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1 Introduction

AdS2 plays a special role in quantum gravity because it stands as the lowest dimensional
realization of the AdS/CFT correspondence [1]. It also appears universally near the hori-
zon of near-extremal black holes [2–8], which suggests that AdS2 holography will play an
important role in understanding quantum black holes [9–13]. Despite this, the AdS2/CFT1
correspondence is considered to be dynamically trivial since it was shown that AdS2 does
not support finite energy excitations [14]. More recently, after the discovery of the SYK
model, it was understood that to make AdS2 holography dynamical, one has to go to
the so-called near-AdS2 regime. This is achieved by breaking the conformal symmetry
and going slightly away from the infrared fixed point [15–18], which is referred to as the
nAdS2/nCFT1 correspondence [19].

A canonical realization of this duality is obtained in the Jackiw-Teitelboim (JT) theory
of gravity [20, 21] where it was shown that the near-AdS2 dynamics is controlled by a
boundary action involving the Schwarzian derivative. The same action also governs the
low-energy regime of the SYK model [22–24], demonstrating a holographic duality between
JT gravity and a subsector of the SYK model.

The appearance of the Schwarzian action is tied to the pattern of spontaneous and ex-
plicit symmetry breaking Diff(S1)→ SL(2,R) that controls the near-AdS2 physics. In [25],
it was understood that the Schwarzian action can be seen as a Hamiltonian generating a
U(1) symmetry on a coadjoint orbit of the Virasoro group. This allowed the authors to
compute its partition function, which, thanks to the Duistermaat-Heckman theorem [26],
is one-loop exact.

Even though JT gravity is usually thought as an effective theory, arising in the low-
energy description of more complicated systems, such as higher-dimensional black holes, it
can also be studied as a UV complete theory in its own right. One of the motivation to
do this was to use the simplicity of this theory to probe some features of the spectral form
factor, which is a diagnosis of the discreteness of the black hole spectrum [27–30]. This was
considered in [31] where the full Euclidean path integral of JT gravity is computed. The
authors showed that the gravitational theory is not holographically dual to a single quan-
tum mechanical theory but rather to a statistical ensemble of theories. More precisely, this
ensemble corresponds to a double-scaled matrix integral whose leading density of eigenval-
ues matches with the density of states of the Schwarzian theory. This leads to the more
general suggestion that gravitational path integrals should be interpreted holographically
in term of ensemble averages. This story has been generalized in various ways [32–34].

JT gravity has also played a central role in recent developments on the information
paradox and the black hole interior. After introducing a coupling between an evaporating
AdS2 black hole and an external bath, the entropy of the bath was shown to follow the Page
curve [35, 36], using a semi-classical version of the RT/HRT/EW formula for entanglement
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entropy [37–40]. This led to the island prescription [41, 42] which was proven using replica
wormholes [43, 44] appearing as saddle-points in the replicated Euclidean path integral [40,
45, 46]. It was noticed that these new geometries could only make sense if some kind of
average was taking place.

To specify a proper classical solution space and identify the asymptotic symmetries of
JT gravity, one needs to gauge-fix the metric. This is usually done by writing the metric
in Fefferman-Graham gauge and imposing a Dirichlet boundary condition, which leads to
the Schwarzian action together with its SL(2,R) symmetry. However other gauge choices
and boundary conditions can be considered [47, 48], leading to new boundary actions and
new symmetry groups.

In this paper, we study JT gravity in Bondi gauge. The latter leads to an enhancement
of the asymptotic symmetry group from the usual Diff(S1) to a warped version of the latter,
i.e. with an additional local U(1) symmetry. The dynamics is controlled by a generalization
of the Schwarzian action, which can also be understood as the generator of a Hamiltonian
symmetry on a coadjoint orbit of the warped Virasoro group. As a result, the near-AdS2
physics is controlled by the pattern of symmetry breaking to SL(2,R)×U(1). Our boundary
action matches with the low-energy effective action of the complex SYK model. This shows
that our version of JT gravity is holographically dual to a subsector of the complex SYK
model. We compute the full Euclidean path integral, including sums over topologies, and
show that it leads to a simple refinement of the random matrix ensemble of Saad, Shenker
and Stanford. We also find a connection to warped CFTs which suggests a route towards
a better understanding of Kerr/CFT. Finally, we study the ĈGHS model as a flat space
analog of JT gravity. We compute the Euclidean path integral and show that this theory
is also dual to an ensemble average, albeit a much simpler one.

1.1 Summary of results

The usual boundary condition for JT gravity fixes the boundary metric in Fefferman-
Graham gauge, and corresponds to a choice of AdS2 metric of the form

ds2 = r2
(

1− s(t)
2r2

)2
dt2 + dr2

r2 , (1.1)

where t ∼ t+ β and s(t) is an arbitrary periodic function. The corresponding asymptotic
symmetry group is Diff(S1) and acts on s(t). This infinite-dimensional symmetry gets
spontaneously broken to SL(2,R) when choosing s to be

s(t) = 2π2

β2 . (1.2)

The near-AdS2 dynamics, captured by the JT dilaton, also breaks explicitly this symmetry.
It is controlled by the boundary action

I[f ] = −γ
∫
S1
dt

(
2π2

β2 f
′(t)2 + {f(t), t}

)
, (1.3)

where {f(t), t} is the Schwarzian derivative of f . This theory describes Goldstone mode
fluctuations parametrized by f(t) ∈ Diff(S1) around the background (1.2).
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In this paper, we consider new boundary conditions for JT gravity, which are naturally
formulated in (Euclidean) Bondi gauge

ds2 = 2
(
r2

2 − iP (τ)r + T (τ)
)
dτ2 − 2idτdr , (1.4)

where τ ∼ τ + β and P (τ) and T (τ) are arbitrary periodic functions. In section 2.1, we
obtain the boundary term required to make the corresponding variational problem well-
defined. In this case, it is not given by the extrinsic curvature term. We show that the
asymptotic symmetry group gets enhanced to the group Diff(S1) n C∞(S1) which gets
spontaneously broken to SL(2,R)×U(1) after we choose the thermal values

P (τ) = µ

β
, T (τ) = −2π2

β2 −
µ2

2β2 , (1.5)

where µ will be interpreted as a chemical potential for the U(1) symmetry. The explicit
breaking is controlled by the boundary action

I[f, g] = γ

∫
S1
dτ

(
Tf ′2 − 1

2g
′2 + Pf ′g′ + g′f ′′

f ′
− g′′

)
+ γ

µ

β

∫
S1
dτ

(
P − f ′′

f ′
+ g′

)
. (1.6)

This corresponds to Goldstone mode fluctuations parameterized by (f, g) ∈ Diff(S1) n
C∞(S1) around the background (1.5). In particular, the effective action has a U(1) sym-
metry, which corresponds to shifting g by a constant. The gravitational charges are com-
puted in section 2.3 and agree with the Noether charges of the boundary theory. As in the
Schwarzian case, our AdS-Bondi boundary action can be reinterpreted as a particle moving
on rigid AdS2.

In section 3, we show that the Schwarzian dynamics is embedded in the Bondi descrip-
tion. We find that imposing an additional boundary condition that fixes P in the solution
space reduces the asymptotic symmetry group to Diff(S1). The boundary action (1.6) then
becomes the Schwarzian action (1.3) with the relation

−s(τ) = T (τ) + 1
2P (τ)2 − P ′(τ) . (1.7)

This expression of s in terms of P and T is also derived by constructing a diffeomorphism
that relates the solution space of Bondi gauge to the Fefferman-Graham one.

In appendix A, we consider an alternative way to derive our boundary action, which
is shown to arise from a new counterterm for JT gravity:

I = κ

∫
du
√
−h (ΦK − nµ∂µΦ) . (1.8)

Euclidean path integral. The computation of the partition function requires an inte-
gration over a coadjoint orbit of the warped Virasoro group, which corresponds to the ther-
mal values of P and T given in (1.5). This is greatly simplified by the fact that our boundary
action generates a U(1) symmetry on this orbit. As a result of the Duistermaat-Heckman
theorem, the partition function is one-loop exact, like in the Schwarzian case. The result is

Z(β, µ) ∝ γ2

β2 exp
(

2π2γ

β
− γµ2

2β

)
. (1.9)
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Interpreting µ as a chemical potential associated to the U(1) symmetry, the partition func-
tion at fixed charge Q takes the form

Z(β,Q) ∝ γ3/2

β3/2 exp
(

2π2γ

β
− Q2β

2γ

)
, (1.10)

which follows from a Fourier transform. We see that for Q = 0, we recover the partition
function of the Schwarzian theory [25]. The additional information carried by our AdS-
Bondi formulation is therefore contained in this additional U(1) charge. From the partition
function, we obtain the leading density of states

ρ0(E,Q) ∝ sinh
(

2π
√

2γE −Q2
)
. (1.11)

Using similar techniques, we can compute the contribution of the trumpet geometry

Ztrumpet(β,Q, b) ∝ γ1/2

β1/2 exp
(
−γb

2

2β −
Q2β

2γ

)
, (1.12)

which also depends on the geodesic length b of the small end.
This last result is a crucial step to compute the full gravitational path integral with

prescribed boundary conditions. This is because any hyperbolic Riemann surface with n

asymptotic boundaries can be constructed by gluing n trumpets to a genus g surface with
n geodesic boundaries. This property was exploited in [31] to match the Euclidean path
integral of JT gravity with a random matrix ensemble.

Our AdS-Bondi formulation allows us to fix two conditions at each boundary: the
renormalized length and the U(1) charge. In section 4 we show that the full gravitational
path integral, including all topologies, can be computed using the following prescription:
the insertion of a boundary of length β and charge Q corresponds to the insertion of
Tr e−β(H+Q2/(2γ)) in the matrix model of Saad, Shenker and Stanford. More precisely we
have

Zgrav({βi}, {Qi}) = 〈Tr e−β1(H+Q2
1/(2γ)) . . . Tr e−βn(H+Q2

n/(2γ))〉SSS , (1.13)

where H is the random matrix while the Qi’s are scalars that shift the ground state
energy at each boundary. We see that setting all the U(1) charges to zero, we recover
the prescription of Saad-Shenker and Stanford.

Relation to complex SYK. The complex SYK model [49–51] is a version of the SYK
model where the Majorana fermions are replaced by complex fermions. It is also maximally
chaotic and solvable at large N , while being closer to condensed-matter systems, such as
strange metals [52]. As the Majorana SYK model, it can be described at low temperature
by an effective action which takes the form

IcSYK = NK

2

∫
S1
dτ

(
g̃′ + 2πiE

β
f ′
)2
− NγSYK

4π2

∫
S1
dτ

{
tan

(
π

β
f

)
, τ

}
. (1.14)

We show in section 5 that our boundary action for JT gravity matches with the effective
action of complex SYK, after a field redefinition given in (5.15). The matching between
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the complex SYK parameters and the gravitational parameters is given by

KN = γ`2AdSλ
2
0, γSYKN = 4π2γ`2AdS, E = µ− µ0

2πλ0
. (1.15)

Here, K,N, γSYK and E are parameters of the complex SYK model while `AdS, γ = κφ̄r
and µ are gravitational parameters. The constants λ0 and µ0 are free parameters that
appear in the identification. This matching shows that JT gravity in Bondi gauge is dual
to a subsector of the complex SYK model. This is on the same footing as the relationship
between JT gravity in Fefferman-Graham gauge and the Majorana SYK model. A similar
match between a flat space version of our boundary action and a particular scaling limit
of the complex SYK model was achieved in [53].

Warped symmetry of AdS2. The AdS-Bondi gauge gives rise to an enhancement of
the asymptotic symmetry group to Diff(S1) n C∞(S1). In section 2.3 we show that the
corresponding gravitational charges belong to a centerless representation of the asymptotic
symmetry algebra. However, the solution space transforms in the coadjoint representation
of a centrally extended version of the group whose central charges are

c = 0, k = −2 and λ = −1. (1.16)

The corresponding algebra is the twisted warped Virasoro algebra [54]. For k 6= 0, the
twist parameter λ can be removed by a redefinition the generators, leading to a warped
Virasoro algebra with central charge c = −24λ2/k. In gravity, it is natural to rescale the
currents P and T by κ−1 = 8πG(2)

N which leads to

c = 12κ, k = −2κ . (1.17)

For the AdS2 factor in the near horizon region of the extreme Kerr black hole, we have
κ = J , therefore we obtain c = 12J as in Kerr/CFT [55]. Both central charges also match
the ones derived for the warped symmetry of Kerr in [56]. This observation indicates that
the near-AdS2 analysis might shed light upon the lack of knowledge of the classical phase
space in Kerr/CFT [57, 58]. Further comments are given in section 6, where we also discuss
the connection to warped CFTs, following the known relation between the complex SYK
model and warped CFTs [59].

Deformations of Reissner-Nordström. In section 7.1, we show that the Bondi gauge
for AdS2 captures deformations of an extremal black hole in a finer way than the usual
Fefferman-Graham gauge. We illustrate this for the Reissner-Nordström black hole. A
deformation of the extremal geometry is generally parametrized by deviations δr+ and δr−
for the outer and inner horizons

r+ = r0 + λδr+ +O(λ2), r− = r0 − λδr− +O(λ2) , (1.18)

where r0 is the extremal horizon. After an appropriate change of coordinate, the near-
horizon geometry is obtained by taking the λ → 0 limit. In Fefferman-Graham gauge, we
obtain the AdS2 metric (1.1) in Lorentzian signature with

s(t) = −1
8(δr+ + δr−)2 . (1.19)
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We see that s(t) is only sensitive to the sum δr+ + δr−. In AdS-Bondi gauge, we obtain
the Lorentzian version of the metric (1.4) with

P (u) = δr+ − δr−
2M0

, T (u) = δr+δr−
2 , (1.20)

where u is the retarded time. As a result, we see that the Bondi gauge is a finer probe of
deformations of the extremal geometry. It can distinguish between the deformations δr+
and δr− independently. This information is ultimately captured in the chemical potential
µ associated with the new U(1) symmetry.

Embedding in near-extreme Kerr. In section 7.2, we study the near-extreme Kerr
black hole for which JT gravity cannot be obtained by Kaluza-Klein reduction. The lin-
earized perturbation capturing the Schwarzian mode in near-extreme Kerr was described
in [60]. We repeat this analysis and show that the Bondi near-AdS2 dynamics described in
this paper can be embedded in near-extreme Kerr. In particular, the infinite-dimensional
warped symmetry algebra of Bondi AdS2 is realized via the 4d diffeomorphism

u→ F(u), r → 1
F ′
(
r + G′(u)

)
, φ→ φ− G(u), θ → θ , (1.21)

which is shown to preserve a phase space of linearized perturbations described by the
ansatz (7.31). We also see that our U(1) symmetry, which was obtained in the asymptotic
symmetry group of Bondi AdS2, corresponds here to rotations around the black hole axis in
the four-dimensional geometry. The corresponding U(1) charge is then simply the change
in angular momentum due to the perturbation.

Flat holography in two dimensions. A flat space version of our boundary action was
derived in [53] from a modified version of the CGHS model, dubbed ĈGHS, which we
study in section 8.1. This gives rise to a flat space analog of JT gravity.1 We show that
the boundary action is equivalent to a particle moving on a rigid 2d Minkowski spacetime.
We describe the thermal solution, which is a 2d analog of the Schwarzschild black hole, as
depicted in figure 3. The corresponding symmetry breaking pattern is

Diff(S1) n C∞(S1)→ ISO(2)×U(1), (1.22)

where the residual symmetry corresponds to a warped version of the 2d Poincaré group.
We compute the corresponding gravitational charges and show that they realize a repre-
sentation of the symmetry algebra.

We compute the partition function which produces a linear density of states

ρ(E) = 2πγ2E . (1.23)

We also compute the contribution of the cylinder to the gravitational path integral. This
bulk geometry is the only regular flat surface which connects two asymptotic boundaries

1Flat JT gravity, which was first considered in [61] to derive the exact gravitational S-matrix in two
dimensions, is not the right theory to consider to study the Euclidean path integral, for reasons that are
explained in section 8.
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and is depicted in figure 4. The result is

Zcyl(β1, β2) = 4π2γ

β1 + β2
. (1.24)

This non-vanishing answer implies that the ĈGHS model should be holographically dual
to an ensemble average. Let us introduce the notation 〈Z(β1) . . . Z(βn)〉 to represent the
Euclidean path integral with n asymptotic circles of lengths β1, . . . , βn. The fact that the
cylinder does not vanish implies that

〈Z(β1)Z(β2)〉 6= 〈Z(β1)〉〈Z(β2)〉 . (1.25)

This indeed shows that the path integral should be interpreted as an ensemble average.
The answer (1.24) is not the universal answer for double-scaled matrix ensembles so the
dual of the ĈGHS model has to be something different. The only regular flat surfaces with
asymptotic boundaries are the plane (or disk) and the cylinder. Therefore the path integral
with an arbitrary number of boundaries is completely determined using Wick contractions
involving the cylinder and the disk. This implies that the corresponding third-quantized
theory is a Gaussian theory. Thus, the ĈGHS model constitutes an interesting example of
a theory where the full Euclidean path integral can be done, while not being completely
trivial and giving rise to an ensemble average.

The asymptotically flat 2d black hole shown in figure 3 seems to be a interesting setup
to study black hole evaporation and the information paradox. In contrast with the AdS
setups that were studied recently, it does not require the introduction of a coupling with
an external bath, because radiation can escape to null infinity. Another observation is that
the simplicity of flat Riemann surfaces might constrain the existence of replica wormholes.
For recent discussions on the information paradox in asymptotically flat spacetime, we refer
to [62–66].

2 JT gravity in Bondi gauge

We consider near-AdS2 gravity using Bondi gauge instead of the usual Fefferman-Graham
(FG) one. Bondi gauge has been extensively studied in three and four dimensions (see [67]
for a good review on both cases). We will show that in this gauge, JT gravity has an
enhanced asymptotic symmetry group Diff(S1)nC∞(S1) which gets broken to SL(2,R)×
U(1). We will derive the boundary action and compute the gravitational charges. We will
also show that this action can be interpreted as the worldline action of a boundary particle.

2.1 Boundary action for Bondi AdS

We consider the Euclidean action for Jackiw–Teitelboim gravity in two dimensions

IJT[Φ, g] = κ

2

∫
d2x
√
gΦ (R+ 2) + I∂ , (2.1)

where κ = (8πG(2)
N )−1 and the AdS radius has been rescaled to one. Since we are formu-

lating the theory in another gauge, we need to derive the boundary term I∂ by studying
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the variational problem. The variation of the action at first order is given by

δIJT =
∫
d2x

(
EΦδΦ + Eµνg δgµν + ∂µΘµ

)
+ δI∂ , (2.2)

where Θµ is the remaining term when all the integrations by part have been made. This is
the term which carries information about the boundary action. The equations of motion are

EΦ = κ

2
√
g (R+ 2) , (2.3)

Eµνg = κ

2
√
g (∇µ∇νΦ− gµν∇ρ∇ρΦ + gµνΦ) . (2.4)

Since we are considering a theory of gravity, a proper analysis of the phase space is needed
in order to capture the physical degrees of freedom and to extract the symmetries that are
not pure gauge. We will consider Bondi gauge, which consists in imposing two gauge-fixing
conditions on the metric

grr = 0 and gru = −1. (2.5)

We start by describing it in Lorentzian signature but we will soon Wick-rotate to Euclidean
signature, in which most of our study takes place. The metric takes the simple form

ds2 = 2V (u, r)du2 − 2dudr, (2.6)

where the r coordinate is null and u is a retarded time. The scalar curvature is R = 2∂2
rV .

From there, we obtain the most general metric with constant negative scalar curvature in
Bondi gauge

R = −2 ⇔ V = −r
2

2 + P (u)r + T (u), (2.7)

where P and T are any function of the retarded time. The asymptotic Killing vectors, i.e.
the vector fields which preserve the form of (2.6) on-shell, are

ξ = ε(u)∂u − (ε′r − η(u))∂r, (2.8)

for any function ε and η of the retarded time. The corresponding variations of P and T are

δξP = εP ′ + ε′P + ε′′ − η,
δξT = εT ′ + 2ε′T + ηP − η′.

(2.9)

The set of all the vector fields ξ(ε,η) forms an infinite-dimensional Lie algebra whose ex-
ponentiation gives the asymptotic symmetry group. The corresponding algebra is called
BMS2 and also corresponds to the symmetries of the flat version of Bondi gauge [53]. The
transformations of P and T will be interpreted later in terms of a coadjoint representation
of the asymptotic symmetry Lie algebra.

Having properly specified the phase space for the metric, we will use it to compute the
boundary term. The metric (2.6) with V given by (2.7) is automatically solution of the
equation EΦ, while the uu-component of Eµνg gives

Φ = ϕ1(u)r + ϕ0(u). (2.10)
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These two new functions also transform under the spacetime symmetry ξ

δξϕ0 = εϕ′0 + ηϕ1,

δξϕ1 = εϕ′1 − ε′ϕ1.
(2.11)

The two other components of Eµνg give two evolution equations for ϕ0 and ϕ1

ϕ′1 + Pϕ1 + ϕ0 = 0,
ϕ′′0 − Pϕ′0 + ϕ1T

′ + 2Tϕ′1 = 0.
(2.12)

From now when we say on-shell we mean that these two equations are satisfied (and their
linearized version for linear perturbations). The total solution space is parametrized by four
functions of the retarded time (P, T, ϕ0, ϕ1) whose equations of motion are given by (2.12).

In the following, we would like to consider the Euclidean version of JT gravity. We
will therefore perform a Wick rotation by defining

τ = iu with τ ∼ τ + β. (2.13)

The Euclidean time lies on a circle of length β. We also make the following replacements

P (u)→ iP (τ), T (u)→ −T (τ),
ε(u)→ −iε(τ), η(u)→ iη(τ),
ϕ0(u)→ −ϕ0(τ), ϕ1(u)→ iϕ1(τ).

(2.14)

All the new functions are periodic in τ . These replacements are chosen so that the equations
of motion (2.12) and the expressions for the field variations (2.9) and (2.11) are unchanged
after the Wick rotation. From now on, we will only consider the Euclidean theory.

This being specified we deduce that the term ∂τΘτ does not contribute in (2.2). For
the moment we will also suppose that there is only one boundary for the AdS2 spacetime,
situated at r =∞, so that the third term in δIJT becomes a boundary term

B ≡
∫
dτ Θr(τ, r =∞) = −iκ

∫
dτ (ϕ0δP − ϕ1δT ). (2.15)

For the variational problem to be well posed, we need B to be canceled by the variation of
the boundary term in the action:

δI∂ +B = 0, (2.16)

when we perturb around a solution. This will ensure that solutions to the equations of
motions really correspond to extrema of IJT. Consider the following boundary action

I∂ = −iκ
∫
dτ

(
ϕ1T − ϕ0P + ϕ′0 −

ϕ′1
ϕ1
ϕ0 −

ϕ2
0

2ϕ1

)
. (2.17)

One can check that, on-shell, it satisfies the following relation

δI∂ +B = iκ

∫
dτ δ

( 1
ϕ1

)
C , (2.18)
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where the function
C ≡ ϕ2

1T − ϕ1ϕ0P + ϕ1ϕ
′
0 − ϕ′1ϕ0 −

ϕ2
0

2 , (2.19)

is actually a constant on-shell. We conclude that this boundary action is practically the
right one, the only thing we have to do is to impose an integrability condition. We impose

ϕ1 = iφ̄r
f ′

with f(τ + β) = f(τ) + β, (2.20)

so that the integrated variation vanishes and I∂ becomes the right boundary action. The
constant φ̄r controls the renormalized boundary value of the dilaton [16]. We define also
the parameter γ = κφ̄r. The integrability condition is responsible for the appearance of a
diffeomorphism f of the boundary circle.

We impose an additional constraint which consists in fixing the zero mode of ϕ0/ϕ1

1
β

∫
dτ

(
ϕ0
ϕ1

)
= −µ̄, (2.21)

where µ̄ is another constant held fixed in the phase space. To implement this condition,
we define g satisfying g(τ + β) = g(τ) such that

ϕ0 = iφ̄r

(
g′

f ′
− µ̄

)
. (2.22)

The interpretation of µ̄ will become clear when we study the partition function. It is this
condition that will give rise to the new symmetry. It will also allow for an interpretation of
the solution space in terms of coadjoint orbits (a similar condition was considered in [47]).
In terms of these new variables, the boundary action is

I∂ = γ

∫
dτ

f ′

(
T − g′P + g′′ − 1

2g
′2
)

+ γµ̄

∫
dτ

(
P − f ′′

f ′
+ g′

)
+ cste . (2.23)

The last term is a constant that can always be absorbed by a shift

I∂ → I∂ − cste iφ̄r
β

∫
dτ

( 1
ϕ1

)
, (2.24)

which maintains a well-defined variational problem. One should note also that in the term
proportional to µ̄, only P contributes with the conditions we have on f and g. To obtain
the boundary action in the form (1.6) given in the introduction, one should perform a
redefinition of the fields described in section 2.4.

We have imposed additional conditions on the solution space, we therefore need to
check if they are affecting the asymptotic symmetry group. The first condition does not
lead to a change of the symmetry algebra but the second one requires that η = σ′, with σ
satisfying the same condition as g. The new transformations are

δξf = εf ′,

δξg = σ + εg′.
(2.25)

We see that ε is an infinitesimal reparametrization, while σ acts by shifting g. We will now
study this symmetry algebra in more details. This will be the occasion to review some math-
ematical results which are useful to understand the solution space and the boundary action.
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2.2 From BMS2 to warped Virasoro

As we said earlier, the set of all the vectors ξ(ε,η) forms an infinite-dimensional algebra
called BMS2 and the associated bracket is

[(ε1, η1), (ε2, η2)] =
(
ε1ε
′
2 − ε2ε

′
1, (ε1η2 − ε2η1)′

)
. (2.26)

This algebra corresponds the finite spacetime coordinate transformations

τ ′ = F(τ),

r′ = 1
F ′

(r + iH(τ)) ,
(2.27)

where F is a reparametrization of the circle while H is an arbitrary periodic function. They
are very similar to the BMS3 transformations at null infinity in three dimensions, see [67].
A major difference is that the Euclidean time here plays the role of the celestial angle there.
This has important consequences on the interpretation of the boundary theory. We will
use the same terminology as the one used for BMS3 to describe the transformations, F will
be called a boost while H will be called a supertranslation.

The conditions that we have imposed on the phase space give a constraint on the
supertranslation, so that the finite transformations become

τ ′ = F(τ),

r′ = 1
F ′
(
r + iG′(τ)

)
,

(2.28)

where G are arbitrary periodic functions. The corresponding algebra is spanned by the
vectors

ξ = ε(τ)∂τ − (ε′(τ)r − iσ′(τ))∂r, (2.29)

which satisfy the algebra

[(ε1, σ1), (ε2, σ2)] =
(
ε1ε
′
2 − ε2ε

′
1, ε1σ

′
2 − ε2σ

′
1
)
. (2.30)

If we define the modes Ln =
(
iβ
2πe

2πint/β , 0
)
and Jn =

(
0, β2πe

2πint/β
)
, it becomes

[Ln, Lm] = (n−m)Ln+m , (2.31)
[Ln, Jm] = −mJm+n ,

[Jm, Jn] = 0,

which is known as the warped Witt algebra [54]. This algebra can be centrally extended

[Ln,Lm] = (n−m)Ln+m + c

12n(n2 − 1)δn+m,0 , (2.32)

[Ln,Jm] = −mJm+n − iλn(n− 1)δn+m,0 ,

[Jn,Jm] = k

2nδn+m,0 .
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The corresponding group is the semidirect product of the diffeomorphisms of the circle
with the smooth functions on the circle: Diff(S1) n C∞(S1). It has the same structure as
BMS2 but the group law induced by the coordinate changes (2.28) is different

(F1,G1)(F2,G2) = (F2 ◦ F1,G1 + G2 ◦ F1). (2.33)

The coadjoint representation of this group will play an important role in what follows, and
this is why we want to study it here. We will describe only the minimum in order to be
self-contained, for a complete mathematical description see [68]. An element of the Lie
algebra will be denoted v and we have

v = ε(τ)∂τ + σ(τ) + aiei. (2.34)

The constants ai’s account for possible central extensions. The dual algebra, which is the
space of forms on the Lie algebra is then spanned by covectors

b = T (τ)dτ2 + P (τ)dτ + cie
i, (2.35)

where P and T are any function on the circle. The ci’s are constants and the ei’s satisfy
ei(ej) = δij . The action of b on v is then given by the bracket

〈b, v〉 =
∫
S1
b(v) = aici +

∫ β

0
dτ(T (τ)ε(τ) + P (τ)σ(τ)). (2.36)

Having defined the action of covectors on vectors, we can define the action of a group
element on the covector b, which is the coadjoint representation

〈Ad∗(F ,G)b, v〉 = 〈b,Ad−1
(F ,G)v〉. (2.37)

The action of a group element on b induces a transformation of the two functions P and
T that are interpreted as currents. Exactly like the holomorphic and anti-holomorphic
components of the energy-momentum tensor in a 2d CFT which transform in the coadjoint
representation of the Virasoro algebra. The coadjoint representation of the warped Virasoro
group is described in [69] and corresponds to the transformations

P̃ (F(τ)) = 1
F ′(τ)

[
P (τ) + λ

F ′′(τ)
F ′(τ) −

k

2G
′(τ)

]
,

T̃ (F(τ)) = 1
F ′(τ)2

[
T (τ) + c

12{F(τ), τ} − P (τ)G′(τ)− λG′′(τ) + k

4G
′(τ)2

]
.

(2.38)

The three constants c, k and λ are all the possible central extensions of the warped Virasoro
group. We have defined the Schwarzian derivative

{F(τ), τ} = F
′′′

F ′
− 3

2

(F ′′
F ′
)2
. (2.39)

The functions T and P being periodic, we can define the generators Ln and Jn to be the
modes of T and P on the circle. The centrally extended algebra (2.33) is then recovered
for the bracket [Q(ε1,σ1),Q(ε2,σ2)] = −δ(ε1,σ1)Q(ε2,σ2).
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These transformations for P and T follow directly from group theory. We can also
view the group as acting on the spacetime coordinates like in (2.28). This action on
the Euclidean Bondi metric also induces finite transformations of the functions P and T
appearing in the uu-component. Acting on the bulk metric with (2.28), we find that they
correspond exactly to the coadjoint transormation (2.38) for the central charges

c = 0, k = −2 and λ = −1. (2.40)

The transformations (2.9), with η = σ′, are the infinitesimal version of these transfor-
mations. The fact that the solution space transforms in the coadjoint representation of
the asymptotic symmetry group is mysterious but not rare. It also happens for the usual
boundary conditions for AdS2 in Fefferman-Graham gauge as we will see later. This was
also shown for a version of the CGHS model in [53]. Another important example is the
case of 3d gravity with the Brown-Henneaux boundary conditions, for which the solution
space is parametrized by the energy-momentum tensor of a 2d CFT.

But there is even more to say about the relation between the coadjoint representation
of the warped Virasoro group and 2d gravity in AdS-Bondi gauge. We have found that the
bulk action reduces to the boundary term

I∂ = γ

∫
dτ

f ′

(
T − g′P + g′′ − 1

2g
′2
)

+ γµ̄

∫
dτ

(
P − f ′′

f ′
+ g′

)
, (2.41)

when evaluated on the Bondi AdS solution space, and when the integrability conditions are
taken into account. Interestingly we recognize also the coadjoint action of a group element
(f, g) on T in the first integrand and on P in the second one, such that the boundary action
becomes

I∂ = γ

∫
dτ̃ T̃ (τ̃) + γµ̄

∫
dτ̃ P̃ (τ̃), (2.42)

where we have defined τ̃ = f(τ). One should bear in mind that this time, the group element
does not come from a coordinate change, but was really defined by the dilaton through
the integrability conditions. The solution space of Bondi-AdS is therefore parametrized by
a group element (f, g) of the warped Virasoro group and a vector in the dual Lie algebra
defining two currents P and T . The action is simply given by the coadjoint action of the
group element on T and P . The transformations (2.25) are nothing but an infinitesimal
version of the group law. Indeed, taking

F1(τ) = τ + ε(τ) F2(τ) = f(τ) (2.43)
G1(τ) = σ(τ) G2(τ) = g(τ) (2.44)

gives the linearized version of the group law

(F1,G1)(F2,G2) = (f + εf ′, g + σ + εg′). (2.45)

We will make use of this property later when studying the symmetry breaking.
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2.3 Gravitational charges

In gauge theories, charges associated with asymptotic symmetries can be constructed using
the covariant phase space formalism [70–73]. This gives a way to define surface charges as-
sociated to diffeomorphisms that are not pure gauge because of the presence of a boundary.
The diffeomorphisms that we study here are given in (2.28).

At first one constructs the field variation of a charge (which corresponds to a one-form
in the field configuration space) in the following way. Starting with the symplectic potential

Θ = Θµ√g εµν dxν = iκ (ϕ0δP − ϕ1δT ) dτ, (2.46)

the field-exterior derivative defines the symplectic form

ωωω = δΘ = iκ(δϕ̃0 ∧ δP − δϕ1 ∧ δT )dτ, (2.47)

where we have defined ϕ̃0 = iφ̄rg
′/f ′. The sympetic form ωωω is a 2-form in the field space.

Now the fundamental theorem of the covariant phase space formalism tells us that when
φ and δφ are on-shell, there exists a function kξ such that

ωωω(δφ, δξφ) = dkξ(δφ), (2.48)

where d is the spacetime exterior derivative. The function kξ is a one-form in the field
space. It can always be decomposed in the following way

kξ = δQξ + Ξξ, (2.49)

and we say that kξ is integrable when Ξξ vanishes. Usually, when we have integrability, kξ
is integrated over a codimension-two surface in order to define a charge. In two dimensions,
this would just be a point so we leave it as it is. For

ξ = ε∂τ − (ε′r − iσ′)∂r, (2.50)

we find that kξ depends only on τ and is given by

kξ = − i2κ
(
2εTδϕ1 + εϕ1δT − εPδϕ̃0 + εδϕ̃′0 − ε′δϕ̃0 − σ′δϕ1

)
. (2.51)

Which can be decomposed into an integrable and non-integrable part in the following way

Qξ = − i2κ
(
2εTϕ1 − εP ϕ̃0 + εϕ̃′0 − ε′ϕ̃0 − σ′ϕ1

)
,

Ξξ = − i2κ ε(ϕ̃0δP − ϕ1δT ).
(2.52)

The usual representation theorem states that when the charges are integrable, the bracket

{Qξ,Qχ} ≡ δχQξ (2.53)

defines a representation (possibly centrally extended) of the asymptotic symmetry group.
Here, δχQξ means that we take the field variation of the charge Qξ, and replace δφ by δχφ.
When the charges are not integrable, one can define the modified bracket

{Qξ,Qχ}∗ ≡ δχQξ + Ξχ(δξφ). (2.54)
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This bracket was introduced in [74] where it was used to define a centrally extended rep-
resentation of the BMS algebra in 4d asymptotically flat gravity. It was also used in the
context of near-horizon symmetries in [75, 76]. One can show that in our case it also defines
a representation

{Q(ε1,σ1),Q(ε2,σ2)}∗ = Q[(ε1,σ1),(ε2,σ2)] + γµ̄

2 (ε1σ
′
2 − ε2σ

′
1), (2.55)

where the bracket on the right hand side coincides with (2.30). The central extension is
actually trivial since it can be absorbed in the following redefinition of the charge

Q̃ξ = Qξ + γµ̄

2 σ, (2.56)

which becomes in terms of f and g,

Q̃ξ = γµ̄

2 σ + γ

2f ′
(

2εT − εPg′ − ε′g′ − σ′ − εg
′f ′′

f ′
+ εg′′

)
. (2.57)

From the representation theorem, we can deduce the time evolution of the charge. Using
the vector (ε = 1, σ = 0), the associated variations are all time derivatives δ(1,0)φ = φ′. We
replace one of the two vectors by (1, 0) in (2.55) to obtain

d

dτ
Q̃(ε,σ) = δ(1,0)Q̃(ε,σ) + Q̃(ε′,σ′) = −Ξ(1,0)(δ(ε,σ)φ). (2.58)

The non conservation of the charge is sourced by the non integrable part. We conclude
that if we find a proper restriction of the phase space on which Ξξ vanishes, the associated
symmetries will be true symmetries.

We would like to implement such a restriction on the solution space. An obvious choice
is to require that the two currents are constant

P (τ) = P0 and T (τ) = T0, (2.59)

held fixed in the solution space. The infinite-dimensional symmetry algebra is then broken
to the subalgebra that leaves P0 and T0 invariant. Eq. (2.9) becomes

ε′P0 + ε′′ − σ′ = 0,
2ε′T0 + σ′P0 − σ′′ = 0.

(2.60)

Solving for ε and σ, we find

ε(τ) = λ1 + λ2 e
iτ
√

2s0 + λ3 e
−iτ
√

2s0 ,

σ(τ) = λ2
(
P0 +

√
−2s0

)
eiτ
√

2s0 + λ3
(
P0 −

√
−2s0

)
e−iτ

√
2s0 + λ4,

(2.61)

where we have defined −s0 = T0 + 1
2P

2
0 . For the transformations associated to λ2 and λ3

to be well-defined (not considering winding), we need to have

s0 = −T0 −
1
2P

2
0 = 2π2

β2 . (2.62)
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Then, the transformations associated to λ1, λ2 and λ3 generate an SL(2,R) symmetry.
Moreover there is an extra U(1) symmetry corresponding to shifting of g by a constant,
which is λ4 here. Therefore, requiring P and T to be constant and to satisfy the rela-
tion (2.62) realizes the symmetry breaking

Diff(S1) n C∞(S1)→ SL(2,R)×U(1). (2.63)

We have found that using this boundary condition, which leads to integrable charges,
the asymptotic symmetry group is bigger than the vacuum symmetry group SL(2,R).2

Morevover, the gravitational charge associated to the U(1) symmetry is

Q̃(ε=0,σ=1) = γµ̄

2 . (2.64)

This additional symmetry will play an important role in the study of the Euclidean path
integral. Moreover, one can show that with this condition, the gravitational charges agree
with the Noether charges of the boundary action (ignoring the term proportional to µ̄

which does not contribute to the dynamics).
One should note that the global U(1) transformation (ε = 0, σ = 1) has actually no

real effect on the initial fields as it leaves Φ and gµν invariant. This however does not mean
that it is not a true symmetry. In fact, such symmetries arise frequently and are known
as reducibility parameters. They act trivially on the fields on-shell but have a non trivial
charge (see the generalized Noether’s theorem in [77]).3

In what follows we will also consider geometries for which s0 6= 2π2

β2 (in particular the
trumpet geometry). In that case, the transformations associated to λ2 and λ3 are not
defined so the symmetry breaking pattern is

Diff(S1) n C∞(S1)→ U(1)×U(1), (2.65)

where the unbroken symmetries correspond to the zero modes of ε and σ.

2.4 Particle interpretation

We consider again the boundary action (2.41) and make the change of variable τ̃ = f(τ)
together with the field redefinition f̃ = f−1 and g̃ = −g ◦ f−1. The boundary action
becomes

I[f, g] =
∫
dτ L[f, g] , (2.66)

with the following Lagrangian

L[f, g] = γ

(
Tf ′2 − 1

2g
′2 + Pf ′g′ + g′f ′′

f ′
− g′′

)
+ γµ̄

(
Pf ′ + f ′′

f ′
− g′

)
. (2.67)

2The same phenomenon happens for example in AdS3, with the Brown-Henneaux boundary condition.
The charges are also integrable and the symmetry group is the infinite dimensional 2d conformal group
while the vacuum symmetry is only the global part.

3One can think of the gauge transformation A→ A+dλ in a free U(1) gauge theory. The transformation
λ = 1 leaves A invariant and still, the corresponding charge is non trivial since it is the electric charge [78].
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This can be interpreted as describing the dynamics of fluctuations (f, g) ∈ Diff(S1) n
C∞(S1) around the background geometry

ds2 = 2
(
r2

2 − iP (τ)r + T (τ)
)
dτ2 + 2idτdr . (2.68)

As for the usual Schwarzian action, this boundary action can also be understood as the
motion of a boundary particle [16, 79]. In this picture, the full dynamics is captured by the
motion of a particle near the boundary of rigid AdS2. The simplest way to obtain this is to
consider a “vacuum” boundary particle whose trajectory is at a constant r = r0. Applying
the diffeomorphism

τ → f(τ), r → r + ig′(τ)
f ′(τ) , (2.69)

we obtain a new trajectory depending on (f, g). The worldline action of the corresponding
boundary particle on the geometry (2.68) takes the form

Iparticle =
∫
dsLparticle = γ

2

∫
ds ẋ2 . (2.70)

We consider a particle whose trajectory is the image of the vacuum one

τ = f(s), r = r0 + ig′(s)
f ′(s) , (2.71)

and compute the corresponding Lagrangian, we obtain

Lparticle + 1
2γ r

2
0 = L[f, g] . (2.72)

Up to a constant term, the particle Lagrangian is the same as the one appearing in the
gravitational boundary action (2.67). Intriguingly, the match is achieved with the identifi-
cation µ̄ = r0. When studying the Euclidean path integral in section 4, we will see that µ̄
is interpreted as the chemical potential associated with the U(1) charge. The identification
with the boundary particle suggests that this U(1) charge is related to the radial direction
of AdS2. This particle usually lies at r0 → +∞, i.e. close to the asymptotic boundary of
AdS2. It is interesting to note that we do not need to take such a limit here to match
the boundary action with the particle action. This suggests that there might be a relation
with the finite cutoff versions of JT gravity discussed recently [80, 81].

3 Relation to the Schwarzian

In this section, we show that the boundary action derived in the previous section can be
seen as a generalization of the usual Schwarzian action. We start by writing a diffeomor-
phism that maps the solution space of Bondi gauge to the one FG gauge with the usual
Dirichlet condition. With an additional boundary condition in Bondi AdS, we recover the
Schwarzian action starting from the one derived in Bondi gauge (2.41). We also show how
the asymptotic symmetries reduce to one copy of the Virasoro group and how to recover
the FG gravitational charges from the Bondi ones given in (2.52). The computation of the
partition function in section 4 will show that the Schwarzian theory is actually a subsector
of the Bondi theory, corresponding to setting the U(1) charge to zero.
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3.1 From Bondi to Fefferman-Graham

We start by writing the bulk metric in FG gauge. The metric takes the simple form

ds2 = r2V (t, r)2dt2 + dr2

r2 . (3.1)

The most general solution to the equation R = −2 is

V (t, r) = h(t)− s(t)
2r2 . (3.2)

The usual boundary condition is h(t) = 1. It is the equivalent of the Brown-Henneaux
boundary condition in two dimensions, i.e. requiring the boundary metric to be flat. Looser
boundary conditions were considered in [47], where h was allowed to fluctuate. When asking
h(t) = 1, the asymptotic Killing vectors are

ξ =
(
ε(t)− ε′′(t)

2r2 − s(t)

)
∂t − ε′(t)r∂r, (3.3)

where ε is any function of the time direction. The asymptotic symmetry group is therefore
isomorphic to Diff(S1). The effect of the Killing vector on the metric is to modify the
function s in the following way

δξs = εs′ + 2sε′ + ε′′′. (3.4)

Again, one can interpret this transformation as the coadjoint action of an element of the
Lie algebra of Diff(S1) on a covector. This means that the function s transforms exactly
like the holomorphic component of a 2d CFT energy-momentum tensor. The finite version
of this transformation is

s̃(F(τ)) = 1
F ′(τ)2

[
s(τ)− c

12{F(τ), τ}
]
, (3.5)

where we have c = 12.
An analysis similar to the one realized in section 2.1 was done in [47] for the Schwarzian

action. They derive the boundary term by demanding a well-defined variational problem.
We are going to take another route here, which consists in recovering the Schwarzian action
from the boundary action in Bondi gauge.

We would like to find a diffeomorphism that maps the metric in Bondi gauge (2.68) to
the metric in FG gauge (with h(t) = 1).4 We start by going in tortoise coordinates

τ = t∗ − ir∗, r = − cot r∗, (3.6)

followed by

t∗ = t+
∞∑
n=1

vn(t)r−n, r∗ =
∞∑
n=1

wn(t)r−n. (3.7)

4See [82–84] for a similar construction in higher dimensions.
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We can solve order by order in r−1 to find the coefficients.5 The first ones are

v1(t) = 0, w1(t) = 1, v2(t) = −P (t), w2(t) = iP (t), . . . (3.8)

The resulting metric is indeed in FG gauge with a function s written in terms of P and T :

s(t) = −
(
T (t) + 1

2P (t)2 − P ′(t)
)
. (3.9)

Compared to the Schwarzian action, the boundary action in Bondi gauge has an additional
mode g and a new physical symmetry. To recover the Schwarzian action, we need to
kill this additional mode by imposing a further boundary condition in Bondi gauge. We
choose to impose P (t) = P?(t) where P? is fixed in the solution space. This translates into
a condition on the asymptotic Killing vectors. The first equation of (2.9) gives

σ′ = ε′P? + εP ′? + ε′′, (3.10)

so that the Bondi asymptotic Killing (2.29) is now parametrized by ε only. We can deduce
the transformation of s from the second equation of (2.9) and (3.9)

δξs = εs′ + 2sε′ + ε′′′. (3.11)

This is exactly the transformation we have obtained from the asymptotic Killing vectors
in FG gauge.

Now, we would like to impose this further boundary condition at the level of the
boundary action and write it in terms of the function s. We recall that we have two
remaining equations of motion (2.12) for the dilaton components ϕ0 and ϕ1. In terms of
the group element (f, g) they are

1
f ′

(
P? −

f ′′

f ′
+ g′

)
= µ̄,[

1
f ′2

(
T − P? g′ + g′′ − g′2

2

)]′
= 0.

(3.12)

Solving the first equation for g′ and using the definition of s in (3.9) (together with the two
conditions (2.20) and (2.22) on the solution space), we can rewrite the boundary term (2.17)
in terms of f and s as

I∂ = −γ
∫
dτ

f ′
(s− {f, τ}) = −γ

∫
dτ̃ s̃(τ̃). (3.13)

The integrand is exactly the coadjoint action (3.5) of f on the current s. We observe the
same structure as the one discussed in the previous section. The only difference is that the
group has changed. Asking the current P to be held fixed in the solution space removes the
shift symmetry so that the symmetry group reduces to Diff(S1). Interestingly, the integrand
of the boundary action (after integrating one of the equations of motion) remains written
in terms of the coadjoint action of the central extension of Diff(S1), i.e. the Virasoro group.

5The same notation has been used for the radial coordinate in Bondi and FG gauge.
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3.2 Gravitational charges and the Schwarzian

Having found the mapping from Bondi to FG, we are also able compute the gravitational
charges. To do so, we consider the charges found in Bondi gauge (2.52), and impose
the condition P = P? with the corresponding condition on the symmetries (3.10). After
integrating out the first equation of (3.12), we obtain (up to a constant)

Q̃ε = − γ

2f ′

(
2εs− ε

(
f ′′′

f ′
− 2f

′′2

f ′2

)
+ ε′

f ′′

f ′
+ ε′′

)
,

Ξε = γ ε

2f ′ δs.
(3.14)

Again, one can show that under the modified bracket (2.54), these non-integrable charges
belong to a representation the Diff(S1) algebra. A consistent condition to have integrability
is to impose s(τ) = s0, a constant held fixed in the solution space. This condition must be
preserved by the asymptotic symmetries. From (3.11) we obtain

2s0 ε
′ + ε′′′ = 0, (3.15)

which is solved by
ε(τ) = λ1 + λ2 e

iτ
√

2s0 + λ3 e
−iτ
√

2s0 . (3.16)

We recover the SL(2,R) symmetry of AdS2 for s0 = 2π2/β2, but we do not have the extra
U(1) symmetry anymore. With the above choice for s0, we define f−1 = f̃ and make the
change of variable τ̃ = f(τ) to obtain the action

I∂ = −γ
∫ β

0
dτ̃

(
2π2

β2 f̃
′2 + {f̃ , τ̃}

)
= −γ

∫ β

0
dτ̃

{
tan

(
π

β
f̃

)
, τ̃

}
. (3.17)

This is the usual Euclidean Schwarzian action. The finite version of the symmetry (3.16)
corresponds to the SL(2, R) symmetry of the Schwarzian derivative

F → aF + b

cF + d
, (3.18)

where F = tan
(
π
β f̃
)
. Thus, requiring s to be constant realizes the symmetry breaking from

Diff(S1) to SL(2,R). Moreover, one can show that the charges (3.14) give three charges,
one for each generator of (3.16), which precisely match with the Noether charges of the
Schwarzian action.

4 Euclidean path integral

We would like to compute the Euclidean path integral of the boundary action of Bondi
AdS. We start with the action given in (2.67) which we reproduce below

I[f, g] = γ

∫
S1
dτ

(
Tf ′2 − 1

2g
′2 + Pf ′g′ + g′f ′′

f ′

)
+ γµ̄

∫
S1
dτ P . (4.1)
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In the following we will take constant values P = P0 and T = T0. The on-shell action is
obtained for f(τ) = τ and g(τ) = 0 and reads

Ion−shell = γ (βT0 + µP0) , (4.2)

where we have defined µ ≡ βµ̄ which will be interpreted as the chemical potential associated
to the U(1) symmetry. The path integral is defined as

Z =
∫
M
DfDg e−I . (4.3)

The fields f and g belong to the warped Virasoro group and the action has a symmetry
that corresponds to the stabilizer of P0 and T0 under the coadjoint action of the group.
Therefore we should integrate over the manifold

M = (Diff(S1) n C∞(S1))/Stab(P0, T0). (4.4)

This manifold is generically infinite-dimensional and is isomorphic to the coadjoint orbit of
the covector (P0, T0). It can be endowed with a canonical symplectic form which provide
a measure for the path integral.

We will start by computing the partition function on geometries that correspond to
the hyperbolic disk. These geometries need to satisfy

s0 = −
(
T0 + 1

2P
2
0

)
= 2π2

β2 . (4.5)

we recall that s0 is the variable appearing in the geometry in FG gauge. The value of P0
is fixed on-shell in terms of the constant µ̄ which appeared in the boundary action. This
follows from dividing the first equation in (2.12) by ϕ1 and integrating over the circle, then
using the boundary condition (2.21) it leads to

P0 = µ̄ = µ

β
. (4.6)

The relation (4.5) then fixes T0 and we get for the disk

Disk : P0 = µ

β
, T0 = −2π2

β2 −
µ2

2β2 . (4.7)

We see that we have a one-parameter family of configurations, labeled by µ. Note that a
particular configuration can be generated by acting with the diffeomorphism (2.28) with

F(τ) = τ, G(τ) = µ

β
τ + cste, (4.8)

on the Euclidean metric with P0 = 0 and T0 = −2π2/β2. The function G is not periodic,
therefore the couple (F ,G) does not belong to the group. This means that µ parametrizes a
family of inequivalent coadjoint orbits. Each of them define good phase spaces but they are
still physically inequivalent according to the study of gravitational charges in section 2.3.
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The disk partition function is then computed as a path integral over f, g for the action
defined with the above values of P0 and T0. As a result, it depends on β and µ

Z(β, µ) =
∫
DfDg e−I . (4.9)

The parameter β appears because we are fixing the circle to have renormalized length β.
The parameter µ appears as an arbitrary parameter labeling a family of possible boundary
actions. We will interpret below the parameter µ as the chemical potential associated to
the U(1) symmetry.

4.1 Cardy thermodynamics

Before delving into the computation of the exact partition function. It is instructive to
consider the thermodynamics in the saddle-point approximation. This derivation will be
similar to the derivation of the Cardy formula in 2d CFT. In fact, we point out in section 6
that there is a precise match between the entropy of JT in Bondi gauge and the entropy
of warped CFTs.

We assume that the free energy is approximated by the on-shell action

F ≡ − logZ = Ion−shell , (4.10)

which, as will be shown later, is achieved when β is small. For a thermal state, the on-shell
action is computed using the values for P and T given in eq. (4.7) and the classical solution
corresponds to f(τ) = τ and g(τ) = 0. This gives the free energy

F = −2π2γ

β
+ γµ2

2β . (4.11)

The entropy is obtained using a Legendre transform

S = −
(

1− β ∂

∂β
− µ ∂

∂µ

)
F = 4π2γ

β
. (4.12)

The saddle-point value of the energy and the charge are given by

E = ∂F

∂β
= 2π2γ

β2 −
γµ2

2β2 , (4.13)

Q = i
∂F

∂µ
= iγµ

β
.

Inverting these relations gives the temperature and chemical potential at the saddle-point

β = 2πγ√
2γE −Q2 , µ = − 2πiQ√

2γE −Q2 . (4.14)

This allows to rewrite the entropy (4.12) as

S = 2π
√

2γE −Q2 . (4.15)

The saddle-point approximation is valid for large energy and charge. After computing the
full partition function, we will see that we reproduce this entropy by taking the Cardy limit
of the exact density of states (4.48). In section 6, we match this entropy with the Cardy
formula of a warped CFT. In section 5, we also match it with the entropy of the complex
SYK model.
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4.2 Partition function

We now consider the computation of the exact partition function.6 The Kirillov-Kostant-
Souriau symplectic form associated to coadjoint orbit of the warped Virasoro group was
obtained in [85], it is given by

ω = −α
∫
S1

(
df ′ ∧ df ′′

f ′2
− 4π2

β2 df ∧ df
′ − dg̃ ∧ dg̃′

)
, (4.16)

where we have defined g̃ = g − iµβ f − log f ′. Here, α is a normalization constant for
the symplectic form. As in [25], we can use the Duistermaat-Heckman theorem that states
that if the action generates a U(1) symmetry on the integration manifold then the partition
function is one-loop exact. Indeed one can check that we have

ω(. , δφ = φ′) ∝ dI, (4.17)

which means that I generates a time translation symmetry on the coadjoint orbit.7 To
organize the path integral, it is useful to write it as a classical contribution and a one-loop
contribution

Z(β, µ) = Z1-loop e
−Ion−shell . (4.18)

The classical contribution is given in (4.2) and gives with the values (4.7)

Ion−shell = γµ2

2β −
2π2γ

β
. (4.19)

The one-loop part is obtained by integrating over the fluctuations ε(τ) and σ(τ). The
quadratic action is given by

Iquad = γ

∫
S1
dτ

(
T0ε
′2 − 1

2σ
′2 + P0ε

′σ′ + σ′ε′′
)
. (4.20)

We will start with generic values of P0 and T0 since some of these results will be useful
when computing the partition function on the trumpet. The boundary conditions impose
that ε and σ are periodic with period β. Hence, they can be decomposed into modes

ε(τ) = β

2π
∑
n∈Z

εne
− 2π
β
inτ
, σ(τ) = β

2π
∑
n∈Z

σne
− 2π
β
inτ

. (4.21)

Since ε(τ) is real and σ(τ) is pure imaginary, we have the relations

ε−n = ε∗n, σ−n = −σ∗n . (4.22)

Using the decomposition, we can write the one-loop integral as

Z1-loop =
∫ ∏

n∈Z
dεndσn Pf(ω) e−Iquad . (4.23)

6We are not including higher genus configurations in this computation. We will come back to them in
the next subsection.

7This relation implies Lδφ=φ′ω = (d ◦ iδφ=φ′ )ω + (iδφ=φ′ ◦ d)ω = 0.
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We decompose the symplectic form using the modes

ω = α
2β2

πi

∑
n≥1

T0ndεn ∧ dε−n − α
β2

πi

∑
n≥1

ndσn ∧ dσ−n (4.24)

+αβ
2

πi

∑
n≥1

[(
−2πi

β
n2 + P0n

)
dεn ∧ dσ−n +

(
−2πi

β
n2 − P0n

)
dε−n ∧ dσn

]
.

We note that the zero mode ε0 and σ0 do not appear and are hence degenerate directions
of the symplectic form. This corresponds to the U(1) × U(1) symmetry of the coadjoint
orbit. As they are degenerate directions, they must be removed in the computation of the
partition function. We decompose ω into blocks

ω =
(
ωεε ωεσ
ωTεσ ωσσ

)
. (4.25)

The Pfaffian takes the form

Pf(ω) = Pf(ωεε + ωεσω
−1
σσω

T
εσ)Pf(ωσσ) . (4.26)

We can represent each block of ω as a 2M × 2M indexed by (n,m) where −M ≤ n ≤M ,
−M ≤ m ≤M and n,m 6= 0, and we takeM → +∞ at the end. With this parametrization,
the components of ω take the form

(ωεε)nm = α
β2

πi
T0n δn+m , (4.27)

(ωεσ)nm = α
β2

2πi

(
−2πi

β
n2 + P0n

)
δn+m ,

(ωσσ)nm = α
β2

2πin δn+m .

Making use of the identity

Pf
(

0 A

−AT 0

)
= (−1)

M(M−1)
2 detA , (4.28)

we obtain

Pf(ωσσ) =
M∏
n=1

(
−α β

2

2πin
)
. (4.29)

We also compute

(ωεε + ωεσω
−1
σσω

T
εσ)nm = β2n

πi

(
2π2

β2 n
2 + 1

2P
2
0 + T0

)
δn+m , (4.30)

which gives

Pf(ωεε + ωεσω
−1
σσω

T
εσ) =

M∏
n=1

(
α
β2n

πi

(
2π2

β2 n
2 + 1

2P
2
0 + T0

))
. (4.31)
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Putting everything together gives

Pf(ω) =
M∏
m=1

(
α
β2m

πi

(
2π2

β2 m
2 + 1

2P
2
0 + T0

))
M∏
n=1

(
−α β

2

2πin
)
. (4.32)

We can write the Pfaffian as

Pf(ω) =
M∏
n=1

Pfn(ω), Pfn(ω) = α2β2n2
(
n2 + β2

2π2

(1
2P

2
0 + T0

))
(4.33)

We also decompose the quadratic action (4.20) into modes

Iquad = γβ
∑
n∈Z

(
T0n

2εnε−n −
1
2n

2σnσ−n + P0n
2εnσ−n −

2πi
β
n3εnσ−n

)
. (4.34)

We restrict the sums to n ≥ 1 using the constraint (4.22) and decompose the modes into
their real part and imaginary part

εn = ε(R)
n + iε(I)

n , σn = σ(R)
n + iσ(I)

n . (4.35)

This allows us to write
Iquad =

∑
n≥1

I
(n)
quad , (4.36)

where

I
(n)
quad = 2γβ

(
T0n

2|εn|2 + 1
2n

2|σn|2 + 1
2P0n

2(ε∗nσn − εnσ∗n) + πi

β
n3(εnσ∗n + ε∗nσn)

)
= 2γβ

(
T0n

2
(
(ε(R)
n )2 + (ε(I)

n )2
)

+ 1
2n

2
(
(σ(R)
n )2 + (σ(I)

n )2)
)

(4.37)

+iP0n
2
(
ε(R)
n σ(I)

n − ε(I)
n σ(R)

n

)
+ 2πi

β
n3
(
ε(R)
n σ(R)

n + ε(I)
n σ(I)

n

))
.

We can perform the Gaussian integral and we obtain8

Pfn(ω)
∫
d2εnd

2σne
−I(n)

quad = α2β2

n2γ2 . (4.39)

The analysis above was done for arbitrary values of P0 and T0 and will be useful later,
when we consider the trumpet.

We now evaluate the Pfaffian for the values of P0 and T0 corresponding to the disk.
From the relation

1
2P

2
0 + T0 = −s0 = −2π2

β2 , (4.40)

we obtain

Pfdisk(ω) =
M∏
m=2

(
−2αiπm

(
m2 − 1

)) M∏
n=1

(
−αβ

2

2πi n
)
, (4.41)

8Here, we have

d2εn = dε(R)
n dε(I)

n = i

2dεndε−n , d2σn = dσ(R)
n dσ(I)

n = − i2dσndσ−n . (4.38)
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where we have removed them = 1 contribution which would be degenerate. This is because
the coadjoint orbit has an enhanced symmetry SL(2,R)×U(1), corresponding to the modes
ε±1. The Pfaffian for the disk can be written as

Pfdisk(ω) = Pfσ±1(ω)
M∏
n=2

Pfn(ω), Pfσ±1(ω) ≡ −αβ
2

2πi . (4.42)

The one-loop path integral can be decomposed as

Z1-loop = Zσ±1Z|n|≥2, (4.43)

where we compute

Z|n|≥2 =
∏
n≥2

Pfn(ω)
∫
d2εnd

2σn e
−I(n)

quad = 2πγ3

α3β3 , (4.44)

Zσ±1 = Pfσ±1(ω)
∫
dσ1dσ−1 e

−I(1)
quad = αβ

γ
,

using zeta regularization for the infinite product

∏
n≥1

x

n
= exp

−∂s ∑
n≥1

(
x

n

)−s∣∣∣∣∣∣
s=0

 = exp
(
ζ(0) log x− ζ ′(0)

)
=
√

2π
x
. (4.45)

Finally combining everything, we obtain the disk partition function

Z(β, µ) = 2πγ2

α2β2 exp
(

2π2γ

β
− γµ2

2β

)
. (4.46)

Interpreting µ as a chemical potential associated to our new U(1) symmetry, we have a
density of states ρ0(E,Q) defined from the formula

Z(β, µ) =
∫ ∞

0
dE

∫ ∞
−∞

dQρ0(E,Q)e−βE+iµQ. (4.47)

From (4.46), we obtain

ρ0(E,Q) = γ

α2π
sinh

(
2π
√

2γE −Q2
)
. (4.48)

This density of states is the same as the Schwarzian density of states but with a shifted
ground state energy. We see that the Schwarzian theory corresponds to the Q = 0 sector
of the Bondi theory. Another way to see it is to consider the mixed ensemble partition
function obtained using an inverse Fourier transform

Z(β,Q) =
√

2π γ3/2

α2β3/2 exp
(

2π2γ

β
− Q2β

2γ

)
. (4.49)

We see that for Q = 0 we recover the Schwarzian partition function. For Q = 0, the Fourier
transform is just an integration over µ, which can be interpreted gravitationally as a sum
over inequivalent fluctuations of the same geometry: the hyperbolic disk. The dynamics of
these fluctuations is governed by an action whose coupling constants depend on µ. From
a more mathematical perspective, the integration over µ can also be seen as a sum over
non-equivalent coadjoint orbits.
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4.3 Genus expansion and matrix integrals

In the previous section, we computed the Euclidean partition function of the boundary
theory. This can also be seen as the gravitational path integral on the disk geometry. In this
section, we consider the full gravitational path integral, including the sum over all possible
Euclidean geometries with fixed boundary conditions. For JT gravity in Fefferman-Graham
gauge, it was shown in [31] that the gravitational path integral was given by correlations
functions of a double scaled matrix model. We will see that our new boundary conditions
leads to a simple generalization of this result.

4.3.1 Gravitational genus expansion

The full Euclidean JT action
I = Itop + IJT, (4.50)

We have included the pure gravity term

Itop = −κΦ0

[1
2

∫
M

√
gR+

∫
∂M

K

]
, (4.51)

where Φ0 is a constant which sets the extremal entropy S0 = 2πκΦ0.9 This term is
topological in two dimensions. The action IJT contains a boundary term for the variational
problem to be well posed. It ensures that the solutions to the equations of motion are indeed
saddle point of the action. When considering the Bondi phase space it will simply reduce
to one copy of our boundary action for each circle.

Consider the gravitational path integral on geometries with multiple boundaries. On
each boundary i = 1, . . . , n we fix the length βi and the chemical potential µi. The
gravitational path integral becomes schematically

Zn({βi}, {µi}) =
∞∑
g=0

Zg,n({βi}, {µi})
(eS0)2g+n−2 , (4.52)

since we have Itop = −S0χ = −S0(2 − 2g − n). Now each Zg,n corresponds to the path
integral on a fixed topology. The integration over the dilaton is crucial since it imposes the
constraint R = −2. The bulk term of IJT vanishes in the exponential so that path integral
becomes

Zg,n({βi}, {µi}) =
∫
d(bulk moduli)

∫
Dφ e−I∂ . (4.53)

The first integral corresponds to the sum over inequivalent hyperbolic Riemann surfaces
with g handles and n boundaries. The second integration corresponds to a sum over the
fluctuations associated to the boundary action, where of each boundary the values of β
and µ are fixed. We can equivalently fix the charge Qi at each boundary using Fourier
transform

Zg,n({βi}, {Qi}) = 1
(2π)n

∫
dµ1 . . . dµn Zg,n({βi}, {µi}) e−iµ1Q1 . . . e−iµnQn . (4.54)

9The terminology for S0 comes from the fact that JT gravity describes the near-extremal thermodynamics
of higher-dimensional black holes. One should think of Φ0 as much greater than Φ and of the action I as
the linear approximation in Φ, see [16].
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(β2, Q2)

(β1, Q1)

(β3, Q3)

Figure 1. Cartoon of the geometry that computes Zg,n({βi}, {Qi}). At the end of each trum-
pet i, we specify the boundary conditions βi and Qi, which corresponds to the insertion of
Tr e−βi(H+Q2

i /(2γ)) in the matrix ensemble.

We will need to consider two types of boundary fluctuations: on the disk and on the
trumpet. This is because any hyperbolic Riemann surface with n asymptotic boundaries
can be constructed by gluing n trumpets to a genus g surface with n geodesics boundaries.
A typical example of such a geometry is depicted in figure 1. The case g = 0 is special
since there is only the disk. The disk has no modulus, while for the trumpet there is the
length b of the geodesic at the small end, see figure 2. We obtain

Z0,1(β,Q) = Zdisk(β,Q),

Z0,2(β1, β2, Q1, Q2) = α

∫ ∞
0

bdbZtrumpet(β1, Q1, b)Ztrumpet(β2, Q2, b), (4.55)

Zg,n({βi}, {Qi}) = αn
∫ ∞

0
b1db1 . . .

∫ ∞
0

bndbnV
α
g,n(b1, . . . , bn)

n∏
i=1

Ztrumpet(βi, Qi, bi).

The constant α multiplies the symplectic form.10 It will ultimately be absorbed in a
redefinition of S0. The function V α

g,n(b1, . . . , bn) is the volume of the moduli space of
hyperbolic Riemann surfaces with prescribed geodesic boundaries. The only new feature
compared to the computation in [31] is that our definitions for the disk and the trumpet
contributions are different since we have this additional boundary chemical potential µ.
The geometries do not change, they are characterized by the value of the current s0 when
we write them in FG gauge. For the disk it is s0 = 2π2

β2 , while for the trumpet, which is
some sort of hyperbolic disk with a conical defect, it is s0 = − b2

2β2 . To obtain these values,
one can compute the on-shell value of the Schwarzian action on these geometries.

4.3.2 Trumpet geometry

We would like now to compute the trumpet contribution Ztrumpet. From the relation

T0 + 1
2P

2
0 = −s0 = b2

2β2 , (4.56)

10There is a constant α in front of the Weil-Petersson form, i.e. the form which induces a measure on the
moduli space and allows to define its volume. This constant α is also in front of the symplectic form on the
coadjoint orbit.
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(β,Q) b

Figure 2. The trumpet geometry: we specify the boundary conditions β and Q at the end of the
asymptotic boundary. The small end is labeled by the length b of the geodesic boundary.

and the relation (4.6) between P0 and µ, we obtain the values

Trumpet : P0 = µ

β
, T0 = b2

2β2 −
µ2

2β2 . (4.57)

The on-shell action (4.2) evaluates to

Ion−shell = γb2

2β + γµ2

2β . (4.58)

In this case, the Pfaffian (4.32) takes the form

Pftrumpet(ω) =
M∏
m=1

α
m

2πi(b
2 + 4π2m2)

M∏
n=1

α

(
− β2

2πin
)

=
M∏
n=1

Pfn(ω) . (4.59)

The computation is very similar to the disk, which was considered in the previous sec-
tion. The difference is that we must not remove the two modes ε±1 because they are not
degenerate directions of the symplectic form anymore. The integration is now over the
infinite-dimensional manifold

(Diff(S2)× C∞(S1))/(U(1)×U(1)), (4.60)

where two U(1)’s correspond to the zero modes ε0 and σ0. To compute the one-loop
contribution, we can use the formula (4.39), which is valid for a general values of P0 and
T0. We obtain

Z1-loop =
∏
n≥1

Pfn(ω)
∫
d2εnd

2σn e
−I(n)

quad = 2πγ
βα

, (4.61)

where we have used the formula (4.45) for the infinite product. Combining the one-loop
contribution and the on-shell action, we obtain the trumpet contribution

Ztrumpet(β, µ, b) = 2πγ
βα

exp
(
−γb

2

2β −
γµ2

2β

)
. (4.62)

4.3.3 Matrix integrals

The genus zero contribution Zdisk was computed in the previous section, see eq. (4.49). To
have the same normalization as [31], we make the following redefinition of the disk partition
function at fixed Q

Zdisk(β,Q) = 1
2π

∫ +∞

−∞

dµ

2π
√
α e−iµQZdisk(β, µ). (4.63)
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This just corresponds to a redefinition of the chemical potential and the charge

µ→
√
α

2π µ, Q→ 2π√
α
Q. (4.64)

We obtain

Zdisk(β,Q) = 1
α3/2

γ3/2

(2π)1/2β3/2 exp
(

2π2γ

β
− Q2β

2γ

)
. (4.65)

We see that for Q = 0, this coincides with the partition function of the Schwarzian action
on the disk. We redefine in same way the trumpet contribution to obtain

Ztrumpet(β,Q, b) = 1
α1/2

γ1/2

(2π)1/2β1/2 exp
(
−γb

2

2β −
Q2β

2γ

)
. (4.66)

For Q = 0, this matches with the Schwarzian partition function on the trumpet [31].
We now have all the ingredients to give the final result. Before, we should make a

comment this normalization constant α. The overall α dependence of Zg,n is

αn · α3g+n−3 · α−n/2 = α−3χ/2 . (4.67)

Since the power of α is proportional to the Euler characteristic χ, we can absorb α in a
redefinition of the extremal entropy S0 and set α = 1.

We denote with the superscript SSS the quantities of Saad-Shenker-Stanford [31]. Here,
they correspond to setting to zero all the U(1) charges. Let’s consider the example of the
double trumpet, obtained by gluing two trumpets along their geodesic boundaries (or small
ends). Its contribution is computed by integrating over the modulus b.11 We find

Z0,2(β1, β2, Q1, Q2) =
∫ ∞

0
bdbZtrumpet(β1, Q1, b)Ztrumpet(β2, Q2, b)

= ZSSS
0,2 (β1, β2) e−βQ2

1/(2γ)e−βQ
2
2/(2γ),

(4.68)

where ZSSS
0,2 (β1, β2) =

√
β1β2

2π(β1+β2) . The difference with [31] is that each boundary receives
a contribution from the corresponding U(1) charge. This contribution corresponds to a
multiplicative factor at each boundary. Indeed, for a generic number of boundaries, we have

Zn({βi}, {Qi}) = ZSSS
n ({βi})

n∏
i=1

e−βQ
2
i /(2γ). (4.69)

It was shown in [31] that the quantity ZSSS
n ({βi}) is equal to

〈Tr e−β1H . . . Tr e−βnH〉c, (4.70)

where the average is taken over a double-scaled random matrix ensemble. This implies that
the insertion of a boundary of length β in the path integral corresponds to an insertion of
Tr e−βH in the correlation function.

11The measure is bdb because we also have the freedom to twist one trumpet with respect to the other.
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The formula (4.69) tells us that, for our theory, each boundary of length β and charge
Q corresponds to the insertion of

Tr e−β(H+Q2/(2γ)) (4.71)

in the same matrix ensemble. In other words, we can compute the complete Euclidean
path integral with n boundaries, and boundary conditions (βi, Qi), using the formula

Zn({βi}, {Qi}) =
〈

Tr e−β1(H+Q2
1/(2γ)) . . . Tr e−βn(H+Q2

n/(2γ))〉
c
, (4.72)

where the average is taken in the same matrix ensemble. Note that the effect of the Qi’s is
to shift the energy at each boundary. We emphasize that the charges Qi are not matrices
but scalars here.

A similar structure appears when boundary global symmetries are added to the matrix
ensemble of JT gravity [34, 86]. This can be realized by adding a BF theory in the
bulk. In this setting, each boundary is labeled by an irreducible representation ri of the
corresponding group. The result is that there is also a factorization

Zn({βi}, {ri}) ∝ δr1,...rnZ
SSS
n ({βi})

n∏
i=1

e−βc2(ri)/2. (4.73)

The similarity is that the gauge symmetry in the bulk also shifts the ground state energy,
by the Casimir c2(r) of the representation, which is indeed proportional to Q2 for us. The
difference is that in our model, we can have different charges at different boundaries of a
connected geometry: there is no constraint enforcing equality of the charges. This stems
from the fact that in the trumpet, there is no charge at the small end of the trumpet, which
was possible in [34, 86] due to the presence of bulk gauge fields. Our model only contains
pure gravity and all the dynamics reside at the boundary.

5 Complex SYK

In this section, we show that JT gravity in Bondi gauge reproduces the low-energy effective
action of the complex SYK model. This implies that the complex SYK model contains a
subsector describing JT gravity in Bondi gauge, in the same way that the Majorana SYK
model contains JT gravity in FG gauge as a subsector. A similar match between a flat
space version of our boundary action and the complex SYK model was given in [53].

5.1 The complex SYK model

The complex SYK model [49–51] is a generalization of the SYK model [19, 87], obtained by
replacing the Majorana fermions with complex fermions. This model is of special interest
because it is maximally chaotic and solvable at large N , but closer to condensed-matter
systems than the original SYK model. For example, it was recently used to investigate
strange metals [52].
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The complex SYK model is a quantum mechanical model involving a large number N
of complex fermions with a random interaction. The Hamiltonian is

H =
∑
{ia}

Ji1...iqA
{
ψ†i1 . . . ψ

†
iq/2

ψiq/2+1 . . . ψiq

}
, (5.1)

where A{. . . } denotes the antisymmetrized product of operators. The couplings Ji1...iq are
independent random complex variables with zero mean and variance

|Ji1...iq |2 = J2 (q/2)!(q/2− 1)!
N q−1 . (5.2)

where q is an even integer greater than four. There is a global U(1) charge

Q̂ =
n∑
i=1
A
{
ψ†iψi

}
. (5.3)

We also define the specific charge Q = 1
N 〈Q̂〉 which is related to the UV asymmetry of the

Green function

G(τ1 − τ2) = −〈T{ψ(τ1)ψ†(τ2)}〉, G(0+) = −1
2 +Q, G(0−) = 1

2 +Q . (5.4)

In the IR, the spectral asymmetry parameter E characterizes the long-time behavior of the
zero temperature Green function

GT=0(±τ) = ∓e±πEτ−2/q for τ � J−1 . (5.5)

Let’s denote by S(N,NQ, T ) the entropy of the complex SYK model at fixed N , fixed Q
and temperature T . In the large N limit, the complex SYK model has a zero temperature
entropy

lim
T→0

lim
N→+∞

S(N,NQ, T )
N

= S(Q) , (5.6)

Here, S(Q) is a universal function, in the sense that it is fully determined by the structure
of the low-energy theory. At small but non-zero temperature T = β−1, the complex SYK
model is described by an effective low-energy action given by [49]

IcSYK = NK

2

∫
S1
dτ

(
g̃′ + 2πiE

β
f ′
)2
− NγSYK

4π2

∫
S1
dτ

{
tan

(
π

β
f

)
, τ

}
, (5.7)

where f(τ) is the Schwarzian mode that reparametrizes time and g(τ) is a U(1) mode which
is periodic in the absence of winding. This action is the analog of the Schwarzian action
for the Majorana SYK model. In comparison, the complex SYK model has an additional
U(1) mode. The parameters γSYK and K are defined from thermodynamical properties:
γSYK characterizes the linear response in temperature of the entropy

S(N,NQ, T )
N

= S(Q) + γSYKT +O(T 2) . (5.8)

While K is the zero temperature compressibility defined as

K =
(

∂Q
∂µSYK

)
T=0

, (5.9)
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where µSYK is the chemical potential associated with the U(1) charge. The spectral asym-
metry parameter is also related to the zero temperature entropy according to

dS(Q)
dQ

= 2πE . (5.10)

5.2 Matching with boundary action

Symmetries. A connection between the complex SYK model and warped CFTs was
explained in [59]. It was observed that the complex SYK model has an underlying warped
Virasoro symmetry which is spontaneously and explicitly broken down to its global part

Diff(S1) n C∞(S1) −→ SL(2,R)×U(1) . (5.11)

This is the direct analog of the spontaneous and explicit breaking of Diff(S1) → SL(2,R)
in the Majorana SYK model. The symmetry breaking pattern (5.11) of the complex SYK
model is the same as the symmetry breaking which controls the version of JT gravity
described in this paper. This is the first hint of a relation with our Bondi-AdS version of
JT gravity and the complex SYK model.

Action. In the rest of this section, we will show that the effective action precisely matches
with our boundary action. A similar matching between the action of complex SYK and
the CGHS model was achieved in [53] in the context of flat holography. This matching was
involving a special scaling limit, which should correspond to the flat limit of our theory.
Note that a different holographic interpretation of complex SYK, with a 2d gauge field,
was proposed in [88].

We start with our boundary action for AdS-Bondi JT gravity

I[f, g] = γ

∫
S1
dτ

(
T0f

′2 − 1
2`2AdS

g′2 + P0f
′g′ + g′f ′′

f ′
− g′′

)
+ cste , (5.12)

where we have restored the AdS2 radius `AdS. We recall that γ is written in terms of the
renormalized value of the dilaton and the Newton constant as follows

γ = φ̄r

8πG(2)
N

. (5.13)

We consider this theory at a temperature β and chemical potential µ. This corresponds to
the choice

P0 = µ

β
, T0 = −2π2`2AdS

β2 − µ2`2AdS
2β2 , (5.14)

where we have reinstated the factors of the AdS2 radius `AdS. We now redefine g according
to

g(τ) = `2AdS

(
iλ0g̃(τ) + log f ′(τ) + µ0

β
f(τ)

)
, (5.15)

where λ0 and µ0 are two arbitrary parameters. Note that this redefinition changes the
periodicity of g since we have

g̃(τ + β) = g̃(τ) + iµ0
λ0

. (5.16)
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We can take µ0 = 0 to obtain a function g̃ that remains periodic. The action can then be
written as

I = γ`2AdSλ
2
0

2

∫
S1
dτ

(
g̃′ − i(µ0 − µ)

λ0β
f ′
)2
− γ`2AdS

∫
S1
dτ

{
tan

(
π

β
f

)
, τ

}
. (5.17)

This is precisely the action of the complex SYK model (5.7) with parameters

K = γ`2AdSλ
2
0

N
, γSYK = 4π2γ`2AdS

N
, E = µ− µ0

2πλ0
. (5.18)

We can also report the gravitational parameters in terms of the SYK parameter

γ`2AdS = φ̄r`
2
AdS

8πG(2)
N

= γSYKN

4π2 , µ = µ0 + 2πλ0E , λ2
0 = 4π2K

γSYK
. (5.19)

We see that N controls the gravitational coupling and the AdS2 radius. We note that the
value µ0 = µ corresponds to E = 0 (this value for µ0 is special because it diagonalizes the
symplectic form, see (3.9) of [85]). We have also reported the value of λ0, which is the
other arbitrary parameter in the matching.

We have shown that the AdS-Bondi JT gravity described in this paper reproduces the
low-energy effective action of the complex SYK model. This relation is on the same footing
as the relation between the standard JT gravity and the Majorana SYK model.

Thermodynamics. It is instructive to also match the large N entropy of the SYK model.
Following [59], the entropy of the complex SYK model can be written

SSYK = 2π

√√√√NγSYK
2π2

(
E − Q2

SYK
2NK

)
, (5.20)

where we have defined QSYK = 〈Q̂〉. In comparison, the entropy of JT gravity computed
in (4.48) leads at large 2`2AdSγE −Q2 to

SJT = 2π
√

2`2AdSγE −Q2. (5.21)

With the choice of parameters (5.18), we get a precise match provided the relation

QSYK = λ0Q . (5.22)

The parameter λ0, which appeared as an arbitrary parameter in the matching of the actions,
has the interpretation of a relative rescaling of the U(1) charges between gravity and the
SYK model.

It is also interesting to see that the leading logarithmic correction to the entropy can
also be matched. In the grand canonical ensemble, the expression (4.46) for the partition
function shows that we have the correction

δSJT = −2 log β . (5.23)
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This matches with the logarithmic correction to the corresponding entropy of the complex
SYK model, as reported in [51].

We should make a comment on this matching of the entropy. In section 4.2, the
partition function (4.46) of JT gravity in Bondi gauge is not exactly the same as the
partition function of the complex SYK model considered in [59]. This is because our
boundary action (2.67) has an additional term, involving the coadjoint transformation of
P , which does not contribute to the dynamics but gives an additional constant in the
partition function. The effect of this constant is to change the sign of the µ2 term in
the exponential, and hence corresponds to the replacement µ → iµ. This change can be
absorbed in a redefinition of the relation between the partition function and the density of
states, leading to the same formula for the density of states and therefore the same entropy.

6 Relation to warped CFTs

The near-horizon geometry of any extremal black hole has an SL(2,R) × U(1) symmetry.
This was one of the motivation to introduce the notion of warped CFTs in [54]. Warped
CFTs are theories which are analogous to 2d CFTs but whose symmetry algebra is the
warped Virasoro algebra, which consists in one copy of the Virasoro algebra together with
a U(1) Kac-Moody algebra. The corresponding global symmetry is SL(2,R) × U(1). In
this section we describe a relation between AdS2 gravity in Bondi gauge and warped CFTs
(see [89] for an early discussion on the subject). We will also comment on some intriguing
observations related to the Kerr/CFT correspondence.

For a warped CFT whose coordinates are t and φ, the warped conformal symmetry
corresponds to the following change of coordinates

t→ t+ G(φ), φ→ F(φ). (6.1)

In our setup, the coordinate φ becomes the Euclidean boundary time of the AdS2 spacetime
while the coordinate t has no immediate gravitational interpretation. In this context, the
quantities T (φ) and P (φ) are the associated conserved currents; they transform like in
eq. (2.38) with the replacement τ → φ. The modes of T and P , denoted respectively Ln
and Jn, satisfy the algebra (2.33) for the bracket [Q(ε1,σ1),Q(ε2,σ2)] = −δ(ε1,σ1)Q(ε2,σ2). The
central charge λ, called the twist parameter, can always be absorbed in a redefinition of
the generator Ln [53]

Ln → Ln + 2iλ
k
nJn , (6.2)

together with a shift of the zero modes L0 and J0 by suitably chosen constants. This gives
the same algebra with λ = 0 and shifts the central charge c∗ = c − 24κ2/k, while leaving
k unchanged. For the algebra with the central charges taking the values corresponding to
AdS2, as reported in (2.40), the new central charges after the shift are

c∗ = 12, k∗ = −2, λ∗ = 0 . (6.3)
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We would like to compute the vacuum values of P and T on the cylinder. The mapping
between the plane and the cylinder is realized by the coordinate change [54]

t→ t− α

β
φ, φ→ e2πiφ/β , (6.4)

which leads to the thermal identification

(t, φ) ∼ (t+ α, φ+ β) . (6.5)

Setting the vacuum values on the plane to zero and using the transformations (2.38), we
obtain the vacuum values on the cylinder

P vac
0 = −2πiλ

β
+ αk

2 , T vac
0 = − πc

6β2 −
2πλα
β

+ α2k

4 . (6.6)

We define the effective chemical potential α∗ = α − 2λ
k (2πi/β). This redefinition of the

chemical potential allows to rewrite the vacuum values of P and T in terms of the new
central charges c∗, λ∗ and k∗ as

P vac
0 = α∗k∗

2 , T vac
0 = −πc

∗

6β2 + α∗2k∗

4 . (6.7)

We see that the twist parameter has been absorbed in the redefinitions of the central
charges and the chemical potential. With our values for the new central charges (6.3) and
the identification α∗ → µ the vacuum values become

P vac
0 = µ

β
, T vac

0 = −2π2

β2 −
µ2

2β2 . (6.8)

They correspond exactly to the values of T and P we have been using to compute the gravi-
tational path integral at fixed temperature and chemical potential in section 4. In the AdS2
bulk, the map from the plane to the cylinder is realized by the following diffeomorphism

τ → e2πiτ/β ,

r → β

2πi e
−2πiτ/β

(
r − iµ

β
− 2π

β

)
.

(6.9)

The connection between our boundary action for AdS2 and warped CFTs follows from the
results of [59]. There, it was shown that the partition function of the complex SYK model
matches with a particular limit of the vacuum character of a warped CFT. This is similar
to the relation between the Schwarzian partition function and the vacuum character of a
CFT2 [90].

This also leads to a matching of the leading thermodynamics as explained in [59]. We
find that the thermodynamics of JT gravity in Bondi gauge matches with that of a warped
CFT in the Cardy regime. The entropy of a warped CFT can be written as

S = SL + SR , (6.10)
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where in the Cardy regime, we have

SL = 4πi
k
P0P

vac
0 , SR = 2π

√√√√ c

6

(
L0 −

P 2
0
k

)
. (6.11)

This was derived in [54] and here, we follow the conventions of [59]. Using our values for
the central charges (6.3), and writing the quantum numbers as

L0 = γE, P0 = iQ , (6.12)

where γ = κφ̄r is the parameter controlling the deviation from extremality, we obtain

SL = 2πµQ
β

, SR = 2π
√

2γE −Q2 . (6.13)

The right moving entropy SR matches with the entropy of AdS-Bondi JT gravity given
in (4.15). As in [59], we interpret SL as contributing to the ground state entropy. It can
also be noted that the one-loop correction to the entropy in a warped CFT gives also a
logarithmic correction

δS = −2 log β , (6.14)

which agrees with our Euclidean path integral computation.
We would like to make a final comment on the central charges in eq. (6.3) and a poten-

tial application to the Kerr/CFT correspondence. In the gravitational context, it is natural
to rescale P and T by κ−1 = 8πG(2)

N to obtain physical central charges multiplied by κ

c∗ = 12κ, k∗ = −2κ . (6.15)

For the AdS2 spacetime appearing in the extreme Kerr black hole, we have κ = J12 so our
central charge reproduces the central charge c = 12J [55]. A warped Virasoro symmetry
has also been described for Kerr in [56] and we reproduce the central charges c = 12J and
k = −2J that were obtained there. A major shortcoming of the Kerr/CFT approach is
a lack of knowledge of the classical phase space on which the symmetry algebra is acting.
We hope that the near-AdS2 realization of these symmetries will shed light on this issue.

7 Near-extremal black holes

Extremal black holes have a universal AdS2 factor in their near-horizon geometries. This
makes near-AdS2 holography a nice framework to understand near-extremal black hole
dynamics. In this section, we will demonstrate the relevance of our boundary conditions
in this context. We will show that they are sensitive to deformations of the extremal black
hole beyond the usual addition of mass at fixed charges, using the example of the Reissner-
Nordström black hole. We will also describe the gravitational perturbation that takes an

12This is because the Newton constant for the AdS2 factor in the near-horizon region of an extreme Kerr
black hole is given by AH/G(4) = 1/G(2), where AH is the area of the horizon, given by AH = 8πJ [91].
With the convention G(4) = 1 we obtain κ = J .
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extreme Kerr black hole away from extremality and how its dynamics is related to JT
gravity in Bondi gauge. In particular we will give an interpretation of the additional U(1)
symmetry as the axial symmetry of the rotating black hole. In this section, we will use the
Lorentzian conventions for the variables P, T, ϕ0, ϕ1. The dictionary with the Euclidean
variables is given in (2.14).

7.1 Deformations of Reissner-Nordström

We start with the near-extreme Reissner-Nordström black hole. It is known to give JT
gravity after a Kaluza-Klein reduction on the sphere [92, 93]. The 4d geometry is given by

ds2 = −(r − r+)(r − r−)
r2 dt2 + r2dr2

(r − r+)(r − r−) + r2dΩ2 . (7.1)

The inner and outer horizons are at

r± = M ±
√
M2 −Q2

RN , (7.2)

where M is the mass and QRN is the electric charge of the black hole. In this section, we
use units in which the 4d Newton constant is set to G(4)

N = 1. The black hole is extremal
when the two horizons coincide

r+ = r− = M0 , (7.3)

where M0 = QRN is the extremal mass. The near-extreme black hole is obtained with a
deformation

r+ = M0 + λδr+ +O(λ2), r− = M0 − λδr− +O(λ2) , (7.4)

where λ is a small parameter, and δr± are two constants, which can be translated into de-
formations of the black hole mass and charge. The near-horizon geometry is then obtained
by replacing

r →M0 + λr, t→ 2M2
0
t

λ
, (7.5)

and taking the limit λ→ 0, where we used the same parameter λ as in (7.4). In the limit
λ→ 0, we obtain the AdS2 × S2 metric

ds2 = ds2(AdS2) + ds2(S2) , (7.6)

where the metric of the sphere is ds2(S2) = M2
0dΩ2. In FG gauge, we can write the AdS2

metric as
ds2(AdS2) = M2

0

(
−r2

(
1− (δr+ + δr−)2

16r2

)
dt2 + dr2

r2

)
. (7.7)

This is the usual AdS2 geometry (3.1) and we can read13

s0 = −1
8(δr+ + δr−)2 = −2π2

β
, (7.8)

13We consider here the Lorentzian current s which is related to its Euclidean counterpart according to
sL = −sE.
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which determines the AdS2 inverse temperature β. The above equation shows that the
formulation in FG gauge is only sensitive to the sum of the deformations δr+ + δr−.

In contrast, our Bondi-AdS formulation of JT gravity will be sensitive to the indepen-
dent values of δr+ and δr−. For this reason, it can be seen as a finer version of near-AdS2
holography which differentiates between a larger set of deformations. The additional in-
formation will be related to the U(1) symmetry of our AdS2 boundary action.

To take the near-horizon limit to AdS2-Bondi, we consider the Reissner-Nordström
black hole in Eddington-Finkelstein coordinates

ds2 = −(r − r+)(r − r−)
r2 du2 − 2dudr + r2dΩ2 . (7.9)

We make the deformation (7.4) and take the near-horizon limit using

r →M0 + λr, u→M2
0
u

λ
. (7.10)

This leads, after rescaling some of the coordinates, to the AdS2 × S2 geometry with

ds2(AdS2) = 2
(
− r2

2M2
0

+ P0r + T0

)
du2 − 2dudr (7.11)

where
P0 = δr+ − δr−

2M0
, T0 = δr+δr−

2 . (7.12)

We note that these are precisely the geometries that are captured by the Bondi-AdS version
of JT gravity. We see that the we are indeed sensitive to the independent values of δr+
and δr−. As a consistency check, we can verify that

1
2`

2
AdSP

2
0 + T0 = −s0 , (7.13)

as given in (7.8), and with `AdS = M0. The usual formulation of JT gravity, in FG gauge, is
only sensitive to the combination that gives s0, while our formulation distinguishes between
different values of P0 and T0.

Thermodynamics. The simplest deformation of an extremal black hole is to add some
mass at fixed charge

M = M0 + λ2δM +O(λ3), QRN fixed , (7.14)

this gives the deformation (7.4) with

δr+ = δr− =
√

2δMM0 , (7.15)

The entropy of the near-extremal black hole is then

S = S0 + 2πλM0
√

2M0δM +O(λ2) , (7.16)
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where S0 = πM2
0 is the extremal entropy. The second piece is the entropy added by the

small addition of mass. This entropy can be reproduced using the Schwarzian theory [16],
whose entropy is given by

SSchwarzian = 2π
√

2γE . (7.17)

This matches with the perturbation of the near-extremal black hole entropy for E = λδM

and γ = κφ̄r = λM3
0 .

It is natural to consider a more general deformation of the two horizons, i.e. to take
δr+ 6= δr−. For example, this can be achieved by a deformation of the mass and charge
given by

M = M0 + 1
2(δr+ − δr−)λ+ 1

8M0
(δr+ + δr−)2λ2 +O(λ3) , (7.18)

QRN = M0 + 1
2(δr+ − δr−)λ+O(λ3) . (7.19)

This corresponds to the following deformation of the extremal black hole: we first increase
both the mass and charge by the same O(λ) amount so that the black hole remains extremal
and we then increase the mass by an O(λ2) amount. This regime is necessary to get the
effect that we want: a deformed geometry with δr+ 6= δr−.

In this more general case, the near-extremal entropy and temperature are

S = πM2
0 + 2πλM0δr+ +O(λ2) , (7.20)

TH = (δr+ + δr−)λ
4πM2

0
+O(λ2) .

The near-extremal entropy can be written as

S = S0 + δS0 + 4π2M3
0

βH
+O(λ2) , (7.21)

where the first term is a correction to the extremal entropy taking the form

δS0 = πM0(δr+ − δr−)λ+O(λ2) , (7.22)

and the second term is linear in the Hawking temperature β−1
H . We expect that JT gravity

captures only the term linear in temperature. Indeed, the entropy of JT gravity takes the
form

SJT = 4π2`2AdSγ

β
= πM0(δr+ + δr−)λ , (7.23)

where β−1 is the AdS2 temperature which is related to the Hawking temperature β−1
H

according to
1
βH

= λ`2AdS
β

. (7.24)

We can also obtain the values of the charges E and Q introduced in section 4. In the
saddle-point approximation, they are given by

E = 2π2γ`2AdS
β2 − γ`2AdSµ

2

2β2 = δr+δr−
2 λ , (7.25)

Q = iγµ`2AdS
β

= iM0
2 (δr− − δr+)λ .
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We note that the additional charge Q allows us to probe deformations with δr+ 6= δr−.
Therefore the version of JT gravity in Bondi gauge is a finer probe of near-extremal black
holes deformations. As a consistency check, we can further verify that the entropy

SJT = 2π
√

2`2AdSγE −Q2 = πM0(δr+ + δr−)λ , (7.26)

is the correct linear response in temperature in the near-extremal entropy. It is also inter-
esting to note that our U(1) charge Q corresponds here to the change in the electric U(1)
charge QRN of the black hole, as can be seen from (7.19).

7.2 Breaking away from extreme Kerr

The focus of this work is on JT gravity. Nevertheless, the ideas developed here should be
applicable in more general near-AdS2 spacetimes, even in cases where it is not clear if JT
gravity is a good description, e.g. when it cannot be obtained by Kaluza-Klein reduction.
One such case of interest is the near-horizon geometry of the extreme Kerr black hole
(NHEK) [91].

The near-AdS2 physics of near-extreme Kerr was realized in [60] as a linearized pertur-
bation of its near-horizon geometry, where one of the mode of the perturbation was shown
to be the Schwarzian mode. In this section, we perform an identical analysis in Eddington-
Finkelstein coordinates, which allows us to obtain the AdS2 factor in Bondi gauge. We
consider a consistent perturbation of the NHEK where one of the mode will satisfy the
dilaton equations of motion (2.12). We show how the infinite-dimensional asympotic sym-
metry algebra of AdS2 is embedded in the near-horizon geometry of extreme Kerr. We also
see that our additional U(1) charge gets interpreted as the angular momentum of the 4d
geometry.

The NHEK shares many properties with the AdS2 × S2 geometry, although the an-
gular dependence makes it more complicated. Starting from extreme Kerr in Eddington-
Finkelstein coordinates, the near-horizon limit is obtained by performing the change of
coordinates

u→ 2M2
0

λ
u, r →M0 + rλ, φ→ φ+ M0

λ
u . (7.27)

The limit λ→ 0 gives the NHEK geometry

ds2 = M2
0 (1 + cos2θ)

(
−r2du2 − 2dudr + dθ2

)
+ 4M2

0 sin2θ

1 + cos2θ
(dφ+ rdu)2 . (7.28)

This geometry has an SL(2,R) × U(1) isometry group. It contains an AdS2 factor in
Bondi coordinates. We can consider a more general AdS2 background as given in (2.6)
and (2.7). To do so, one can act on the (u, r)-coordinates with the Lorentzian version of
the diffeomorphism (2.28), together with a change in the azimuthal coordinate φ:

u→ F(u), r → 1
F ′
(
r + G′(u)

)
, φ→ φ− G(u) . (7.29)

We notice that the azimuthal coordinate is sensitive to the zero mode of G. This already
shows that our U(1) symmetry is related to the change of angular momentum. This
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diffeomorphism leads to the geometry

ds2 = M2
0 (1 + cos2θ)

(
2
(
−r

2

2 + P (u)r + T (u)
)
du2 − 2dudr + dθ2

)

+4M2
0 sin2θ

1 + cos2θ
(dφ+ rdu)2 , (7.30)

with general values for P (u) and T (u), written in terms of F and G. To be able to
distinguish between these geometries and obtain non-trivial dynamics, we need to deform
the geometry away from extremality. This is done by considering a linearized gravitational
perturbation which brings us to the near-AdS2 regime. We consider a similar ansatz than
the one used in [60] for the perturbation:

ds2 = M2
0 (1 + cos2θ + λχ)

(
2
(
−r

2

2 + P (u)r + T (u) + λψ

)
du2 − 2dudr + dθ2

)

+4M2
0 sin2θ (1 + λΦ)

1 + cos2θ + λχ
(dφ+ rdu+ λA)2 +O(λ2) , (7.31)

where a linearization in λ is implied. The deformation is parametrized by three functions
ψ, χ and Φ that depend on u and r, and a gauge field

A = Au(u, r, θ)du+Ar(u, r, θ)dr . (7.32)

We now solve the 4d linearized Einstein equation

Rab = 0 . (7.33)

The coordinates are denoted xa = (xµ, θ, φ) = (u, r, θ, φ). Let us explain some of the steps
to obtain the solution. Firstly, from Rrr = −1

2∂
2
rΦ = 0, we obtain

Φ(u, r) = ϕ̃0(u) + rϕ1(u) , (7.34)

where ϕ̃0 and ϕ1 are arbitrary functions of u. The equations Rrθ = Rθφ = Rtθ = 0 allow
us to determine the θ-dependence in Au and Ar. Then, the equation Rθθ = 0 gives the
equation

�2χ = 2χ , (7.35)

where �2 is the Laplacian for the AdS2 metric

ds2(AdS2) = gµνdx
µdxν = 2

(
−r

2

2 + P (u)r + T (u)
)
du2 − 2dudr . (7.36)

We see that χ is an AdS2 scalar with conformal dimension ∆ = 2 as was obtained in [60].
From Rrφ = Rφφ = 0, we can determine Au and Ar. Then, Rtr = 0 allows us to determine
ψ. Finally, from Rtt = Rtφ = 0, we obtain the JT equations of motion. To see this, we
first define ϕ̃0(u) = c0 + ϕ0(u) which gives

Φ(u, r) = c0 + ΦJT(u, r), ΦJT(u, r) = ϕ0(u) + ϕ1(u)r, (7.37)
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where c0 arises here as an integration constant. Then, Rtt = Rtφ = 0 gives

ϕ′1 + Pϕ1 + ϕ0 = 0 ,
ϕ′′0 − Pϕ′0 + ϕ1T

′ + 2Tϕ′1 = 0 .
(7.38)

We see that ΦJT satisfies the equations of motion of the JT dilaton on the back-
ground (7.36), as reported in (2.12). The additional constant c0 was also observed in [60].
We report the solution for the gauge field

A(u, r, θ) = −c0
2 rdu+ εµν∂

µΨ(u, r, θ)dxν + ∂µα(u, r)dxµ , (7.39)

where α(u, r) is an arbitrary function arising from the integration and we have defined

Ψ(u, r, θ) ≡ 1
2 sin2θ

(Φ(u, r)− χ(u, r))− 1 + cos2θ

8 Φ(u, r) . (7.40)

We also have a relation that determines ψ(u, r)

∂2
rψ(u, r) = 3ΦJT(u, r) . (7.41)

which is solved by

ψ(u, r) = ψ0(u) + rψ1(u) + 1
2r

2 ((r − 3P (u))ϕ1(u)− 3ϕ′1(u)
)
. (7.42)

We can then verify that all the components of the Einstein equation are satisfied. The
solution space is now parametrized by α(u, r), ψ0(u), ψ1(u), ϕ0(u), ϕ1(u), χ(u, r) and Φ0,
and their dynamics is controlled by the equations (7.35) and (7.38). The functions
α(u, r), ψ0(u), ψ1(u) are expected to be pure diffeomorphisms in the sense that they can be
generated by acting on the unperturbed background with Lie derivatives. This is shown
for a similar function α in appendix B of [60].

The constant c0 corresponds to the perturbation of the angular momentum induced
by the deformation. Indeed, note that the deformed geometry (7.31) possesses also an
axial U(1) symmetry, materialized by the Killing ∂φ. In the AdS2 factor, this symmetry is
associated with a 2d gauge field which appears in the circle fibration and is given by

Atotal = rdu+ λA+O(λ2) . (7.43)

This is an electric field in AdS2 with leading charge normalized to unity. From the expres-
sion of A in (7.39), we see that the effect of c0 is to change this charge at linear order in λ,
which corresponds to a change of the 4d angular momentum.

The constant c0 is also related to the U(1) gravitational charge introduced in sec-
tion 2.3. To see this, we compute the value of Φ that corresponds to the linearized per-
turbation to (7.28) that one obtain when considering the next to leading order of the
near-horizon limit (7.27). This “vacuum” value of is Φvac = cste · r. If we now parametrize
ϕ0 and ϕ1 in terms of f and g as in (2.20) and (2.22) and ask their vacuum values, i.e.
f(u) = u and g(u) = 0, to correspond to the vacuum value of Φ, we obtain the relation

c0 + iφ̄rµ̄ = 0, (7.44)
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between the constant c0 and the chemical potential. This relation translate into a relation
between the 2d gravitational U(1) charge (2.64) and the constant c0

Q̃U(1) = κ

2 c0. (7.45)

Hence, the U(1) symmetry discussed in section 2.3 is realized geometrically in the near-
extreme Kerr black hole: it corresponds to the axial symmetry of the deformation. The
corresponding charge computes the change in angular momentum of the 4d solution. Al-
though the Killing ∂φ does not act geometrically on AdS2, it has a non-trivial effect on the
near-AdS2 physics. We emphasize again that this effect would be invisible in the Schwarzian
theory but is captured in the AdS-Bondi boundary action introduced in this paper.

8 Flat holography in two dimensions

In this section, we study a flat space version of our boundary action. This action was
derived in [53] and shown to correspond to a version of the CGHS model. After a brief
study of its solution space and its gravitational charges, we show that it can also be
interpreted as a particle moving in a 2d flat spacetime. We compute the exact partition
function of the boundary theory and the full gravitational path integral. The latter is
greatly simplified by the fact that there are only two flat surfaces with boundaries: the
disk and the cylinder. We find a non-vanishing contribution of the cylinder indicating that
this theory is holographically dual to an ensemble average.

8.1 The CGHS model and its boundary action

The CGHS model [94] is a theory of two-dimensional gravity in asymptotically flat space-
time. Following [95], the authors of [53] define a modified version of the CGHS model,
dubbed ĈGHS, whose action is

I = κ

2

∫
d2x
√
g (ΦR− 2Ψ + 2Ψεµν∂µAν) + I∂ . (8.1)

The corresponding equations of motion are

R = 0, (8.2)
εµν∂µAν = 1, (8.3)

∇µ∇νΦ− gµν�Φ = gµνΨ, (8.4)
Ψ = const. (8.5)

In appendix B we comment on the AdS version of this model and show that under appro-
priate gauge-fixing conditions, its dynamics reproduces the one described in section 2. The
flat version of the metric (2.68) is

ds2 = 2 (−iP (τ)r + T (τ)) dτ2 + 2idτdr . (8.6)

where P and T are arbitrary functions. It is the most general flat metric which satisfies
R = 0 in Bondi gauge. It is readily obtained as the `AdS →∞ limit of its AdS counterpart.
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We will see that the theory ĈGHS has thermal solutions corresponding to the Rindler
spacetime, which we describe explicitly below. In [53] it is noted that the on-shell value of
Ψ controls the temperature of the Rindler solution according to

Ψ = −iφ̄rP = 2πφ̄r
β

. (8.7)

The above model is closely related to another version of the CGHS model described by the
action

I = κ

2

∫
d2x
√
−g (ΦR− 2Λ) . (8.8)

where Λ is a “cosmological constant”14 that is fixed from the start. This theory has the
same equations of motion as the theory (8.1) with Ψ = Λ. From the above discussion, we see
that this theory has only a thermal solution with temperature β = 2πφ̄r/Λ. In particular,
flat JT gravity (corresponding to Λ = 0) has only the zero temperature solution.15 Since
we would like to obtain a non-trivial Euclidean path integral, the theory should contain
solutions with different temperatures. This is why we consider the theory (8.1).

After a choice of appropriate boundary conditions, the gauge field does not lead to
additional degrees of freedom. We refer to [53] for a detailed analysis of the solution space,
including the derivation of the boundary action

I[f, g] = γ

∫
S1
dτ

(
Tf ′2 + Pf ′g′ + g′f ′′

f ′
− g′′

)
. (8.9)

This action can also be obtained as the `AdS →∞ limit of our Bondi AdS action (2.23).
The asymptotic symmetry algebra is the same than in AdS, it is spanned by the vectors

ξ = ε(τ)∂τ − (ε′(τ)r − iσ′(τ))∂r , (8.10)

where ε and σ are periodic functions. When expanded in modes, they satisfy the warped
Witt algebra. The corresponding variations of P and T read

δξP = εP ′ + ε′P + ε′′,

δξT = εT ′ + 2ε′T + σ′P − σ′′.
(8.11)

They transform in the coadjoint representation of the warped Virasoro group with central
charges

k = 0, λ = −1 and c = 0 , (8.12)

where we refer to section 2.2 for more details. Following a similar procedure to the one in
section 2.3, we derive the gravitational charges. The computations are given in appendix C.
In terms of f and g, the gravitational charges read

Qξ = iκ

2 Ψσ + γ

2f ′
(

2εT − εPg′ − ε′g′ − σ′ − εg
′f ′′

f ′
+ εg′′

)
,

Ξξ = γ

2f ′ ε
(
g′δP − δT

)
.

(8.13)

14Not to be confused with the 1/`2
AdS in the JT action.

15This relation is also discussed, in a different context, in appendix C of [81].
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We recall that Ψ is just a constant on-shell. These charges define a centerless representation
of the asymptotic symmetry algebra under the modified bracket (2.54). The expression of
the non-integrable part indicates that a proper phase space is achieved when P and T

are constants, held fixed in the solution space, which we denote P0 and T0. This condi-
tion realizes the symmetry breaking from the infinite-dimensional algebra of asymptotic
symmetries to the subset that preserves these values of P and T , i.e. satisfying

ε′P0 + ε′′ = 0 ,
2ε′T0 + σ′P0 − σ′′ = 0 .

(8.14)

This is solved by
ε = λ1 + λ2 e

−P0τ ,

σ = λ4 + λ3 e
P0τ − λ2

T0
P0

e−P0τ .
(8.15)

The generators λ2 and λ3 are well defined only if P0 = ±2πi/β (we do not consider winding
here). The corresponding algebra is ISO(2)×U(1), a central extension of the 2d Poincaré
group. Defining the corresponding generators Ki , for i = 1, . . . , 4, the only non-vanishing
commutators are

[K1,K+] = −iK−,
[K1,K−] = −iK+,

[K+,K−] = 2K4,

(8.16)

where K± = K2±K3. Therefore, we see that asking P0 = ±2πi/β and T = T0 realizes the
symmetry breaking

Diff(S1) n C∞(S1)→ ISO(2)×U(1) . (8.17)

In that case, the charges become integrable and conserved. For the same values of P and T ,
the boundary action (8.9) is invariant under the same symmetry. The centrally extended
Poincaré algebra acts on the fields according to

δξf = εf ′,

δξg = σ + εf ′,
(8.18)

where ε and σ are given by eq. (8.15). Moreover, the gravitational charges are then iden-
tified with the Noether charges of the boundary action.

With the boundary conditions considered in [53], one of the components of the dilaton
equation in (8.5) becomes

φ̄r
f ′

(
P − f ′′

f ′

)
= iΨ. (8.19)

Integrating this equation and considering the thermal solution, we obtain the relation (8.7)
between the temperature and the value of Ψ.16 The latter is not fixed by the equations of
motion, allowing us to consider solutions with different temperatures.

16In [53], the constant φ̄r is set to one and a different choice of convention is made for P , leading to the
relation P = 2π/β.
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We should make a comment on the fact that asking a maximum of symmetry does not
uniquely fix the solution. Indeed we still have the freedom to choose the value of T0. A
similar freedom is present in AdS-Bondi, where only the combination s0 = −T0− 1

2P
2
0 was

fixed by the temperature, see the end of section 2.3. Again this freedom is materialized by
transformations that do not belong to the group, indeed, all values for T0 are obtained by
acting on the couple (P0 = 2πi/β, T0 = 0) with the transformation

r → r + β

2πT0, (8.20)

which corresponds to G(τ) = β
2πiT0τ and F(τ) = τ , which does not belong to the group

because G is not periodic.

8.2 A particle moving in flat space

In this section, we will show that the boundary action (8.9) can be interpreted as a particle
moving in flat space. Let’s consider a particle moving on the background geometry (8.6)
for P (τ) = P0 and T (τ) = T0. We consider a “vacuum” trajectory which corresponds to
a particle lying at r = r0. Applying a warped Virasoro transformation (f, g), we obtain a
new particle with trajectory

τ = f(s), r = r0 + ig′(s)
f ′(s) , (8.21)

The worldline action of the particle is defined as

Iparticle = γ

2

∫
ds ẋ2 . (8.22)

The computation shows that this matches with the boundary action (8.9) up to a constant
term

Iparticle = I[f, g] + const . (8.23)

As a result, the dynamics of the ĈGHS model is captured by the motion of this particle.
We depict the boundary particles of classical solutions in figure 3.

Minkowski particle. The vacuum of the theory is 2d Minkowski space

ds2 = −du2 − 2dudr , (8.24)

where u = −iτ is the Lorentzian Bondi coordinate. This corresponds to the geometry (8.6)
with

P = 0, T = 1
2 . (8.25)

The corresponding boundary particle lies at a constant value r = r0. In fact, this solution
actually has two boundary particles because there is another asymptotic boundary at
r = −r0. This geometry is the analog of the global AdS2 solution of JT gravity studied
in [96] which has the interpretation of an eternal traversable wormhole, see figure 3.
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Figure 3. Flat space boundary particles in Lorentzian signature. On the right, we have the thermal
state which is analogous to a Schwarzschild black hole. On the left, we have the vacuum Minkowski
state which is similar to the global AdS2 solution of JT gravity and should be interpreted as an
eternal traversable wormhole [96].

Rindler particle. There is also a thermal solution which corresponds to the Rindler
spacetime. This is a 2d analog of the Schwarzschild black hole. To describe this configura-
tion, we can start with the Rindler metric with inverse temperature β

ds2 = −4π2

β2 x
2dt2 + dx2 , (8.26)

where we have t ∼ t+ iβ. We can write this in Bondi gauge with the change of variables

x =

√
βr

π
, t = u+ β

4π log r , (8.27)

which leads to the metric
ds2 = −4πr

β
du2 − 2dudr . (8.28)

The Euclidean metric is obtained by u = −iτ . This corresponds to the geometry (8.6) with

P = 2πi
β
, T = 0 . (8.29)

Note that this geometry can be generated by the diffeomorphism (2.28) with the choice

F(τ) = β

2πie
2πiτ/β , G(τ) = − β2

16π2 e
4πiτ/β . (8.30)

We depict the boundary particles corresponding to these two states in figure 3.
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8.3 Euclidean path integral

We consider the Euclidean path integral of the theory (8.1). The integration over Φ fixes
the 2d metric to be flat while the integration over Ψ imposes the constraint ∗ dA = 1 on
the gauge field. Assuming that there exists a solution A0 to the constraint, the general
solution is A = A0+dλ where λ is an arbitrary scalar field. The integration over A becomes
an integration over λ, which needs to be quotiented by the trivial gauge transformations
(i.e. the ones that vanish at infinity). Hence, the only degree of freedom in the gauge field
is the boundary value of λ, which is actually fixed by the boundary condition considered
in [53]. What remains is the integral over f and g with the boundary action (8.9), which
we consider below.

In this section, we study the only two flat surfaces with asymptotic boundaries, the
disk and the cylinder, which completely determine the gravitational path integral. ĈGHS
is defined for Lorentzian metrics in Bondi gauge with a boundary at r = +∞. Going to
Euclidean signature, one can show that this statement implies that the distance between
any bulk point and the boundary has to be infinite in the Euclidean geometry. This
prevents the inclusion of Euclidean geometries with boundaries at finite distance, like a
disk pierced with many holes. Such geometries would appear in a “finite-cutoff” version of
ĈGHS, analogous to [80, 81], which would be interesting to investigate.

8.3.1 Partition function

The partition function is obtained by computing the path integral of the action (8.9) on
the disk geometry. The result for the disk partition function can be deduced from a compu-
tation done in [85]. We revisit it here, allowing general values of P0 and T0 in the Pfaffian,
which will be necessary for the computation of the cylinder contribution in the next section.

This computation is very similar to the corresponding AdS computation in section 4.2.
As in the AdS case, the disk partition function is one-loop exact because of the Duistermaat-
Heckman theorem.

To compute the one-loop contribution, we decompose

f(τ) = τ + ε(τ), g(τ) = σ(τ) , (8.31)

where ε and σ are taken to be infinitesimal. The boundary conditions impose that ε and
σ are periodic with period β. Hence, they can be decomposed as

ε(τ) = β

2π
∑
n∈Z

εne
− 2π
β
inτ
, σ(τ) = β

2π
∑
n∈Z

σne
− 2π
β
inτ

. (8.32)

Since ε(τ) is real and σ(τ) is pure imaginary, we have the relations

ε−n = ε∗n, σ−n = −σ∗n . (8.33)

The symplectic form on the phase space takes the form

ω = α
2β2

πi

∑
n≥1

T0ndεn ∧ dε−n (8.34)

+αβ
2

πi

∑
n≥1

[(
−2πi

β
n2 + P0n

)
dεn ∧ dσ−n +

(
−2πi

β
n2 − P0n

)
dε−n ∧ dσn

]
.
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We can write ωεσ as a 2M × 2M indexed by (n,m) where −M ≤ n,m ≤M and n,m 6= 0.

(ωεσ)nm = α
β2

2πi

(
−2πi

β
n2 + P0n

)
δn+m . (8.35)

Its Pfaffian is given by

Pf(ω) = (−1)M−1Pf(ωεσ)2, (8.36)

= (−1)M−1
M∏
n=1

αβ

(
n2 − β

2πiP0n

) M∏
n=1

αβ

(
n2 + β

2πiP0n

)
,

= (−1)M−1
M∏
n=1

Pfn(ω) ,

where we have defined

Pfn(ω) = α2β2n2
(
n2 + β2

4π2P
2
0

)
. (8.37)

The classical piece of the action is given by

Ion−shell = γβT0 , (8.38)

and the quadratic action is given as

Iquad =
∑
n≥1

I
(n)
quad , (8.39)

where

I
(n)
quad = 2βγ

(
T0n

2
(
(ε(R)
n )2 + (ε(I)

n )2
)

+ iP0n
2
(
ε(R)
n σ(I)

n − ε(I)
n σ(R)

n

)
(8.40)

+2πi
β
n3
(
ε(R)
n σ(R)

n + ε(I)
n σ(I)

n

))
.

We can perform the Gaussian integral for generic values of P0 and T0 and we obtain

Pfn(ω)
∫
d2εnd

2σne
−I(n)

quad = α2β2

n2γ2 . (8.41)

We now consider the values of P0 and T0 that correspond to the Rindler spacetime

P0 = 2πi
β
, T0 = 0. (8.42)

To compute the one-loop piece, we rewrite the Pfaffian as

Pfdisk(ω) = (−1)M−1
M∏
n=2

αβ
(
n2 − n

) M∏
n=1

αβ
(
n2 + n

)
,

≡ Pfε−1,σ1

M∏
n=2

Pfn(ω),
(8.43)
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where we have removed the degenerate directions ε1 and σ−1 and defined Pfε−1,σ1 = 2αβ.
The one-loop path integral can be decomposed as

Z1-loop = Zε−1,σ1Z|n|≥2, (8.44)

where we compute

Z|n|≥2 =
∏
n≥2

Pfn(ω)
∫
d2εnd

2σne
−I(n)

quad = 2πγ3

α3β3 ,

Zε−1,σ1 = Pfε−1,σ1

∫
dε−1dσ1e

−I(1)
quad = αβ

γ
.

(8.45)

This leads to
Z1-loop = 2πγ2

β2 . (8.46)

Since T0 = 0, the classical piece (8.38) vanishes here so the partition function takes the
form

Zdisk(β) = 2πγ2

α2β2 , (8.47)

which matches the result of [85].17 An inverse Laplace transform gives the density of states

ρ(E) = 2πγ2

α2 E . (8.48)

Since there are no higher genus surfaces with a flat metric, this is actually the exact density
of states.18 The fact that ρ(E) is not a sum of delta functions implies that our model is
not a standard quantum system. In fact, we will see that this theory should be interpreted
as an ensemble average.

We note that (8.48) is different from the density of states of the CGHS model that was
proposed in a different context in [81]. They actually consider the theory (8.8) which has
a fixed temperature and is different from the theory (8.1) considered here.

8.3.2 Cylinder

The cylinder is the flat space analog of the double trumpet. It is described by the metric

ds2 = dt2 + dx2 , t ∼ t+ b , (8.49)

where b > 0 is the circumference of the cylinder and is depicted in figure 4.
To compute its contribution, we first compute the contribution of half-cylinder which is

described by the same metric, where we only focus on the asymptotic boundary at x = +∞.
We can define a Bondi coordinate τ with

t = b

β
τ + β

b
ix, x = β

b
r , (8.50)

17The comparison should be made after normalizing the symplectic form in the same way, which corre-
sponds here to the choice α = 1/2.

18ρ(E) could still be corrected by nonperturbative effects in the genus expansion corresponding to doubly-
nonperturbative effects in the gravitational coupling.
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β1

b

β2

Figure 4. The cylinder geometry. We specify two boundary conditions β1 and β2 at each end.
The only modulus is the circumference b.

to get

ds2 = b2

β2dτ
2 + 2idτdr . (8.51)

This corresponds to the geometry (8.6) with

P0 = 0, T0 = b2

2β2 . (8.52)

The classical contribution gives

Ion−shell = γβT = γb2

2β (8.53)

The one-loop contribution is computed in the same way as in the previous section. The
difference is that because P0 = 0, the Pfaffian (8.36) takes the form

Pfhalf-cyl(ω) = (−1)M−1
M∏
n=1

αβn2
M∏
n=1

αβn2 . (8.54)

As a result, we should not remove the contribution of ε1 and σ−1. This is analogous to
what happens in the trumpet computation for AdS2. From the formula (8.41), we obtain

Z1-loop = Pfhalf-cyl(ω)
∫ ∏

n≥1
d2εnd

2σne
−I(n)

quad = 2πγ
αβ

, (8.55)

where we have computed the infinite product using (4.45). This gives

Zhalf-cyl(β, b) = 2πγ
αβ

exp
(
−γb

2

2β

)
. (8.56)

We note that this is the same contribution as the AdS trumpet for µ = 0.
We can now compute the formula for the cylinder using

Zcyl(β1, β2) =
∫ +∞

0
bdbZhalf-cyl(β1; b)Zhalf-cyl(β2; b) , (8.57)

where the factor b in the measure bdb is necessary because of the freedom to twist one of
the half-cylinder relative to the other when gluing. In AdS, this factor follows from the
Weil-Peterson measure [31]. This gives

Zcyl(β1, β2) = 4π2γ

β1 + β2
, (8.58)
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where we have set α = 1. It is interesting that we find a non-zero answer. This implies
that if the ĈGHS model has a holographic dual, it has to be an ensemble of theories, as in
the case of AdS JT gravity.

Let us introduce the notation 〈Z(β1) . . . Z(βn)〉 to represent the Euclidean path integral
with n asymptotic circles of lengths β1, . . . , βn. The fact that the cylinder does not vanish
implies that

〈Z(β1)Z(β2)〉 6= 〈Z(β1)〉〈Z(β2)〉 . (8.59)

This indeed shows that the path integral should be interpreted as an ensemble average.
The answer (8.58) is not the universal answer for double-scaled matrix ensembles so the
dual of the ĈGHS model has to be something different.

8.3.3 Genus expansion

The Euclidean path integral that we consider involves flat Riemann surfaces with at least
one asymptotic boundary. The only such surfaces are the plane (or disk) and the cylinder.
Therefore, the connected contribution to the path integral with more than three boundaries
identically vanishes:

〈Z(β1)Z(β2) . . . Z(βn)〉c = 0 n ≥ 3 . (8.60)

This shows that the path integral with an arbitrary number of boundaries is completely
determined using Wick contractions involving the cylinder and the disk. This implies that
the corresponding third-quantized theory is a Gaussian theory. Thus, the ĈGHS model
constitutes an interesting example of a theory where the full Euclidean path integral can
be done, while not being completely trivial and giving rise to an ensemble average.
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A A new counterterm for JT gravity

In this paper we have worked with a spacetime whose boundary is fixed while the boundary
value of the dilaton is allowed to fluctuate and defines the Schwarzian mode. Another
approach, which is the one of [16], is to define the boundary of the spacetime as the place
where the dilaton is equal to a fixed constant (taken to infinity at the end) and it is the
shape of this boundary that defines the Schwarzian mode. The equivalence between these
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two formulations is explained in [88]. We would like to show that our new boundary action
can also be obtained using an approach similar to that of [16].

In the second formulation, the Schwarzian action is derived from the renormalized
extrinsic curvature term

ISchw = κ

∫
du
√
−h (ΦK − Φ) , (A.1)

where h is the boundary metric. We will show that this term does not give the new
boundary action discussed in this paper, but that it arises from a new counterterm

Inew = κ

∫
du
√
−h (ΦK − nµ∂µΦ) . (A.2)

Let’s consider a general Lorentzian metric satisfying R = −2 in Bondi gauge

ds2 = 2
(
−r

2

2 + P (u)r + T (u)
)
du2 − 2dudr . (A.3)

It can be obtained by acting on the Poincaré AdS2 metric, corresponding to P = T = 0,
with an element of the warped Virasoro group

u→ F(u), r → r + G′(u)
F ′(u) , (A.4)

which gives explicitly

P (u) = F
′′(u)
F ′(u) − G

′(u), T (u) = −1
2G
′(u)2 + G

′(u)F ′′(u)
F ′(u) − G′′(u) . (A.5)

We refer to (2.14) for the dictionary between Lorentzian and Euclidean signature.

The Schwarzian action. We take the dilaton to be asymptotically19

Φ ∼ −φ̄rr , (A.6)

so that the boundary is at r = 1/ε. We can then compute the action (A.1) which gives

ISchw[F ,G] = −γ
∫
du

(
T (u) + 1

2P (u)2 − P ′(u)
)
. (A.7)

This is precisely the Schwarzian action since, using (A.5), we have

−T (u)− 1
2P (u)2 + P ′(u) = {F(u), u} (A.8)

We see that this action does not depend on G(τ) and matches with the Schwarzian action
discussed in section 3. A different counterterm is needed to recover our boundary action.

19The minus sign here is a consequence of the mapping between Bondi and FG gauge.
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Our boundary action. We now take the dilaton to be

Φ = −φ̄r (r + µ̄) , (A.9)

so that the boundary is still at r = 1/ε. Note that here, we also fix the subleading piece
of the dilaton in terms of a constant µ̄. This actually fixes the dilaton everywhere in the
bulk. We now consider the following boundary action

Inew
bdy = κ

∫
du
√
−h (ΦK − nµ∂µΦ) . (A.10)

It can be checked that this counterterm does not affect the well-posedness of the variational
problem. The integrand gives
√
−h (ΦK − nµ∂µΦ) = φ̄r(µ̄+ P (u)) r + φ̄r(2T (u)− µ̄P (u)− P ′(u)) +O(r−1) . (A.11)

We see that this counterterm cancels the r2 divergence. The r divergence is actually also
cancelled in the integral since we have

µ̄+ P (u) = 0 , (A.12)

thanks to one of the dilaton equations of motion in the bulk. Finally, we obtain

Inew
bdy [F ,G] = 2γ

∫
duT (u) + const . (A.13)

This precisely matches our boundary action, as written in (2.42), where the term involving∫
duP (u) has been included in the constant. This shows that our boundary action arises

from a new boundary condition (A.9) on the dilaton together with a new counterterm.

B Gauge-theoretic formulation

In this paper, we have been focusing on an AdS-Bondi version of JT gravity. It is worth
mentioning that there is a closely related theory which gives an alternative formulation of
the same physics. This is an AdS version of the ĈGHS model studied in section 8.1 and
described by the action

I[Φ, g,Ψ, A] = κ

2

∫
dx2√g [Φ (R+ 2)− 2Ψ + 2Ψεµν∂µAν ] + I∂ . (B.1)

This theory can be interpreted as JT gravity coupled to a BF theory via a scalar field Ψ.
The equations of motion are

0 = R+ 2, (B.2)
0 = ∇µ∇νΦ− gµν∇ρ∇ρΦ + gµνΦ− gµνΨ, (B.3)
0 = εµν∂µAν − 1, (B.4)
0 = ∂µΨ. (B.5)
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We note that the field Φ̃ = Φ−Ψ satisfies the JT equation of motion. The solution for the
metric is AdS2 therefore we can write it in Bondi gauge

ds2 = 2
(
r2

2 − iP (τ)r + T (τ)
)
dτ2 − 2idτdr , (B.6)

In axial gauge, a solution to the equation of motion (B.4) is given by the Coulomb field

A = rdτ. (B.7)

Following [53], we require this solution to be preserved in the phase space, under combined
diffeomorphisms and gauge transformations. A similar condition in AdS2 was considered
in [97]. This leads to the same asymptotic symmetry algebra than the one considered in
section 2. Indeed asking the metric to be preserved gives

ξ = ε(τ)∂τ − (ε′r − η(τ))∂r. (B.8)

while asking combined diffeomorphisms and gauge transformations to preserve the Coulomb
solution gives

δε,σA = LξA+ dσ = 0⇒ η = σ′. (B.9)

Moreover, with the following parametrization of the dilaton

ϕ1 = iφ̄r
f ′
, ϕ0 = iφ̄r

g′

f ′
, (B.10)

one can show that the boundary action corresponds exactly to the first terms in eq. (2.23),
which contains all the boundary dynamics. Asking the dilaton equations to be the same
than the one in eq. (3.12) when written in terms of f and g, we obtain the relation

µ̄ = iΨ
φ̄r
. (B.11)

With these conditions on the solution space, the dynamics of the theory (B.1) matches
exactly with the dynamics of pure AdS-JT gravity in Bondi gauge.

C Gravitational charges of the ĈGHS model

We derive here the expression of the gravitational charges given in section 8.1, associated
with the warped Witt asymptotic symmetry algebra of 2d Minkowski spacetime. This
result follow from boundary conditions on the solution space of the ĈGHS.

We recall the action

I = κ

2

∫
d2x
√
g (ΦR− 2Ψ + 2Ψεµν∂µAν) + I∂ , (C.1)

and its equations of motion

R = 0, (C.2)
εµν∂µAν = 1, (C.3)

∇µ∇νΦ− gµν�Φ = gµνΨ, (C.4)
Ψ = const. (C.5)
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The flat metric is given in Bondi gauge

ds2 = 2(−iP (τ)r + T (τ))dτ2 + 2idτdr. (C.6)

The corresponding asymptotic symmetry algebra is spanned by the vectors

ξ = ε(τ)∂τ − (ε′r − iη(τ))∂r, (C.7)

and the corresponding transformations of P and T are

δξP = εP ′ + ε′P + ε′′,

δξT = εT ′ + 2ε′T + ηP − η′.
(C.8)

In axial gauge, the equation of motion for the gauge field (C.3) is solved by the Coulomb
field

A = rdτ. (C.9)

Follow [53], we require this solution to be preserved in the phase space, under combina-
tions of diffeomorphisms and gauge transformations. This gives a relation between the
supertranslation η and the gauge parameter σ

δξ,σA = 0⇒ η = σ′. (C.10)

The total symmetry algebra is now warped Witt. One of the dilaton equations gives

Φ(u, r) = irϕ1(τ)− ϕ0(τ), (C.11)

while the two other equations being

ϕ′1 + Pϕ1 = −Ψ,
ϕ′′0 − Pϕ′0 + ϕ1T

′ + 2Tϕ′1 = 0.
(C.12)

The solution space is now parametrized by the functions P and T in the metric, the
functions ϕ0 and ϕ1 in the dilaton and the constant Ψ. From now on, on-shell means that
the two equations (C.12) are satisfied (together with their linearized versions for the linear
perturbation).

To derive the charges associated to the warped Witt symmetry (C.7), we need to
compute the presymplectic potential Θ. This is done by varying the bulk term in the
action and extracting the boundary term, which leads to

Θ = iκ(ϕ0δP − ϕ1δT )dτ. (C.13)

The corresponding symplectic form is

ωωω = iκ(δϕ0 ∧ δP − δϕ1 ∧ δT )dτ. (C.14)

The fundamental theorem of the covariant phase space formalism states that, when φ and
δφ are on-shell, there exists a function kξ such that

ωωω(δφ, δξφ) = dkξ(δφ). (C.15)
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We find
kξ = δQξ + Ξξ, (C.16)

where we have split kξ into an integrable and a non-integrable part20

Qξ = iΨσ − i

2κ
(
2εTϕ1 − εPϕ0 + εϕ′0 − ε′ϕ0 − σ′ϕ1

)
,

Ξξ = − i2κ ε(ϕ0δP − ϕ1δT ).
(C.17)

One can show that these charges define a centerless representation of the warped Witt
algebra under the modified Dirac bracket (2.54).

Exactly like in our AdS analysis, the authors of [53] impose conditions on ϕ0 and ϕ1
to have a well-defined variational poblem

ϕ1 = iφ̄r
f ′
, ϕ0 = iφ̄r

g′

f ′
, (C.18)

where f(τ + β) = f(τ) + β and g(τ + β) = g(τ). These conditions allow them to derive
the boundary action (8.9) and to interpret it in terms of a coadjoint action of the warped
Witt algebra. Using this parametrization of ϕ0 and ϕ1, our gravitational charges are

Qξ = iκ

2 Ψσ + γ

2f ′
(

2εT − εPg′ − ε′g′ − σ′ − εg
′f ′′

f ′
+ εg′′

)
,

Ξξ = γ

2f ′ ε
(
g′δP − δT

)
.

(C.19)
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