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1 Introduction

A double copy relation broadly defined is a method by which the scattering amplitudes of a
given theory — such as Einstein gravity — can be defined equivalently as a convolution of
two scattering amplitudes of some other quantum field theory, such as Yang-Mills. These
relations often generate considerable interest due to the perspective they provide on the
structure of gravitational amplitudes. The most famous double copy relation is that of
Kawai, Lewellen and Tye [1], which is a statement about the relationship borne by gravity
amplitudes to gluon amplitudes at tree level. The relation is expressed by the formula,

AGR(1, . . . , n) =
∑
α,β

AYM (α)S[α|β]AYM (β). (1.1)

The notation is by now quite standard, but we will review it for completeness. AGR and
AYM are the scattering amplitudes for gravity and Yang-Mills at tree level, here evaluated
for n particles. The Yang-Mills amplitudes are colour ordered, denoted by α and β. The
sum is over (n− 3)! colour orderings, known now as a Bern-Carrasco-Johansson basis [2].
The matrix S[α|β] is the KLT kernel, which fuses together the gauge theory amplitudes to
return the gravity amplitude.

One of the most interesting lines of research in the modern study of scattering ampli-
tudes deals with the subtleties of the KLT kernel, which enjoys several interesting mathe-
matical properties. The kernel can be computed as the inverse of a matrix whose entries
are m(α|β), the double-partial ordered amplitudes of a theory known as biadjoint scalar
field theory. This fact was originally discovered by Cachazo, He and Yuan [3], and is most
easily derived in their scattering equations formalism [4–9]. Indeed, a particular upshot of

– 1 –



J
H
E
P
1
2
(
2
0
2
0
)
0
5
7

this formalism is the trivialization of the KLT relations as a simple fact of linear algebra.
This formalism, now known as the CHY formalism, inspired a growing understanding of
scattering amplitudes in quantum field theories as essentially geometric and topological
objects. Two key aspects in this study are the theory of positive geometries and polytopes
and the theory of twisted intersection numbers.

The positive geometry program, which found its inception in the work of Arkani-Hamed
et al. [10, 11] provided a new understanding of scattering amplitudes in biadjoint theories
as the volume of a fairly special geometric object, known as the associahedron. In more
technical terms, the associahedron An of dimension (n− 3) admits a convex embedding in
the space Kn of Mandelstam invariants for n massless particles. A differential form Ω of
top degree, known in the literature as a canonical form, is fixed uniquely upto a prefactor
by simply demanding a logarithmic divergence as the boundaries of the associahedron are
approached. The residue of this form on the associahedron can be shown to be equal to
the scattering amplitude of the φ3 at tree level,

ResAnΩn = mφ3(1, . . . , n). (1.2)

The geometric structure of the associahedron and the analytic structure of the canonical
form trivialise quantitative features of the scattering amplitude, such as locality and unitar-
ity. The local structure of the amplitude is fixed by the logarithmic divergence condition,
while unitarity is assured at tree level by the boundary structure of the associahedron. Any
boundary B of the associahedron factors into two lower point associahedra An1×An2 . Ap-
proaching the boundary amounts to a unitarity cut, and the residue of the canonical form
factorizes accordingly, encoding the factorization of the scattering amplitude, implying
unitarity. A polytope equipped with a canonical form is known as a positive geometry.

The associahedron encodes the amplitudes of theories with cubic vertices due to its
simple combinatorial definition. The vertices of an associahedron An are in one to one
correspondence with the triangulations of an n-gon. A given triangulation of an n-gon can
be dualized into a trivalent tree, which can be interpreted as a Feynman diagram for a
cubic theory. Accordingly, it becomes intuitively clear why the associahedron encodes so
naturally the analytic structure of scattering amplitudes for such theories.

This approach to understanding scattering amplitudes has enjoyed quick progress over
the last few years. In particular, much work has gone into trying to extend these ideas to
theories which have more complicated interactions. The first in this line of work was due to
Banerjee, Laddha and Raman [12], in which it was found that a class of polytopes known
as Stokes polytopes furnish the positive geometries of quartic scalar theories at tree level
in the planar limit. Stokes polytopes are convex polytopes whose vertices are in one to one
correspondence with quadrangulations of an n-gon. They differ qualitatively from associa-
hedra in that they are not unique for a given number of particles interacting. Even for 8
particles, there are two different types of Stokes polytopes, which give rise to partial am-
plitudes. The total amplitude is obtained by a sum over these partial amplitudes weighted
by factors determined entirely by the combinatorics of the Stokes polytopes. This picture
was extended to φp theories and to theories with generic interactions (see respectively [13]
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and [14]), and it was found that for all these theories, a large variety of polytopes collec-
tively known as accordiohedra played the role of the positive geometry. The accordiohedra
for a large class of scalar theories at tree level have now been determined, studies of which
have led to a renewed interest in their geometric and analytic structures [15–17].

Accompanying this line of work nearly simultaneously was the application of a novel
class of mathematical objects known as twisted intersection numbers to the study of scat-
tering amplitudes. Originally, the techniques of twisted intersection theory were used to
study the KLT kernel in string theory [18], but have since been applied to general quantum
field theories [19], Feynman integrals [20–23] and other aspects of scattering amplitudes,
including recursion [24] and the double copy [25].

The essential data characterizing a twisted intersection theory is a one-form ω on
CPn with a collection of hyperplanes {H1, . . . ,HN} removed, with the property that it
diverges logarithmically as the hyperplanes are approached. The residue prescriptions
near these singularities encode kinematical information. Defining a quantum field theory
scattering amplitude now requires the definition of two forms φL and φR, which have middle
dimension (real dimension n). These forms however must be defined up to a cohomology
prescription, where the cohomology is now twisted by redefining the exterior derivative as
∇ω = d+ω∧. Now it can be shown that a pairing can be defined between two such forms.
For suitable choices of the forms and hyperplane arrangement, the scattering amplitudes
for an enormous class of quantum field theories can be obtained. Indeed, the CHY formula
is a special case of a twisted intersection number, in which the hyperplane arrangement
yields the moduli space of marked Riemann spheres. For an extensive review of methods
and formalism, the reader should consult [24].

One of the advantages of the method of twisted intersection numbers is the trivializa-
tion of identities such as the KLT relations, recasting them as statements of linear algebra.
These relations, known as the twisted Riemann period relations [26], can be stated as fol-
lows. Suppose we have two forms ϕ1 and ϕ2 belonging to the nth cohomology of ∇ω and
bases {φi} and {φ′i} of this cohomology group. The twisted intersection number 〈ϕ1, ϕ2〉
can be shown to satisfy,

〈ϕ1, ϕ2〉 = 〈ϕ1, φi〉(C−1)Tij〈φj , ϕ2〉, (1.3)

where the matrix Cij is the intersection matrix 〈φi, φ′j〉. Indeed, when the cohomology is
defined onM0,n and the basis of the cohomology class is chosen to be a Parke-Taylor basis,
the intersection matrix simply becomes the KLT kernel in field theory.

Now, given these two geometric approaches to scattering amplitudes, a natural question
to ask is whether or not the advantages of twisted intersection theory can be exploited by
the technology of polytopes. This question was addressed by the author for the case of φ4

theory and Stokes polytopes in [27], where the planar amplitudes in this theory were written
as intersection numbers, enabling an extension to generic kinematics as well. The extension
to all scalar theories was then carried out in [28], with Jha. Using this framework, the goal
of the present work will be to carry out a systematic study of the scattering equations for
generic scalar theories and provide a concrete realization of the twisted period relations for
the relevant polytopes as well.
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In order to study the twisted period relations for the polytopes controlling generic
scalar theories, known as accordiohedra, some relevant analytic data must first be secured.
In particular, the specific convex realizations of accordiohedra in CPn have to be under-
stood. The twist for accordiohedra, encoding kinematical information now play the role
of the scattering equations, the number of solutions of which determines the size of the
KLT matrix. The task of finding the KLT relations then devolves upon the definition of a
suitable basis of the cohomology and the computation of the intersection matrix of these
elements. To ensure that the context and motivations for these calculations are clear, we
carry out the analysis for most of the examples worked out in the literature so far, reviewing
most of the background material needed for the study.

Throughout the paper, we will only be dealing with scalar theories and won’t concern
ourselves with theories containing nontrivial kinematical numerators. It is important to
note then that what we are really doing is expanding scalar amplitudes into a so-called
Bern-Carrasco-Johansson basis. For the purposes of simplicity, we will continue to refer to
the expansions we will derive as KLT relations, but it should be kept in mind that we are
not yet dealing with theories with numerators.

Outline. In section 2, we review the construction of accordiohedra as hyperplane arrange-
ments in complex projective space. We explain how these polytopes encode kinematical
data by associating to these objects twist differential forms, which specify a cohomology
for each polytope. The dimensions of these cohomology groups are computed by finding
the number of zeroes of the twist, in the process providing generalizations of the scattering
equations of Cachazo, He and Yuan.

In section 3, we use the data derived in the section 2 to study the twisted Riemann
period relations for the intersection numbers of accordiohedra, focusing on one and two
dimensional examples.

In section 4, we conclude the paper by comparing and contrasting the results derived
here with the traditional KLT construction and lay out a number of directions for future
research.

Acknowledgments

The author thanks Jacob Bourjaily for his helpful comments on the draft and his contin-
ued interest and encouragement. The author also thanks Nima Arkani-Hamed, Freddy
Cachazo, Simon Caron-Huot, Alfredo Guevara, Raghav Govind Jha, Sebastian Mizera,
Seyed Faroogh Moosavian, Andrzej Pokraka and Jaroslav Trnka for comments on the draft
and discussions. This project has been supported by an ERC Starting Grant (No. 757978)
and a grant from the Villum Fonden (No. 15369).

2 Accordiohedra and scattering equations

In this section, we will present a generalization of the scattering equation formalism relevant
to the study of the amplitudes defined by accordiohedra. Much of the technical material of
this section has already appeared in previous works by the author (see [27] for applications
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Figure 1. Dissection (13, 36) of a hexagon and the dual Feynman diagram.

to Stokes polytopes and [28, 29] for elementary applications to accordiohedra). Accordingly,
the main goal of this section will be to provide a number of examples which have not yet
been considered or only received treatment in passing, providing a coherent synthesis of
existing techniques and setting the context for later sections.

2.1 Accordiohedra as hyperplane arrangements

Accordiohedra are polytopes whose vertices are defined in one to one correspondence with
given dissections of an n-gon. Such dissections can be mapped directly into Feynman dia-
grams of a corresponding quantum field theory. The canonical example considered in the
literature is the case of a hexagon dissected into two triangulations and one quadrangu-
lation. In the language of quantum field theory, such dissections are exactly dual to tree
level Feynman diagrams proportional to λ2

3λ4 in a theory with interactions λ3φ
3 +λ4φ

4. In
figure 1, this has been illustrated for the dissection (13, 36) (vertices are labelled starting
at the top left clockwise).

Given a collection of dissections of a given type, accordiohedra are defined for each
dissection separately, with the vertices being labelled by those dissections satisfying a
compatibility condition with the reference dissection. For a review of the details involved
and a number of examples, the reader may consult [14]. This procedure usually results in
several different types of accordiohedra for a given class of scattering amplitudes, which
must be appropriately summed over in order to produce the correct scattering amplitude.

One of the more mundane reasons why one would expect this to be the case can be
realized by a simple counting experiment. Consider the 6-particle scattering amplitude in
φ4 theory in the planar limit. Three possible scattering channels contribute to this process,
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Figure 2. Accordiohedra for 6-particle scattering in φ4. Reference dissections are on the left.

namely X14, X25 and X36.1 Since the process involves a single propagator, the positive
geometry is expected to be one dimensional. There exists no one dimensional polytope
with three vertices. Accordingly, it is more likely that specific subsets of the diagrams can
be arranged into positive geometries, the sum over which would be expected to yield the
amplitude. The three scattering channels each contribute one Stokes polytope. Each of
these is a line. These are illustrated in figure 2.

While the foregoing case furnishes the simplest of examples, accordiohedra can be
computed for arbitrarily complicated scattering processes. More to the point, since they
are convex polytopes (see [30] for more details), they admit realizations as hyperplane
arrangements. Correspondingly, twisted intersection theory may naturally be applied to
their study. In order to see how this works out for the 6-particle case, we note that each of
the accordiohedra can be realized as a line in CP1 by removing two distinct points p1 and
p2. Indeed, this is a hyperplane arrangement in one complex dimension.

Given a hyperplane arrangement {f1, . . . , fN} in CPn realizing an accordiohedron,
kinematical data is introduced into the discussion by defining a twist,

ω = Xf1d ln f1 + · · ·+XfN
d ln fN . (2.1)

The coefficients Xfi
are the planar Xij variables associated to the facet described by the

hyperplanes fi.We note parenthetically that the twisted differential ∇ω = d + ω∧ gives
1The notation used here is Xij = (pi + . . . + pj−1)2.
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rise to twisted cohomology classes, the homology duals of which can be recovered by the
Poincare duality. We will have occasion to use this fact soon.

The twist gives rise to a natural generalization of the scattering equations. Given the
foregoing twist, we have,

ω = ωx1dx1 + . . .+ ωxndxn (2.2)

where dxi are the inhomogeneous coordinates on CPn. The twist equations ωxi furnish the
analogue of the scattering equations for accordiohedra. To make contact with the original
idea of the scattering equations, we note that the scattering equations are essentially the
twist equations of associahedra, a fact proven in [18, 19].

With these basic points noted, our purpose in the rest of this section will be to write
down the scattering equations for a number of accordiohedra and compute the number of
solutions for each system. The data provided in this section will then be used to generalize
the KLT relations to accordiohedra in the next section.

2.2 One dimensional polytopes

6 particles in φ4 theory. For the case of 6-particle scattering in φ4 theory, there is a
single reference dissection, namely (14), meaning all other dissections can be obtained by
cyclic permutations thereof. Accordingly, we have a single accordiohedron to think of —
the line with vertices labelled by (14) and (36). This can be realized as the arrangement
A(14) = CP1 − {0, 1} with the twist,

ω14 =
(
X14
x
− X36

1− x

)
dx. (2.3)

The scattering equation,
X14
x
− X36

1− x = 0 (2.4)

has a single solution. This may be seen from the fact that this arrangement has one bounded
chamber, namely the line between 0 and 1. We remark here that there is a hyperplane at
x = ∞ as well, with residue −X14 − X36. This point will come up when we discuss the
KLT relations in later sections. Finally, we note,

dimH1
ω(14)

(A14) = 1. (2.5)

Indeed, we have the same result for the dissections (25) and (36).

5 particles in φ3 + φ4 theory. We now consider 5-particle scattering in φ3 +φ4 theory
with amplitudes having one cubic and one quartic vertex. At the planar level, there are
five diagrams, as shown in figure 3.

In the figure, the diagram to the left is (13), with the rest obtained by cyclic rotations.
As a result, we have here only one accordiohedron, corresponding to the reference (13), from
which the others may be easily inferred. This turns out to be the line, with the compatible
dissections being (13) and (26), which can be realized again by A(13) = CP1 − {0, 1} with
the twist,

ω(13) =
(
X13
x
− X26

1− x

)
dx. (2.6)

– 7 –



J
H
E
P
1
2
(
2
0
2
0
)
0
5
7

Figure 3. Planar Feynman diagrams for 5 particles in φ3 + φ4 theory.

Figure 4. Inequivalent diagrams for 8-particle scattering in φ4.

Once again, we see that the scattering equation has a single solution. Thus we have,

dimH1
ω(13)

(A13) = 1. (2.7)

It goes without saying that this result holds for the remaining dissections as well.

2.3 Two dimensional polytopes

8 particles in φ4 theory. We turn now to our first nontrivial example. In φ4, for
8-particle scattering, we need to consider quadrangulated octagons. There are two in-
equivalent classes of such quadrangulations, given in the diagrams in figure 4.

The diagram on the left is dissection (14, 58) and the diagram on the right is (14, 47).
It can be shown that all other planar diagrams for this process can be obtained by cyclic
permutations of one of these two diagrams. Now, we need the accordiohedra corresponding
to these two different dissections. Let us start with (14, 58). The accordiohedron for this
reference dissection is a square, as there are four quadrangulations of the 8-gon which are
compatible with this dissection. These are (14, 58), (14, 47), (38, 58) and (38, 47).

In figure 5, the accordiohedron has been represented in terms of the compatible dissec-
tions. The upper left vertex in the diagram is the dissection (14, 58). As a convex polytope,
this can be described by the following collection of hyperplanes,

f1 = 1− y
f2 = 1− x
f3 = 1 + y

f4 = 1 + x

(2.8)

in CP2. Now we come across the first nontrivial case in which the twist has to be properly
defined. The facets have to be brought in correspondence with the correct factorization
channels. From diagram 5, we can identify facets f1 through f4 with channels X14, X47,
X38 and X58 respectively, with the twist defined accordingly,

ω(14,58) = X14d ln f1 +X47d ln f2 +X38d ln f3 +X58d ln f4. (2.9)

– 8 –



J
H
E
P
1
2
(
2
0
2
0
)
0
5
7

Figure 5. Accordiohedron for dissection (14, 58).

The scattering equations can now be read off from the twist. We obtain

X14
1− y −

X38
1 + y

= 0 (2.10)

and
X47

1− x −
X58

1 + x
= 0. (2.11)

From the above equations, we can infer that again, we have a single solution to the
scattering equations. We can record this observation according to the formula

dimH2
ω14,58(A(14,58)) = 1. (2.12)

This is not especially surprising; a square is after all the product of two lines, each of which
has one solution. We remark parenthetically that this phenomenon more generally can be
stated as follows. Given a d = d1 + d2 dimensional accordiohedron AD factorizing into two
accordiohedra AD1 and AD2 of dimensions d1 and d2 respectively, we have the formula,

dimHd
ωD

(AD) = dimHd1
ωD1

(AD1)× dimHd2
ωD2

(AD2) (2.13)

which is simply a statement of the Künneth theorem combined with the fact that twisted
cohomology is supported on the middle dimension.

Now we deal with the second case — that of the dissection (14, 47). Here, the accordio-
hedron is a pentagon, with the vertices labelled by the quadrangulations (14, 47), (38, 47),
(36, 38), (16, 36) and (14, 16). This is illustrated in figure 6.

– 9 –
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Figure 6. Accordiohedron for dissection (14, 47).

The hyperplane arrangement furnishing this polytope in CP2 is,

f1 = 1− x
f2 = 1 + y

f3 = 2 + x

f4 = 2 + x− y
f5 = 2− y.

(2.14)

The twist capturing the correct kinematics is

ω(14,47) = X36d ln f1 +X16d ln f2 +X14d ln f3 +X47d ln f4 +X38d ln f5, (2.15)

which can be verified by inspection of figure 6. We now encounter the first genuinely
nontrivial scattering equations. They are as follows,

X36
1− x −

X14
2 + x

− X47
2 + x− y

= 0 (2.16)

and
X36

1 + y
− X47

2 + x− y
− X38

2− y = 0. (2.17)

Our task now is to determine the number of solutions for these equations. As it turns
out, the problem is actually computationally tedious. The Solve routine in Mathematica
may be employed, and this determines the existence of four solutions for generic kinematics.
A simpler method to do this however is to count the number of bounded chambers of the
arrangement. This can be done far more readily, and the answer agrees with the former
method. Thus, we note

dimH2
ω(14,47)

(A(14,47)) = 4. (2.18)

We note here that the euler routine in Macaulay2 may be used to similar effect. This will
prove useful when we consider three dimensional cases, where both of the previous methods
— the counting of bounded chambers and brute force solving prove to be prohibitive.
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Figure 7. Accordiohedron for dissection (13, 14). Figure 8. Accordiohedron for dissection (13, 15).

Figure 9. Accordiohedron for dissection (13, 36). Figure 10. Accordiohedron for dissection (13, 46).

Finally, before moving on to the next example, we point out that there are a total of
12 quadrangulations of the 8-gon. 4 of these give rise to square type accordiohedra and 8
give rise to pentagons.

6 particles in φ3 + φ4. The case of 6-particle scattering in φ3 + φ4 gives rise to a two
dimensional accordiohedron when the process involves two trivalent and one quartic vertex.
In this case, which was first studied in [14], it was found that there were four primitive
dissections, from which all of the others could be obtained by permutation. These are
(13, 14), (13, 15), (13, 36) and (13, 46).

The first three of these give rise to pentagons and the last one gives rise to a square.
Since the combinatorics are essentially identical to that of the previous section, we simply
list the accordiohedra in figures 7–10.

It should be clear from this that the hyperplane arrangements effecting these polytopes
are identical to the arrangements considered in the previous section. For the polytopes in
figures 7, 8 and 9, we can use the arrangement in (2.14) and for the polytope in figure 10, we
use arrangement (2.8). For the sake of completeness, let us list all the scattering equations
involved. For figure 7 we have,

ω(13,14),x := X26
1− x −

X13
2 + x

− X14
2 + x− y

= 0

ω(13,14),y := X35
1 + y

− X14
2 + x− y

− X24
2− y = 0.

(2.19)
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We have similarly for figure 8,

ω(13,15),x := X26
1− x −

X13
2 + x

− X15
2 + x− y

= 0

ω(13,15),y := X46
1 + y

− X15
2 + x− y

− X24
2− y = 0,

(2.20)

and for figure 9
ω(13,36),x := X24

1− x −
X13

2 + x
− X36

2 + x− y
= 0

ω(13,36),y := X15
1 + y

− X36
2 + x− y

− X26
2− y = 0.

(2.21)

Finally for figure 10 we have,

ω(13,46),x := X26
1− x −

X13
2 + x

= 0

ω(13,46),y := X35
1 + y

− X46
2− y = 0.

(2.22)

From these we infer the dimensions

dimH2
ω(13,14)

(A(13,14)) = dimH2
ω(13,15)

(A(13,15)) = dimH2
ω(13,36)

(A(13,36)) = 4 (2.23)

and
dimH2

ω(13,46)
(A(13,46)) = 1. (2.24)

2.4 Three dimensional polytopes

10 particles in φ4. The last case we consider is the scattering of 10-particles with quartic
interactions. This case is far more nontrivial than those considered till this point. For the
first time, we encounter three-dimensional accordiohedra, and the counting of the number
of solutions of the scattering equations becomes more involved. This case was originally
considered in [12] when Stokes polytopes were applied for the first time to scattering
amplitudes. In this section, we review the combinatorial details and provide precise convex
realizations of these polytopes and the relevant scattering equations. In this section, we
will omit the onerous details involving the vertices of the accordiohedra and only present
data about the facets.

For this scattering process, there are four classes of accordiohedra that appear. The
simplest, known as cube type, arises out of the quadrangulation (14, 510, 69), which has
been illustrated in figure 11.

The accordiohedron for this dissection has six facets, labelled by partial quadrangula-
tions (14), (510), (69), (310), (49) and (58), realized as a convex polytopes by the following
hyperplanes f1 through f6 in CP3

f1 = x− 3 f2 = y − 3
f3 = z − 3 f4 = x+ 2
f5 = y + 2 f6 = z + 2.

(2.25)

This arrangement is presented in figure 12.
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Figure 11. Dissection (14, 510, 69).

Figure 12. Accordiohedron for dissection (14, 510, 69).

The scattering equations are now just three copies of the scattering equation for a line,

ω(14,510,69),x := X14
x− 3 −

X310
x+ 2 = 0, (2.26)

ω(14,510,69),y := X510
y − 3 −

X49
y + 2 = 0 (2.27)

and
ω(14,510,69),z := X510

z − 3 −
X58
z + 2 = 0. (2.28)

The Künneth formula may be readily applied to see (trivially so) that,

dimH3
ω(14,510,69)

(A(14,510,69)) = 1 (2.29)

corresponding to one solution of the scattering equations.
The second type of accordiohedron is a three dimensional associahedron, arising from

three types of primitive quadrangulations, namely (14, 16, 18), (14, 16, 69) and (14, 49, 69).
The latter two are entirely analogous to the first case. Accordingly, we focus on the former
in this discussion. Diagramatically we have the quadrangulation shown in 13.

The facets of the accordiohedron generated by this dissection are 9 in number, and are
labelled by the partial dissections {14, 16, 18, 36, 58, 710, 38, 510, 310}. The corresponding
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Figure 13. Dissection (14, 16, 18).

Figure 14. Accordiohedron for dissection (14, 16, 18).

hyperplane arrangement {f1, . . . , f9} is as follows,

f1 = x− 4
f3 = z − 6
f5 = z − y − 6
f7 = z − x− 7
f9 = x+ 6

f2 = y − 6
f4 = y − x− 6
f6 = z + 3
f8 = y + 6

(2.30)

which yields figure 14.
The scattering equations for this arrangement are given as follows

ω(14,16,18),x := X14
x− 4 −

X310
x+ 6 −

X36
x+ 6− y −

X38
x− z + 7 = 0, (2.31)

ω(14,16,18),y := X16
y − 5 −

X510
y + 6 + X36

y − 6 + x
− X58
y − z + 6 = 0 (2.32)

and
ω(14,16,18),z := X18

z − 6 −
X710
z + 3 + X58

z − y − 6 + X38
z − x− 7 = 0. (2.33)

In order to find the number of solutions of this system of equations, two approaches may
be employed. One possible method is direct computation on Solve in Mathematica.
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Figure 15. Dissection (14, 47, 710).

This method however was prohibitive due to the CPU time required. A simpler approach
involves using the euler routine in the HyperplaneArrangements package in Macaulay2.
The Euler characteristic of this hyperplane arrangement computed in this manner is 24.
We thus have,

dimH3
ω(14,16,18)

(
A(14,16,18)

)
= 24. (2.34)

This implies that there are 24 bounded chambers for this hyperplane arrangement.
We consider next the case of the dissection (14, 47, 710) (shown in figure 15), which

gives rise to an accordiohedron of so-called Lucas type, which is a genuine accordiohedron
in the sense that it cannot be understood as an associahedron.

This polytope, obtained by finding all dissections of a 10-gon with three quadrangula-
tions compatible with (14, 47, 710) has 12 vertices, with 8 facets, labelled by {14, 47, 710, 16,
49, 310, 36, 69}. The corresponding hyperplane arrangement in CP3 is

f1 = x− 5
f3 = y − 4
f5 = y − z − 5
f7 = y + 6

f2 = y − 5
f4 = x− y − 6
f6 = x+ 4
f8 = z + 4.

(2.35)

Visually this is represented in figure 16.
The scattering equations can be inferred from the twist, which is determined by the

kinematic assignements. They are

ω(14,47,710),x := X14
x− 5 −

X16
x− y − 6 −

X310
x+ 4 = 0, (2.36)

ω(14,47,710),y := X47
y − 5 + X16

y − x+ 6 −
X36
x+ 4 + X49

y − z − 5 = 0, (2.37)

and
ω(14,47,710),z := X710

z − 4 −
X49

z − y + 5 −
X69
z + 4 = 0. (2.38)

The number of solutions to this system was determined in Macaulay2 to be 12. Hence
we have,

dimH3
ω(14,47,710)

(
A(14,47,710)

)
= 12 (2.39)

following which we may state that there are 12 bounded chambers in this arrangement.

– 15 –



J
H
E
P
1
2
(
2
0
2
0
)
0
5
7

Figure 16. Accordiohedron for dissection (14, 47, 710).

Figure 17. Dissection (14, 510, 710).

The final case we have to consider is known as the mixed accordiohedron, which is
generated by the quadrangulations (14, 510, 710) (see figure 17) and (14, 16, 17). Again, we
focus on the former case for convenience.

The accordiohedron in this case actually ends up being a product polytope, formed
out of a pentagon times a line. Accordingly, we have 7 facets, labelled by the dissections
{14, 510, 710, 310, 57, 69, 49}. This convex polytope is afforded by the arrangement

f1 = x− 4
f3 = z − 2
f5 = z − y − 4
f7 = y + 4

f2 = y − 3
f4 = x+ 3
f6 = z + 4

(2.40)

which produces the polytope shown in figure 18.
One can observe from the diagram that this is indeed a pentagon times a line. Ac-

cordingly, the Künneth formula is applied readily to obtain,

dimH3
ω(14,510,710)

(
A(14,510,710)

)
= 4× 1 = 4. (2.41)
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Figure 18. Accordiohedron from dissection (14, 510, 710).

For the sake of completeness, we include the scattering equations,

ω(14,510,710),x := X14
x− 4 −

X310
x+ 3 = 0, (2.42)

ω(14,510,710),y := X510
y − 3 −

X49
y + 4 −

X57
y − z + 4 = 0, (2.43)

and
ω(14,510,710),z := X710

z − 2 −
X69
z + 4 + X57

z − y − 4 = 0. (2.44)

These cases exhaust all the accordiohedra that arise for this scattering process, as all of
the others can be obtained by permuting the indices of the primitives considered.

Let us summarize the salient results of this section before moving on. What we have
attended to so far is a class of convex realizations for a number of accordiohedra considered
in the literature in one, two and three dimensions. Rather than treating them in the sense
of the traditional positive geometry program, we have examined these constructions in
the general context of twisted intersection theory. While we have not yet evaluated any
amplitudes explicitly, we have provided the data needed to do so, namely the hyperplane
arrangements supplying the polytopes, as well as the twist differential forms that encode
the kinematical structure of the scattering processes. The components of the twist have
been interpreted as the analogue of the scattering equations of Cachazo, He and Yuan for
the more complicated interactions that we want to study.

3 The KLT relations for accordiohedra

The double copy relations due to Kawai, Lewellen and Tye were first developed in the study
of string amplitudes. They observed that the scattering of n massless closed string states
could be rearranged as a product of two open string scattering amplitudes of n massless
states each. This product however cannot be carried out blindly. An object known as the
KLT kernel must be used to convolve (n − 3)! open string amplitudes with another copy
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of (n − 3)! amplitudes, where the permutations are carried out over two choices of n − 3
particles for each of the open string amplitudes.

The original derivation of the KLT relations used contour deformation arguments,
which combined with the splitting into holomorphic and antiholomorphic parts of the
closed string integrand breaks the integral overM0,n into two integrals over the n-simplex
∆n. The trade-off is the introduction of the KLT kernel, which fuses the two open string
integrals together. Schematically we have,∫

M0,n

|I|2 =
∑
α,β

(∫
∆n

I(α)
)
K[α|β]

(∫
∆n

I(β)
)
. (3.1)

Here, the closed string integrand has been factorized into two open string integrals. Doing
this requires the introduction of two bases α and β, which run over two arbitrary permuta-
tions of the n particles, playing the role of a colour ordering. In the field theory limit, this
expression reduces to a relationship between the scattering of gravitons and Yang-Mills
amplitudes at tree level. We will focus on this avatar of the KLT kernel henceforth.

While the KLT relation in field theory can be derived in a number of ways, the approach
that we are most interested in is that of twisted intersection theory. To review the basic
details involved, consider the moduli space of marked Riemann spheresM0,n. Let us equip
this space with the following differential form,

ω =
∑
i<j

sijd ln(zi − zj), (3.2)

where sij = (pi + pj)2, and all particles are considered massless. This form acts as a twist,
which modifies the exterior derivative to

∇ω = d+ ω ∧ . (3.3)

This twisted differential operator can be verified to be nilpotent, which leads to a natural
generalization of the de-Rham complex into the twisted de Rham complex and a corre-
sponding cohomology theory, which can be defined by,

Hk (M0,n,∇ω) = {h ∈ Ωk (M0,n) |∇ωh = 0}
{h ∈ Ωk (M0,n) |h = ∇ωf}

. (3.4)

An important theorem due to Aomoto established that this cohomology theory is trivial
for all k 6= (n− 3),2 which is middle dimensional.

A basis of this cohomology class which is particularly valuable for the study of scat-
tering amplitudes is known as the Parke-Taylor basis. For a given permutation σ ∈ Sn−3
the following form may be defined,

PT(σ) = dz1 ∧ . . . ∧ dzn
(z1 − z2)(z2 − zσ(3))(zσ(3) − zσ4) . . . (zn − zσ(n−1))(z1 − z1) . (3.5)

It can be shown (a key result of [18]) that this collection of (n− 3)! forms furnishes a com-
plete basis for H(n−3) (M0,n,∇ω). Given two representatives ϕ1 and ϕ2 of the cohomology

2Note that we have n ≥ 3.
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group in (3.4), it was observed in a number of studies [26, 31–37] that a pairing 〈ϕ1, ϕ2〉may
be defined between the two, which acts as a twisted generalization of the traditional notion
of an intersection number. These ideas found their first application to field theory when
Mizera proved in [19] that this pairing between two Parke-Taylor forms PT(α) and PT(β)
gives precisely the tree level planar scattering amplitude for the biadjoint scalar theory:

〈PT(α),PT(β)〉 = m(α|β). (3.6)

To relate this fact to the KLT relations, one simply notes that the Pfaffian Pf ′Ψ, which
arises in the CHY formalism can be recast in a Parke-Taylor basis. The pairing between a
Pfaffian and Parke-Taylor factor then becomes precisely the CHY formula for Yang-Mills
amplitudes, while the pairing between two Pfaffians becomes the CHY formula for gravity
amplitudes. An application of the twisted period relations (1.3) with ϕ1 = ϕ2 = Pf ′Ψ with
a Parke-Taylor basis for the cohomology group yields the KLT relations.

Our main goal in this section will be to repeat this analysis when we have hyperplane
arrangements in CPn that produce accordiohohedra rather thanM0,n. In order to do this,
we have to use the formalism developed in [27] and [28]. We will now recall some of the
principal aspects of the techniques developed therein.

We start with a collection of hyperplanes, say f1, . . . , fN in CPn, which realizes an
n-dimensional polytope An,3 as the interior of the arrangement. Given this, we can now
define a twist ωAn , encoding kinematical data. The main result of the recent work of the
author was that the form

ϕAn =
∑

fi1∩fi2∩...∩fin∈Vertex
d ln fi1 ∧ . . . ∧ d ln fin (3.7)

when viewed as an element of Hn
ωAn

(
An,∇ωAn

)
gives rise to the pairing 〈ϕAn , ϕAn〉. The

pairing was then shown to equal the scattering amplitude defined by the accordiohedron
using the localization formula proved in [19].

In this section, our aim will be to use this fact to develop a suitable generalization of the
KLT relations for amplitudes derived from accordiohedra. Our basic technique will mirror
the one used for associahedra, namely that we will find a basis for the twisted cohomology
group and employ the twisted period relations. There are a couple of qualitative differences
here that are worth noting however. An important fact that differentiates accordiohedra
from associahedra is that we can have several accordiohedra for a given process, while
associahedra are unique. Accordingly, we will obtain a family of KLT relations when
working with these polytopes. Additionally, it seems that the elements of the KLT matrix
in the case of accordiohedra are generically nonplanar amplitudes. There does not seem to
be any canonical choice like the Parke-Taylor basis in the case of accordiohedra. Thus, for
the time being, we are left with having to do brute force calculations for the time being.
Clarifying the implications of these observations should be fertile ground for future research.

3We will also use this symbol to denote the complement of the hyperplane arrangement; there should
be no confusion on this point.
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3.1 One-dimensional KLT relations

We start with the simplest example of KLT relations for accordiohedra — the case of one
dimensional accordiohedra, which are basically associahedra. Since the essential aspects of
these relations have already been worked out in [18], the main point of this section will be
to provide the correct analogue for those processes which admit geometric representations
in terms of intersection numbers of one dimensional accordiohedra.

A one dimensional accordiohedron is simply a line, so we have the following hyperplane
arrangement,

f1 = 0
f2 = 1

(3.8)

in CP1. Thus, we are led to working on the complement

A1 = CP1 − {0, 1,∞}. (3.9)

On this space, we now define a twist, which encodes kinematical information. To keep the
discussion as general as possible, we will use the following twist,

ωA1 = α1d ln(x) + α2d ln(x− 1). (3.10)

We have now the form,
ϕA1 = d ln

(
x

x− 1

)
(3.11)

and the intersection number
〈ϕA1 , ϕA1〉 = 1

α1
+ 1
α2
. (3.12)

To find the KLT relations, we first note that the dimension is

dimH1
ωA1

(
A1,∇ωA1

)
= 1. (3.13)

Accordingly, use of the twisted Riemann period relations, which requires inserting two
copies of bases of the, can be made by specifying a two basis elements, each of which
separately furnishes a basis of the twisted cohomology group. We will look at three such
examples.

Example 3.1. Consider a basis for the twisted cohomology group given by the element
φ1 = ϕA1 . In this case, the KLT matrix becomes,

〈φ1, φ1〉−1 = α1α2
α1 + α2

. (3.14)

Applying the twisted Riemann period relations is now a trivial multiplication,( 1
α1

+ 1
α2

)
α1α2
α1 + α2

( 1
α1

+ 1
α2

)
= 1
α1

+ 1
α2
. (3.15)

Let’s now consider a slightly more complicated example.
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Example 3.2. We now consider a basis given by the element,

φ1 = d ln
(
x− 1
x−1

)
(3.16)

where we have indicated the hyperplane at infinity by x−1. The self intersection number
of this form gives

〈φ1, φ1〉−1 =
( 1
α2
− 1
α1 + α2

)−1
= (α1 + α2)α2

α1
. (3.17)

We have the partial intersection number

〈ϕA1 , φ1〉 = 1
α2
, (3.18)

using which the twisted Riemann period relation becomes

〈ϕA1 , φ1〉〈φ1, φ1〉−1〈ϕA1 , φ1〉 = 1
α1

+ 1
α2
. (3.19)

Before considering one final example, we note that it is quite easy to see how the KLT
matrix in equation (3.17) fails to be planar — indeed, it isn’t really even the inverse of
an amplitude most of the time! Consider the case of 6-particle scattering in φ4 theory, in
which we choose α1 = X14 and α2 = X36. Clearly, X14 +X36 is not a Mandelstam variable;
it doesn’t even correspond to a scattering channel.

Example 3.3. Let’s consider a final example, now using a mixed basis. On the left,
we consider the basis given by φ1 = ϕA1 and on the right we consider the basis given by
φ′2 = ϕ

(2)
A1

. This leads to the twisted period relation,

〈ϕA1 , ϕA1〉 = 〈ϕA1 , φ1〉〈φ′1, φ1〉−1〈φ′1, ϕA1〉, (3.20)

which can be seen to be true essentially trivially, but can be verified readily by making use
of equations (3.11) and (3.18).

3.2 Two-dimensional KLT relations

Let us now discuss the case of KLT relations that arise out of the twisted Riemann period
relations for two dimensional accordiohedra intersecting. We have two possibilities, the
square and pentagon accordiohedra.

A square is defined by the hyperplane arrangement

f1 = 1− y
f2 = 1− x
f3 = 1 + y

f4 = 1 + x.

(3.21)

With these we have the complement and twist as

A(1)
2 = CP2 − {f1, f2, f3, f4} (3.22)

ωA(1)
2

= β1d ln f1 + β2d ln f2 + β3d ln f3 + β4d ln f4. (3.23)
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Similarly for the case of the pentagon we use the data

f1 = 1− x
f2 = 1 + y

f3 = 2 + x

f4 = 2 + x− y
f5 = 2− y,

(3.24)

A(2)
2 = CP2 − {f1, f2, f3, f4, f5}, (3.25)

and
ωA(2)

2
= γ1d ln f1 + γ2d ln f2 + γ3d ln f3 + γ4d ln f4 + γ5d ln f5. (3.26)

Consider first the case of the square. Take the form

ϕA(1)
2

= d ln
(
f1
f3

)
∧ d ln

(
f2
f4

)
. (3.27)

The self intersection number of this form on A(1)
2 is computed as

〈ϕA(1)
2
, ϕA(1)

2
〉 =

( 1
β1

+ 1
β3

)( 1
β2

+ 1
β4

)
. (3.28)

Indeed, this is just the square of the amplitude we obtained from the one dimensional case.
Accordingly, we have the following.

Example 3.4. Since the twisted cohomology group in this case is one dimensional, we
need to specify again only one form in order to derive the KLT relations. The KLT
relations are determined here entirely by the KLT relation for the line. For purposes of
clarity, suppose we consider the basis given by

φ1 = d ln
(
f1
y−1

)
∧ d ln

(
f2
x−1

)
. (3.29)

The KLT relation

〈ϕA(1)
2
, ϕA(1)

2
〉 = 〈ϕA(1)

2
, φ1〉〈φ1, φ1〉−1〈φ1, ϕA(1)

2
〉 (3.30)

can be established by noting that

〈ϕA(1)
2
, φ1〉 = 1

β1β2
(3.31)

and
〈φ1, φ1〉 =

( 1
β1
− 1
β1 + β3

)( 1
β2
− 1
β2 + β4

)
. (3.32)

Moving on, we now consider three examples for the pentagon. Defining the form

ϕA(2)
2

= d ln
(
f1
f2

)
∧ d ln

(
f2
f3

)
+ d ln

(
f3
f4

)
∧ d ln

(
f4
f5

)
+ d ln

(
f5
f1

)
∧ d ln

(
f1
f3

)
(3.33)
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Figure 19. Real Slice of Arrangement A(2)
1 .

the self intersection number is

〈ϕA(2)
2
, ϕA(2)

2
〉 = 1

γ1γ2
+ 1
γ2γ3

+ 1
γ3γ4

+ 1
γ4γ5

+ 1
γ5γ1

. (3.34)

To determine a basis for the cohomology group, we note that the dimension of the group is
4, meaning that we need to specify four basis elements. We can glean a natural way of doing
this by inspecting a real slice of the hyperplane arrangement, as shown in figure 19 [28].

One can infer simply by inspection that there are four bounded chambers, which is
a simple consistency check of the dimension of the cohomology group. An element of the
cohomology group is furnished by a chamber; this can be seen by noting the Poincaré
duality — a form with singularities on the boundaries of a chamber will be dual to the
chamber, a cycle on the complement space.

Example 3.5. Consider a basis for the cohomology group given by the four distinct
bounded chambers. These are given by

φ1 = d ln
(
f1
f2

)
∧ d ln

(
f2
f3

)
+ d ln

(
f3
f4

)
∧ d ln

(
f4
f5

)
+ d ln

(
f5
f1

)
∧ d ln

(
f1
f3

)
, (3.35)

φ2 = d ln
(
f2
f3

)
∧ d ln

(
f3
f4

)
, (3.36)

φ3 = d ln
(
f3
f4

)
∧ d ln

(
f4
f5

)
(3.37)

and
φ4 = d ln

(
f4
f5

)
∧ d ln

(
f5
f1

)
. (3.38)
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To determine the KLT relations, we have to compute the partial amplitudes 〈ϕA(2)
1
, φi〉 and

the matrix 〈φi, φj〉. We have

〈ϕA(2)
1
, φ1〉 = 1

γ1γ2
+ 1
γ2γ3

+ 1
γ3γ4

+ 1
γ4γ5

+ 1
γ5γ1

〈ϕA(2)
1
, φ3〉 = 1

γ3γ4
+ 1
γ4γ5

〈ϕA(2)
1
, φ2〉 = 1

γ2γ3
+ 1
γ3γ4

〈ϕA(2)
1
, φ4〉 = 1

γ4γ5
+ 1
γ5γ1

.
(3.39)

and

〈φ1, φ1〉 = 1
γ1 γ2

+ 1
γ2 γ3

+ 1
γ3 γ4

+ 1
γ4 γ5

+ 1
γ5 γ1

〈φ1, φ2〉 = 1
γ4 γ5

+ 1
γ5 γ1

〈φ1, φ3〉 = 1
γ3 γ4

+ 1
γ4 γ5

〈φ1, φ4〉 = 1
γ2 γ3

+ 1
γ3 γ4

〈φ2, φ2〉 = 1
γ2 γ3

+ 1
γ3 γ4

+ 1
γ4 γ2

〈φ2, φ3〉 = 1
γ4 γ5

〈φ2, φ4〉 = 0

〈φ3, φ3〉 = 1
γ3 γ4

+ 1
γ4 γ5

+ 1
γ5 γ3

〈φ3, φ4〉 = 1
γ3 γ4

〈φ4, φ4〉 = 1
γ4 γ5

+ 1
γ5 γ1

+ 1
γ1 γ4

(3.40)

With these, the KLT relation is given by the resolution,

〈ϕA(2)
1
, ϕA(2)

1
〉 = 〈ϕA(2)

1
, φi〉〈φj , φi〉−1〈φj , ϕA(2)

1
〉 (3.41)

which has been verified using Mathematica.
The expressions for the inverse of the KLT matrix 〈φi, φj〉 computed in Mathematica

were extremely unilluminating and baroque. As a result of this, we have not attempted
to reproduce the results herein. It may be of value to carry out a systematic study of this
issue in future work.

Example 3.6. Consider now the following basis for the cohomology group of the pentagon

φ′1 = d ln
(
f2
f3

)
∧ d ln

(
f3
f4

)
, (3.42)

φ′2 = d ln
(
f2
f1

)
∧ d ln

(
f1
f4

)
, (3.43)

φ′3 = d ln
(
f4
f5

)
∧ d ln

(
f5
f1

)
(3.44)

and
φ′4 = d ln

(
f3
f4

)
∧ d ln

(
f4
f5

)
. (3.45)

Now, we have to compute 〈ϕA(2)
1
, φ′i〉 and the matrix 〈φ′i, φ′j〉. We have,

〈ϕA(2)
1
, φ′1〉 = 1

γ2γ3
+ 1
γ3γ4

〈ϕA(2)
1
, φ′3〉 = 1

γ4γ5
+ 1
γ5γ1

〈ϕA(2)
1
, φ′2〉 = − 1

γ1γ2

〈ϕA(2)
1
, φ′4〉 = 1

γ3γ4
+ 1
γ4γ5

,
(3.46)
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and

〈φ′1, φ′1〉 = 1
γ2 γ3

+ 1
γ3 γ4

+ 1
γ2 γ4

〈φ′1, φ′2〉 = 1
γ2 γ4

〈φ′1, φ′3〉 = 0

〈φ′1, φ′4〉 = 1
γ3 γ4

〈φ′2, φ′2〉 = 1
γ1 γ2

+ 1
γ1 γ4

+ 1
γ2 γ4

〈φ′2, φ′3〉 = 1
γ1 γ4

〈φ′2, φ′4〉 = 0

〈φ′3, φ′3〉 = 1
γ4 γ5

+ 1
γ5 γ1

+ 1
γ1 γ4

〈φ′3, φ′4〉 = 1
γ4 γ5

〈φ′4, φ′4〉 = 1
γ3 γ4

+ 1
γ4 γ5

+ 1
γ3 γ5

.

(3.47)

Using Mathematica, we have verified that the KLT relation

〈ϕA(2)
1
, ϕA(2)

1
〉 = 〈ϕA(2)

1
, φ′i〉〈φ′j , φ′i〉

−1〈φ′j , ϕA(2)
1
〉 (3.48)

holds.

Example 3.7. Finally, in this example, we consider a case of the mixed KLT relation for
the pentagon, by inserting two different bases in the intersection number (3.34). We use
the bases {φi} and {φ′i} and the resolution,

〈ϕA(2)
1
, φ′j〉〈φ′i, φj〉

−1〈φi, ϕA(2)
1
〉. (3.49)

Proving the KLT relation in this case amounts to proving that this quantity is equal
to (3.34). To do this, we have the quantities 〈φi, ϕA(2)

1
〉 and 〈ϕA(2)

1
, φ′j〉 already computed.

We are now left with the task of finding the elements of the matrix 〈φi, φ′j〉. We have

〈φ1, φ
′
1〉 = 1

γ2 γ3
+ 1
γ3 γ4

〈φ1, φ
′
2〉 = − 1

γ1 γ2

〈φ1, φ
′
3〉 = 1

γ4 γ5
+ 1
γ5 γ1

〈φ1, φ
′
4〉 = 1

γ3 γ4
+ 1
γ4 γ5

〈φ2, φ
′
1〉 = 1

γ2 γ3
+ 1
γ2 γ4

〈φ2, φ
′
2〉 = 1

γ2 γ4

〈φ2, φ
′
3〉 = 0

〈φ2, φ
′
4〉 = 1

γ3 γd

〈φ3, φ
′
1〉 = 1

γ3 γ4

〈φ3, φ
′
2〉 = 0

〈φ3, φ
′
3〉 = 1

γ4 γ5

〈φ3, φ
′
4〉 = 1

γ3 γ4
+ 1
γ4 γ5

+ 1
γ5 γ3

〈φ4, φ
′
1〉 = 0

〈φ4, φ
′
2〉 = 1

γ1 γ4

〈φ4, φ
′
3〉 = 1

γ4 γ5
+ 1
γ5 γ1

+ 1
γ1 γ4

〈φ4, φ
′
4〉 = 1

γ4 γ5
.

(3.50)

Using this, (3.39) and (3.46), we have verified using Mathematica that the KLT rela-
tion (3.49) holds.
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As a final note, we point out the challenge involved in extending this framework to
higher points. Take the case of a 10-point amplitude in φ4. Neglecting the trivial cases
of the box and product polytope, we saw that the dimension of the cohomology class of
the associahedron type polytope was 24 dimensional while the cohomology class of the
Lucas type polytope was 12 dimensional. The three dimensional nature of these polytopes
makes a direct counting and enumeration of the bounded chambers more complicated.
One possible approach to writing out cohomology classes would perhaps be to find the
intersection lattice of the arrangement and use that data to extract information about
chambers, which could serve as an interesting direction of future research.

4 Conclusion

In this article, we have studied the implications of the twisted Riemann period relations
to the study of accordiohedra. We made use of the recent analysis by the author [27, 28]
which revealed an interpretation of scattering amplitudes at tree level in scalar theories
are patterns of intersection between accordiohedra. The fact that these amplitudes could
be written as intersection numbers naturally suggested that the twisted Riemann period
relations may be an interesting direction of study, which is what we have set out to carry
out in the note.

The twisted Riemann period relations have already been employed in the study of
theories with cubic interactions, where they were shown to give rise to the KLT relations
between gravity and Yang-Mills amplitudes at tree level. This allows us to make some
comments on the relationship borne by our analysis to these previous studies as well as lay
out some directions for further study.

In section 2, we have presented a synthesis of the data derived so far in the literature
that describe the combinatorial structures of accordiohedra for a number of examples.
We treated examples of accordiohedra in φ4 theory as well as the theory φ3 + φ4 with
mixed vertices. After providing details on how these can be understood as hyperplane
arrangements in CPn, we used the methods of twisted cohomology theory to derive the
analogue of the scattering equations due to Cachazo, He and Yuan for these more generic
quantum field theories. A salient feature throughout was the fact that since for a given
scattering process accordiohedra are generically not unique, we obtain a family of scattering
equations, rather than a single one as in the case of the CHY formalism.

We then made use of the fact that the number of equations of the scattering equations
coincides with the dimension of the cohomology group to compute the dimensions of all the
relevant groups in our analysis. Applying now the fact that scattering amplitudes of the
relevant scalar theories are simply intersection numbers of the accordiohedra, in section 3
we found the KLT relations for these theories by studying the twisted Riemann period
relations, which amount to simply an insertion of two complete sets of cohomology bases
into the intersection number. Again, an important feature of the analysis was the lack
of uniqueness; one KLT relation is present for every accordiohedron contributing to the
scattering.
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There are a few key differences that distinguish the KLT relations in this work from
the original relations between gravity and Yang-Mills amplitudes. In the original KLT
relations, the KLT matrix was a very special object from the point of view of quantum
field theory — it is the inverse of the matrix of partial amplitudes in the biadjoint scalar
theory. No such simple picture seems to arise in our analysis. Indeed, certain bases give
rise to elements of the KLT matrix containing poles which are spurious and cannot arise
out of any scattering channel. Another important difference is more practical in bent.
In this work, we have focused on the simplest examples, dealing only with one and two
dimensional examples. Other than the obvious ease of computation this facilitates, we have
saved ourselves of having to deal with the complicated geometry of hyperplanes in higher
dimensions. We have been able to specify cohomology bases essentially by inspection. It
would be quite unsatisfactory if one were forced to do this at higher dimensions as well.
Accordingly, one definite line of future research could be to study the possibility of finding a
canonical presentation of cohomology classes for accordiohedron hyperplane arrangements.4

Field theory amplitudes are not alone in admitting a representation as intersection
numbers. String amplitudes in the closed and open sectors as well as more exotic amplitude
with α′ corrections such as Z-theory [40–44] can also be represented as intersection num-
bers. There also exist deformations of the Parke-Taylor factor [45–47] which recast string
amplitudes as essentially CHY type formulae. There is a natural generalization of the
Koba-Nielsen factor in the accordiohedron context, which was touched upon briefly in [29]
as well as in more conventional string-like contexts [48–51]. Exploring the analogue of α′

corrections in generic scalar theories and the possibilities of double copy relations in terms
of string-like generalizations of scalar amplitudes studied in [27, 52] might be interesting.

Another very popular avatar of the double copy is due to Bern, Carrasco and Johansson
(see [53–56] and references thereof and therein), in which the double copy is carried out
at the level of individual Feynman diagrms, where kinematical and colour factors in the
numerators obery identities that enable an essential ‘squaring’ of a gluon amplitude into
a gravity amplitude. It has transpired of late that string amplitudes and intersection
theory [24] may play a role in providing some insight into their origins. It may prove
worthwhile to pursue this connection for theories with higher point interactions using the
tools developed here.

In this work and work on accordiohedra more generally, we have not yet tried to
understand the implications of the theory of polytopes to the study of quantum field theory
with numerators and possible double copy structures therein. One may consider extending
the analysis carried out in the work to the study of theories such as N = 4 super Yang-Mills
and N = 8 supergravity, which admit geometric representations [57–66] as well. We note
here parenthetically that the construction of double copy relations for polynomial vertices
may also make possible future analyses of double copy relations without having recourse
to string theory, thereby possibily enabling future applications of double copy relations to
realistic theories.

4A possible answer to the question posed here might be to refine the basis due to Aomoto described
in [38, 39]. It doesn’t seem to always apply in the case by accordiohedra, due in part to the specific nature
of the arrangement.
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Finally, we note that the intersection theory of accordiohedra has been developed thus
far with no recourse being had to string theory methods. However, higher point interactions
have been studied using string based methods in the past [51]. Modern developments in
superstring field theory [67–70], especially in light of the use made of hyperbolic geometry
in the closed sector, may consequently prove to be valuable in decoding the relationship
between higher loop interactions and polytopes and in shedding light on the nature of the
double copy more generally.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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