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IRIS Gebäude, Zum Grossen Windkanal 6, 12489 Berlin, Germany

E-mail: fseibold@itp.phys.ethz.ch, svantongeren@physik.hu-berlin.de,

yannik.zimmermann@physik.hu-berlin.de

Abstract: We study the worldsheet scattering theory of the η deformation of the AdS5×S5

superstring corresponding to the purely fermionic Dynkin diagram. This theory is a Weyl-

invariant integrable deformation of the AdS5×S5 superstring, with trigonometric quantum-

deformed symmetry. We compute the two-body worldsheet S matrix of this string in the

light-cone gauge at tree level to quadratic order in fermions. The result factorizes into two

elementary blocks, and solves the classical Yang-Baxter equation. We also determine the

corresponding exact factorized S matrix, and show that its perturbative expansion matches

our tree-level results, once we correctly identify the deformed light-cone symmetry algebra

of the string. Finally, we briefly revisit the computation of the corresponding S matrix

for the η deformation based on the distinguished Dynkin diagram, finding a tree-level S

matrix that factorizes and solves the classical Yang-Baxter equation, in contrast to previous

results.

Keywords: Integrable Field Theories, Quantum Groups, AdS-CFT Correspondence,

Sigma Models

ArXiv ePrint: 2007.09136

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP12(2020)043

mailto:fseibold@itp.phys.ethz.ch
mailto:svantongeren@physik.hu-berlin.de
mailto:yannik.zimmermann@physik.hu-berlin.de
https://arxiv.org/abs/2007.09136
https://doi.org/10.1007/JHEP12(2020)043


J
H
E
P
1
2
(
2
0
2
0
)
0
4
3

Contents

1 Introduction 1

2 Deformed Lagrangian 4

2.1 The GS string to second order in fermions 4

2.2 Light-cone gauge fixing 5

2.3 η-deformed AdS5 × S5 6

2.4 Expansion of the action 7

3 Perturbative S matrix 8

3.1 On-shell mode expansion 9

3.2 T matrix 9

3.3 Factorization 12

4 Exact S matrix 12

4.1 Hopf algebra 12

4.2 Fundamental S matrix 17

4.2.1 Distinguished Dynkin diagram 20

4.2.2 Fermionic Dynkin diagram 22

4.2.3 Expansion of the exact S matrix 23

5 Comparison of the perturbative and exact S matrix 24

5.1 Light-cone symmetry algebra 24

5.2 Expanded exact S matrix 25

6 Distinguished deformation 26

7 Conclusions 27

A Spinor conventions 28

B Feynman diagrammatics 31

C su(2|2) R operators 33

1 Introduction

The discovery and development of integrable structures in the AdS/CFT correspondence

has led to impressive insights into quantum field and string theory [1, 2]. On the string the-

ory side the canonical model is the superstring on AdS5×S5, a maximally supersymmetric
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sigma model. In recent years integrable deformations of this theory have attracted atten-

tion, building on the development of Yang-Baxter sigma models [3–5]. There is a plethora

of Yang-Baxter deformations of the AdS5×S5 string, with distinct algebraic characteristics

and interpretations in terms of string theory and AdS/CFT. We will consider so-called in-

homogeneous Yang-Baxter deformations, which algebraically correspond to trigonometric

quantum (q) deformations [6].1 These deformations are governed by an R operator solving

the modified classical Yang-Baxter equation (mCYBE). In the context of the AdS5 × S5

string they are also called η deformations.

Studies of the original η deformation of the AdS5 × S5 string led to a number of open

questions and interesting discoveries. Namely, while Yang-Baxter deformed superstrings

have κ symmetry [5], the background of the original η-deformed AdS5 × S5 superstring

does not satisfy the supergravity equations of motion [12]. Rather it satisfies a generalized

set of equations [13], which actually derive from κ symmetry [14]. These equations are

believed to guarantee scale invariance, but not Weyl invariance [13–15].2 In order for

a Yang-Baxter model background to solve the more restrictive supergravity equations of

motion, the R operator generically needs to be unimodular [18].3 This raised the question

whether a unimodular inhomogeneous deformation of AdS5 × S5 exists, i.e. whether there

is a unimodular inhomogeneous solution of the CYBE for psu(2, 2|4).

The canonical solution of the inhomogeneous CYBE is the so-called Drinfel’d-Jimbo

R operator, which is unique for a compact Lie algebra. For noncompact algebras there

is freedom corresponding to a choice of simple roots relative to the real form, see [6, 21]

for a discussion in the present context. For superalgebras there is further freedom in

whether we choose bosonic or fermionic simple roots, mirroring the lack of uniqueness of

Dynkin diagrams for superalgebras. The original η deformation [5, 12, 22] is based on the

Drinfel’d-Jimbo R matrix for the distinguished Dynkin diagram of psu(2, 2|4), which is

not unimodular. Building an R operator relative to the fully fermionic Dynkin diagram

instead, gives a unimodular result, and a deformation of AdS5 × S5 that solves the super-

gravity equations of motion [23].4 We will refer to these two distinct deformations as the

distinguished and fermionic (η) deformations respectively. The metric and B field of these

models are equal, while their dilatons and Ramond-Ramond (RR) forms differ.5

In this paper we will be investigating the worldsheet scattering theory for the fermionic

deformation. There are concrete open questions motivating our study, in addition to

broader interest in the quantum integrable structure of this Weyl invariant, integrable

1As the name suggests there are also homogeneous Yang-Baxter deformations [7], a class which includes

e.g. the well-known real β deformation of the AdS5×S5 string [8]. Algebraically these correspond to twisted

symmetry [9, 10], see also [11]. This twisted symmetry can be used to conjecture field theory duals [9].
2There have been proposals suggesting that a notion of Weyl invariance may hold for these generalized

backgrounds as well [16, 17]. These proposals, however, have troublesome features as discussed in [17].
3Unimodularity is sufficient, while there are subtle counterexamples to necessity, see [15, 19, 20].
4This deformation can also be used as a starting point to generate new homogeneous unimodular defor-

mations by limiting procedures [24].
5There are unimodular deformations that one can obtain from the one of [23] by permutations of the

bosonic roots as in [6, 21]. Here we focus the case which gives the “standard” metric and B field with

magnetic H flux.
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deformation of the AdS5 × S5 string, with trigonometric q-deformed symmetry. Namely,

the scattering theory of the distinguished η deformation shows some interesting features

that we would like to contrast with the corresponding fermionic ones. First, the tree-level

S matrix for the distinguished model was found not to satisfy the classical Yang-Baxter

equation (CYBE) [12], while the model is classically integrable. A non-local two-particle

change of scattering states was required to restore this hallmark requirement of integrabil-

ity, as well as to match the expansion of the exact factorized suq(2|2)⊕2
c.e. S matrix [25, 26]

expected to describe this model. This unexpected friction between classical integrability

and tree-level factorized scattering, and the subtle redefinition of scattering states, could

be related to the lack of Weyl invariance of this model, which is restored for the fermionic

deformation.6 Second, the distinguished deformed model displays so-called “mirror dual-

ity” [27–30] at the bosonic level and in terms of its conjectured exact S matrix. In short,

in the light-cone gauge fixed theory, inversion of the deformation parameter is equivalent

to a double Wick rotation on the worldsheet, which curiously relates the thermodynamic

and spectral properties of the model. Studying the S matrix for the fermionic deformation

is a first step towards investigating similar properties here.

We study two aspects of the worldsheet scattering theory of the fermionic η deformation

of the AdS5 × S5 string. First, we compute the two body S matrix perturbatively at tree

level with up to two fermions. We find that the resulting T matrix solves the CYBE,

in line with expected integrability. The T matrix factorizes, and we expect the factors

to be related to an exact S matrix for suq(2|2)c.e., analogously to the undeformed and

distinguished deformed string. However, only the distinguished suq(2|2)c.e. S matrix is

explicitly known [25]. As such, second we determine the form of the exact suq(2|2)c.e. S

matrix for the fermionic deformation. We do this by taking advantage of a twist relating

the Hopf algebras underlying the distinguished and fermionic deformations of slq(2|2)c.e..

Next, based on the embedding of the two copies of su(2|2) in psu(2, 2|4), we conjecture

that the deformation of the off-shell light-cone symmetry algebra of the string takes the

form su1/q(2|2)c.e. ⊕ suq(2|2)c.e.. Semi-classically q = e−κ/h, where κ is the deformation

parameter in the action, and h is the string tension. The associated exact S matrix is of

the form S0 S(1/q) ⊗ S(q), where S0 is a scalar prefactor. The perturbative expansion of

this exact S matrix matches our tree-level T matrix.

We originally benchmarked our computations of the perturbative S matrix on the

undeformed AdS5× S5 string. After we obtained our results for the fermionic deformation

we decided to also run through the distinguished background given in [12]. Unexpectedly,

in contrast to [12] we find a perturbative S matrix that directly solves the CYBE, and

factorizes in line with the distinguished suq(2|2)c.e. S matrix. In this case the S matrix

factors are such that an inversion of the deformation parameter is equivalent to a change

of basis, and there is effectively no distinction between S0 S(1/q)⊗ S(q) and S0 S(q)⊗2.

This paper is organized as follows. In the next section we discuss the string Lagrangian,

its gauge fixing, and its expansion in powers of fields. Then in section 3 we compute the

associated tree-level S matrix, and discuss its factorized structure. In section 4 we review

6In general we would expect Weyl invariance to come into play only at loop level, however.
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the construction of the distinguished su(2|2)c.e. S matrix, and twist this construction to

find the fermionic exact S matrix. We then analyze the structure of the light-cone sym-

metry algebra in section 5, and show that the expansion of the corresponding exact S

matrix matches our tree-level computation. In section 6 we discuss our results regarding

the distinguished case. Finally we conclude and list several open questions. We provide

appendices on our spinor conventions, our implementation of the Feynman diagram com-

putations, and a translation of su(2|2) R operators in the sigma model and exact S matrix

computations.

2 Deformed Lagrangian

To compute the tree-level two-body worldsheet S matrix of the fermionic η deformed string

in the light-cone gauge, we need the corresponding action in the light-cone gauge, expanded

to quartic order in the fields. Rather than working directly with the Yang-Baxter sigma

model action [5], we will work with the standard Green-Schwarz (GS) action and substitute

the background for the fermionic deformation found in [23].

2.1 The GS string to second order in fermions

Written out, the Lagrangian for a type IIB GS superstring in a generic background, to

second order in the fermions, takes the form7

L =
√
−detγδ hγδ h

αβ ĝMN∂αx
M∂βx

N − εαβB̂MN∂αx
M∂βx

N

+ i
√
−detγδ hγδ h

αβ∂αx
M θ̄ΓM∂βθ + iεαβ∂αx

M θ̄ΓMσ3∂βθ ,
(2.1)

where θ = (θ1, θ2) is a doublet of 10D Majorana-Weyl spinors, with the Pauli matrix σ3

acting in this two dimensional space. The worldsheet metric hαβ has signature (−1, 1),

and ετσ = 1. In this expression we have combined certain fermionic terms with the bosonic

metric g and B field B, i.e.

ĝMN = gMN −
i

4
θ̄Γ(M /ωN)θ +

i

8
θ̄Γ(MHN)PQΓPQσ3θ +

i

8
θ̄Γ(MSΓN)θ,

B̂MN = BMN +
i

4
θ̄Γ[M /ωN ]σ3θ −

i

8
θ̄Γ[MHN ]PQΓPQθ − i

8
θ̄σ3Γ[MSΓN ]θ,

(2.2)

with round and rectangular brackets denoting symmetrization and antisymmetrization re-

spectively, defined with the usual factor of 1/n!. Here ω denotes the spin connection,

H = dB, and8

S = −
(
ε /F (1)

+
1

3!
σ1 /F

(3)
+

1

2 · 5!
ε /F (5)

)
, (2.3)

where ε ≡ iσ2. Assuming a dilaton exists, /F encodes the RR forms and dilaton via

F (n) = eΦF (n).

7See e.g. [31], but note that we use a different sign convention on the fermionic worldsheet ε term, in

line with [12].
8Slashes denote contraction with the appropriate set of Γ matrices: /A ≡ AM...LΓM . . .ΓL.
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2.2 Light-cone gauge fixing

We assume that our general background has two isometries t and φ, where t is timelike

and φ is spacelike, and introduce the light-cone coordinates

x+ =
1

2
(t+ φ) , x− = φ− t. (2.4)

The uniform light-cone gauge then consists of fixing

x+ = τ, p− = 1, (2.5)

where τ is the worldsheet time and p− the momentum conjugate to x−. We can shortcut

gauge fixing in the Hamiltonian framework by noting that momentum and winding inter-

change under T duality, so that if we formally T dualize our model in x−, calling the dual

direction ψ, our uniform light-cone gauge condition becomes

x+ = τ, ψ = σ. (2.6)

Upon integrating out the worldsheet metric the T dualized Lagrangian takes the square

root form typical for a light-cone gauge. In this picture the gauge condition can be directly

substituted in the Lagrangian. This light-cone gauge fixing should be accompanied by a

corresponding κ-symmetry gauge choice for the fermions of the form

Γpθ = 0, (2.7)

where Γp is the tangent space counterpart of Γ+, defined in (A.8) for our particular case.

We assume this gauge fixing from here on, see e.g. [29] for further details.9

To simplify expressions we introduce the T-dual metric g̊, B field B̊, and gamma

matrices Γ̊

g̊ψψ =
1

ĝ−−
, g̊ψM̄ = −

B̂−M̄
ĝ−−

, g̊M̄N̄ = ĝM̄N̄ −
ĝ−M̄ ĝ−N̄ − B̂−M̄ B̂−N̄

ĝ−−
,

B̊ψM̄ = −
ĝ−M̄
g−−

, B̊M̄N̄ = B̂M̄N̄ −
ĝ−M̄ B̂−N̄ − B̂−M̄ ĝ−N̄

ĝ−−
,

Γ̊ψ =
1

ĝ−−
Γ−, Γ̊M̄ = ΓM̄ −

g−M̄
g−−

Γ−,

(2.8)

where M̄ and N̄ run over the coordinates not involved in the T duality. For g̊ and B̊ the

right hand side of these equations is implicitly expanded to second order in fermions. With

these definition the general gauge fixed action to quadratic order in fermions takes the form

Lg.f. = 2
√
−G+ E, (2.9)

where G = detαβ Gαβ and E = εαβEαβ with

Gαβ = g̊MN∂αx
M∂βx

N + i∂(α|x
M̄ θ̄Γ̊M̄∂|β)θ + i∂(α|ψθ̄Γ̊ψσ3∂|β)θ,

Eαβ = −B̊MN∂αx
M∂βx

N + i∂αψθ̄Γ̊ψ∂βθ + i∂αx
M̄ θ̄Γ̊M̄σ3∂βθ,

(2.10)

9The possibility of gauge fixing via T duality was originally observed for the AdS5 × S5 string in [32].
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again implicitly expanded to second order in fermions, and evaluated on the gauge fixing

condition x+ = τ, ψ = σ. Here the indices M and N run over x+, ψ and the transverse

fields, and round brackets on indices indicate symmetrization. The gauge-fixed string

action is

S = −h
2

∫
d2σLg.f. = −h

∫
d2σ
√
−G+

1

2
E, (2.11)

where h is the string tension. When we take the string tension into account in the T duality

and gauge fixing, consistency of ψ = σ with p− = 1, fixes the string length to be P−/h,

where P− is the integrated charge associated to p−, see e.g. [29, 33] for details.10

2.3 η-deformed AdS5 × S5

The metric and B field for our fermionic deformation are the same as the ones for the

distinguished deformation, given by [34]11

ds2 =
1

1− κ2ρ2

(
−(1 + ρ2)dt2 +

dρ2

1 + ρ2

)
+

ρ2

1 + κ2ρ4x2

(
(1− x2)dψ2

1 +
dx2

1− x2

)
+ ρ2x2dψ2

2

+
1

1 + κ2r2

(
(1− r2)dφ2 +

dr2

1− r2

)
+

r2

1 + κ2r4w2

(
(1− w2)dφ2

1 +
dw2

1− w2

)
+ r2w2dφ2

2 ,

B =
κρ

1− κ2ρ2
dt ∧ dρ+

κρ4x

1 + κ2ρ4x2
dψ1 ∧ dx+

κr

1 + κ2r2
dφ ∧ dr − κr4w

1 + κ2r4w2
dφ1 ∧ dw ,

where κ is the deformation parameter. The RR sector of the fermionic deformed model

has a nonzero three form and a nonzero five form. As the expressions are large, we refer

to the original paper [23] instead of reproducing the RR forms here.

Our conventions for light-cone gauge fixing and the computation of the perturbative S

matrix for this background are analogous to those for the undeformed model, see e.g. the

review [35]. The two coordinates labeled t and φ in the background above are isometric, and

are the coordinates used in the light-cone gauge fixing. To get the interaction Lagrangian

for the perturbative S matrix we first change to a different basis of transverse fields denoted

zi, i = 1, . . . , 4 and yj , j = 1, . . . , 4. These are related to the transverse coordinates used

above as
z1 + iz2

1− 1
4z

2
= ρ
√

1− x2eiψ1 ,
z3 + iz4

1− 1
4z

2
= ρ x eiψ2 , z2 ≡ z2

i ,

y1 + iy2

1 + 1
4y

2
= r
√

1− w2eiφ1 ,
y3 + iy4

1 + 1
4y

2
= r w eiφ2 , y2 ≡ y2

i .

(2.12)

In what follows we have (implicitly) applied this coordinate redefinition to the background,

including the RR fields. We fix our spinor conventions in terms of these new coordinates

directly, as discussed in appendix A.

10Before substituting the gauge condition, our Nambu-Goto type action is manifestly reparametrization

invariant, so we can freely rescale σ. This rescaling remains a symmetry upon gauge fixing if we corre-

spondingly adapt the gauge condition on ψ.
11The authors of [34] use trigonometric coordinates ζ and ξ related to our x and w as x = sin ζ, w = sin ξ.
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2.4 Expansion of the action

For the computation of the tree-level two-body S matrix we need the gauge-fixed action

to quartic order in the transverse fields, keeping in mind that we restricted to quadratic

order in fermions from the start. Physically we consider the string action (2.11), rescale

the transverse fields by 1/
√
h, e.g. z1 → z1/

√
h, and keep terms up to order 1/h, i.e.12

S =

∫
d2σ

(
L2 +

1

h
L4 + . . .

)
, (2.13)

where by convention we have absorbed a sign in the definition of L2,4. This expansion is

straightforward but computationally involved due to the complicated nature of the back-

grounds.13

At the quadratic level we find

L2 = εabεȧḃ

(
−∂τY aȧ∂τY

bḃ + ∂σY
aȧ∂σY

bḃ + (1 + κ2)Y aȧY bḃ
)

+ εαβεα̇β̇

(
−∂τZαα̇∂τZββ̇ + ∂σZ

αα̇∂σZ
ββ̇ + (1 + κ2)Zαα̇Zββ̇

)
+ iθ†aα̇∂τθ

aα̇ +
1

2

(
εabεα̇β̇θ

aα̇∂σθ
bβ̇ − εabεα̇β̇θ†aα̇∂σθ

†
bβ̇

)
−
√

1 + κ2θ†aα̇θ
aα̇

+ iη†αȧ∂τη
αȧ +

1

2

(
εαβεȧḃη

αȧ∂ση
βḃ − εαβεȧḃη†αȧ∂ση

†
βḃ

)
−
√

1 + κ2η†αȧη
αȧ ,

(2.14)

where we have introduced the complex fields Y and Z via

(
Y aȧ

)
=

(
Y 22̇ −Y 21̇

Y 12̇ −Y 11̇

)
=

1

2

(
y3 − iy4 −y1 + iy2

y1 + iy2 y3 + iy4

)
,

(
Zαα̇

)
=

(
Z33̇ −Z34̇

Z43̇ −Z44̇

)
=

1

2

(
z3 − iz4 −z1 + iz2

z1 + iz2 z3 + iz4

)
,

(2.15)

in addition to the fermions θaα̇ and ηαȧ parametrizing the spinors, as presented in eq. (A.9)

in the appendix. The indices on these fields label their transformations with respect to

the su(2)⊕4 symmetry of the undeformed model, acting from the left and the right on the

matrices. We denote the indices 1 and 2 with Latin letters (a and b) and the indices 3 and

12In the approach of the review [35] σ is rescaled by h to remove explicit dependence on h from the gauge

fixed Hamiltonian. Our conventions and starting point circumvent this, but of course in both cases we end

up with a string length of P−/h and only an overall factor of h before expanding.
13To give some technical details, we evaluated the gauge-fixed Lagrangian described above, formally

expanding in fermions whenever possible before substituting concrete expressions. We expressed everything

in terms of the bosonic coordinates, the two gauge fixed spinors θ1 and θ2, and a set of canonically ordered

abstract tangent space gamma matrices. We discarded any terms that are zero due to the κ-gauge fixing,

expanded the resulting expressions to appropriate order in bosons, and finally substituted concrete spinors

and gamma matrices. In practice we were not able to sufficiently simplify the coordinate transformed RR

forms before expanding, so we resorted to expanding the contributions of the RR forms to second order in

the bosons before substituting them in the gauge-fixed Lagrangian.
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4 with Greek letters (α and β). For an index running from 1 to 4 we use capital Latin

letters M,N,... . The Levi-Civita symbols εab and εαβ are defined for Latin and Greek indices

individually, i.e. ε12 = ε12 = 1 and ε34 = ε34 = 1.

The reality of yi and zi implies the reality condition

(
Y aȧ

)†
= −εabεȧḃY

bḃ ,
(
Zαα̇

)†
= −εαβεα̇β̇Z

ββ̇ . (2.16)

so that from the worldsheet perspective the model contains 8 real scalar bosons and 8 com-

plex scalar fermions (Grassmann fields), all with mass
√

1 + κ2. The interaction Lagrangian

L4 is too large to be meaningfully presented here, but can be found in the Mathematica

notebook attached to the arXiv submission of this paper.

We note that our conventions at this point differ from those of [12, 34] and the re-

view [35]. Firstly, with respect to [12, 34] we interchanged indices 1̇ ↔ 2̇ and 3̇ ↔ 4̇

for convenient comparison to the exact S matrix later. Similarly, with respect to the re-

view [35] we interchanged 1 ↔ 2 and 3̇ ↔ 4̇, which is a symmetry of the undeformed

model. Secondly, the authors of [12, 34] parametrized the string tension as h = g
√

1 + κ2,

and rescaled the fields by 1/
√
g rather than 1/

√
h. Hence our and their interaction terms,

had [12, 34] worked in a Lagrangian framework, are related as

L4(ϕ) = (1 + κ2)L̄4(ϕ̄). (2.17)

where we denote quantities from [12, 34] with bars, with ϕ collectively denoting the rescaled

transverse fields. Moreover, in light-cone gauge fixing we implicitly rescale σ by 1/h com-

pared to the implicit rescaling by 1/g of [12, 34]. As a result

σ =
1√

1 + κ2
σ̄ =⇒ p =

√
1 + κ2 p̄, (2.18)

where p is the spatial worldsheet momentum used in the S matrix below. Under these

identifications, our quadratic Lagrangian matches the one of [12]. Our bosonic interaction

Lagrangian should correspond to the bosonic interactions of [12, 34] in the Hamiltonian

setting, while the fermionic interaction terms based on different RR sectors are inherently

different.

3 Perturbative S matrix

With our kinetic and interaction Lagrangians we are ready to compute the tree-level S

matrix using Feynman diagram methods. We first present our choice of mode expansion

used to determine the asymptotic scattering states, then give the result for the T matrix,

and finally show that this result factorizes, albeit in a form that slightly deviates from

the expectations from the distinguished case of [12]. We give a detailed discussion of this

factorized structure and its relation to the exact result in section 5.
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3.1 On-shell mode expansion

For the in- and out-states of the Feynman amplitudes we need the solutions of the equations

of motion for L2. These are given by the on-shell mode expansions14

Y aȧ(τ, σ) =
1√
2π

∫
dp

1

2
√
ωp

(
+ei(pσ−ωpτ)aaȧ(p)− e−i(pσ−ωpτ)εabεȧḃa†

bḃ
(p)
)
, (3.1)

Zαα̇(τ, σ) =
1√
2π

∫
dp

1

2
√
ωp

(
+ei(pσ−ωpτ)aαα̇(p)− e−i(pσ−ωpτ)εαβεα̇β̇a†

ββ̇
(p)
)
, (3.2)

θaα̇(τ, σ) =
e−iπ/4√

2π

∫
dp

1
√
ωp

(
−iei(pσ−ωpτ)f∗pa

aα̇(p)− ie−i(pσ−ωpτ)h∗pε
abεα̇β̇a†

bβ̇
(p)
)
, (3.3)

ηαȧ(τ, σ) =
e−iπ/4√

2π

∫
dp

1
√
ωp

(
+iei(pσ−ωpτ)fpa

αȧ(p) + ie−i(pσ−ωpτ)hpε
αβεȧḃa†

βḃ
(p)
)
, (3.4)

where in comparison to the distinguished case of [12] it is more convenient to use f∗p and

h∗p for θaα̇, as this enables a direct comparison with the exact result of section 4. The

dispersion relation is

ωp =
√

1 + κ2 + p2 , (3.5)

and the wave functions for the fermions are given by

fp =

√
p+ iκ√
p− iκ

√
ωp +

√
1 + κ2

2
, hp =

p

2fp
, (3.6)

|fp|2 − |hp|2 =
√

1 + κ2 , |fp|2 + |hp|2 = ωp . (3.7)

We reformulated fp from [12] such that we obtain manifestly continuous amplitudes for all

p1 > p2 when choosing the standard branch for the square root function.

Upon quantization we have (aMṄ )† = a†
MṄ

for all operators. For the bosons this stems

from the reality condition (2.16), for the fermions it is a result of the equations of motion.

It reduces the number of degrees of freedom on-shell effectively from 8 complex to 8 real

scalar fermions.

3.2 T matrix

We are going to calculate the 2 → 2 scattering matrix S from the gauge fixed, deformed

and expanded Lagrangian of section 2.4. For this, we expand S in terms of the tree-level

T matrix as

S = 1 +
i

h
T + . . . (3.8)

and follow the standard Feynman diagram procedure, adapted to some of the intrica-

cies of our model — details are presented in appendix B. The scattering process depends

on two momenta, p1 and p2, with p1 > p2 by assumption. The scattering states are

|a†
MṄ

(p1)a†
PQ̇

(p2)〉 = a†
MṄ

(p1)a†
PQ̇

(p2) |0〉. We label these states by their particle content

14Note that in the limit κ → 0 the review [35] gives an expansion that differs by factors of ±i for the

fermions. This would give a T matrix that differs by some (physically inconsequential) signs from the T

matrix of [36], which is the one reproduced in [35].
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and have the first and second particle depend on p1 and p2 respectively. For example

we write ∣∣∣Yaȧθbβ̇〉 ≡ ∣∣∣a†aȧ(p1)a†
bβ̇

(p2)
〉
,

∣∣∣Zαα̇ηβḃ〉 ≡ ∣∣∣a†αα̇(p1)a†
βḃ

(p2)
〉
. (3.9)

The T matrix is given in the following by its action on the two-particle states.

Boson-Boson

T |YaȧYbḃ〉 = + 2A |YaȧYbḃ〉+ (B +Wεȧḃ) |YaḃYbȧ〉+ (B −Wεab) |YbȧYaḃ〉

+ Cα̇β̇
ȧḃ
εȧḃε

α̇β̇ |θaα̇θbβ̇〉+ Cαβab εabε
αβ |ηαȧηβḃ〉

T |Zαα̇Zββ̇〉 = − 2A |Zαα̇Zββ̇〉+ (−B +Wεα̇β̇) |Zαβ̇Zβα̇〉+ (−B −Wεαβ) |Zβα̇Zαβ̇〉

− C̄ȧḃ
α̇β̇
εα̇β̇ε

ȧḃ |ηαȧηβḃ〉 − C̄
ab
αβεαβε

ab |θaα̇θbβ̇〉

T |YaȧZαα̇〉 = + 2G |YaȧZαα̇〉+Hαa
aα |ηαȧθaα̇〉 − Hα̇ȧȧα̇ |θaα̇ηαȧ〉

T |Zαα̇Yaȧ〉 = − 2G |Zαα̇Yaȧ〉+ H̄ȧα̇α̇ȧ |ηαȧθaα̇〉 − H̄aα
αa |θaα̇ηαȧ〉

Fermion-Fermion

T |θaα̇θbβ̇〉 = + C̄ȧḃ
α̇β̇
εα̇β̇ε

ȧḃ |YaȧYbḃ〉 − C
αβ
ab εabε

αβ |Zαα̇Zββ̇〉

T |ηαȧηβḃ〉 = − Cα̇β̇
ȧḃ
εȧḃε

α̇β̇ |Zαα̇Zββ̇〉+ C̄abαβεαβε
ab |YaȧYbḃ〉

T |θaα̇ηβḃ〉 = − H̄ḃα̇
α̇ḃ
|YaḃZβα̇〉 −H

βa
aβ |Zβα̇Yaḃ〉

T |ηαȧθbβ̇〉 = +Hβ̇ȧ
ȧβ̇
|Zαβ̇Ybȧ〉+ H̄bα

αb |YbȧZαβ̇〉

Boson-Fermion

T |Yaȧθbβ̇〉 = (A+ G) |Yaȧθbβ̇〉+ (B −Wεab) |Ybȧθaβ̇〉

+Hβ̇ȧ
ȧβ̇
|θaβ̇Ybȧ〉+ Cαβab εabε

αβ |ηαȧZββ̇〉

T |Yaȧηβḃ〉 = (A+ G) |Yaȧηβḃ〉+ (B +Wεȧḃ) |Yaḃηβȧ〉

+Hβa
aβ |ηβȧYaḃ〉 − C

α̇β̇

ȧḃ
εȧḃε

α̇β̇ |θaα̇Zββ̇〉

T |θaα̇Ybḃ〉 = (A− G) |θaα̇Ybḃ〉+ (B −Wεab) |θbα̇Yaḃ〉

+ H̄ḃα̇
α̇ḃ
|Yaḃθbα̇〉 − C

αβ
ab εabε

αβ |Zαα̇ηβḃ〉

T |ηαȧYbḃ〉 = (A− G) |ηαȧYbḃ〉+ (B +Wεȧḃ) |ηαḃYbȧ〉

+ H̄bα
αb |Ybȧηαḃ〉+ Cα̇β̇

ȧḃ
εȧḃε

α̇β̇ |Zαα̇θbβ̇〉

T |Zαα̇θbβ̇〉 = − (A+ G) |Zαα̇θbβ̇〉+ (−B +Wεα̇β̇) |Zαβ̇θbα̇〉

− H̄bα
αb |θbα̇Zαβ̇〉+ C̄ȧḃ

α̇β̇
εα̇β̇ε

ȧḃ |ηαȧYbḃ〉

T |Zαα̇ηβḃ〉 = − (A+ G) |Zαα̇ηβḃ〉+ (−B −Wεαβ) |Zβα̇ηαḃ〉

− H̄ḃα̇
α̇ḃ
|ηαḃZβα̇〉 − C̄

ab
αβεαβε

ab |θaα̇Ybḃ〉
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T |θaα̇Zββ̇〉 = − (A− G) |θaα̇Zββ̇〉+ (−B +Wεα̇β̇) |θaβ̇Zβα̇〉

−Hβa
aβ |Zβα̇θaβ̇〉 − C̄

ȧḃ
α̇β̇
εα̇β̇ε

ȧḃ |Yaȧηβḃ〉

T |ηαȧZββ̇〉 = − (A− G) |ηαȧZββ̇〉+ (−B −Wεαβ) |ηβȧZαβ̇〉

− Hβ̇ȧ
ȧβ̇
|Zαβ̇ηβȧ〉+ C̄abαβεαβε

ab |Yaȧθbβ̇〉

Because we work only up to quadratic order in fermions, we were not able to determine

the expressions for four-fermion processes. The coefficients used above are defined as

A =
1

4

(p1 − p2)2 + κ2(ω1 − ω2)2

p1ω2 − p2ω1
,

B =
p1p2 + κ2ω1ω2

p1ω2 − p2ω1
,

G = −
(
1 + κ2

)1

4

ω2
1 − ω2

2

p1ω2 − p2ω1
,

W = iκ ,

C0 = −
(
1 + κ2

)√
p2

1 + κ2

√
p2

2 + κ2
sinh

(
1
2(arsinh p1√

1+κ2
− arsinh p2√

1+κ2
)
)

p1ω2 − p2ω1
,

H0 = +
(
1 + κ2

)√
p2

1 + κ2

√
p2

2 + κ2
cosh

(
1
2(arsinh p1√

1+κ2
− arsinh p2√

1+κ2
)
)

p1ω2 − p2ω1
,

C34
12(κ) =

p1 − iκω1

p2 − iκω2

p2 + iκ

p1 − iκ
C0 , C43

12(κ) = C0 , C̄abαβ(κ) = (Cαβab (κ))∗ ,

C43
21(κ) =

p2 − iκω2

p1 − iκω1

p1 + iκ

p2 − iκ
C0 , C34

21(κ) = C0 ,

H31
13(κ) =

p2 + iκω2

p1 + iκω1

p1 + iκ

p2 + iκ
H0 , H41

14(κ) = H0 , H̄aβαb(κ) = (Hαbaβ(κ))∗ ,

H42
24(κ) =

p2 − iκω2

p1 − iκω1

p1 + iκ

p2 + iκ
H0 , H32

23(κ) = H0 ,

C = C(−κ) , C̄ = C̄(−κ) , H = H(−κ) , H̄ = H̄(−κ) .

(3.10)

T satisfies the classical Yang-Baxter equation15

[T23,T13] + [T23,T12] + [T13,T12] = 0 (3.11)

up to terms that could not be checked because they involve four-fermion expressions. In

the undeformed limit κ→ 0 it matches the result of [36].

15The Tij denote the graded embeddings of T into the product of three spaces, i.e. using the graded

permutation operator P g
ij (defined, for example, in eq. (3.8) of [35]). Explicitly this gives

T12 = T⊗ 1 , T13 = P g
23T12P

g
23 , T23 = P g

12P
g
13T12P

g
13P

g
12 = 1⊗ T .
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3.3 Factorization

Our tree-level result matches a T matrix written in the factorized form

T = T (−κ)⊗ 1 + 1⊗ T (κ) ,

TPṖQQ̇
MṀNṄ

= (−1)εṀ (εN+εQ)T PQMN (−κ)δṖ
Ṁ
δQ̇
Ṅ

+ (−1)εQ(εṀ+εṖ )δPMδ
Q
NT

Ṗ Q̇

ṀṄ
(κ) ,

(3.12)

up to the four-fermion amplitudes that we did not compute. Here the first and second factor

of the tensor product acts respectively on the undotted or dotted indices. εM describes the

statistics of the index, i.e. it is zero for Latin indices (1 and 2) and one for Greek indices

(3 and 4). The matrix T is the tree-level expansion of the exact fermionic suq(2|2)c.e. S
′

matrix that will be derived in the next section, explicitly in subsection 4.2.2. The entries

of T (κ) are

T cdab = Aδcaδdb + (B +Wεab)δ
d
aδ
c
b ,

T γδαβ = −Aδγαδδβ + (−B +Wεαβ)δδαδ
γ
β ,

T cδaβ = Gδcaδδβ , T γdαb = −Gδγαδdb ,

T γδab = Cγδab εabε
γδ , T cdαβ = C̄cdαβεαβεcd ,

T γdaβ = Hγdaβδ
d
aδ
γ
β , T cδαb = H̄cδαbδδαδcb ,

(3.13)

with the coefficients listed in (3.10). The sign flip of κ in the first term of eq. (3.12) leaves

the terms involving A, B and G invariant and changes the W term by a sign. The C and

H terms in turn transform in a non-trivial way.

In summary, we find a factorized T matrix that is structurally similar to the unde-

formed [36] and distinguished case [12], but differs in two major aspects. Firstly, the

coefficients C and H depend on the indices of their respective entries. Secondly, in contrast

to the results for the distinguished model presented in [12], the two factors in eq. (3.12)

have opposite deformation parameters. We will come back to the origin of the relative sign

flip on κ in section 5, and the distinguished case in section 6. First we will determine the

exact S matrix following purely from symmetry considerations.

4 Exact S matrix

In this section we derive the exact suq(2|2)c.e. S matrix for the fermionic deformation.

We exploit the fact that at the level of the complexified superalgebra slq(2|2)c.e. the Hopf

algebras constructed using respectively the distinguished and fully fermionic Dynkin dia-

gram of sl(2|2) have coproducts related by a twist. The S matrix associated to the fully

fermionic Dynkin diagram can thus be obtained from the slq(2|2)c.e. S matrix associated to

the distinguished Dynkin diagram through twisting and upon imposing appropriate reality

conditions.

4.1 Hopf algebra

Let us first recall the defining relations of the suq(2|2) superalgebra. For this we start

by considering a Cartan-Weyl basis of the complexified sl(2|2) superalgebra, formed by
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Cartan elements Hj , positive roots Ej and negative roots Fj , where the index j = 1, 2, 3.

The q-deformation is defined through the relations

qHjEk = qAjkEkqHj , qHjFk = q−AjkFkqHj , [Ej ,Fk] = djδjk [Hj ]q , (4.1)

with [x]q = (qx − q−x)/(q − q−1) and A a symmetric Cartan matrix associated to sl(2|2),

obtained from the original unsymmetrized Cartan matrix Â through Â = DA with D =

diag(d1, d2, d3). A particularity of Lie superalgebras that sets them apart from ordinary

Lie algebras is that they admit inequivalent Dynkin diagrams, depending on the number

of bosonic simple roots in the chosen root system. Each Dynkin diagram is associated to a

different Cartan matrix. sl(2|2) admits three inequivalent Dynkin diagrams. We will focus

on two of them, the distinguished Dynkin diagram, which has the maximum number of

bosonic simple roots (two), and the fermionic Dynkin diagram, where all the three simple

roots are fermionic.

The relations (4.1) are not enough to completely fix the slq(2|2) superalgebra but need

to be supplemented with standard and higher-order Serre relations. We do not write these

conditions in their most general form here (independent on the choice of Dynkin diagram),

but rather later when considering the distinguished and fermionic Dynkin diagram. Some of

these constraints can be consistently dropped, giving rise to a centrally extended slq(2|2)c.e.

superalgebra.

There are several coproducts under which the quantum-deformed algebra acquires a

coalgebra structure. Here we choose the one whose action on the Cartan elements, positive

and negative simple roots is given by

∆(Hj) = Hj ⊗ 1 + 1⊗Hj ,

∆(Ej) = Ej ⊗ 1 + q−Hj ⊗ Ej ,
∆(Fj) = Fj ⊗ qHj + 1⊗ Fj .

(4.2)

This coproduct satisfies the required conditions

(1⊗∆)∆ = (∆⊗ 1)∆ , (1⊗ ε)∆ = 1 = (ε⊗ 1)∆ , (4.3)

where 1 denotes the identity and ε : slq(2|2)c.e. → C is the counit with

ε(1) = 1 , ε(Hj) = ε(Ej) = ε(Fj) = 0 . (4.4)

Finally, to obtain a Hopf algebra we need to define an antipode map S : slq(2|2)c.e. →
slq(2|2)c.e. satisfying the compatibility condition

µ(S⊗ 1)∆(X) = µ(1⊗ S)∆(X) = ηε(X) , (4.5)

where µ : slq(2|2)c.e. ⊗ slq(2|2)c.e. → slq(2|2)c.e. denotes the product, µ(X ⊗ Y ) = XY .

Let us already mention that in order to obtain a non-trivial S matrix one needs to

introduce the braiding into the coproduct (4.2). The coproduct of Cartan elements and

bosonic simple roots remains unchanged, but the coproduct of fermionic simple roots needs

to be adapted. We postpone the explicit expression of the coproduct with braiding to when

we consider specific Dynkin diagrams.
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Distinguished Dynkin diagram. The distinguished Cartan matrix corresponds to

choosing a root system with the maximum number of bosonic simple roots. In the case

of sl(2|2), this corresponds to two bosonic simple roots and one fermionic simple root.

This is the Dynkin diagram chosen in [25], and we review the main characteristics of the

corresponding Hopf algebra here.

The unsymmetrized and symmetrized distinguished Cartan matrices are

Â =

+2 −1 0

+1 0 −1

0 −1 +2

 , A =

+2 −1 0

−1 0 +1

0 +1 −2

 , D = diag(+1,−1,−1) . (4.6)

The standard Serre relations are

0 = E1E1E2 − (q + q−1)E1E2E1 + E2E1E1 = E3E3E2 − (q + q−1)E3E2E3 + E2E3E2 ,

= F1F1F2 − (q + q−1)F1F2F1 + F2F1F1 = F3F3F2 − (q + q−1)F3F2F3 + F2F3F2 ,

= [E1,E3] = [F1,F3] = E2E2 = F2F2 , (4.7)

and the higher order Serre relations take the form P = 0 and K = 0 with

P = E1E2E3E2 + E2E3E2E1 + E3E2E1E2 + E2E1E2E3 − (q + q−1)E2E1E3E2 ,

K = F1F2F3F2 + F2F3F2F1 + F3F2F1F2 + F2F1F2F3 − (q + q−1)F2F1F3F2 .
(4.8)

The Cartan matrix has non-maximal rank 2 and there is thus a central element, given by

C = −H2− 1
2(H1 +H3). In fact, it can be shown that the higher-order Serre relations (4.8)

can be consistently dropped, in which case also P and K become central elements and one

obtains the triply centrally extended algebra slq(2|2) nR2.

The coproduct (including the braiding factor U) of the Cartan elements and simple

roots is16

∆(Hj) = Hj ⊗ 1 + 1⊗Hj ,

∆(Ej) =

{
Ej ⊗ 1 + q−Hj ⊗ Ej j = 1, 3 ,

Ej ⊗ U−1/2 + q−HjU1/2 ⊗ Ej j = 2 ,

∆(Fj) =

{
Fj ⊗ qHj + 1⊗ Fj j = 1, 3 ,

Fj ⊗ qHjU1/2 + U−1/2 ⊗ Fj j = 2 .

(4.9)

This in turn fixes the coproduct of the three central elements to be

∆(C) = C⊗ 1 + 1⊗ C ,

∆(P) = P⊗ U−1 + q2CU⊗ P ,
∆(K) = K⊗ q−2CU + U−1 ⊗K .

(4.10)

The S matrix should satisfy17

∆op(X)S = S∆(X) , ∀X ∈ slq(2|2)c.e. . (4.11)

16In contrast to [25] we choose to include the braiding in a “symmetric” way. This choice is more suited

for implementing the twist.
17For an operator O mapping to the tensor product of two spaces, we define the “opposite” operator

Oop = P gO, where P g is the graded permutation operator. In particular, for the coproduct we have

∆op(X) = P g(∆(X)).
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In particular if X is central this implies ∆op(X) = ∆(X). While this is immediately

satisfied for C, imposing it for P and K partially fixes them to be

P = αβ U−1
(

1− q2CU2
)
, K = α−1β U

(
q−2C − U−2

)
, (4.12)

where α and β are yet undetermined complex numbers.

Finally, the antipode map satisfying (4.5) is given by S(1) = 1 and

S(Hj) = −Hj , S(Ej) = −qHjEj , S(Fj) = −Fjq−Hj ,

S(C) = −C , S(P) = −q−2CP , S(K) = −Kq2C .
(4.13)

Fermionic Dynkin diagram. For the fermionic Dynkin diagram on the other hand

all the three simple roots are fermionic. The non-symmetrized and symmetrized Cartan

matrices are (we use primes to denote quantities related to the fermionic Dynkin diagram)

Â′ =

 0 −1 0

+1 0 −1

0 +1 0

 , A′ =

 0 +1 0

+1 0 −1

0 −1 0

 , D′ = diag(−1,+1,−1) . (4.14)

The standard Serre relations are

0 = E′1E′1 = F′1F′1 = E′2E′2 = F′2F′2 = E′3E′3 = F′3F′3 , (4.15)

together with P′ = 0 and K′ = 0, where

P′ = [E′1,E′3] , K′ = [F′1,F′3] . (4.16)

The higher-order Serre relations are automatically satisfied. The reason why we have

separated the standard Serre relations into (4.15) and (4.16) is that the second constraints

can be consistently dropped, leading to a triply centrally extended slq(2|2) superalgebra

with central elements P′,K′ and

C′ = −1

2
(H′1 + H′3) . (4.17)

The coproduct (including the braiding) is

∆′(H′j) = H′j ⊗ 1 + 1⊗H′j ,

∆′(E′j) =

{
E′j ⊗ U−1/2 + q−H

′
jU1/2 ⊗ E′j j = 1, 3 ,

E′j ⊗ U1/2 + q−H
′
jU−1/2 ⊗ E′j j = 2 ,

∆′(Fj) =

{
F′j ⊗ q

H′jU1/2 + U−1/2 ⊗ F′j j = 1, 3 ,

F′j ⊗ q
H′jU−1/2 + U1/2 ⊗ F′j j = 2 .

(4.18)

For the three central elements we obtain

∆′(C′) = C′ ⊗ 1 + 1⊗ C′ ,

∆′(P′) = P′ ⊗ U−1 + q2C′U⊗ P′ ,

∆′(K′) = K′ ⊗ q−2C′U + U−1 ⊗K′ ,

(4.19)

and P′, K′ obey analogous relations to (4.12). The antipode map S′ is given by equations

similar to (4.13).
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The twist. As already mentioned, the q-deformed superalgebra generated by the fermi-

onic Cartan matrix is isomorphic to the q-deformed superalgebra generated by the dis-

tinguished Cartan matrix, while the coproducts are related by a twist. This remains

true even after introducing the braiding. To see this, we define the two distinct algebras

A({H,E,F}, A) and A′({H′,E′,F′}, A′), whose defining relations (4.1) are dictated by the

Cartan matrices A of (4.6) and A′ of (4.14) respectively. The Lusztig transformation

ω : A′({H′,E′,F′}, A′)→ A({H,E,F}, A) defined by [37]18

ω(H′1) = H1 + H2 , ω(E′1) = E1E2 − qE2E1 , ω(F′1) = F2F1 − q−1F1F2 ,

ω(H′2) = −H2 , ω(E′2) = −F2q
H2 , ω(F′2) = −q−H2E2 ,

ω(H′3) = H2 + H3 , ω(E′3) = E3E2 − q−1E2E3 , ω(F′3) = F2F3 − qF3F2 ,

(4.20)

is such that19

[ω(X ′), ω(Y ′)] = ω([X ′, Y ′]) , ∀X ′, Y ′ ∈ A′({H′,E′,F′}, A′) , (4.21)

and thus defines a Lie algebra homomorphism. Moreover, under this map the central

elements are transformed into one another

ω(C′) = C , ω(P′) = P , ω(K′) = K . (4.22)

The coproducts on the other hand are related by a Drinfel’d twist

(ω ⊗ ω)∆′(X ′) = F−1∆(ω(X ′))F , F = 1⊗ 1− (q − q−1)U1/2F2 ⊗ U1/2E2 , (4.23)

with F satisfying the cocycle condition

(F−1 ⊗ 1)(∆⊗ 1)F−1 = (1⊗ F−1)(1⊗∆)F−1 . (4.24)

Therefore, the S matrix for the fermionic Dynkin diagram is

S′ = F−opSF . (4.25)

Let us mention that the antipode map is not preserved by the twist, in the sense that

ω(S′(X ′)) 6= S(ω(X ′)). We rather have that

ω(S′(H′j)) = S(ω(H′j)) ,
ω(S′(E′1)) = −qS(ω(E′1)) , ω(S′(F′1) = −q−1S(ω(F′1)) ,

ω(S′(E′2)) = S(ω(E′2)) , ω(S′(F′2) = S(ω(F′2)) ,

ω(S′(E′3)) = −q−1S(ω(E′3)) , ω(S′(F′3) = −qS(ω(F′3)) .

(4.26)

18I.e. we can think of ω(X ′) as the representation of X ′ in the algebra A({H,E,F}, A).
19On the left-hand side of (4.21) the bracket is defined with the Cartan matrix A of (4.6), while on the

right-hand side the bracket is defined with the Cartan matrix A′ (4.14).
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Reality conditions. Until now we have worked with the complexified algebra slq(2|2)

and have not imposed any reality conditions to obtain suq(2|2). The S matrix S′ of (4.25)

is thus not a priori unitary. Imposing the reality conditions

H†j = Hj , E†j = q−HjFj , U† = U−1 , (4.27)

produces a unitary S matrix S associated to the distinguished Dynkin diagram, but the

sought after S matrix S′, associated to the fermionic Dynkin diagram, is not unitary due to

the twist. Therefore, we need to adapt the reality conditions so that S is not unitary but S′

is. In other words, instead of using the reality conditions (4.27) that are compatible with the

coproduct (4.9), we choose reality conditions that are compatible with the coproduct (4.18).

These are

H′j
†

= H′j , E′j
†

= q−H
′
jF′j , U† = U−1 . (4.28)

Imposing

ω†(X ′) = ω(X ′†) , (4.29)

then gives rise to

E†1 = q−1q−2H2−H1F1 , E†2 = qH2F2 , E†3 = qq−2H2−H3F3 . (4.30)

It thus follows that a way to obtain the exact q-deformed S matrix for the fermionic Dynkin

diagram is to twist the suq(2|2)c.e. S matrix associated to the distinguished Dynkin diagram

and impose the reality conditions (4.30).

4.2 Fundamental S matrix

The q-deformed S matrix based on the distinguished Dynkin diagram of slq(2|2) has been

derived by Beisert and Koroteev in [25]. For completeness we review the construction here,

with some slight changes. In particular, we use the symmetric braiding of (4.9) and work

with the shifted and rescaled variables of [38].

Fundamental representation. The fundamental representation of the centrally ex-

tended slq(2|2) superalgebra is spanned by four states |φ1〉 , |φ2〉 , |ψ3〉 , |ψ4〉, with |φa〉
bosonic and |ψα〉 fermionic, obeying

H1 |φ1〉 = − |φ1〉 , H2 |φ1〉 = − (C − 1/2) |φ1〉 , H3 |φ1〉 = 0 ,

H1 |φ2〉 = + |φ2〉 , H2 |φ2〉 = − (C + 1/2) |φ2〉 , H3 |φ2〉 = 0 ,

H1 |ψ4〉 = 0 , H2 |ψ4〉 = − (C + 1/2) |ψ4〉 , H3 |ψ4〉 = + |ψ4〉 ,
H1 |ψ3〉 = 0 , H2 |ψ3〉 = − (C − 1/2) |ψ3〉 , H3 |ψ3〉 = − |ψ3〉 .

(4.31)

where C is the central charge for the fundamental representation. The action of the simple

roots is given by
E1 |φ1〉 = â |φ2〉 , F2 |φ1〉 = c |ψ3〉 ,
E2 |φ2〉 = a |ψ4〉 , F1 |φ2〉 = ĉ |φ1〉 ,

E3 |ψ4〉 = b̂ |ψ3〉 , F2 |ψ4〉 = d |φ2〉 ,

E2 |ψ3〉 = b |φ1〉 , F3 |ψ3〉 = d̂ |ψ4〉 ,

(4.32)
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where â, b̂, ĉ, d̂, a, b, c, d are coefficients constrained by the commutation relations of the

q-deformed algebra. By renormalizing the states one could in principle eliminate two of

the coefficients with hat, setting for instance â = b̂ = 1, but here we prefer to keep the

coefficients free, while ensuring the normalization 〈φa|φa〉 = 〈ψα|ψα〉 = 1. Choosing the

basis of states

|φ1〉 =


1

0

0

0

 , |φ2〉 =


0

1

0

0

 , |ψ4〉 =


0

0

1

0

 , |ψ3〉 =


0

0

0

1

 , (4.33)

the positive and negative simple roots have matrix realizations

E1 =


0 0 0 0

â 0 0 0

0 0 0 0

0 0 0 0

 , E2 =


0 0 0 b

0 0 0 0

0 a 0 0

0 0 0 0

 , E3 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 b̂ 0

 ,

F1 =


0 ĉ 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , F2 =


0 0 0 0

0 0 d 0

0 0 0 0

c 0 0 0

 , F3 =


0 0 0 0

0 0 0 0

0 0 0 d̂

0 0 0 0

 .

(4.34)

The matrix realization of the other generators can easily be deduced from their expressions

in terms of Ej and Fj . Taking the commutator between a positive and a negative simple

root one obtains the relations

âĉ = 1 , b̂d̂ = 1 , (4.35)

and

ad =

[
C +

1

2

]
q

, bc =

[
C − 1

2

]
q

. (4.36)

The commutation relations involving a Cartan element and a positive or negative simple

root are automatically satisfied. Furthermore, the central charges P and K, expectation

values of the central elements P and K respectively, are given by

P = abâb̂ , K = cdĉd̂ . (4.37)

This in turn implies the closure condition[
C +

1

2

]
q

[
C − 1

2

]
q

= PK = β2(1− q2CU2)(q−2C − U−2) , (4.38)

where for the last equality we plugged in the explicit expressions for P and K derived

in (4.12). This can be recast into

(V − V −1)2 = ξ2(U − U−1)2 + (1− ξ2)(q1/2 − q−1/2)2 , (4.39)
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where we introduced

V = qC , ξ = −i β(q − q−1)√
1− β2(q − q−1)2

. (4.40)

The labeling of states by φ and ψ as used in this section (and similarly in [25]), corresponds

in our conventions to the sigma model indices 1, 2, 3, 4 as

φ1 ↔ 1 , ψ3 ↔ 3 ,

φ2 ↔ 2 , ψ4 ↔ 4 ,
(4.41)

with a second copy of these for the dotted indices.

Deformation of the Zhukovsky variables. As customary in the context of q-deform-

ations we introduce deformations of the Zhukovsky variables,

U2 = q−1x
+ + ξ

x− + ξ
= q

1/x− + ξ

1/x+ + ξ
, V 2 = q−1 1 + x+ξ

1 + x−ξ
= q

ξ/x− + 1

ξ/x+ + 1
, (4.42)

and hence in the x± variables the closure condition (4.39) becomes

q−1

(
x+ +

1

x+

)
− q

(
x− +

1

x−

)
− (q − q−1)

(
ξ +

1

ξ

)
= 0 . (4.43)

The variables â and b̂ remain free, while the others are

ĉ =
1

â
, d̂ =

1

b̂
,

a =
√
βγU−1/2q1/2 1

â
,

b =
√
βαγ−1U−1/2

(
1− x+

x−

)
q−1/2 1

b̂
,

c = i
√
βα−1γ

√
1− ξ2qU1/2V −1 1

x+ + ξ
b̂ ,

d = i
√
βγ−1

√
1− ξ2U1/2V

x− − x+

1 + x+ξ
â .

(4.44)

The slq(2|2)c.e. S matrix. The S matrix satisfying the defining equality (4.11) is [25]20

S |φaφa〉 = A |φaφa〉 , S |ψαψα〉 = −D |ψαψα〉 ,

S |φ1φ2〉 =
â1

â2

q2A+B

q2 + 1
|φ2φ1〉+

q(A−B)

q2 + 1
|φ1φ2〉 −

b̂2
â2

qC

q2 + 1
|ψ4ψ3〉+

b̂1
â2

q2C

q2 + 1
|ψ3ψ4〉 ,

S |φ2φ1〉 =
q(A−B)

q2 + 1
|φ2φ1〉+

â2

â1

A+ q2B

q2 + 1
|φ1φ2〉+

b̂2
â1

q2C

q2 + 1
|ψ4ψ3〉 −

b̂1
â1

q3C

q2 + 1
|ψ3ψ4〉 ,

S |ψ3ψ4〉 = − b̂2
b̂1

q2D + E

q2 + 1
|ψ4ψ3〉 −

q(D − E)

q2 + 1
|ψ3ψ4〉+

â1

b̂1

q−1F

q2 + 1
|φ2φ1〉 −

â2

b̂1

F

q2 + 1
|φ1φ2〉 ,

S |ψ4ψ3〉 = −q(D − E)

q2 + 1
|ψ4ψ3〉 −

b̂1

b̂2

D + q2E

q2 + 1
|ψ3ψ4〉 −

â1

b̂2

F

q2 + 1
|φ2φ1〉+

â2

b̂2

qF

q2 + 1
|φ1φ2〉 ,

20The S matrix acts in the tensor product of two spaces, which we label with indices 1, 2. (Not to be

confused with the sl(2) indices of the states |φ1,2〉.) Due to our choice of normalization of fields, the S

matrix is obtained from [25] by sending |φ2〉 → q−1/2â |φ2〉 and |ψ1〉 → q1/2b̂ |ψ3〉.
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S |φ1ψ3〉 = G |φ1ψ3〉+
b̂1

b̂2
H |ψ3φ1〉 , S |ψ3φ1〉 = L |ψ3φ1〉+

b̂2

b̂1
K |φ1ψ3〉 , (4.45)

S |φ1ψ4〉 = G |φ1ψ4〉+H |ψ4φ1〉 , S |ψ4φ1〉 = L |ψ4φ1〉+K |φ1ψ4〉 ,

S |φ2ψ3〉 = G |φ2ψ3〉+
â2b̂1

â1b̂2
H |ψ3φ2〉 , S |ψ3φ2〉 = L |ψ3φ2〉+

b̂2â1

b̂1â2

K |φ2ψ3〉 ,

S |φ2ψ4〉 = G |φ2ψ4〉+
â2

â1
H |ψ4φ2〉 , S |ψ4φ2〉 = L |ψ4φ2〉+

â1

â2
K |φ2ψ4〉 .

The ten coefficients are given by

A = S0
U1V1

U2V2

x+
2 − x

−
1

x−2 − x
+
1

,

B = S0
U1V1

U2V2

x+
2 − x

−
1

x−2 − x
+
1

(
1− (q + q−1)q−1x

+
2 − x

+
1

x+
2 − x

−
1

x−2 − 1/x+
1

x−2 − 1/x−1

)
,

C = −S0(q + q−1)
γ1γ2U1V1

αq3/2U2
2V

2
2

x−1
x+

1

x+
1 − x

+
2

(x+
1 − x

−
2 )(1− x−1 x

−
2 )

,

D = −S0 ,

E = −S0

(
1− (q + q−1)

1

qU2
2V

2
2

x+
2 − x

+
1

x−2 − x
+
1

x+
2 − 1/x−1
x−2 − 1/x−1

)
,

F = −S0(q + q−1)
αU2

1V
2

1

q1/2U2V2γ1γ2

x−1
x+

1

(x−1 − x
+
1 )(x+

2 − x
+
1 )(x+

2 − x
−
2 )

(x−2 − x
+
1 )(1− x−1 x

−
2 )

,

G = S0
1

q1/2U2V2

x+
2 − x

+
1

x−2 − x
+
1

,

H = S0
γ1

γ2

x+
2 − x

−
2

x−2 − x
+
1

,

K = S0
U1V1

U2V2

γ2

γ1

x+
1 − x

−
1

x−2 − x
+
1

,

L = S0U1V1q
1/2x

−
2 − x

−
1

x−2 − x
+
1

.

(4.46)

This S matrix satisfies the quantum Yang-Baxter equation21

S12S13S23 = S23S13S12 . (4.47)

4.2.1 Distinguished Dynkin diagram

Let us briefly discuss the exact suq(2|2)c.e. S matrix associated with the distinguished

Dynkin diagram.

Reality conditions. In order to obtain the exact S matrix for the deformed model based

on the distinguished Dynkin diagram we need to impose the reality conditions (4.27). This

21The Sij denote the graded embeddings of S, defined analogously to the Tij of footnote 15.
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implies ξ ∈ iR together with the constraints

|â|2 = q , |b̂| 2 = q−1 ,

|γ|2 = i(1− qV 2)

√
1− ξ2

ξ
, |α|2 = 1 .

(4.48)

A solution to these equations is given by22

â = q1/2 , b̂ = q−1/2 , α = 1 , γ =
√
−q1/2UV (x+ − x−) . (4.49)

Crossing symmetry. A virtue of the coefficients (4.49) is that they lead to an exact S

matrix which has crossing symmetry

(C−1 ⊗ 1)SST⊗1
1̄2

(C ⊗ 1)S12 = 1⊗ 1 , (4.50)

provided the overall prefactor satisfies the crossing relation

(S0)12(S0)1̄2 = q
x+

2

x−2

(x−1 − x
−
2 )(1− x+

1 x
−
2 )

(x−1 − x
+
2 )(1− x+

1 x
+
2 )

. (4.51)

In (4.50), −ST denotes the supertransposition acting as AST
jk = (−1)(|j|+1)|k|Akj , with |j| = 0

if the index is bosonic and |j| = 1 if the index is fermionic, 1̄ means that we consider the

antipode representation,

x̄± =
1

x±
, Ū = U−1 , V̄ = V −1 , γγ̄ = −iq1/2(UV − U−1V −1) , (4.52)

and the charge conjugation matrix is given by23

C |φ1〉 = −q1/2 |φ2〉 , C |ψ3〉 = −iq1/2 |ψ4〉 ,

C |φ2〉 = +q−1/2 |φ1〉 , C |ψ4〉 = +iq−1/2 |ψ3〉 .
(4.53)

A symmetry of the distinguished exact S matrix. An interesting property of the

exact S matrix for the distinguished Dynkin diagram with (4.49) is its invariance under

the map

q → q−1, |φ1〉 ↔ |φ2〉 , |ψ3〉 ↔ |ψ4〉 . (4.54)

To show this, let us analyze the consequences of sending q → q−1 on the coefficients of

the S matrix. First of all, the braiding factor U is independent on q and thus remains

22In [25], γ was instead taken to be γ =
√
−iq1/2UV (x+ − x−), which differs by an overall factor from our

choice (4.49). This factor can be reabsorbed into a renormalisation (by a phase) of the fermionic states |ψ3〉
and |ψ4〉 to yield the same S matrix. The reason we choose this particular value of γ is to exactly reproduce

the perturbative T matrix upon expansion without having to renormalise the fermions, see subsection 4.2.3.
23The charge conjugation matrix is defined through the relation S(X) = C−1X̄STC , with S the antipode

map defined in eq. (4.13). Imposing this relation for the bosonic simple roots E1,F1,E3 and F3 fixes the

conjugation matrix up to an overall prefactor in the two subspaces {|φ1〉 , |φ2〉} and {|ψ3〉 , |ψ4〉}. Further

requiring that it holds for the fermionic simple roots E2 and F2 fixes one prefactor in terms of the other

and one obtains the antipode representation for the parameter x± and γ as in eq. (4.52). Notice that since

our γ differs from the one chosen in [25], so does the charge conjugation matrix.
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unchanged. By the definitions (4.40) we have V → V −1 and ξ → −ξ. The variables x±

also need to be modified as they are subject to the conditions (4.42) and (4.43), which

depend on q, V and ξ. The solutions to the modified constraints are

x− → x− + ξ

1 + x−ξ
, x+ → x+ + ξ

1 + x+ξ
. (4.55)

This in turn implies

γ → γ

√
1− ξ2

1 + x+ξ
. (4.56)

Under these transformations the right-hand side of (4.51) remains invariant. Moreover, also

the ten coefficients A,B, . . . , L are left unchanged. The latter however enter the S matrix

with factors of the deformation parameter q. Therefore the transformation q → q−1 is not

itself a symmetry of the exact S matrix associated to the distinguished Dynkin diagram,

but it is easy to see that it becomes one when supplemented with the exchange of states

as in (4.54).

4.2.2 Fermionic Dynkin diagram

We now consider the suq(2|2)c.e. S matrix associated to the fermionic Dynkin diagram.

Implementing the twist. In order to obtain the exact S matrix S′ associated to the

fermionic Dynkin diagram we implement the twist (4.25), S′ = F−opSF. In the fundamental

representation, F only differs from the identity for the following matrix elements:

(F− 1⊗ 1) |φ1φ2〉 = −(q − q−1)U
1/2
1 U

1/2
2 c1a2 |ψ3ψ4〉 ,

(F− 1⊗ 1) |φ1ψ3〉 = −(q − q−1)U
1/2
1 U

1/2
2 c1b2 |ψ3φ1〉 ,

(F− 1⊗ 1) |ψ4φ2〉 = +(q − q−1)U
1/2
1 U

1/2
2 d1a2 |φ2ψ4〉 ,

(F− 1⊗ 1) |ψ4ψ3〉 = +(q − q−1)U
1/2
1 U

1/2
2 d1b2 |φ2φ1〉 .

(4.57)

Reality conditions. Finally, to obtain a unitary S matrix, we impose the reality condi-

tions (4.30), leading to

|â|2 = V 2q−1 ,
∣∣∣b̂∣∣∣2 = V 2q ,

|γ|2 = iq−3(1− qV 2)

√
1− ξ2

ξ
, |α|2 = 1 .

(4.58)

With this choice of coefficients, the S matrix is unitary: (S′12)†S′12 = 1 ⊗ 1, provided the

overall prefactor is a pure phase, |S0| = 1. A solution is given by

â = V q−1/2 , b̂ = V q1/2 , α = 1 , γ = q−3/2
√
−q1/2UV (x+ − x−) . (4.59)
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Crossing symmetry. The exact S matrix associated with the fermionic Dynkin diagram

satisfies the crossing equation (4.50), with conjugation matrix24

C′ |φ1〉 = − |φ2〉 , C′ |ψ3〉 = −i |ψ4〉 ,
C′ |φ2〉 = + |φ1〉 , C′ |ψ4〉 = +i |ψ3〉 ,

(4.60)

and exactly the same relation (4.51). Therefore, if crossing symmetry is imposed, the

prefactor is constrained in the same way for the distinguished and fermionic exact S matrix.

It is thus consistent to pick it to be the same for both cases.

4.2.3 Expansion of the exact S matrix

In order to compare to the perturbative result, we need to obtain the tree-level expansion of

the fermionic suq(2|2)c.e. S matrix and provide a physical meaning to the purely algebraic

quantities used to construct the exact fermionic S matrix. We assume that the energy and

the momentum are defined as in the undeformed case through

C |Φ〉 = C |Φ〉 =
ω

2
|Φ〉 , U |Φ〉 = U |Φ〉 = e

ip
2 |Φ〉 , (4.61)

with Φ standing for an element of {φ1, φ2, ψ3, ψ4}. The exact S matrix has two free param-

eters q and ξ. Based on experience with the distinguished case [34], we take these to be

related to the deformation parameter κ and the string tension h entering the string sigma

model through25

q = e−κ/h , ξ = iκ . (4.62)

Rescaling the momentum p→ p/h we find to linear order in h

U = 1 +
ip

2h
+ . . . , V = 1− κω

2h
+ . . . . (4.63)

Solving the variables x± as functions of U, V , and using the closure condition (4.39) yields

the dispersion relation (3.5). Finally, recalling that it is consistent to take the scalar factor

S0 to be equal to the one of the distinguished case [26, 27, 34] and matching indices as in

eqs. (4.41), the expansion of the exact fermionic S matrix gives

S′(q) = 1 +
i

h
T (κ) + . . . , (4.64)

where we recover the matrix T (κ) of eq. (3.13) used to express the perturbative result.

24The charge conjugation is defined analogously to the relation of footnote 23. Since the twist does not

preserve the antipode map, see eq. (4.26), the charge conjugation here differs from the one in (4.53).
25The expression for ξ is equivalent to taking β = h/(2

√
1 + κ2). Taking h = g

√
1 + κ2, β = g/2 gives

the expressions of [34].
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5 Comparison of the perturbative and exact S matrix

In section 3.3 we found a tree-level T matrix of the form

T = T (−κ)⊗ 1 + 1⊗ T (κ) . (5.1)

This structure is a deformation of the one for the undeformed string, which has two identical

T factors in its T matrix. It suggests that the two factors of the su(2|2)⊕2
c.e. light-cone

symmetry of the undeformed string get deformed oppositely rather than identically. A

closer look at the embedding of the relevant su(2|2) algebras in su(2, 2|4), and the action

of the R operator at both levels, shows that this should indeed be the case.

5.1 Light-cone symmetry algebra

In the matrix conventions of [35] (see e.g. equation (2.123) there), the two copies of su(2|2)

are embedded in su(2, 2|4) as 
R 0 −Q† 0

0 R̊ 0 Q̊
Q 0 L 0

0 Q̊† 0 L̊

 , (5.2)

in 2 × 2 block notation, with one copy of su(2|2) generated by R,L,Q,Q†, and the other

by their dotted counterparts. Note the different relative placement of Q and Q̊.26

This structure needs to be contrasted with the action of the fermionic R operator defin-

ing the action, and the fermionic R operator Rsu(2|2) corresponding to the q deformation

of the exact su(2|2) S matrix. The R operator defining the action, acts on elements M of

su(2, 2|4) as [23]

R(M)ij = −iεijMij , ε =



0 +1 +1 +1 +1 +1 +1 +1

−1 0 +1 +1 −1 +1 +1 +1

−1 −1 0 +1 −1 −1 +1 +1

−1 −1 −1 0 −1 −1 −1 +1

−1 +1 +1 +1 0 +1 +1 +1

−1 −1 +1 +1 −1 0 +1 +1

−1 −1 −1 +1 −1 −1 0 +1

−1 −1 −1 −1 −1 −1 −1 0


, (5.3)

where we have highlighted the blocks corresponding to the undotted and dotted copies of

su(2|2) in green and yellow respectively. In appendix C we translate between conventions

to determine the R operator corresponding to the exact S matrix of section 4, acting on a

copy of su(2|2) of the form (
R −Q†

Q L

)
. (5.4)

26While Q↔ Q† is an automorphism of su(2|2), the central extensions {Q,Q} ∼ C and {Q̊, Q̊} ∼ C that

appear off shell, meaningfully fix this embedding.
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This R operator is

Rsu(2|2)(M)ij = −iεijMij , ε =


0 −1 −1 −1

+1 0 +1 −1

+1 −1 0 −1

+1 +1 +1 0

 . (5.5)

Comparing the action of Rsu(2|2) to the action of R on the two su(2|2)s as in equa-

tion (5.3), we see that R acts like −Rsu(2|2) on the undotted copy of su(2|2). For the dotted

copy we can now compare term by term at the level of the individual indexed generators

(see e.g. section 2.4.2 of [35]).27 In terms of index assignment, (5.2) has the form

34 33 24 14

44 43 23 13

4̇3̇ 4̇4̇ 4̇2̇ 4̇1̇

3̇3̇ 3̇4̇ 3̇2̇ 3̇1̇

42 32 21 22

41 31 11 12

2̇4̇ 2̇3̇ 1̇2̇ 1̇1̇

1̇4̇ 1̇3̇ 2̇2̇ 2̇1̇


(5.6)

where we have indicated the action of the R operator by color-coding the entries in red

(+i), blue (−i) and white (0). We see that R acts precisely oppositely on the dotted and

undotted (indexed) generators of the two copies of su(2|2). Since R acted like −Rsu(2|2) on

the undotted su(2|2), it acts like +Rsu(2|2) on the dotted su(2|2) with permuted indices.

As changing the sign of the R operator is equivalent to changing the sign of κ or

inverting q, the two copies of su(2|2) effectively have opposite deformation parameters.

Putting everything together, our light-cone symmetry algebra is thus expected to be

su1/q(2|2)c.e. ⊕ suq(2|2)c.e..

5.2 Expanded exact S matrix

The above structure for the light-cone symmetry algebra is compatible with our tree-level

T matrix, and suggest that the exact S matrix is of the form S′(1/q) ⊗ S′(q), where the

factors correspond to the fermionic exact suq(2|2)c.e. S matrix S′(q). Using the tree-level

expansion of S′(q) given in equation (4.64), we find

S′(1/q)⊗ S′(q) = 1 +
i

h
(T (−κ)⊗ 1 + 1⊗ T (κ)) + . . . = 1 +

i

h
T + . . . . (5.7)

In other words we find perfect agreement between the exact su1/q(2|2)c.e. ⊕ suq(2|2)c.e. S

matrix and our tree-level T matrix, provided q = e−κ/h, at least semiclassically. Taking

into account the relative parametrizations, this identification of q matches the one of [6].

27Recall that we permute indices 1 and 2, and 3̇ and 4̇, relative to [35].
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6 Distinguished deformation

With the framework set up, we can quickly revisit the computation of the tree-level T matrix

for the distinguished deformation. Taking the distinguished background presented in [12]

as input, we proceed exactly as described before, except that we use the unconjugated fp
and hp in the mode expansion of θ

θaα̇(τ, σ) =
e−iπ/4√

2π

∫
dp

1
√
ωp

(
−iei(pσ−ωpτ)fpa

aα̇(p)− ie−i(pσ−ωpτ)hpε
abεα̇β̇a†

bβ̇
(p)
)
, (6.1)

for convenient direct comparison. The resulting T matrix factorizes, and solves the CYBE.

As for the fermionic case, it is of the form

T = T (−κ)⊗ 1 + 1⊗ T (κ) (6.2)

where T is now given by eq. (3.13) with A, B, G and W as in the fermionic case, see

eq. (3.10), and

Cαβab (κ) = C̄abαβ(κ) = C0 , Hαbaβ(κ) = H̄aβαb(κ) = H0 . (6.3)

Although the R operator is different, the light-cone symmetry algebra has the same

overall structure as in the fermionic case. As discussed in appendix C, we now have

Rsu(2|2)(M)ij = −iεijMij , ε =


0 −1 −1 −1

+1 0 −1 −1

+1 +1 0 −1

+1 +1 +1 0

 , (6.4)

and the analogue of (5.6) becomes

34 33 24 14

44 43 23 13

4̇3̇ 4̇4̇ 4̇2̇ 4̇1̇

3̇3̇ 3̇4̇ 3̇2̇ 3̇1̇

42 32 21 22

41 31 11 12

2̇4̇ 2̇3̇ 1̇2̇ 1̇1̇

1̇4̇ 1̇3̇ 2̇2̇ 2̇1̇


. (6.5)

We see that also in the distinguished case we expect su1/q(2|2)c.e. ⊕ suq(2|2)c.e. symmetry.

Expanding the corresponding exact S matrix reproduces our tree-level result here as well.

The inversion of the deformation parameter is less significant here than it was in the

fermionic case. As discussed around equations (4.54), for the distinguished deformation an

inversion of the deformation parameter is equivalent to a change of basis

S(1/q) = Sp(q) =⇒ T (−κ) = T p(κ), (6.6)
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where −p denotes the operation of permuting indices 1↔ 2 and 3↔ 4, cf. equations (4.41).

Hence there appears to be no real distinction between su1/q(2|2)c.e. ⊕ suq(2|2)c.e. and

suq(2|2)⊕2
c.e. symmetry in this case. In our current conventions, up to this basis change

on the undotted indices, we have

T ' T (κ)⊗ 1 + 1⊗ T (κ) (6.7)

which is manifestly compatible with suq(2|2)⊕2
c.e. symmetry.

Our present results conflict with those of [12], whose T matrix only factorizes and

satisfies the CYBE after a nonlocal redefinition of the scattering states. Our results agree

in the purely bosonic sector, but differ for the fermions.28 As our setups differ throughout

the various stages of the computation, it is not straightforward to conclusively determine

the origin for this mismatch.29 Our results show that there exists a gauge choice for which

this classically integrable field theory admits a tree-level S matrix that solves the CYBE,

which seems like a natural consistency requirement.

7 Conclusions

In this paper we studied the worldsheet scattering theory of the light-cone gauge-fixed

fermionic η deformation of the AdS5 × S5 string. We started by computing the tree-level

worldsheet S matrix, showing that it satisfies the classical Yang-Baxter equation and has

a factorized structure. Based on expectations regarding the light-cone symmetry algebra,

we then determined the exact S matrix factor compatible with suq(2|2)c.e. symmetry for

the fermionic Dynkin diagram. By considering the embedding of the light-cone symmetry

algebra in the full symmetry algebra relative to the action of the R operator governing the

deformation, we found that the two factors of the light-cone symmetry algebra are in fact

deformed oppositely, resulting in su1/q(2|2)c.e. ⊕ suq(2|2)c.e. symmetry. The corresponding

full exact S matrix is compatible with our tree-level worldsheet computation.

We also revisited the distinguished deformation of AdS5 × S5 in our setup, similarly

finding a factorized tree-level T matrix that solves the classical Yang-Baxter equation. In

this case the light-cone symmetry algebra is based on the distinguished Dynkin diagram,

and it turns out that inversion of the deformation parameter is effectively a symmetry of the

exact S matrix factor, so that pragmatically there is no distinction between su1/q(2|2)c.e.⊕
suq(2|2)c.e. and suq(2|2)⊕2

c.e. symmetry.

There are a number of questions we did not address in this paper. First, it would

be interesting to understand what effect the change from distinguished to fermionic defor-

mation has on the exact spectrum of the model, or whether perhaps the models should

28To directly compare, note that [12] defines epsilon with lower indices with the opposite sign from

us. Moreover, at the exact S matrix level, the deformation parameter appears to be partially inverted

compared to [12, 34]. We emphasize that this is equivalent to an inconsequential change of basis. In fact,

the identification of q depends on the mapping from the exact to the perturbative S-matrix basis in the

first place.
29One possible source lies in the κ-symmetry gauge fixing, as we were currently unable to compare our

gauge choice with the one of [12]. We thank G. Arutyunov, R. Borsato and S. Frolov for discussions on this

point.
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ultimately be considered equivalent, and if so, how this relates to Weyl invariance. This

first of all requires analysis of the corresponding Bethe equations. Second, coming back to

the mirror duality mentioned in the introduction, it would be interesting to see whether

this feature of the distinguished deformation is also present for our fermionic one. It would

not only be interesting to answer this question for the current exact S matrix, but also

to investigate the tree-level and exact S matrices for deformations of AdS3 × S3 where

it is possible to realize mirror duality explicitly also in the fermionic sector of the sigma

model [39]. Next, for the exact S matrix and Bethe ansatz description of these models

it is important to understand the precise identification of the exact parameters q and ξ

and the Lagrangian parameters κ and h. This is related to questions surrounding quan-

tum corrections to Yang-Baxter deformed backgrounds, where initial studies have thus far

focused on α′ corrections for homogeneous deformations [40, 41], and corrections to (not

Weyl invariant) deformed backgrounds to maintain compatibility with RG flow [42, 43], see

also the very recent [44, 45]. At the level of quantum corrections, it would also be great to

investigate the one-loop S matrices for both the distinguished and fermionic deformations

along the lines of [46], as at loop level we are generically sensitive to Weyl invariance.30 As

a lead up to computing such loop corrections, it is moreover important to explicitly check

the contributions at quartic order in the fermions at tree level. We could also consider fur-

ther unimodular inhomogeneous deformations with differing bosonic sectors as in [6, 21].

In [21] it was shown that the bosonic S matrices of these models are related to the one of

the standard inhomogeneous deformation by one-particle momentum-dependent changes

of basis. It would be interesting to understand whether this picture continues to hold when

including fermions, and if so, to find a matching algebraic picture at the level of the exact

S matrix. Finally, it would be very interesting to understand whether the fermionic defor-

mation of the AdS5 × S5 string that we considered here, can be given an interpretation in

terms of AdS/CFT.
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A Spinor conventions

Here we briefly set out our conventions regarding the spinors of the Green-Schwarz action

and associated objects such as gamma matrices, the vielbein and spin connection. Our

30For the distinguished case the one-loop S matrix has been studied using unitarity techniques in [47].
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conventions are close to those of [12] but differ in the labeling of coordinates and coset

model gamma matrices.

Tangent space. We introduce tangent space gamma matrices as follows

Γa =


σ1 ⊗ γ0 ⊗ 14 a = 0,

−σ2 ⊗ 14 ⊗ γ5 a = 1,

σ1 ⊗ γa−1 ⊗ 14 a = 2, 3, 4, 5,

−σ2 ⊗ 14 ⊗ γa−5 a = 6, 7, 8, 9,

(A.1)

where

γ0 = iσ3 ⊗ σ0 = iγ5,

γ1 = σ2 ⊗ σ2,

γ2 = −σ2 ⊗ σ1,

γ3 = σ1 ⊗ σ0,

γ4 = σ2 ⊗ σ3,

(A.2)

are the coset model γ matrices of [35], and the σi denote the Pauli matrices, with σ0 ≡ 12.

The associated charge conjugation matrix

C = iσ2 ⊗K ⊗K, K = −iσ0 ⊗ σ2, (A.3)

satisfies

Γta = −CΓaC
−1, CtC = 1, Ct = −C. (A.4)

In these conventions

Γ11 ≡ Γ0Γ1 . . .Γ9 = σ3 ⊗ 116. (A.5)

A Majorana-Weyl spinor satisfies

θtC = θ̄ ≡ θ†Γ0, and Γ11θ = θ. (A.6)

In the light-cone gauge we fix kappa symmetry as

Γpθ = 0, (A.7)

where we introduce tangent space light-cone coordinates similarly to the curved ones

Γp =
1

2

(
Γ0 + Γ1

)
, Γm = Γ1 − Γ0, (A.8)
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with labels p and m to distinguish them from the curved space + and −.31 We parametrize

the components of our two kappa-gauge-fixed Majorana-Weyl spinors as

θ1 =
1

2



0

0

−i(η42̇)∗ + η31̇

i(η41̇)∗ + η32̇

0

0

i(η32̇)∗ + η41̇

−i(η31̇)∗ + η42̇

−(θ13̇)∗ − iθ24̇

(θ23̇)∗ − iθ14̇

0

0

(θ14̇)∗ − iθ23̇

−(θ24̇)∗ − iθ13̇

0
...

0



, θ2 = θ1

∣∣∣∣η→ iη
θ→−iθ

(A.9)

This index assignment matches the behavior of the components under the su(2) transfor-

mations of the Z and Y fields of the main text, see equation (2.15), here in the spinorial

representation. This parametrization can be read off by translating the spinor θaα of [12]

to an 8× 8 matrix using the matrix generators of su(2, 2|4) used there, and comparing this

to the standard parametrization of the fermions in the coset formulation, see e.g. equa-

tion (1.139) of [35].32 In matrix form the kappa gauge Γpθ = 0 becomes the one used in

the coset model formulation, see e.g. equation (1.87) of [35]. Our spinors contain eight

complex Grassmann-valued fields: four ηs and four θs.

Spacetime. Spacetime Γ matrices ΓM are defined as

ΓM = eaMΓa, (A.10)

where e is the vielbein. In our case the vielbein needs to be chosen appropriately to

maintain a straightforward link to coset sigma model objects and associated conventions.

Our vielbein is determined by the deformed current A of the sigma model, see eqs. (2.8)

and (2.19) of [18]. Taking a coset element appropriate for our z and y variables as in

31In this gauge, any fermion bilinear θ̄iΓ
a . . .Γeθj involving purely transverse tangent space gamma

matrices — those with indices other than p or m (0 or 1) — is zero.
32In line with appendix C.2 of [12], relative to [35] we permute indices 1 and 2, and replace θ → iθ and

η → −iη.
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eq. (1.147) of [35], and evaluating the deformed current, we find

eaM =



−1− z2

4

1+ z2

4

κz1 κz2 κz3 κz4

− κz1

1+ z2

4

1− z2

4 −κ(z23+z24)
1− z2

4

κz2z3

1− z2

4

κz2z4

1− z2

4

− κz2

1+ z2

4

κ(z23+z24)
1− z2

4

1− z2

4 −κz1z3

1− z2

4

−κz1z4

1− z2

4

− κz3

1+ z2

4

−κz2z3

1− z2

4

κz1z3

1− z2

4

1− z2

4 0

− κz4

1+ z2

4

−κz2z4

1− z2

4

κz1z4

1− z2

4

0 1− z2

4



aM

,

for the deformed AdS factor with a = 0, 2, 3, 4, 5 and M = t, z1, z2, z3, z4, and

eaM =



1+ y2

4

1− y2

4

−κy1 −κy2 −κy3 −κy4

κy1

1− y2

4

1 + y2

4

κ(y23+y24)
1+ y2

4

−κy2y3

1+ y2

4

−κy2y4

1+ y2

4

κy2

1− y2

4

−κ(y23+y24)
1+ y2

4

1 + y2

4
κy1y3

1+ y2

4

κy1y4

1+ y2

4
κy3

1− y2

4

κy2y3

1+ y2

4

−κy1y3

1+ y2

4

1 + y2

4 0

κy4

1− y2

4

κy2y4

1+ y2

4

−κy1y4

1+ y2

4

0 1 + y2

4



aM

,

for the deformed sphere factor with a = 1, 6, 7, 8, 9 and M = φ, y1, y2, y3, y4. Other compo-

nents of the vielbein vanish. We raised the curved index to get more compact expressions.

At κ = 0 the vielbein is diagonal and associates tangent indices to coordinates as(
0 1 2 3 4 5 6 7 8 9

t φ z1 z2 z3 z4 y1 y2 y3 y4

)
(A.11)

The spin connection can be similarly extracted, however it is not independent and can also

be found via

ωabM = −2e[a|N∂[Me
|b]
N ] − e

aP ebQ∂[Qe
c
P ]ecM . (A.12)

B Feynman diagrammatics

We used standard Feynman diagram methods to determine the perturbative T matrix —

with the two major steps being the calculation of the Feynman rules and Feynman am-

plitudes. We performed these two procedures in Mathematica, using the packages Feyn-

Rules [48] and FeynArts [49] respectively.

This section states the implementation details and highlights certain issues arising

from the intricacies of the model at hand. In particular it has scalar valued fermions,

which further are complex off shell, but become real on shell (see the end of section 3.1).

The bosons in turn are always constrained to be real by the reality condition eq. (2.16).
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Feynman rules. We describe our model as 8 real bosons and 8 complex fermions and

will take the (on-shell) reality conditions into account only when calculating the amplitudes

in the second step.

When turning the interaction terms into vertex factors the FeynRules package assumes

a (+,−) signature and therefore prefactors each term with +i. Additionally, it replaces

derivatives by components of the covariant momentum: (∂τ , ∂σ) → −i(ω, p). We want to

adopt a (−,+) signature convention however, which requires a prefactor of −i, and more-

over, we want to use the components of the contravariant momentum vector, i.e. replace

(∂τ , ∂σ) → i(−ω, p). To match these two choices we add an extra sign to each vertex and

replace p→ −p in the output of FeynRules.

For the scalar fermions we follow the algorithm for Feynman diagrams with general

fermionic fields [50]. In particular, this requires us to keep track of a fermion flow direction

for each vertex involving fermions. It is not sufficient to simply look at the particle/anti-

particle flow (like can be done for Dirac fermions), because certain interaction terms with

fermionic parts break this flow. (For example terms proportional to θθ or θ†θ†.) FeynRules

is interfering with the proper tracking of the fermion flow by not respecting the ordering of

fermionic fields in the input and bringing them into alphabetic order internally. We were

able to resolve this issue by ordering the input already before giving it to the package,

adding extra signs when anticommuting fermions.

Our light cone gauge explicitly breaks the Lorentz invariance of the interaction terms.

To support this, we had to perform minor modifications to the code of FeynRules. Further,

we uncovered two bugs in version 2.3.36 of the package, which caused certain vertices

with momentum dependence to be dropped from the output. We reported these to the

developers and proposed a fix. A patch file33 containing the modifications and the bug

fixes is attached to the arXiv submission of this paper.

Finally, we obtain all the 4-point vertices coming from the interaction Lagrangian and

can use them to calculate the Feynman amplitudes.

Feynman amplitudes. With the 4-point vertices at hand we can determine the ampli-

tudes for the 2→ 2 scattering described in section 3.2. The FeynArts package also assumes

a (−,+) signature and therefore prefactors each amplitude with −i. Our choice of (+,−)

requires a prefactor of +i however. We add an extra sign to each amplitude thus. The in-

and out-states are assigned according to the occurrence of the operators aMṄ and a†
MṄ

in

the mode expansion in eqs. (3.4). To account for the on-shell reality of the fermions, we

sum the contributions from their fields and anti-fields. Further data taken from the mode

expansion is the dispersion relation for ωp, the prefactors 1
2
√
ωp

, − 1
2
√
ωp

and 1√
ωp

for incom-

ing bosons, outgoing bosons and fermions respectively, and the fermionic wave functions

(in the notation of figure 2.3 of [50])

uθ(p) = −ie−iπ/4f∗p uη(p) = +ie−iπ/4fp

v̄θ(p) = +ie+iπ/4hp v̄η(p) = −ie+iπ/4h∗p

ūθ(p) = −ie−iπ/4h∗p ūη(p) = +ie−iπ/4hp

vθ(p) = +ie+iπ/4fp vη(p) = −ie+iπ/4f∗p
33Apply with patch -p0 < FeynRules.patch.
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FeynArts already implements the algorithm described in [50] for Feynman diagrams

containing general fermionic fields and only requires the reversed-fermion-flow vertices Γ′

and wave functions u′, v′ as input. In contrast to the case discussed in [50], the fermions at

hand are scalars and the reversed quantities are therefore given by anticommuting Grass-

mann fields. This simply adds extra minus signs,

Γ′ = −Γ , u′ = −u , v′ = −v , (B.1)

and similarly for the barred versions. Γ represents the forward-fermion-flow vertices, see

figure 2.1 of [50].

A further modification stems from the fact that FeynArts orders the particles in the

in-state opposite to how the existing literature does and how we present them. To account

for this we have to add an extra minus sign for amplitudes with two fermionic in-states.

Finally, our sought for T is related to the modified FeynArts amplitudes M by

T(p1, p2) =

∫
dk1 dk2 δ(p1 + p2 − k1 − k2)δ(ωp1 + ωp2 − ωk1 − ωk2)M(p1, p2, k1, k2)

=
ωp1ωp2

|p1ωp2 − p2ωp1 |
(M(p1, p2, p1, p2) +M(p1, p2, p2, p1)) .

(B.2)

Here k1 and k2 denote the momenta of the outgoing particles. Due to energy and momen-

tum conservation these are restricted to take on the same values as the incoming momenta

p1 and p2. To follow the existing literature we assume that p1 > p2.

C su(2|2) R operators

Here we derive the precise form of the R operators corresponding to the fermionic and

distinguished q deformations of su(2|2) used in section 4 and [25], and express them in a

basis of the form (
R −Q†

Q L

)
, (C.1)

referred to in sections 5 and 6. As the fermionic case is built on the distinguished case, we

first consider the latter.

Distinguished deformation. We start with eqs. (4.32) to (4.34), taking â = b̂ = ĉ =

d̂ = 1 for unitarity in the undeformed limit, and a = d = 1 and b = c = 0 for the standard

fundamental representation of su(2|2) with C = +1/2. Note the anti-canonical ordering of

|ψ1〉 and |ψ2〉 with respect to the basis vectors in eqs. (4.33). We have

E1 =


0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 , E2 =


0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

 , E3 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 0

 , (C.2)

while the remaining non-simple positive roots can be obtained by repeated commutators

of these. In this case all positive roots are lower diagonal, and all negative roots are upper
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diagonal. The R operator that acts as multiplication by −i on the positive roots, +i on

the negative roots, and 0 on the Cartan generators, is then given by

Rsu(2|2)(M)ij = −iεijMij , ε =


0 −1 −1 −1

+1 0 −1 −1

+1 +1 0 −1

+1 +1 +1 0

 . (C.3)

This is the form the R operator takes on an algebra element of the form (C.1). To see

this, we note that in [25] the simple positive roots are taken to be R2
1, Q2

2 and L1
2.

Taking into account (4.41), these generators can be related to ours as Rα
β ∼ Lαβ , Lab ∼

Rab, and Qα
b = Qα

b, in line with the grading of their indices, and the algebra relations.

With these identifications,34 the positive simple roots given above match with the matrix

structure (C.1) of the algebra element.

Fermionic deformation. We can use the Lusztig transformation of eqs. (4.20) to de-

termine our new simple roots, and commutators for the remainder. Demanding the usual

action of R on these roots then gives

Rsu(2|2)(M)ij = −iεijMij , ε =


0 −1 −1 −1

+1 0 +1 −1

+1 −1 0 −1

+1 +1 +1 0

 . (C.4)
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