form involves a map of some differential graded Lie
algebra (DGLA) Dg into the algebra of functions on the BV phase space of the string
sigma-model. To the best of our knowledge, Dg was first introduced, or at least clearly
presented, in [4]. Here we will rederive some constructions of [2, 3] using an algebraic
language which emphasizes the DGLA structure, and apply some results of [4] to the study
of worldsheet vertex operators. In a sense, Dg is a “universal structure” in equivariant
BV formalism, i.e. the “worst-case scenario” in terms of complexity. The construction of
Dg is a generalization of the construction of the “cone” superalgebra Cg (which is called
“supersymmetrized Lie superalgebra” in [5]).

We will now briefly outline these constructions, and the results of the present paper.
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1.1 The cone of Lie superalgebra

For every Lie superalgebra a, we can define a DGLA Ca (the “cone” of a) as follows. We
consider vector superspace a as a graded vector space, such that the grade of all elements is
zero. Then, we denote sa the vector space a with flipped statistics at degree −1.1 Consider
a graded vector space:

Ca = a ⊕ sa (1.1)

where a is at grade zero, and sa at grade −1. (The letter s means “suspension”, the
standard terminology in linear algebra.)

The commutator is defined as follows. The commutator of two elements of a ⊂ a⊕ sa
is the commutator of a, the commutator of two elements of sa is zero, sa ⊂ a ⊕ sa is an
ideal, the action of a on sa corresponds to the adjoint representation of a. The differential
dCa is zero on a and maps elements of sa to the elements of a, i.e.: dCa(sx) = x.

This construction has an important application in differential geometry. If a acts on a
manifold M , then Ca acts on differential forms on M . The same applies to supermanifolds
and pseudo-differential forms (PDFs) on M . The elements of a ⊂ a ⊕ sa act as Lie
derivatives. For each x ∈ a we denote L〈x〉 the corresponding Lie derivative. The elements
of sa ⊂ a⊕ sa act as “contractions”. For x ∈ a, the contraction will be denoted ι〈x〉. (We
use angular brackets f〈x〉 when f is a linear function, to highlight linear dependence on
x.) We have:

dι〈x〉 = L〈x〉 (1.2)
dL〈x〉 = 0

[L〈x〉,L〈y〉] = L〈[x, y]〉

1.2 Dg

The definition of Dg is similar to the definition of Cg. Essentially, we replace the commu-
tative ideal sg ⊂ Cg with a free Lie superalgebra of the linear space s−1Symm(s2g) where
Symm(s2g) is the space of symmetric tensors of s2g. Instead of defining the commutators
to be zero, we only require that some linear combinations of commutators are dDg-exact.
Eq. (1.2) is replaced with:

di(x) + 1
2[i(x), i(x)] = l〈x〉 (1.3)

dl〈x〉 = 0
[l〈x〉, l〈y〉] = l〈[x, y]〉

In particular, if i(x) is a linear function of x, then Dg becomes Cg. In this case, i(x)
becomes ι〈x〉 and l〈x〉 becomes L〈x〉. In general, i(x) is a nonlinear function of x (but
l〈x〉 remains linear). In section 3 we explain the details of the construction, and why it is
natural. We slightly generalize it, by allowing g to be a Lie superalgebra (while in [4] it
was a Lie algebra).

1In our conventions, “grade” corresponds to the “ghost number”; statistics is not grade mod 2.
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1.3 String measure

In BV formalism, to every half-density ρ1/2 satisfying the Quantum Master Equation cor-
responds a closed PDF on the space of Lagrangian submanifolds, which we denote Ω [2, 3].
Besides being closed, it satisfies the following very special property:

dι〈x〉 Ω = ι〈∆x〉 Ω (1.4)

where x ∈ a, a is the algebra of infinitesimal odd canonical transformations, and ∆ is some
differential on a, which is associated to the half-density ρ1/2. This form Ω is inhomogeneous,
i.e. does not have a definite rank. It is, generally speaking, a pseudo-differential form
(PDF). Otherwise, eq. (1.4) would not make sense. We rederive Ω and explain its meaning
as a Lie superalgebra cocycle in section 9.2.

1.4 Equivariant string measure

Let g ⊂ a be the algebra of vector fields on the worldsheet. In the BV approach to string
worldsheet theory, worldsheet diffeomorphisms are symmetries of ρ1/2, and therefore Ω is
g-invariant. We are interested in constructing the g-equivariant version of Ω. Generally
speaking, there is no good algorithm for constructing an equivariant PDF out of an invari-
ant PDF. But in our case, since Ω satisfies eq. (1.4), we can reduce the construction of
equvariant form to the construction of an embedding Dg→ a — see section 5.

1.5 Vertex operators

Consider deformations of Ω. In string theory context they are called “vertex operators”.
It is useful to consider deformations which break some of the symmetries. Typically, we
insert some operators at some points on the wordsheet, breaking the diffeomorphisms down
to the subgroup preserving that set of points. This is the “unintegrated vertex operator”.
Then, there exists an averaging procedure which restores the symmetry group back to all
diffeomorphisms. The result of this averaging is effectively an insertion of “integrated vertex
operator” which preserves all the diffeomorphisms. This relation between unintegrated and
integrated vertex operators is important in string theory.

As we show in section 11, this averaging procedure requires an action of Dg. Just to
define the action of symmetries, we only need l〈x〉. But the averaging procedure, which is
needed to compute string amplitudes, does involve i(x). In previously studied cases, such
as bosonic or NSR string, Dg reduces to Cg, and i(x) is a very simple expression. It is
basically the contraction of x with the ghost antifield,

i(ξ) =
∫
c?αξ

α (1.5)

using the notations of [3] (see also section 3.4). The averaging procedure consists in this
case of simply removing the ghost fields from the vertex, and then integrating over the
insertion point. In section 11 we derive the general formula, which is rather nontrivial and
uses some intertwining operator constructed in [4].

At this time, we do not have concrete examples of string worldsheet theories where Dg
would not enter only through the projection to Cg. It is likely that pure spinor superstring
in AdS background is an example, but we only have a partial construction [6].
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1.6 Previous work

Previous work on equivariant BV formalism includes [7–14]. Similar algebraic structures
appeared recently (in a different context?) in [15] and references therein.

2 Notations

When a function f(x) depends on x linearly, we will write:

f〈x〉 instead of f(x) (2.1)

to stress linearity. The cone of the Lie superalgebra g is:

Cg = g
→
⊕ sg (2.2)

where
→
⊕ stands for semidirect sum of Lie superalgebras, with arrow pointing towards the

ideal, and s is suspension, of degree −1. (We consider g as a graded vector space, all
having degree zero, then sg all has degree −1.)2 Throughout the paper we will follow the
notations of [16]. From a vector space V over a field K (for us K = R) we construct an
algebra A, which consists of tensors of V modulo some quadratic relations R ⊂ V ⊗V . The

coalgebra A
·
| consists of tensors of sV , such that the tensor product of any pair of neighbor

V fall into s2R. The cobar construction of A
·
| is denoted Ω

(
A
·
|
)
.

One motivation for using the formalism of quadratic algebras is technical, as it auto-
mates keeping track of signs. We will translate into “more elementary” language of [4] in
section 3.3.

PDF = pseudo-differential form.
Hyperlinks to web content are highlighted blue.

3 Dg

3.1 Definition of Dg

As far as we know, Dg was introduced in [4], in the context of current algebras. We will
now present it in the language of quadratic algebras.

3.1.1 Supercommutative algebra and its dual coalgebra

Let V be a super linear space, and T a(V ) be the tensor algebra generated by V :

T a(V ) =
⊕
n

V ⊗n (3.1)

Here the upper index a implies that we consider tensors as forming an algebra. Let A
be the free super-commutative algebra generated by V . We define it as the subspace of

2It may seem strange to assign degree −1 to s, instead of degree +1. In string theory context, we want
the grade to be the ghost number. At the same time, we do not want to replace s with s−1, because we
want to agree with the notations of [16].
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T a(V ) consisting of symmetric tensors. (To define the structure of algebra, we notice
that this subspace is isomorphic to the factorspace by quadratiic relations of A, which are
antisymmetric tensors in V ⊗ V .)

Then, the dual coalgebra A
·
|, by definition, the subspace of symmetric tensors in the

tensor coalgebra:

A
·
| ⊂ T c(sV ) =

⊕
n

(sV )⊗n (3.2)

(Here the upper index c means that we consider it as a coalgebra.)
For example, let a ∈ V, b ∈ V be even and ψ ∈ V, η ∈ V be odd. The following tensors

belong to A:
a⊗ b+ b⊗ a , a⊗ ξ + ξ ⊗ a , ξ ⊗ η − η ⊗ ξ (3.3)

The bar construction is:

BA = T c(sA)
dB(sx⊗B sy) = (−1)x̄sxy

The subspace A
·
| ⊂ BA is annihilated by dB because of relations of A. In particular, the

following are elements of A
·
|:

sa⊗ sb− sb⊗ sa , sa⊗ sψ + sψ ⊗ sa , sψ ⊗ sη + sη ⊗ sψ (3.4)

These are symmetric tensors in sV .

To summarize, if A is the algebra of symmetric tensors in V , then A
·
| is the coalgebra

of symmetric tensors in sV .

3.1.2 Case of V = sg

Let g be a Lie superalgebra. We consider it as a graded Lie superalgebra, with all elements
having grade zero. Let us apply the construction of section 3.1.1 to V = sg.

Let A be the free commutative superalgebra generated by V , and A
·
| its Koszul dual

coalgebra:

A ⊂ T a(sg)

A
·
| ⊂ T c(s2g)

At this point, we consider sg only as a supercommutative algebra. The Lie algebra structure
on g is forgotten.

Let us consider the cobar construction of A
·
|:

Ω
(
A
·
|
)

= T a
(
s−1A

·
|

)
(3.5)

– 5 –
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Now the index a in T a means that we consider tensors as forming an algebra, the free alge-

bra. The overline over A
·
| means that we remove the counit, see [16] for precise definitions.

We actually only need a subspace:

FreeLie
(
s−1A

·
|

)
⊂ Ω

(
A
·
|
)

(3.6)

which is generated by commutators. This is a free Lie superalgebra. Consider the natural
twisting morphism

α : A
·
| → Ω

(
A
·
|
)

(3.7)

(which is denoted ι in chapter 2 of [16], but we reserve ι for contraction of a vector field into

a form). Its image belongs to s−1A
·
| ⊂ FreeLie

(
s−1A

·
|

)
. It satisfies the Maurer-Cartan

equation; using the notations of chapter 2 of [16]:

dΩα+ α ∗ α = 0 (3.8)

where dΩ is the differential on Ω
(
A
·
|
)

induced by the coalgebra structure on A
·
|. Since A

is a supercommutative algebra, dΩ

(
s−1A

·
|

)
actually belongs to the subspace:

(
s−1A

·
|

)
∧
(
s−1A

·
|

)
⊂
(
s−1A

·
|

)
⊗
(
s−1A

·
|

)
(3.9)

This implies that dΩ preserves the subspace:

FreeLie
(
s−1A

·
|

)
⊂ Ω

(
A
·
|
)

(3.10)

(Indeed, the H0 of the cobar complex is A, and A is supercommutative; dΩ “kills the
commutator”.) This means that we may write 1

2 [α ∗, α] instead of α ∗ α.

To summarize, FreeLie
(
s−1A

·
|

)
with dΩ is a differential graded Lie superalgebra.

3.1.3 Definition of Dg

Let us consider a larger space:

Dg = g
→
⊕ FreeLie

(
s−1A

·
|

)
(3.11)

Here
→
⊕ stands for semidirect sum of Lie superalgebras, with arrow pointing towards the

ideal. The embedding of g into Dg as the first summand will be denoted l:

l : g→ Dg (3.12)

– 6 –
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Lie superalgebra structure on Dg. We define the commutator of two elements of Dg
as follows:

• The commutator of two elements of FreeLie
(
s−1A

·
|

)
is the commutator of the free

Lie algebra.

• The commutator of two elements of g is the commutator of g.

• The commutator of elements of g and elements of FreeLie
(
s−1A

·
|

)
corresponds to

the natural action of g on A
·
|.

Differential d′ of Dg. There is a natural projection:

π : A
·
| → s2g (3.13)

annihilating all tensors with rank ≥ 1 (i.e. kerπ =
(
A
·
|
)≥1

). We define a differential d′ on

g
→
⊕ FreeLie

(
s−1A

·
|

)
, in the following way.

• We postulate that the action of d′ on g (the first term in eq. (3.11)) be zero:

d′|g = 0 (3.14)

• It is enough to define the action of d′ on s−1A
·
| ⊂ FreeLie

(
s−1A

·
|

)
. We put:

d′|
s−1A

·
|

= s−1 ◦ π : s−1A
·
| → g (3.15)

We then extend eqs. (3.14) and (3.15) to the differential d′ of g
→
⊕ FreeLie

(
s−1A

·
|

)
.

We consider g
→
⊕ FreeLie

(
s−1A

·
|

)
with the differential dΩ+d′ which will be called dDg:

dDg = dΩ + d′ (3.16)

The nilpotence of dDg follows from the fact that dΩ anticommutes with d′:

d′dΩ + dΩd
′ = 0 (3.17)

This is proven in section A.2.

– 7 –
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3.2 Representation as vector fields

Consider the cone of our free Lie algebra:

C = C

(
FreeLie

(
s−1A

·
|

))

L : FreeLie
(
s−1A

·
|

)
−→ C

(
FreeLie

(
s−1A

·
|

))

ι : FreeLie
(
s−1A

·
|

)
−→ C

(
FreeLie

(
s−1A

·
|

))

and its universal enveloping algebra UC. The Maurer-Cartan eq. (3.8) implies:

(dC + dΩ) exp(−ι ◦ α) = exp(−ι ◦ α)(dC + dΩ + L ◦ α) (3.18)

This is an equation in the completion of Hom
(
A
·
| , UC

)
. Let M be some supermanifold,

and Vect(M) the algebra of vector fields on it. Suppose that we are given a map of linear
spaces:

s−1A
·
| → Vect(M) (3.19)

Such a map defines a representation of C in the space of pseudo-differential forms (PDFs)
on M . We want to project eq. (3.18) on the space of PDFs on M . It is not possible to do
directly, because we do not require that dΩ act on PDFs. Instead, we will use the following
version of eq. (3.18):

dM exp(−ι ◦ α)ω = exp(−ι ◦ α)(dM + ι ◦ (dΩα) + L ◦ α)ω (3.20)

ω ∈ Hom(A
·
|,Fun(ΠTM))

for all ω ∈ Hom(A
·
|,Fun(ΠTM)).

3.3 Simpler notations

For us V = sg, and A
·
| is the coalgebra of symmetric tensors in s2g. Therefore, the space

Hom
(
A
·
|, L

)
can be thought of as the space of formal Taylor series of functions on the

superspace s2g with values in a linear superspace L. The subspace Hom
((

A
·
|
)n

, L

)
,

where
(
A
·
|
)n

consists of rank n tensors, is the space of n-th coefficients of the Taylor

series. In particular, we interpret Hom(A
·
|,Fun(ΠTM)) as the space of functions on the

supermanifold s2g×ΠTM :

Hom
(
A
·
|,Fun(ΠTM)

)
' Fun(s2g×ΠTM) (3.21)

– 8 –
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where ' means that we are not being rigorous. We ignore the question of which functions
are allowed, i.e. do not explain the precise meaning of Fun(. . .).

Let {ea} denote some basis in s2g, and {F a} the dual basis in the space s−2g∗ of linear
functions on g:

F a ∈ Hom(s2g,K) for a ∈ {1, . . . , dimg} (3.22)

In this language:

α=F a1 · · ·F an s−1(ea1⊗·· ·⊗ean)

T (a1...an)dΩs
−1(ea1⊗·· ·⊗ean) = (−)a1T (a1...an)s−1ea1⊗s−1(ea2⊗·· ·⊗ean)+

+(−)a1+a2T (a1...an)s−1(ea1⊗ea2)⊗s−1(ea3⊗·· ·⊗ean)+. . .

for T (a1...an) any tensor symmetric in a1 . . . an. To agree with [4], we will denote:

ia1...an = s−1(ea1 ⊗ · · · ⊗ ean)
i(F ) = α = F a1 · · ·F ania1...an (3.23)

l〈F 〉 = F aea where ea ∈ g ⊂ g
→
⊕ FreeLie

(
s−1A

·
|

)
(3.24)

Here the notation l〈F 〉 agrees with eq. (3.12).

3.4 Ghost number

In our notations, if X has ghost number n then sX has ghost number n − 1. In other
words, s lowers ghost number. In particular, the cone of the Lie superalgebra g is:

Cg = g
→
⊕ sg (3.25)

The generator ia1...an has ghost number −2n + 1. For example, in bosonic string theory,
ia corresponds to {c?,_} = ∂

∂c where c? is the BV antifield for ghost and {_,_} the odd
Poisson bracket. As a mnemonic rule, ia1...an has the same ghost number as {(c?)n,_}.

Elements of g (the first summand in g
→
⊕ FreeLie

(
s−1A

·
|

)
) all have ghost number zero.

3.5 Are F a Faddev-Popov ghosts?

As an ideal in Cg, the sg is Lie superalgebra with zero commutator. We can think of F a

as Faddeev-Popov ghosts of the BRST complex of sg. Since the commutator is zero, the
BRST differential annihilates F a.

But when we consider Dg and not Cg, the commutator [ia, ib] is nonzero; we consider
the free Lie superalgebra generated by ia. We might have introduced new Faddeev-Popov
ghost for nested commutators, and the corresponding BRST differential. But this is not
how the construction goes. Instead, we introduce new generators, such as iab, and the
differential dΩ such that diab = [ia, ib] etc. . This differential dΩ acts on elements of the Lie
superalgebra, not on Faddeev-Popov ghosts. This is not the Faddeev-Popov construction.

– 9 –
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Notice that ia1...an gets contracted with products of F a. In this sense, we may say that we
replace the Faddeev-Popov cAtA with nonlinear functions of c. We replace:

cAtA + 1
2f

C
ABc

AcB
∂

∂cC
(3.26)

with: ∑
F a1 · · ·F ania1···an + dΩ (3.27)

4 D′g

We need to also consider an extension of Dg, which we will call D′g, which is obtained by

replacing FreeLie
(
s−1A

·
|

)
with FreeLie(s−1A

·
|):

D′g = g⊕ FreeLie(s−1A
·
|) (4.1)

In the language of section 3.3, we allow i(0) 6= 0, but require:

dD′gi(0) + 1
2[i(0), i(0)] = 0

[x, i(0)] = 0 for all x ∈ g

5 Ansatz for equivariant form

Suppose that the Lie superalgebra g is realized as vector fields on some supermanifold M .
This means that pseudo-differential forms on M are a g-differential module (= represen-
tation of (Cg, dCg)). Consider the equation:

(d+ ι〈F 〉)ωC = 0 (5.1)
ωC ∈ Fun(s2g×ΠTM)

We can write such an equations in any g-differential moduleW , not necessarily PDFs onM .
Now suppose that W is a D′g-differential module (= representation of CD′g). Since

g is embedded into D′g, we can still write the Cartan eq. (5.1):

(d+ ι〈l〈F 〉〉)ωC = 0 (5.2)

where we use the notations of eqs. (3.12), (3.24).
Then, given any d-closed form ω, consider the following anstaz for a solution of eq. (5.1):

ωC = exp(ι〈i(F )〉)ω (5.3)

where i(F ) is from eq. (3.23). We will show that under certain conditions this substitution
solves eq. (5.1).

– 10 –
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6 CDg

6.1 D′g-differential modules

Suppose thatW is a D′g-differential module. This means that W is a representation of the
Lie superalgebra CD′g, with the differential dW which agrees with the differential dCD′g
of CD′g. (The differential of D′g, which we denote dD′g, does not participate in these
definitions, but will play its role.)

For every x ∈ D′g we denote L〈x〉 and ι〈x〉 the corresponding elements of CD′g, and
LW 〈x〉 and ιW 〈x〉 their action inW . With the notations of eqs. (3.12) and (3.24), eq. (3.20)
implies, for all ω ∈W :

(dW + ιW 〈l〈F 〉〉) exp (−ιW 〈i(F )〉)ω =
= exp (−ιW 〈i(F )〉)

(
dW + ιW 〈dD′gi(F )〉+ LW 〈i(F )〉

)
ω (6.1)

Let us consider eq. (6.7) in the special case when ω satisfies:

dW ω = 0 (6.2)(
(−)x̄+1ιW 〈dD′gx〉+ LW 〈x〉

)
ω = 0 (6.3)

for all x ∈ D′g. Then:

(dW + ιW 〈l〈F 〉〉) exp (−ιW 〈i(F )〉)ω = 0 (6.4)

Eq. (6.3) is a special requirement on W and ω. It is by no means automatic. Intuitively,
it may be understood as an interplay between dW and dD′g (and ω):

dW ιW 〈x〉ω = ιW 〈dD′gx〉ω (6.5)

We do not requite that dD′g act inW . Instead, we want eqs. (6.2) and (6.3) (or, equivalently,
eqs. (6.2) and (6.5)).

We will now consider two examples of D′g-differential modules.

6.2 Pseudo-differential forms (PDF)

Suppose that a supermanifold M comes with an infinitesimal action of D′g, i.e. a homo-
morphism:

r : D′g→ Vect(M) (6.6)

This is only a homomorphism of Lie superalgebras; we forget, for now, about the differential
dD′g.

We denote dM the deRham differential on M , and F = F aea. Then eq. (3.20) implies

(dM + ι ◦ F ) exp(−ι ◦ α)ω = exp(−ι ◦ α)(dM + ι ◦ (dD′gα) + L ◦ α)ω (6.7)

Let us consider eq. (6.7) in the special case when ω is closed:

dω = 0 (6.8)
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Consider a linear subspace Xω ⊂ Vect(M) consisting of all vectors v such that exits some
other vector dωv ∈ Xω satisfying:

− dι〈v〉ω = ι〈d{ω}v〉ω (6.9)

Suppose that ω is “non-degenerate” in the sense that the map from VectM to PDFs on M
given by v 7→ ιvω is injective. Then eq. (6.9) defines an odd nilpotent operator:

d{ω} : Xω → Xω (6.10)

Moreover, Xω is closed under the operation of commutator of vector fields. Indeed:

(−)v+w+1dι[v,w]ω = L〈[v, w]〉ω = (−)v+w+1dι〈[v, w]〉ω =
= (−)wL〈v〉ι〈d{ω}w〉ω + (−)vw+v+1L〈w〉ι〈d{ω}v〉ω =
= ι〈(−)w[v, d{ω}w] + (−)vw+v+1[w, d{ω}v]〉ω

Therefore (Xω, d{ω}) is a differential Lie superalgebra.
Suppose that:

im
(
r : D′g→ Vect(M)

)
⊂ Xω

d{ω}r(x) = r(dD′gx)

Then eq. (6.7) implies that:

(dM + ι ◦ F ) exp(ι ◦ α)ω = 0

In other words, ωC defined by the equation:

ωC = exp(ι ◦ α)ω (6.11)

is a cocycle in the Cartan’s model of equivariant cohomology.
Notice that apriori there is no action of dD′g on M , and we have never used it.

6.3 Special cocycles

Similarly, suppose that D′g is mapped into some Lie superalgebra a:

r : D′g→ a (6.12)

andW is a representation of a. Consider the Chevalley-Eilenberg cochain complex C(a,W )
of a with coefficients in W . The cone Ca acts on C(a,W ); for each x ∈ a we denote L〈x〉
and ι〈x〉 the action of the corresponding elements of Ca. Eq. (6.7) still holds, now ω is
a cochain:

ω ∈ C(a,W ) (6.13)

We are allowing arbitrary dependence of cochains on the ghosts of a, not only polynomials.
We will say that a cocycle ω is special if exists d{ω} satisfying eq. (6.9) for all v ∈ im(r).

Moreover, we require:
d{ω} ◦ r = r ◦ dD′g (6.14)
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6.4 A procedure for constructing r

We will now describe a procedure for constructing an embedding:

r : Dg→ a (6.15)

This is not really an “algorithm” because, as we will see, it may fail at any step.
Suppose that we can choose, for each a ∈ {1, . . . , dimg}, some φa ∈ a so that exist

φab ∈ a such that:

[φa, φb] = dφab

[φa, dφb] = fab
cφc

where d = dω and fab
c the structure constants of g. Then verify the existence of φabc

such that:

[φa, φbc] + [φab, φc] = dφabc

[φab, dφc] = fac
dφdb + fbc

dφad

The mutual consistency of these two equations follows from eq. (3.17). Then continue this
procedure order by order in the number of indices:

[φa1 , φa2...an ] + . . .+ [φa1...an−1 , φan ] = dφa1...an

[φa1...an−1 , dφb] = fa1b
cφca2...an−1 + . . .

If we are able to satisfy these equalities, order by order in the number of indices, then we
can put, in notations of eqs. (3.23) and (3.24):

r〈la〉 = dφa

r〈ia1...an〉 = φa1...an

7 Chevalley-Eilenberg complex of a differential module

In this section, there is no Dg nor D′g. We forget about them for now. As a preparation
for BV formalism, we will now discuss another formula similar to eq. (3.18).

Consider a Lie superalgebra a, its universal enveloping algebra Ua, and its cone Ca,

generated by L〈x〉 and ι〈x〉, x ∈ a. We consider the quadratic-linear dual coalgebra Ua
·
|.

The dual space
(
Ua

·
|
)∗

= Hom
(
Ua

·
|,K

)
is the algebra of functions of the “ghost variables”

cA. Following section 3.4 of [16], the Koszul twisting morphism is:

κ = cAeA : Ua
·
| → a ⊂ Ua (7.1)

We will study the properties of the following operator:

exp (ι ◦ κ) ∈ Hom
(
Ua

·
|, UCa

)
ι ◦ κ = cAι〈eA〉 = ι〈c〉
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Since a is quadratic-linear, Ua
·
| comes with the differential d

Ua
·
|
. The dual differential on(

Ua
·
|
)∗

is the Chevalley-Eilenberg differential d(0)
CE (the BRST operator):

d
(0)
CE =

(
d
Ua
·
|

)∗
= fABCc

BcC
∂

∂cA
(7.2)

Here d
Ua
·
|
is the “internal” differential of Ua

·
|; it comes from Ua being inhomogenous (i.e.

quadratic-linear and not purely quadratic algebra).
The Chevalley-Eilenberg complex C•(a,W ) with coefficients in W can be defined for

any a-module W . Consider the special case when W is a a-differential module W , i.e. a
representation of (Ca, dCa). We will denote LW 〈x〉, ιW 〈x〉 and dWCa the elements of End(W )
representing elements L〈x〉, ι〈x〉 of Ca and dCa. (Then W is also a representation of a,
where x ∈ a is represented by LW 〈x〉.)

Consider the Lie algebra cochain complex (= Chevalley-Eilenberg complex) of a with
coefficients in W . The differential is defined as follows:

dCE : Hom
(
Ua

·
|,W

)
→ Hom

(
Ua

·
|,W

)

dCE =
(
d
Ua
·
|

)∗
+ LW ◦ κ = d

(0)
CE + LW 〈c〉

d
(0)
CE = fABCc

BcC
∂

∂cA

All this can be defined for any a-module W . But when W is also an a-differential module
(i.e. a represenatation of (Ca, dCa)), then dCE and d(0)

CE are related:(
dWCa + dCE

)
exp ιW ◦ κ = (exp ιW ◦ κ)

(
dWCa + d

(0)
CE

)
(7.3)

where ιW ◦ κ = ιW 〈c〉. Notice that eq. (7.3) resembles eq. (3.18). Indeed, both κ of
eq. (7.1) and α of eq. (3.7) are maps from coalgebra to algebra, satisfying the Maurer-
Cartan (MC) equation. But the way MC equation is satisfied is different, because d(0)

CE acts

in the coalgebra (in Ua
·
|) while dΩ acts in the algebra (in Ω(A

·
|)), see section 3.5.

Since W and Ua
·
| are both Ca-modules, we can consider Hom(Ua

·
|,W ) a Ca-module,

as a Hom of two Ca-modules:

ι
(0)

Hom(Ua
·
|,W )
〈x〉 = ιW 〈x〉+ xA

∂

∂cA

L(0)

Hom(Ua
·
|,W )
〈x〉 = LW 〈x〉+ xAcBfCAB

∂

∂cC

Proposition 1.

ι
Hom(Ua

·
|,W )
〈x〉 (exp ιW ◦ κ) = (exp ιW ◦ κ) ι(0)

Hom(Ua
·
|,W )
〈x〉

L
Hom(Ua

·
|,W )
〈x〉 (exp ιW ◦ κ) = (exp ιW ◦ κ)L(0)

Hom(Ua
·
|,W )
〈x〉
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where

ι
Hom(Ua

·
|,W )
〈x〉 = xA

∂

∂cA

L
Hom(Ua

·
|,W )
〈x〉 = L(0)

Hom(Ua
·
|,W )
〈x〉

In other words,

both
(
L(0)

Hom(Ua
·
|,W )

, ι
(0)

Hom(Ua
·
|,W )

, dWCa + d
(0)
CE

)

and
(
L

Hom(Ua
·
|,W )

, ι
Hom(Ua

·
|,W )

, dWCa + dCE

)

define on Hom(Ua
·
|,W ) the structure of a differential a-module, and exp ιW ◦κ intertwines

them.

8 Integration measures from representations of Cg and Dg

8.1 PDFs from representations of Cg

If g acts on a manifold, then Cg acts in PDFs. More generally, Cg acts in cochains of
Chevalley-Eilenberg complexes of g.

Question: given some representation W of (Cg, dCg), can we map it to PDFs,
or to cochains?

8.1.1 Mapping to cochains

Proposition 2. Let W be a g-module, and I : W →W an intertwiner of g-modules:

I : W →W
satisfying: I ◦ dWCg = 0 (8.1)

(One may think of I as an “integration operation”.) Consider the subspace

ker d(0)
CE ⊂ Hom

(
Ug

·
|,W

)
(8.2)

Then operation I ◦ eιW ◦κ intertwines this subspace with the Chevalley-Eilenberg complex
C•(g,W):

I ◦ eιW ◦κ :
(
ker d(0)

CE , d
W
Cg

)
→
(
Hom

(
Ug

·
|,W

)
, dCE

)
(8.3)

Proof follows from eq. (7.3).

Therefore every w ∈ W defines an inhomogeneous Chevalley-Eilenberg cochain of g
with coefficients in W:

ψ〈w〉 = IeιW ◦κw
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The map I ◦ eιW ◦κ intertwines the action of Cg on ker d(0)
CE with the standard action of

Cg in cochains with coefficients in W — the (L(0)

Hom(Ub
·
|,W)

, ι
(0)

Hom(Ub
·
|,W)

) of proposition 1.

(This action does not use ιW〈x〉, generally speaking there is no such thing as ιW〈x〉. Our
W, unlike W , is just a g-module, not a differential g-module.)

8.1.2 Mapping to PDFs

Suppose that W happens to be a space of functions on some manifold M with an action
of G (the Lie group corresponding to g). In this case, every w ∈ W and a point m ∈ M
defines a closed PDF on G, in the following way:

Ω〈w〉(g, dg) =
(
Ie−ιW 〈dgg

−1〉w
)

(g.m) (8.4)

We will be mostly interested in the cases when this PDF descends to the G-orbit of m.
For example, consider the case when W is the space of PDFs on M (the same M)

and I is the restriction of a PDF on the zero section M ⊂ ΠTM . (Remember that PDFs
are functions on ΠTM . In this example, the operation I associates to every form its 0-
form component.) In this case, given a PDF on M , e.g. fµ(x)dxµ, our procedure, for each
x ∈ M , associates to it a PDF on G, which is just fµ(g.x)d(g.x)µ. If G acts freely, Ω〈w〉
will descend to a form on the orbit of x. This is just the restriction to the orbit of the
original form we started with.

As another example, consider g the Lie algebra of vector fields on some manifold N , and
W the space of PDFs on N . Let M be the space of orientable p-dimensional submanifolds
of N , and I the operation of integration over such a submanifold. Our construction maps
closed forms on N to closed forms on M .

8.2 PDFs from representations of Dg

An analogue of eq. (7.3) holds for Dg. It follows as a particular case from the results of [4]:

(dDg + dCE) Φ = Φ
(
dDg + d

(0)
CE

)
(8.5)

where Φ is:

Φ = P exp
∫ 1

0
Aτdτ

Aτdτ = d

du

∣∣∣∣
u=0

i(u dτ c+ (τ − τ2)c2)

Therefore, when W is a representation of Dg, we have an analogue of eq. (8.4), where I
should now satisfy I ◦ dWDg = 0:

Ω〈w〉 =
(
I Φ|c 7→dgg−1 w

)
(g.m) (8.6)

dΩ〈w〉 = Ω〈dWDgw〉
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9 BV

We will now apply the technique developed in the previous sections to the BV formalism.
Let a be the Lie algebra of functions on the BV phase space with flipped statistics.

Its elements are s−1f where f is a function on the BV phase space and s the suspension:

s−1f ∈ a (9.1)

The Lie bracket is given by the odd Poisson bracket.

9.1 Half-densities as a representation of Ca

The space of half-densities on the BV phase space is a representation of Ca:

dρ1/2 = −∆canρ1/2

ι〈s−1f〉ρ1/2 = fρ1/2

L〈s−1f〉ρ1/2 = (−)|f |∆can(fρ1/2)− f∆canρ1/2

We are now in the context of section 8.1. Now g is a, W is the space of half-densities,
dWCg is −∆can and W is Fun(LAG) — the space of functions on Lagrangian submanifolds.

9.2 Correlation functions as a Lie superalgebra cocycle

Correlation function defines a linear map:

Ua
·
| −→ Fun(LAG)

f1 • · · · • fn 7→
[
L 7→

∫
L
f1 · · · fnρ1/2

]
(9.2)

where • means symmetrized tensor product (examples of sign rules are in section 3.1.1).

Proposition 3. Eq. (9.2) defines an injective map from the space of half-densities to the
space of cochains of a with values in functionals on Lagrangian submanifolds; to every half-
density ρ1/2 corresponds a cochain given by eq. (9.2). This map is an intertwiner of the
actions of the differential Lie superalgebra Ca. In particular, if ρ1/2 satisfies the Quantum
Master Equation:

∆canρ1/2 = 0 (9.3)

then eq. (9.2) defines a cocycle of a with coefficients in the space of functionals on
Lagrangian submanifolds.

Proof follows from proposition 2.
The image of this map consists of the cochains satisfying the following locality property.

Given f1, . . . , fn, if for some i and j supp(fi)∩supp(fj) = empty set then c(f1•. . .•fn) = 0.
It is important for us, that this subset is preserved by the canonical transformations, i.e.
by the action of a on its cocycles.
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here F i(F ) l〈F 〉 r〈i(F )〉 r〈iaF a〉 r〈l〈F 〉〉
[4] t i(t) l(t)
section 4 of [2] h Φ(h)
section 6 of [3] ξ a(ξ) Φ〈ξ〉 ξ

Table 1. Summary of notations.

Cocycles with coefficients in Fun(LAG), defined by eq. (9.2), can be interpreted as
closed differential forms on LAG, by the construction of section 8.1.2. We take:

M = LAG (9.4)

I =
[
L 7→

∫
L∈LAG

_
]

(9.5)

10 Equivariant BV formalism

10.1 Equivariantly closed cocycle in the Cartan model

For all cocycles coming from half-densities, eq. (6.9) is satisfied with:

d{ω}f = ∆ρ1/2f

where ∆ρ1/2f = ρ−1
1/2∆can

(
fρ1/2

)
As in section 6.3, suppose that r is an embedding of D′g in a. Eq. (6.14) becomes
(cp. eqs. (3.23) and (3.24)):

∆ρ1/2r〈i(F )〉+ 1
2[r〈i(F )〉, r〈i(F )〉] = r〈l〈F 〉〉 (10.1)

[r〈l〈F1〉〉, r〈i(F2)〉] = d

dt

∣∣∣∣
t=0

r〈i(et[F1,_]F2)〉 (10.2)

where i(F ) and l〈F 〉 were defined in eqs. (3.23) and (3.24)

Then, equivariantly closed cocycle in the Cartan model is given by:

f1 • · · · • fn 7→
[
L 7→

∫
L
f1 · · · fner〈i(F )〉ρ1/2

]
(10.3)

Our notations here differ from our previous papers; r〈i(F )〉 was called Φ(F ) in section 4
of [2] and a(F ) in section 6 of [3]. See table 1 for the summary of notations.

10.2 Deformations

If r〈l〈F 〉〉 and r〈i(F )〉 solve eqs. (10.1) and (10.2) with some ρ1/2, then r〈l〈F 〉〉 and r〈i(F )〉−
f solve with efρ1/2. This allows us to assume, without loss of generality, that r〈i(0)〉 = 0,
i.e. to consider representations of Dg rather than D′g. Or, we can fix ρ1/2 = ρ

(0)
1/2 for some

fixed ρ(0)
1/2. Let us fix the half-density, delegating the deformations ρ1/2 into r〈i(0)〉.
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Consider the deformations of the embedding r : D′g → a keeping r〈l〈F 〉〉 fixed.3

Eq. (10.1) implies that a small variation δr〈i(F )〉 satisfies:(
∆ρ1/2 + [r〈i(F )〉,_]

)
δr〈i(F )〉 = 0

[r〈l〈F1〉〉, δr〈i(F2)〉] = d

dt

∣∣∣∣
t=0

δr〈i(et[F1,_]F2)〉

Those δr which are in the image of ∆ρ1/2 + [r〈i(F )〉,_] correspond to trivial deformations.
This means that the cohomologies of the operator dDg + [i(F ),_], considered in [4], in our
context compute infinitesimal deformations of the equivariant half-density.

11 Integrating unintegrated vertices

11.1 Integration prescription using Cg

Let us fix i(0) = 0, and consider r : Dg → a. In our discussion in section 10.2, we
assumed that deformations preserve the symmetries of ω, i.e. that f is g-invariant. In
string theory, it is useful to consider more general deformations breaking g down to a
smaller subalgebra g0. They are called “unintegrated vertex operators”. As their name
suggests, g-invariant deformations can be obtained by integration over the orbits of g. The
procedure of integration was described in [3]. It is a particular case of section 8.1, whereM
is now LAG — the space of Lagrangian submanifolds, and I the operation of integration
of half-density over a Lagrangian submanifold.

For this construction, we do not need the full r : Dg→ a, but only its restriction on
g ⊂ a:

l : g→ Dg
r ◦ l : g→ a

For v ∈ a, consider the deformations of ω of the following form:

δω = ι〈v〉ω (11.1)

In terms of half-densities:
δρ1/2 = vρ1/2 (11.2)

where v denotes (as in [3]) the BV Hamiltonian generating v.
The cone Cg acts on such deformations δρ1/2; the action of ι̂〈x〉, L̂〈x〉 and d̂Cg is:

ι̂〈x〉δω = −((ι ◦ r ◦ l)x)δω
L̂〈x〉δω = −((L ◦ r ◦ l)x)δω

d̂Cgδω = dδω (11.3)

3Notice that r〈l〈F 〉〉 describes the action of symmetries on the BV phase space. We do not want to
deform the action of symmetries.
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Therefore the construction of section 8.1, withM = LAG and I〈δω〉 =
[
L 7→

∫
L∈LAG fρ1/2

]
,

gives a closed form on G for every deformation of the form eq. (11.1):

Ω〈v〉 ∈ Fun(ΠTG)

Ω〈v〉 =
(
I exp(ι〈r〈l〈dgg−1〉〉〉) ι〈v〉ω

)
(gL) =

=
∫
gL

exp
(
r〈l〈dgg−1〉〉

)
vρ1/2

This is just a particular case of the general construction of section 9.2, eqs. (9.4), (9.5). We
restrict the general construction of Ω from all LAG to an orbit of G. In other words, we
consider not all odd canonical transformations, but only a subgroup G. But now we can
use G-invariance of ρ1/2 to pull back to a fixed L:

Ω〈f〉 =
∫
L

exp
(
r〈l〈dgg−1〉〉 ◦ g

)
(v ◦ g)ρ1/2 (11.4)

However eq. (11.4) is somewhat unsatisfactory. Although it is, actually, the integrated
vertex corresponding to v, this form of presenting it makes it apparently nonlocal on the
string worldsheet. We would want, instead, to replace, roughly speaking, ιL with Lι:

exp
(
ι〈r〈l〈dgg−1〉〉

) ?7→ exp
(
L〈r〈i(dgg−1)〉〉

)
(11.5)

We will now explain the construction.

11.2 Integration using Dg

11.2.1 Deformations as a representation of Dg

In deriving eq. (11.4) we have not actually used the representation of Dg, but only the
representation of g ⊂ Dg; we have only used l〈dgg−1〉 and never i(dgg−1). Notice, however,
that the whole Dg acts on deformations. (This is, ultimately, due to our requirement of
ρ1/2 being “equivariantizeable”, section 10.) Moreover, if we do not care about dDg, then
there are two ways of defining the action of just Dg. (It is easy to construct representations
of free algebras.) The first way is to use the embedding Dg L→ CDg. But this one does
not define the action of dDg.

There is, however, the second way, which defines the action of Dg with its differential
dDg. For δω = ι〈v〉ω or equivalently δρ1/2 = vρ1/2, we define:

l̂〈F 〉 v = [r〈l〈F 〉〉 , v]
î(F ) v = [r〈i(F )〉 , v]

d̂Dgδω = dδω (11.6)

To summarize, the space of deformations of ω can be considered as a representation of
(CDg, dCDg), or as a representation of (Dg, dDg). (But not of (CDg, dCDg, dDg) what-
ever that would be.) In both cases, the differential acts as ∆. That is to say, the dCDg
of (CDg, dCDg) acts as ∆, and the dDg of (Dg, dDg) also acts as ∆ — see eqs. (11.3)
and (11.6), respectively.

– 20 –



J
H
E
P
1
2
(
2
0
2
0
)
0
7
7

now dgg−1 0 ι〈r〈l〈dgg−1〉〉〉 L〈r〈ia(dgg−1)a〉〉
[4] θ t – I(θ)
section 12 of [3] c 0 ∆Ψ {Ψ,_}

Table 2. Summary of notations.

11.2.2 Averaging procedure using Dg

Now we can apply the construction of section 8.2. Eq. (8.6) gives:

Ω〈v〉 =
∫
gL

[(
P exp

∫ 1

0
Aτdτ

)
v

]
ρ1/2 (11.7)

where Aτdτ = d

du

∣∣∣∣
u=0

î(u dτ dgg−1 + (τ − τ2)(dgg−1)2)

For completeness, we compare the notations in table 2. There is no CDg in [4], only Dg.

11.3 Relation between two integration procedures

In the special case when Dg reduces to Cg (i.e. ia1...an = 0 for n > 1), it was found in [3],
to the second order in the expansion in powers of dgg−1, that the two PDFs are different
by an exact PDF on G. It must be true in general.

11.4 Is integration form base with respect to G0?

Let G0 ⊂ G be the stabilizer of v. Eq. (11.4) is not base with respect to g0 = LieG. But
it can be made base, provided that one can extend v to the solution of the equation:

∆v(F0) + [i(F0), v(F0)] = 0
d

dt

∣∣∣∣
t=0

v(et[ξ,_]F0) = [ξ, v(F0)]

v(0) = v

Then, the equivariant version of eq. (11.4) is:

Ω =
∫
L

exp
(
r〈l〈dgg−1〉+ i(F0)〉 ◦ g

)
(v(F0) ◦ g)ρ1/2 =

=
∫
L

d

dε

∣∣∣∣
ε=0

exp
[
r〈l〈dgg−1〉〉 ◦ g +

(
r〈i(F0)〉+ εv(F0)

)
◦ g
]
ρ1/2

and one can obtain a base form by choosing a connection.
We do not know the equivariant version of eq. (11.7). In the pure spinor formalism, it

is very likely that the form given by eq. (11.7) is already base, because unintegrated vertex
operator does not contain derivatives [17].

Notice that the PDF defined in eq. (11.7) does not, generally, speaking, descend to the
orbit of L. In computing the average, the integration variable is g, not gL. However, the
integral does not depend on the choice of L in the orbit.
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A Nilpotence of dDg

A.1 Commutator of Dg

The commutator of Dg was defined in section 3.1.3. In particular, when considering a

commutator of an element of g and an element of FreeLie
(
s−1A

·
|

)
, the following descrip-

tion is useful. Consider the UCg — the universal enveloping algebra of Cg, and its dual

coalgebra UCg
·
|:

UCg
·
| = T c (s(g⊕ sg)) (A.1)

Consider the projector p:

p : UCg
·
| → sg⊕A

·
| (A.2)

which is identity on sg⊕A
·
| ⊂ T c (s(g⊕ sg)) and zero on all tensors of rank ≥ 2 containing

at least one sx ∈ sg. This induces a map from Ω1
(
UCg

·
|
)
to Dg which we also denote p:

Ω1
(
UCg

·
|
)

= s−1UCg
·
| p−→ g⊕ s−1A

·
| ⊂ Dg (A.3)

For any Lie superalgebra a let γ denote the commutator map:

γ : a ⊗ a→ a
γ(v ⊗ w) = [v, w]

In case of a = Dg, we can consider Dg⊗Dg as a subspace in Ω2(UCg
·
|) using the projector

p of eq. (A.3):

p⊗ p : Ω2(UCg
·
|)→ Dg⊗Dg (A.4)

Then, the commutator on Dg satisfies:

γ (p⊗ p) d
Ω(UCg

·
|)
s−1b = −s−1d

UCg
·
|
b

where b = sξ ⊗ a+ (−)(ξ+1)aa⊗ sξ ∈ UCg
·
|

ξ ∈ g , a ∈ A
·
|

A.2 Nilpotence of dDg

We will now prove that d′ anticommutes with dΩ:

d′dΩ + dΩd
′ = 0 (A.5)

When b ∈
(
A
·
|
)(≥2)

, by definition d′s−1b = 0. We must therefore check that d′dΩs
−1b = 0:

d′dΩs
−1b = γ(p⊗ p)d

Ω(UCg
·
|)
s−1dCgb = −s−1d

UCg
·
|
dCgb = s−1dCgd

UCg
·
|
b = 0 (A.6)
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