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Abstract: The Weak Gravity Conjecture (WGC) is usually formulated in terms of the
stability of extremal black-holes or in terms of long distance Coulomb/Newton potentials.
However one can think of other physical processes to compare the relative strength of
gravity versus other forces. We argue for an alternative formulation in terms of particle
pair production at threshold or, equivalently, pair annihilation at rest. Imposing that the
production rate by any force mediator (photon or scalar) of pairs of charged particles be
larger or equal to graviton production, we recover known conditions for the U(1) WGC
and its extensions. Unlike other formulations though, threshold pair production is sensitive
to short range couplings present in scalar interactions and gives rise to a Scalar WGC.
Application to moduli scalars gives rise to specific conditions on the trilinear and quartic
couplings which involve first and second derivatives of the WGC particle mass with respect
to the moduli. Some solutions saturating equations correspond to massive states behaving
like BPS, KK and winding states which feature duality invariance and are in agreement
with the Swampland distance conjecture. Conditions for N = 2 BPS states saturate
our bounds and we discuss specific examples of BPS states which become massless at
large Kahler moduli in Type IIA N=2, D=4 CY and orbifold compactifications. We study
possible implications for potentials depending on moduli only through WGCmassive states.
For some simple classes of potentials one recovers constraints somewhat similar but not
equivalent to a Swampland dS conjecture.
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1 Introduction

The first formulations of the Weak Gravity Conjecture (WGC) rested heavily on black-
hole physics. The simplest version of the U(1) Weak Gravity Conjecture [1–3] (see [4]
for a recent review and references) may be formulated from the kinematic condition that
extremal black-holes can decay, which requires that a particle with charge e and mass m
must exist such that

√
2e ≥ m/Mp. This may also be understood as a condition between

the strengths of the gravitational and the gauge interactions. The condition corresponds to
imposing that, between two particles with identical masses and charges, the gauge repulsion
dominates, and no bound states form. So it is reasonable to name this as the Weak
Gravity Conjecture. This has been generalized to the case of multiple U(1) interactions,
which requires some refinements [5–7]. Thus e.g. for an extremal black-hole to decay,
it is not enough that particles with mass mi and charge ei exist with

√
2ei ≥ mi/Mp

for each U(1), but instead that a certain condition involving the convex hull is met [5].
Furthermore, if we insist that the constraints remain valid under dimensional reduction,
string theory examples have shown us that there must exist a sublattice (or a tower)
of infinite superextremal massive charged particles verifying the appropriate generalized
version of the constraints [6–9]. These generalized versions of the WGC for multiple U(1)’s
have passed by now a number of tests within the context of string theory.
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The situation becomes more complicated in the presence of scalar couplings. Scalar
couplings do not carry in general a conserved charge and the most naive arguments based
on extremal black-hole stability do not directly apply. Furthermore, the question arises
whether the Swampland conditions have to do only with black-hole physics or rather with
a fundamental general principle that gravity is always the weakest force. This would imply
the wanted instability of extremal black-holes but it may also lead to further constraints
on different systems other than black-holes. As we said, for U(1) interactions and in the
absence of scalar fields, imposing that long range Coulomb forces dominate over Newton
attraction gives equivalent results than instability of extremal black-holes [2, 10]. However,
if gravity is the weakest force, the condition should apply not only to gauge couplings but
also to scalar and Yukawa couplings. In particular, d = 4 quartic scalar interactions
are short-range and such kind of arguments based on long range forces would yield no
information about them. Moreover, since a higher dimensional graviton gives rise to lower
dimensional scalar fields, if the principles behind the WGC are to apply in any dimension,
then some form of a scalar WGC (SWGC) is expected to exist.

In order to compare the strength of gravity with other interactions we should evaluate
amplitudes or rates for some kinematic configuration and fixed specific momenta. In the
case at hand there are essentially two ways to evaluate these rates at tree level 1) Through
diagrams involving one propagator of the considered massless mediators (photon, graviton,
moduli) and 2) Through diagrams involving the exchange of a charged massive test particle
(e.g. a BPS state). The first possibility involves only long range interactions and includes
the exchange of gravitons and photons. With the massive particles at rest they give rise to
Coulomb and Newton potentials in the non-relativistic limit. As we said, one can obtain
the U(1) WGC constraint from imposing that Coulomb repulsion dominates. In the class
2) of diagrams it is the massive particles which are exchanged and hence they instead are
sensitive to short range interactions. Keeping in parallel with the first class, we consider
the massive particles almost at rest. There are three type of tree level processes in this
class, which are related by crossing symmetry: a) Pair production of a pair of massive
states (e.g. γγ → ψψ̄), b) annihilation of a pair massive states (e.g. ψψ̄ → γγ) and 3)
Compton scattering.

Both classes of processes give rise to complementary information concerning the
strength of gravity versus other interactions. In particular the second class, which involves
the propagator of a massive state, is sensitive to short distance interactions. Contact
interactions exist in d = 4 for the coupling between gauge bosons and charged scalars,
e2AµAµ|φ|2. However this brings no uncertainty in the strength of the interaction, since
gauge invariance relates this coupling to the trilinear gauge coupling eAµφ∗∂µφ. However,
in the case of quartic scalar couplings like λ|φ|2|H|2 with e.g. φ a modulus and H some
massive scalar, no information about its strength is in general provided by one-particle ex-
change diagrams. In fact such quartic interactions are known to exist in examples of BPS
states of N = 2 supergravity [11–13] and hence one would like to take them into account
in our understanding of gravity as the weakest force ideas.

In order to compare the strength of some interaction induced by some massless me-
diator (gauge boson or scalar) to gravitational interactions we propose to use the second
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class of processes involving a massive propagator. In particular we will consider pair pro-
duction of massive states at threshold. The inverse process, massive particle annihilation
at rest would yield equivalent results. In the rest of the paper we will talk mainly about
pair production but we must emphasize that all the discussion goes through replacing pair
production at threshold by pair annihilation at rest. In such kinematical regimes both
trilinear and local quartic interactions (if present) are tested and may be compared with
the analogous production mechanism from graviton production. Strictly speaking cross
sections vanish at threshold, what we will be comparing is the differential cross sections
or rather the square of the amplitudes near threshold. In the case of pair annihilation we
would directly compare the annihilation cross sections at rest.

One of the attractive features of this approach is that one can derive the usual WGC
constraints from multiple U(1)’s and a new scalar version of the WGC in a unified manner
and starting from a single principle. In fact we believe that our proposal gives the first
derivation of a scalar WGC from a general underlying principle. Other previous discussion
of a SWGC do not follow in such a direct way since in particular both scalars and gravitons
lead to attractive interactions at large distances and hence no-bound-state arguments fail
in this case. One has to rely on N = 2 SUGRA identities so that the evidence outside the
N = 2 case becomes weaker. Another reason to consider the production rate at threshold is
its possible connection with extremal-black-hole radiation through charge pair production.
Or black-hole pair annihilation into photons/gravitons. We leave the study of this possible
connection to future work.

A point to note is that ours is a quantum relativistic condition since it involves particle
production and interaction rates. This is unlike the case of one photon/graviton exchange
with particles at rest which give rise to the classical non-relativistic Coulomb/Newton
potentials.

Specifically, the general idea may be formulated in the following terms. Consider a
theory with U(1) gauge interactions or moduli scalar fields coupled to gravity. Our general
proposal may be stated as the

Pair Production Weak Gravity Conjecture (PPWGC). For any rational direction
in the charge lattice ~Q and for every point in moduli space, there is a stable or metastable
particle M of mass m whose pair production rate by gauge or scalar mediators at threshold
is larger than its graviton production rate:

|T (ij −→MM∗)|2th ≥ |T (gg −→MM∗)|2th . (1.1)

Here i, j denotes either U(1)n gauge bosons or scalar moduli fields and the subindex
th corresponds to threshold. The criteria we propose could also be easily generalized to
theories with non-abelian gauge fields but we will not consider that possibility in the present
paper. In sections 2 and 3 in this paper the scalars will be consider massless, having in
mind moduli fields. In sections 4 and 5 we will discuss possible extensions to the case in
which the scalars are massive.

In order to apply this principle to the case of U(1) couplings we have computed the
production rates of charged scalars and fermions starting from photons and gravitons.
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Production from gravitons is a non-trivial calculation. Fortunately it may be obtained
by crossing symmetry using results for graviton Compton scattering in the literature [14].
The bounds obtained exactly match the results discussed for the WGC in the literature,
imposing the instability of extremal charged Reissner-Nordstrom black-holes. We also
extend the analysis to the case of multiple U(1)’s and argue for natural extensions, PPWGC
versions of the Tower and Sublattice conjectures.

When the mediators are massless scalars one obtains new interesting constraints. In
particular one gets a scalar WGC (SWGC) constraint involving both trilinear and quartic
scalar couplings. If the inequalities are saturated, one obtains a differential equation in-
volving scalar masses and their first and second derivatives. This equation is closely related
to previous formulas found in [11] and [15]. The precise form of the SWGC conditions de-
pends on the metric of the moduli in the effective field theory, but some general properties
of the extremal solutions are as follows.

1. In all of the examples we study there are solutions for the massive scalars saturating
the bounds which behave at large moduli like BPS-like, KK or winding states with
built-in duality symmetries. This is remarkable since in the effective field theory there
was no input related neither to extra dimensions, extended objects nor dualities, just
diagrammatics of the particles involved. These solutions are consistent with the
Swampland Distance conjecture.

2. The constraint disappears as Mp → ∞, unlike other versions of the WGC involving
scalars [15, 37].

3. The constraint is consistent with Special Kahler Geometry identities of N = 2 BPS
states. We test it further in a class of Type IIA CY vacua in which towers of BPS par-
ticles coming from Dp-branes wrapping even cycles become massless at large Kahler
moduli [18–23]. They saturate our bound and feature the above mentioned duality,
which in this case corresponds to T-duality.

The obtained bounds apply to massive states corresponding to BPS-like, KK or winding
objects. Those are in general very heavy particles with masses of order the Planck scale
unless going to extreme limits in moduli space. On the other hand we would like to
see whether we can learn something about constraints on light (but not massless) scalars
which may have some relevance in particle physics or cosmology. In this direction we briefly
discuss two possibilities.

In section 4 we consider the possibility that the potential of scalar fields (like moduli
themselves) is a function of the mass of the WGC fields, with the latter subject to the
derived bounds. In a simplified case of a single massive object one obtains interesting con-
straints having some resemblance with the refined dS conjecture of refs. [25–27]. Extrema
have constraints on the second derivative of the potential, in agreement with the dS con-
jecture considerations, although they also apply to AdS vacua. In this simple one-modulus
case one can show that dS minima are forbidden.

In section 5 we consider the more speculative possibility that the moduli themselves
have masses subject to the same constraints as the WGC states which obey the conditions.
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This gives rise to constraints involving 3-d and 4-th derivatives of the scalar potential,
analogous to those discussed in ref. [15] but with an absolute value taken. Some particle
physics and cosmology implications from that kind of constraint were described in that
reference. However the presence of the absolute value changes some of the consequences.
In particular, the condition in the present case disappears when gravity decouples and no
restriction on scalar field ranges appear in the field theory in the infrared.

The idea underlying our pair-production proposal is not to put it forward as an alter-
native to long range one-particle exchange arguments. Our point of view is rather that the
hypothesis of gravity being the weakest force could be tested in different particle configu-
rations and kinematic limits. Each of them may be optimal to test a particular property
of the WGC ideas. The Pair-Production proposal is an S-matrix criterion and is optimal
to test the WGC when scalar interactions are involved. The general idea may, in principle,
be applied in any number of dimensions. Nevertheless, in this work we restrict our com-
putations and arguments to d = 4. The Pair-Production criteria may actually turn out
to be closely related to black-hole decay and the standard WGC. Whereas usual WGC
arguments based on stability of extremal black-holes are purely kinematical, our condition
may perhaps point to an additional dynamical condition.

The structure of this paper is as follows. In the next section we study the PPWGC
for the case of U(1) interactions. We first compute the production rate at threshold of
both charged scalar and fermion pairs from photons and gravitons. We show how insisting
on the graviton rate being smaller than the photon rate reproduces the usual U(1) WGC
constraint. We also generalise the constraint to the multiple U(1) case. In section 3 we
study the PPWGC for scalars, and compute the production rate of a pair of heavy scalars
from the collision of two moduli. Insisting that this rate is larger than the rate from
graviton production we obtain the Scalar WGC constraint. We apply it to the case of
complex and real scalars and study the structure of the massive states which saturate the
bounds. Several examples are presented and consistency with known N = 2 BPS results is
shown. Section 4 study possible connections with the dS conjecture and section 5 briefly
discusses the case of the Strong or generalized Scalar WGC’s in which the masses of the
moduli are assumed to obey the same constraints as the massive WGC states discussed in
the previous sections. Some final comments are presented in section 6.

2 The PPWGC for U(1) interactions

2.1 A single U(1)

In this section we study the case of a single U(1) with pair production of charged scalars
and fermions.

Let us start with the production of scalars. The relevant diagrams are shown in figure 1.
For the photon production we are not including a diagram in which the two photons go to
a graviton which then produce two scalars. The reason is that it is purely gravitational and
hence should not be included if our aim is to compare a purely electro-magnetic production
with a purely gravitational production. Thus for the photon production we are taking the
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Figure 1. The relevant tree level diagrams for the pair production of charged scalars in SQED and
linearized Einstein gravity. We assign the letter A to the diagrams with photons and the letter C
to the production via gravitons.

Mp →∞ limit. The cross sections for photon and graviton pair production in the CM are
written as (

dσ

dt

)SQED

CM
= |A|2

32πs2 ;
(
dσ

dt

)Gravφ∗

CM
= |C|2

32πs2 . (2.1)

At threshold the four-momentum of the final particles is p =
(
m,~0

)
and the cross section

vanishes. We are not interested in comparing the cross section at threshold, but in the
threshold limit, where the particles in the produced pair have infinitesimal but non-zero
momenta. Thus, what we will compare is the differential cross section with respect to t. In
the threshold limit the Mandelstman variables are given by: t = u = −m2 and s = 4m2.
Using the helicity formalism, we will see that at threshold only the amplitudes where the
initial photons or gravitons have opposite helicities contribute. Both amplitudes have the
structure

|M |2 = 2 |M++|2 + 2 |M+−|2 . (2.2)

For the photon production amplitude one obtains

A+− = 2e2 (m4 − ut
)

(t−m2) (u−m2) ; A++ = − 2e2m2s

(t−m2) (u−m2) . (2.3)

The computation of the graviton production is non-trivial. Fortunately, the rate may be
obtained by crossing from the graviton Compton scattering computed in [14]. Interestingly,
one finds that the gravitational amplitudes for the Compton scattering of a spin S particle
with gravitons are given by the product of the electromagnetic Compton scalar amplitude
times the electromagnetic amplitude for a spin S particle [29–31]:1

|C+−|2 = |C−+|2 = F 2|A+−|4 ; |C++|2 = |C−−|2 = F 2|A++|4, (2.4)
1This is an avatar of the (gravity) = (gauge)2 property of scattering amplitudes, see e.g. [32, 33] and

references therein.
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Figure 2. Tree level diagrams contributing to the pair production in QED and linearized Einstein
gravity. We assign the letter B to the diagrams with photons and the letter D to those with
gravitons.

where
F = 1

4M2
p e

4

(
t−m2) (u−m2)

s
. (2.5)

At threshold one has s = 4m2, t = u = −m2 and one obtains

|A+−|2 −→ |A++|2 −→ 4e4 and |C+−|2 −→ 0, |C++|2 −→
m4

M4
p

. (2.6)

The PPWGC then gives us:

|A|2 ≥ |C|2 −→
√

2e ≥ m

Mp
, (2.7)

in agreement with the standard constraint of the WGC for a single U(1). The factor
√

2
is important since it is precisely the factor that appears for extremal Reissner-Nordstrom
black-holes.

For completeness, let us consider now the spin 1/2 fermion production, although in the
rest of the paper we will concentrate on the production of scalars. The relevant diagrams
are shown in figure 2. We sum over spins in the final state in both rates. Denoting B and
D the photon and graviton amplitudes respectively one finds

|B+−|2 = 4e4 (m4 − ut
) [

2
(
m4 − ut

)
+ s2]

(t−m2)2 (u−m2)2 −→ 0 (2.8)

|B++|2 = 4m2e4s2 (2m2 − s
)

(t−m2)2 (u−m2)2 −→ 8e4 , (2.9)

|D++|2 + |D+−|2 = F 2
(
|A++|2|B++|2 + |A+−|2|B+−|2

)
−→ 2m4

M4
p

, (2.10)

where we have already indicated the value at threshold. Then PPWGC also gives us

|B|2 ≥ |D|2 −→
√

2e ≥ m

Mp
, (2.11)
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as expected. Thus we see that, imposing that the pair production rate of charged particles
at threshold to be larger than the rate for the production from gravitons, we obtain the
same constraint as the standard U(1) WGC. A proportionality between charges and masses
in the rate was to be expected. But, as we have shown, the fact that all precise factors
match is non-trivial. It is also a test that the pair production at threshold of an extremal
state has equal probability either from photons or gravitons. Using crossing symmetry,
this also implies that the annihilation rate of extremal particles at rest into photons and
gravitons is the same.

2.2 Multiple U(1)’s

Consider now N U(1) gauge bosons with a diagonal and canonical kinetic term. We should
now insist that a particle with mass m and charge vector ~Q = (Q1, . . . , QN ) must exist so
that its pair production by photons is equal or bigger than its pair production by gravitons.
The calculation of the rates in the previous section is trivially extended for multiple U(1)
and gives: (

Q4
1 +Q2

1Q
2
2 +Q2

2Q
2
1 + . . .+Q4

N

)
=
(
~Q2
)2
≥ m4

4M4
p

. (2.12)

The general statement of the PPWGC applied to this case would say that for every
rational direction in the charge lattice there is a particle of massm whose photon production
rate at threshold is larger than its graviton production rate. Note that the produced objects
must be stable or metastable particles, for the Feynman graph computation to make sense.

To shorten notation we can say that a charged state is superproduced if the rate to
produce a pair of such particles at threshold is larger or equal to the rate to produce that
pair from gravitons. Then the above conjecture may be restated as:

The Pair Production Weak Gravity Conjecture (PPWGC) for Photons. For any
rational direction in the charge lattice ~Q there is a (meta)stable particle which is super-
produced.

Here a rational direction is a ray in the charge lattice, passing through both the origin
and ~Q. We chose to impose the PPWGC for every rational direction in the charge lattice.
A motivation for this choice is that the superproduced particle acts also as a standard
WGC state to which extremal black-holes can decay. Note that the PPWGC so defined
includes the WGC but it is stronger. Let us review the latter to ilustrate this point. As
stated e.g. in [10] the WGC reads:

The Weak Gravity Conjecture (WGC). For every rational direction in the charge
lattice there is a superextremal multiparticle state.

A superextremal state is one whose ~Z = ~Q/m is either outside or on the boundary of
the black-hole region. For the theory we are considering the black-hole region is simply
given by MBH ≤

√
2| ~Q|BHMp. Therefore, from (2.12) we can see that, in this context with

no scalar fields, superproduced is equivalent to superextremal. Figure 3 (an adaptation of
a figure in [28]) illustrates the relation between the statements of the WGC and PPWGC
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Figure 3. Multi-particle states of a U(1)2 with three fundamental particles and their corresponding
antiparticles in the spectra. These six particles are displayed with blue dots. The maroon dots are
multi-particle states formed from them. The more particles a state has, the smaller the size of the
dot representing it. For illustrative purposes we have written the charge and the mass of three
randomly chosen states, which appear in black in the figure. We use lower-case letters ~z and ~q to
refer to the charges of the single-particle states. The black-hole region is represented by a grey
circle. We have chosen m1 = m2 = m3 = 1 and ~q1 = (0, 2), ~q2 = (

√
3,−1), ~q1 = (−

√
3,−1).

Therefore, the convex hull encloses the black-hole region in our example.

with the well-known Convex Hull Condition (CHC). In this figure we considered a U(1)2

with three fundamental (not composite) particles and their corresponding antiparticles in
the spectra. These six particles are displayed with blue dots. The maroon dots are multi-
particle states formed from them. For illustrative purposes we have written the charge and
the mass of three randomly chosen states, which appear in black in the figure. The more
particles a state has, the smaller the size of the dot representing it. One can see that the
multi-particle states populate the convex hull of the fundamental particles in ~Z space. The
black-hole region is represented by a grey circle in the figure. If for every rational direction
there is a superextremal state, then the convex hull encloses the black-hole region.

Notice that, unlike the PPWGC, black-hole arguments do not care whether the state is
single or multi-particle. For us though it is not enough to have a superproduced multipar-
ticle state to ensure that gravity is the weakest force, we actually need a pair of particles,
possibly metastable. Thus, the PPWGC is similar to the standard WGC, but the con-
straint it puts on the spectra is actually stronger than the CHC. The key point is that in
the PPWGC approach we are producing actual particles.

It has been noted that examples from gravity and string theory suggest that a stronger
version of the WGC for U(1)N is required in order to be preserved under dimensional
reduction. Two closely-related strong forms are particularly well motivated: the Sublattice
WGC (sLWGC) [7] and the Tower WGC (TWGC) [9]. Both require the existence of an

– 9 –
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infinite number of superextremal particles along each rational direction in charge space.
In this sense the PPWGC is very similar to the stronger versions of the WGC. Instead
of imposing that a superproduced particle must exist for every rational direction we could
have, in fact, directly imposed the tower or sublattice versions:

The Tower Pair Production WGC (TPP-WGC). At any point ~q of the charge lattice
there exists a positive integer n such that there is a superproduced particle of charge n~q.

The Sublattice Pair Production WGC (sPP-WGC). There exists a positive integer
n such that for any site ~q in the charge lattice there is a superproduced particle of charged n~q.

Notice that the main difference between Tower and Sublattice conjectures is that in the
latter the integer n is universal. It is interesting that the PPWGC is sensitive to whether
the WGC state is a single or a multi-particle state.

3 Pair production from scalars and the Scalar Weak Gravity Conjecture

Once we have seen how the PPWGC criterium encompasses the WGC conjecture and
its extensions, we will now show how its application to production from scalars leads to
interesting novel results. The original formulation of the WGC rested on energy and charge
conservation in extremal black-hole decay. The absence of proper scalar charges makes a
parallel reasoning difficult. In this section we apply the principle of the Pair-Production
WGC, to theories with scalar fields. The particular inequality which is obtained from
the general formula eq. (1.1) will depend on the geometry of the scalar manifold we are
studying, so we will consider different possibilities.

We will take in all our examples and constraints the case of massless scalars, like
moduli in string theory. In theories with supersymmetry they may remain massless over
all moduli space. So in some of the examples the massless scalars may be considered as a
bosonic subsector of a SUSY theory. Still, the principle of gravity being the weakest form
seems unrelated to supersymmetry, and the idea would be that the constraints obtained
should also apply to non-SUSY theories in which for some reason the scalars remain much
lighter than the Planck scale.

Let us start with the simple case of a massless complex scalar field T and a complex
heavy scalar field H with a mass m2(T, T ∗). The relevant part of the action has a structure

LT = ∂µH∂
µH + ∂µT∂

µT −m2(T, T ∗)|H|2 , (3.1)

with a moduli dependent mass term for the heavy scalar H. It is always possible to expand
m2 at a generic point in moduli space up to second order in the fields, and write the result
in terms of either real or complex components. In terms of the complex variables:

m2 ' m2
0 + (∂Tm2)T + (∂Tm

2)T + (∂T∂Tm
2)|T |2 + 1

2∂
2
TmT

2 + 1
2∂

2
T̄
mT̄ 2 . . . (3.2)

Following the PPWGC, we ought to consider the pair production of the field H and
compare it with the production from gravitons at threshold. The relevant diagrams for the
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Figure 4. Tree level diagrams contributing to the pair production in the scalar theory and linearized
Einstein gravity. We assign the letter N to the diagrams with moduli.

process TT → HH are shown in figure 4. Again, in the production from scalars we are not
including the annihilation of two scalars into a graviton, with the latter producing heavy
pairs, since it is purely gravitational and does not involve scalar couplings. Notice also
that the last two terms in the m2 expansion will not contribute to the four point function
that we are interested in, where the initial particles are a pair T , T . From the expansion
we extract the trilinear ∆T |H|2 + h.c. and the quartic λ|T |2|H|2 couplings:

∆ = ∂Tm
2 ,∆ = ∂Tm

2 , λ = ∂T∂Tm
2 . (3.3)

The amplitude has the form:

N = −|∆|2
[ 1
t−m2 + 1

u−m2

]
− λ (3.4)

The gravitational diagrams are the same as in section 2. At threshold one has t = u = −m2,
and the condition reads ∣∣∣∣∣ |∆|2m2 − λ

∣∣∣∣∣
2

≥ m4

M4
p

. (3.5)

In terms of mass derivatives one obtains∣∣∣(∂Tm2)(∂Tm
2)−m2∂T∂Tm

2
∣∣∣ ≥ m4

M2
p

. (3.6)

For n complex moduli Ti, i − 1, . . . , n parameterising a hermitian manifold with a metric
gij̄ this is generalised to

gij̄

n

∣∣∣(∂im2)(∂j̄m2)−m2(∂i∂j̄m2)
∣∣∣ ≥ m4

M2
p

. (3.7)

This is the general form of the scalar WGC for n complex moduli. Notice that, as expected,
this expression is invariant under holomorphic coordinate transformations. We could re-
place the partial derivatives with covariant derivatives, however, nothing would change
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m2
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M2
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M2
p
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M2
p  

~r2m2
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!

Figure 5. The scalar WGC for n active moduli coupling to massive WGC scalars. The barred
region correspond to points in moduli space in which gravity is too strong. This region disappears
as Mp →∞. N = 2 BPS states lie on top of the blue boundary lines.

since the mixed index components of the connection vanish in a hermitian manifold. In
order to compare the contribution of the moduli to graviton production an averaging fac-
tor 1/n is included. In other words, the contribution of all moduli should be compared
with n-times the production rate from gravitons in order to have a fair comparison. Such
an averaging was not needed in the case of production from photons in an U(1)n theory
with canonical kinetic basis because for any given charged particle one can always find a
basis in which it couples to a single U(1). Note that ‘n’ here refers only to active moduli
i.e. the subset of the moduli in the theory which couple to a particular massive state. A
graphical interpretation of this constraint is given in figure 5. The region between the two
parallel lines is forbidden, but it disappears as Mp →∞, as is expected from a swampland
condition. Points in field space saturating the bound lie on top of the blue lines marking
the boundaries.

One can then state

The Pair Production Scalar Weak Gravity Conjecture (PPSWGC). Given any
set of moduli scalars, there must be a massive particle H with mass m coupled to them such
that their average production rate at threshold from moduli is larger than the corresponding
rate from gravitons.

3.1 Examples

3.1.1 Complex scalar in N = 1 supergravity

Consider first the case of N = 1 supergravity with a metric gij̄ = Kij̄ , with K(T, T ∗) the
Kahler potential. Without loss of generality let us define the real function F (Ti, T ∗i ) by
m2 = M2

p e
F , and take n complex Ti fields dimensionless. One can check that eq. (3.7) may

be rewritten in the simple form
gij̄
∣∣∣Fij̄∣∣∣ ≥ n . (3.8)
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Note that, due to the absolute value, there is a symmetry under F ↔−F . This tells us
that, if there is a particle with massm verifying the bound, a particle with massm′=M2

p /m

would also obey it. In the specific models below this symmetry would correspond to a
duality symmetry. Note also that in a N = 1 supergravity theory with spontaneously broken
SUSY, the gravitino mass may be written as m2

3/2 = eG, with G the full Kahler potential.
With this structure such a mass automatically saturates the bound, which would apply
rather to the scalar s-Goldstino, since the massive states in our derivation are scalars.

Let us consider the simple case in which the moduli have a no-scale metric, i.e.,
gi,j̄ = δi,j̄/(Ti + T ∗i )2. These appear for example in N = 1 toroidal/orbifold compacti-
fications down to 4D in string theory (see e.g. [34]). The conjecture requires now the
existence of scalar fields, with mass m2(Ti, T ∗i ), coupled to the moduli. The constraint is
in this example

δij̄(Ti + T ∗i )2
∣∣∣Fij̄∣∣∣ ≥ n . (3.9)

Let us study the case in which the inequality saturates. One finds solutions

F = f(Ti) + f∗(T ∗ī ) +
∑
i

ηilog(Ti + T ∗i ) (3.10)

with f(Ti) an arbitrary holomorphic function. Here ηi takes all possible choices ηi = ±1.
In this case our PPWGC saturating states would have a mass

m2
a = m2

0|ef(Ti)|2t±1
1 t±1

2 . . . t±1
n . (3.11)

with f(Ti) an arbitrary holomorphic function and ti = 2ReTi. The index a = 1, 2, . . . 2n.
The large modulus behaviour depends on the form of the holomorphic functions f(Ti). In
the case of constant f ’s, going to a canonical frame with t = eσ there are states which
become exponentially light in the limits σ → ±∞. This behaviour would be in agreement
with the expectations of the swampland distance conjecture. Also for each saturating state
there is another dual state with inverse mass, as pointed out above. We will see below that
certain classes of BPS states in known N = 2 supergravity theories from string theory are
consistent with this structure.

For more general CY the metric of the Kahler moduli (in. e.g. Type IIA string theory)
has the behaviour at large moduli

Kij̄ '
di

(Ti + Tī)2 , (3.12)

where the di are integers characteristic of each singular limit [17–19]. From eq. (3.8) one
can compute the asymptotic behaviour of the particles which saturate our bound. One
now finds

m2
a = m2

0|ef(Ti)|2
(
t±d1
1 . . . t±dn

n

)
. (3.13)

This behaviour, corresponds e.g. to the asymptotic behaviour found in [17, 18], showing the
large moduli regime of BPS states in Type IIB CY compactifications. It would be inter-
esting to go through examples in e.g. [18–23] and check the agreement with the constraint.
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D0 D2 D4 D6

Mass2 (CY) eKK eKK |Ta|2 eKk

∣∣∣12 ∑b,c κabcT
bT c

∣∣∣2 eKk

∣∣∣16 ∑a,b,c κabcT
aT bT c

∣∣∣2
Mass2 (Z2 × Z2) 1

t1t2t3 .
ti

tjtk
tjtk

ti
t1t2t3

Table 1. Masses of the different particles obtained by wrapping one kind of Type IIA Dp-brane
around a given even cycle on a general Calabi-Yau threefold and for the Z2 × Z2 orbifold example
from ref. [20]. Masses are in units of 8πM2

p .

The solutions in (3.11) allow for alternative behavior depending on the particular
holomorphic functions f(Ti), the arbitrariness is substantial. For example, one may chose
all ηi = −1 and f = −log(Πiη(Ti)2), with η the Dedekind function. With such a choice the
mass is SL(2,Z)n invariant. This kind of structure appears in the class of duality invariant
non-perturbative potentials considered in [24] and references therein. At large moduli
the Dedekind function has an exponential behaviour η ∼ e−(π/12)t, so that there could
be saturating solutions with a behaviour m2 ∼ 1/(Πiti e

−π/3ti), exponentially growing at
large ti. This class of solutions would not have the asymptotic behaviour of the distance
conjecture, as explained in [24]. Note in this respect that such exponential of exponential
behaviour at large moduli appears also for the states called of Type II in [18, 19] for Type
II CY compactifications.

3.1.2 Examples from BPS states in N = 2 supergravity

We would like now to show that examples of BPS states in N = 2 supergravity theories
from string theory saturate our bound. We will consider for illustration a class of BPS
states which appear in Type IIA CY compactifications from Dp-branes wrapping even
cycles. These (and their IIB mirrors) have been discussed in [17–22] to provide string
theory tests of the swampland distance conjecture. We follow here [20]. The relevant
masses are summarized in the table. Here KK is the Kahler potential of the Kahler moduli
Ta = ta + iηa, a = 1, . . . , h11, and κabc are the triple intersection numbers in the CY. The
masses of the BPS states may be written as m2

r = 8πeGr , where

Gr = log|Wr|2 +KK , (3.14)

and |Wr|2 is given by the different superpotential factors in the table. With this form one
obtains the constraint is

gij̄
∣∣∣(Gr)ij̄∣∣∣ = h11 , (3.15)

which holds, since (Gr)ij̄ = (KK)ij̄ = gij̄ . More explicitly, for the case of the Z2 × Z2
toroidal example considered in [20] there are three Kahler moduli Ti and 8 BPS states corre-
sponding to D0,D2,D4 and D6 wrapping even cycles. Their masses arem2

r = 8π(t±1
1 t±1

2 t±1
3 ),

with ti = 2ReTi, as shown in table 1. Note that these masses agree with the result we
showed in eq. (3.11) (for f constant) which do saturate our bound.

Note that, in agreement with the duality symmetry F ↔ −F , for each BPS example in
the table with mass m, there is another one with mass 1/m. From the D-brane perspective,
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a duality with respect to the six compact dimensions transforms D0 ↔ D6 and D2 ↔ D4.
This is also an electric-magnetic duality since the states have also inverse charge under
magnetic U(1)’s. In figure 5 particles coming from D0, D2 are points within the rightmost
blue line, whereas those coming from D4, D6 are inside the blue line on the left.

The fact that for these N = 2 BPS states our condition is saturated is not surprising
due to the following fact. In N = 2 supergravity the central charge Z satisfies the algebraic
equation [11, 13, 35]

gij̄
(
DiDj̄ |Z|

2 −DiZDj̄Z
)

= nV |Z|2 (3.16)

where nV counts the number of vector multiplets. This condition should be verified by the
central charge of any BPS state. The above algebraic expression may be derived from the
Special Kahler Geometry identities (see e.g. [36])

DīZ = 0 ; DiDj̄Z = gij̄Z . (3.17)

Identifying Z with the ADM mass m suggests to write

m2 gij̄∂i∂j̄m
2 − (∂im2)(∂im2) = nVm

4 . (3.18)

This equation is consistent with our equation (3.7) above and masses saturating it would
lie at the boundary blue lines in figure 5.

3.1.3 The case of n real scalar fields

Let us consider now the case of n real scalar fields ti with diagonal kinetic terms. One can
obtain the trilinear and quartic couplings from the general expansion

m2(ti) ' m2
0 + (∂im2)ti + 1

2(∂2
im

2)t2i + . . . (3.19)

Consider first the case of n real scalars with diagonal no-scale kinetic metrics gii = 1/t2i .
From the pair production constraint we now obtain

∑
i

gii
∣∣∣(∂im2)2 −m2(∂2

im
2)
∣∣∣ ≥ nm4

M2
p

. (3.20)

Writting m2 = eF , when the inequality is saturated one obtains∑
i

(t2i )
∣∣∣∂2
i F
∣∣∣ = n , (3.21)

with solutions
m2(ti) = m2

0

(
t±1
i . . . t±1

n

)
e
∑

i
biti . (3.22)

Here m0 and bi are real integration constants. Note that now, unlike the SUSY case above,
the existence of a scalar moduli space is not expected, and the interpretation of the massive
states saturating the bounds is not obvious. Still, it is interesting to explore for comparison
what is the form of the saturating masses in this case. We have two classes of solutions. For
bi = 0 one obtains saturating states very similar to the complex no-scale metric example in
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eq. (3.11), which is the kind of behavior of BPS, KK and winding states in string theory.
As in the previous examples, this is in itself remarkable, since it means that the scalar
PPWGC condition for massless particles with scale invariant metrics must come along
with a massive spectrum behaving like winding and momenta, i.e., string theory. Note also
that here the presence of both winding and momenta (and hence duality) is a consequence
of the invariance under F → −F of the rates. Thus having rates and no amplitudes in
comparing the interactions is at the root of the built-in duality of the massive spectrum.
Going to a canonical frame with t = eσ the behavior at large σ is exponential, consistent
with the distance swampland conjecture.

For bi 6= 0 there are additional saturating solutions. They have an additional expo-
nential factor in t, which means exponential of exponentials once one goes to a canonical
frame. This is analogous to the result above for complex moduli.

We may alternatively consider a canonical metric for the scalar fields. It is easy to see
that in this case one obtains saturating solutions of the form

m2(ti) = m2
0

(
t
d(t1)±

1 . . . td(tn)±
n

)
, d(ti)± ≡ ci± ± 1/2 log(t) , (3.23)

where we have defined ti = eφi , with φ the canonical fields and ci± and m2
0 are real con-

stants. The structure has also a form proportional to powers td(t), reminiscent of the
of the examples discussed above, but now with a slowly varying exponent d(t). Under
a duality transformation ti → 1/ti one obtains a new solution exchanging ci+ → −ci+,
d(ti)+ → −d(ti)+. So again for each solution of mass m there is another solution with
mass 1/m. Note however that going to a canonical frame shows that the solutions have
a Gaussian behavior. In fact such Gaussian solutions would also appear for the case of
complex scalar fields with a canonical, instead of no-scale metrics.

3.1.4 Previous formulations of the SWGC

There have been previous formulations of scalar weak gravity conjectures in the literature.
Palti was the first in making the proposal [11] that a theory with moduli ti should have a
state H with mass m obeying the bound

gij(∂tim)(∂tjm) > m2

M2
p

. (3.24)

This has the simple interpretation of imposing that a trilinear ti|H|2 coupling squared is
stronger than the gravitational coupling. In that paper it was noted that this inequality
cannot be directly deduced from bound states arguments (or from the RFC) since both the
scalars and gravity act attractively. It was also noticed that, at large field, this expression
is consistent with the swampland distance conjecture. Palti also proposed (see footnote
in [11]) the inequality

1
2g

ij∇ti∇tjm2 − gij(∂tim)(∂tjm) ≥ nm
2

M2
p

, (3.25)

with n the number of real scalars coupling to the WGC state of mass m. The motivation
for this inequality mainly came from the Special Geometry identities in N = 2 supergravity
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mentioned above. Note that it is analogous to our constraint except for the fact that we
have an additional absolute value taken in the left (and there is some numerical factor).

In ref. [15] it was proposed a slightly different version of a scalar WGC for a real scalar
with canonical metric given by

2(∂φm2)2 −m2∂2
φm

2 ≥ m4

M2
p

. (3.26)

The motivation was to modify the original scalar WGC of eq. (3.24) to include quartic
scalar interactions. A further motivation was the intriguing structure of its saturating
solutions. Indeed the above equation may be rephrased as

ρ′′ = ρ

M2
p

, ρ ≡ 1
m2 , (3.27)

and the saturating solutions have the form

m2 = 1
aeφ + be−φ

. (3.28)

At both limits φ → ±∞ the behaviour is consistent with the swampland distance conjec-
ture. Furthermore, defining t = eφ, there is built-in duality under the exchange t ↔ 1/t.
Thus the saturating solutions have the structure of KK and winding momenta, implying
the existence of an underlying theory with extended objects. This is in fact the kind
of structure that we have found in the present article, although the precise form of the
constraint is not the same.

For a single real massless modulus and a massive state of mass m, the scalar PPWGC
gives rather the constraint eq. (3.20)∣∣∣(∂φm2)2 −m2(∂2

φm
2)
∣∣∣ ≥ m4

M2
p

. (3.29)

Comparing with (3.26) we see there is a factor 2 missing in the first term and the absolute
value taken on the left. It is the factor 2 which makes the solutions in (3.28) different from
those of eq. (3.23) taken for a single field. It is an interesting question whether a scalar
theory exists yielding a result analogous to (3.26) from scattering amplitude arguments.

In part motivated by [15], there have been some attempts to arrive at a SWGC using
bound states arguments by somehow introducing short-range repulsive scalar interactions.
In order to compare short with long range forces, one needs to fix an energy scale. In [41]
a modified version of the RFC was proposed where only the leading interaction is to be
compared with gravity. In this way they were able to motivate differential inequalities for
the SWGC. A different proposal was made in [37]. They argued against the formation
of gravitationally bound states with sizes smaller than their Compton wavelength. This
idea was coined as Bound State Conjecture. The latter does not give rise to a differential
inequality and it remains non-trivial even when gravity is turned off.

The fact that the PPWGC gives a well defined rationale for the existence of a Scalar
Weak Gravity Conjecture is an important result of the present work. So far, it is the
only criteria that is translated into a differential constraint including both first and sec-
ond derivatives of the mass, making direct contact with known N = 2 BPS constraints,
proposing also a generalization to non-SUSY settings.
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4 Constraints on the scalar potential for moduli

In the above we have seen how the PPWGC applied to scalars suggests the existence of
massive scalars which obey or saturate the bounds, so that gravity is the weakest force.
These fields correspond to scalars belonging to BPS multiplets when there is enough SUSY.
However, we would like to know whether any constraint may be obtained for other scalars
like moduli themselves, once they get a mass. In particular, it would be interesting to
see whether the above bounds may give us some constraint on moduli (or other scalars)
effective potentials.

One possible connection, inspired by our experience in string theory, is as follows.
Moduli ti in string theory are massless classically and get a potential at the quantum level.
Such potentials often appear after summing over loop contributions of massive Ha particles,
like e.g., towers of BPS states. The dependence on massive BPS states may also appear at
the non-perturbative level. Those massive particles have masses ma(ti) which are functions
of the moduli already at the classical level, we saw some N = 2 examples above. In those
cases the induced moduli potential will depend on the moduli through the masses of the
heavy BPS-like states, V = V (ma(ti)). If we insist that the masses of heavy Ha scalars ma

are subject to the PPSWGC, one might hope to obtain some constraint on the form of the
resulting moduli potential. In string theory we typically have plenty of moduli and infinite
towers of BPS objects so the task is not easy. Here for simplicity we are going to consider
the, admittedly, oversimplified case of a single modulus whose potential is a function of a
single massive state H whose mass m obeys a single field version of the constraint eq. (3.7).

In this section we examine whether the scalar WGC leads to constraints similar to those
of the dS conjecture. One possible hist of this connection is the appearance in both of the
second derivative of the potential. Let us first recall the swampland dS conjecture [25–27]
for later comparison. The latter states that the scalar potential for a theory coupled to
gravity satisfies either

|∇V | ≥ c V
Mp

, or , min(∇i∇jV ) ≤ −c′ V
M2
p

. (4.1)

Here c, c′ are constants of order one. In the second alternative one has the minimum
eigenvalue of the Hessian in an orthonormal frame. This refined dS conjecture has the
property that dS maxima are allowed (as it should since e.g. the SM has one such maximum)
but dS minima are not. This form of the dS conjecture is motivated by arguments which
use the covariant entropy bound applied to a dS configuration, see [25–27].

Let us consider for definiteness the case of a N = 1 supergravity theory with a sin-
gle modulus T . It gets a potential at the quantum level from a massive state with mass
m2(T, T ∗), so that the modulus potential depends on the moduli only through its depen-
dence on this mass, V = V (m2(T, T ∗)). To simplify notation define y = m2. Then it is
easy to check that

m2
T = VT

Vy
, m2

T
=
VT
Vy

; m2
TT

=
VTT
Vy
− Vyy

Vy

(
VTVT
V 2
y

)
(4.2)
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Imposing the PPWGC bound in eq. (3.7), one gets the result

gTT
∣∣∣∣∣VTVTV 2

y

(
1 + y

Vyy
Vy

)
− y

VTT
Vy

∣∣∣∣∣ ≥ y2

M2
p

. (4.3)

If we search for extrema VT = VT = 0 one obtains (assuming Vy 6= 0)

gTT
∣∣VTT ∣∣ ≥ |yVy|M2

p

. (4.4)

One sees that the second derivative of the potential is bounded below. This is reminiscent
of the dS conjecture refinement, that if there is a extremum, the second derivative of the
potential must be large enough. However, in the present case it applies both to dS and AdS.

More specific results are obtained if one assumes a power dependence for the poten-
tial,i.e., V = ηm2γ , with γ a positive number and η = ±1 (see also [38, 39]). Examples of
Type IIA orientifolds with fluxes [42–44] scale like V ∼ m2 at the minima. This behavior
is also a prediction of the AdS conjecture in ref. [45], recently tested in e.g. [46–50] within
string theory. Another example of this kind of dependence is the case of the Coleman-
Weinberg one-loop potential, which is proportional to the 4-th power of the mass propa-
gating in the loop. For V ∼ m2γ one finds∣∣∣∣∣

(∇V
V

)2
− gTT

VTT
|V |

∣∣∣∣∣ ≥ γ

M2
p

. (4.5)

At extrema one gets the condition ∣∣∣gTTVTT ∣∣∣ ≥ γ |V |M2
p

. (4.6)

This constraint is represented in figure 6. This gives a low-energy bound on the mass of
the moduli at the minimum in terms of the value of the potential. It is also somewhat
analogous to the refined dS conjecture for c′ = γ and the recent TCC conjecture [51], but
it also applies for AdS vacua.

In this case one can see that dS minima are forbidden, at least for potentials such
that V → 0 as T goes to infinity. The point is that, in such a case, if the potential has a
dS minimum, then it must necessarily have a dS local maximum. If the potential is non-
singular, there should be a field path connecting the minimum with the maximum. But,
as the figure shows, one cannot continuously go from a minimum to a maximum without
going through the forbidden region where gravity is too strong.

It would be interesting to test these minima conditions in the context of the class of
Type IIA AdS vacua in refs. [42–44, 46, 47]. A different conjecture also involving also
second derivatives of the potential was put forward in [40].

One should take these bounds on potentials with caution. Here we are only considering
one modulus with a single massive object verifying PPSWGC constraints, and with a simple
potential of the form V ' m2γ . Still it shows how a possible connection between the dS
and scalar WGC conjectures could arise. It would be particularly interesting to generalize,
if possible, these arguments to the case of multiple fields.
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�
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p

Figure 6. Constraints for the potential of a single modulus when V ∝ m2γ . In the barred region
the gravitational interaction is stronger than the scalar one. If a dS minimum exists, and the
potential vanishes at infinity, there must be also a local maximum. This is not possible because
going from a minimum to a maximum in field space (green line) one has to go through the forbidden
region. The constraint disappears as Mp →∞.

5 Strong Scalar Weak Gravity Conjecture

The proposed PPSWGC declares that WGC particles with mass m must exist such that
their production rate by massless moduli φ is constrained as in section 3. On the other
hand, according to the idea that no interaction weaker than gravity exists, one would
also expect constraints among interacting scalars. In particular, moduli will in general
acquire masses and interactions in the absence of SUSY, and their interactions would be
constrained if they must be weaker than gravity. In our previous paper, we named it the
strong Scalar Weak Gravity Conjecture (sSWGC). Inspired by the PPSWGC and the scalar
constraints found in section 3 one may conjecture for the case of a single self-interacting a
sSWGC constraint of the form:

∣∣∣ξ(V ′′′)2 − (V ′′)(V ′′′′)
∣∣∣ ≥ (V ′′)2

M2
p

, (5.1)

where we have made the replacement m2 → V ′′. Here ξ is some number of order one.
In [15] such a constraint was proposed with ξ = 2, inspired by eq. (3.26). On the other
hand eq. (3.29) would suggest instead ξ = 1. These proposal was not based on a specific
set of diagrams but are rather bold generalizations to the case of the self-interactions of a
single real scalar field.

One may try to justify a particular value of ξ in terms of the scattering of a couple
of real scalars. In this case one would consider the elastic scattering of two scalars almost
at rest compared to the threshold production of two scalars from graviton scattering. The
diagrams for the scalar scattering are those as in figure 4 and an additional s-channel one
in which two scalars produce a virtual scalar which then decays into two scalars. Since the
mediators are massive, the threshold conditions are u = t = 0 and also s = 4m2. Direct
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application of the Feynman rules give:

N1 +N2 +N3 = −(ṁ2)2
{ 1
t−m2 + 1

u−m2 + 1
s−m2

}
− m̈2, (5.2)

so one obtains ξ = 5/3. Still, as we will see below, in order to see how masses and
parameters are constrained the particular value of ξ is not very relevant, as long as it is of
order one.

One important property of the condition (5.1) is that it is a Swampland condition, in
the sense that it disappears when gravity decouples. This is unlike the condition without
the absolute value put forward in [15]. The constraint in eq. (5.1) passes some interesting
tests. It is easy to check that an axion potential of the form V (η) = −M4cos(η/f) obeys
the constraint as long as the decay constant obeys f ≤Mp, in agreement with axion WGC
arguments [15]. If one considers a Higgs-like potential of the form V = m2

0φ
2/2 + λ0φ

4/4!
one gets from eq. (5.1) a constraint

|λ|
∣∣∣m2(φ)− λφ2

∣∣∣ ≥ ξm4(φ)
M2
p

, (5.3)

where λ = ξλ0 and m2 = V ′′ = m2
0 + 1

2λ0φ
2 the field-dependent mass2. Note that at small

φ the constraint is verified as long as |λ0| ≥ (m0/Mp)2, in agreement with Weak Gravity
intuitions. The constraints on the plain m2(φ)-λφ2 are shown in figure 7 for λ = 1, 0.1, in
units ofMp/ξ

1/2. The red area is allowed by the condition. One notices that as the value of
the field φ→ 0 the value of the mass becomes smaller and smaller. This pattern is sharper
for smaller λ. This structure is interesting, as it shows an unexpected field-dependent
upper bound on the masses of scalars as the field varies. For values outside the red area
the gravitational interaction dominates over the scalar interaction and hence that situation
is forbidden. As gravity decouples, the red area covers all the plain.

The sSWGC without the absolute value, for the Higgs-like potential at φ = 0 would
give λ ≤ −m2

0
M2

p
. Thus for a massive scalar only an unstable potential with λ < 0 would be

allowed. Based on this observation (as applied to the case in [15]) some counter-examples
were argued to exist in [37]. In the new results in the present paper both signs of λ are
allowed. In this regard note that a constraint without the absolute value, would also forbid
field ranges with |φ|2 ≤ 2m2

0/λ, even in the absence of gravity. Such a forbidden field range
is no longer present in the new constraints eq. (5.1). Note that somewhat analogous results,
in particular, the presence of an absolute value and the coefficient 5

3 were also obtained
in [41], although starting from different physical principles.

As we said, as λ→ 0 the condition is violated. It was already pointed out in [15] that,
since λ in the SM vanish at a high scale ' 1010 − 1013 GeV, new physics is predicted to
appear at this scale, since the quartic interaction becomes weaker than gravity. An elegant
solution to this problem is that SUSY is recovered below that scale, getting a theory
consistent with quantum gravity. Note that this behaviour appears only in the presence of
gravity and hence would be a Swampland constraint, not a field theory constraint.

The possibility of a cancellation between trilinear and quartic contributions is more
general than the above constraint, and appear in other examples due to the structure of the
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Figure 7. Constraints on the m2(φ)− λφ2 plane for a quartic real scalar potential for fixed λ = 1
and 0.1 in Mp/ξ

1/2 units. The red region is allowed. The blue region marks when m2
0 > 0. As

the field φ tends to zero, the field-dependent mass m2(φ) also decreases. The allowed region also
gets narrower as λ decreases. When gravity decouples the allowed red region covers all the upper
half-plain.

amplitude in eq. (3.5). In fact this is the origin of the forbidden bands in figures 5, 6. This
may lead to potential inconsistencies with the scalar WGC at finite points in moduli space
in some examples, indicating their inconsistency or incompleteness if gravity is present. In
the N = 2 SUSY examples shown above this does not happen for the BPS states, which lie
at the boundary of the forbidden regions. But it may happen e.g. in non-SUSY examples
for some field value. Turning the argument around, the presence of these forbidden regions
in non-SUSY theories coupled to gravity could be an argument for the presence of SUSY
at some scale in the low energy effective action.

It is important to remark that the sSWGC stands on a less firm ground than the general
PPWGC or the SWGC discussed in sections 2 and 3. In particular it is not obvious that
the simple recipe m2 → V ′′ in the PPWGC constraints is sufficiently justified. To our
knowledge, there is however no counterexample to the sSWGC here considered with an
absolute value included. It would be interesting to find further support for generalized
SWGC like this. If one takes a constraint like eq. (5.1) to be valid for any single scalar
potential, there are important phenomenological implications, as already shown for the
old version of the constraint in [15]. In addition, it would also be interesting to find a
multi-field generalization of these constraints.

6 Final comments and conclusions

In this paper we have proposed pair production of massive particles at threshold as a means
to compare the gravitational to the gauge and scalar interactions. Equivalent results would
be obtained from pair annihilation of massive particles into photons/gravitons/moduli.
Imposing that the production rates from gravitons is always smaller than that from gauge
bosons or moduli gives rise to specific WGC constraints. In the case of U(1) interactions
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this diagrammatic prescription reproduces the same results as obtained from instability of
extremal black-holes. On the other hand when applied to pair creation from moduli, a scalar
WGC constraint depending on first and second derivatives of the mass appear. Intriguingly,
imposing saturation of the conditions one obtains simple differential equations. Some of
the solutions match with known results in N = 2 BPS examples and are consistent with the
Swampland Distance Conjecture. Other solutions have more general asymptotic behaviour.

One interesting aspect of this approach is that it derives the U(1)n WGC conjectures
and a scalar WGC from the same general principle of gravity being the weakest interaction.
The form of the scalar WGC depends on whether we are dealing with complex or real moduli
and the metric in moduli space. For the case of n complex moduli the constraint eq. (3.7)
is obtained. One has to view our proposal as complementary to the constraints obtained
from extremal black-hole instability and the Repulsive conjectures. We think our proposal
is particularly interesting in its application to obtain constraints on scalar couplings.

One point to note is that our condition is a quantum relativistic condition since it
involves particle production and interaction rates rather than amplitudes. This is unlike the
case of one photon/graviton exchange with particles at rest which give rise to the classical
non-relativistic Coulomb/Newton potentials. The presence of rates (absolute values of
amplitudes) plays also an important role in the emergence of duality symmetries among the
states saturating the bounds. It is particularly remarkable how the existence of momenta
and winding (extended objects) emerges from simple scattering amplitude considerations
in the effective low-energy theory.

There are many aspects which deserve further study. One interesting question is the
applicability of the constraints of scalar moduli in non-SUSY theories, in which a moduli
space of massless moduli does not in general exist. In this connection, some of the saturating
solutions for the scalar WGC constraints that we obtain may be interpreted as the bosonic
subsector of BPS and special geometry conditions in N = 2 supergravity theory. On the
other hand we believe that the principle of gravity being the weakest force is independent of
supersymmetry and one can expect that the constraints will still apply at least in theories
with spontaneously broken SUSY.

It would be interesting to test the condition eq. (3.7) in specific string settings, like
the towers of BPS states getting massless at large moduli in Type IIA and Type IIB CY
compactifications, as in refs. [17–22]. Another interesting direction for further research
would include the extension to higher dimensions and to non-Abelian gauge groups. It
would also be important to obtain constraints on scalar potentials of moduli and other
scalar fields along the lines of sections 4 (eq. (4.6)) and 5 in this paper and study its
implications in cosmology and particle physics.

It is important to determine what is it exactly that goes wrong if the PPWGC condition
is violated. Pair production of charged particles is a characteristic of black-hole radiation
and it would be important to elucidate the precise connection, if at all, of the present ideas
with black-hole physics. Our conditions also imply that the annihilation rate of charged
black-holes into photons must be larger than to gravitons. Perhaps the PPWGC constraints
appear as additional dynamical requirements. It would be interesting to extend the results
of this work by considering pair production of particles in backgrounds different from flat
space-time, not only in the context of black-holes but also in AdS and dS.
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More generally, we would like to understand whether and why gravity should be weaker
than any other interaction, and the role of this condition in the general context of Quantum
Gravity and String Theory.
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