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1 Introduction and summary

Recently there has been significant progress in understanding the supergravity limit of

correlation functions in N = 4 super Yang-Mills theory. In this limit, one first expands

around large N while keeping the ’t Hooft coupling λ = g2N fixed, followed by a large

λ expansion. According to the AdS/CFT correspondence such correlators are equivalent

to scattering amplitudes of supergravity states in AdS. In particular, a general formula

for the tree-level supergravity contribution to four-point AdS amplitudes with arbitrary

single-particle half-BPS states was given in Mellin space in [1, 2] which generalises many

partial results obtained by various means (see e.g. [3–5]).

With explicit tree-level results available there has also been progress in understanding

the loop corrections to such supergravity amplitudes [6, 7]. To explore such loop corrections

it is necessary to address a mixing problem involving many double-trace operators with

the same classical quantum numbers. By analysing sufficient correlators it is possible to

obtain the order 1/N2 anomalous dimensions for all double-trace operators of arbitrary
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su(4) quantum numbers [8] as well as explicit results for the leading order three-point

functions of two half-BPS operators and one double-trace operator [9].

One may also ask about α′ ∼ λ−
1
2 corrections to the supergravity results. Such cor-

rections have been addressed in several papers, e.g. [10–12]. Mellin space is particularly

convenient for the analysis of such correlators. Here we will investigate the λ−
1
2 corrections

to tree-level supergravity further. We argue that the consistency with the ten-dimensional

supersymmetric Virasoro-Shapiro amplitude in the flat space limit completely determines

the leading λ−
3
2 correction to all tree-level Mellin amplitudes. With this information avail-

able, we will derive the form of the corrections to the anomalous dimensions and three-point

functions for double-trace operators in the singlet channel. We find that the corrections

to the three-point functions vanish while the anomalous dimensions exhibit a very simple

structure. The degeneracy among the su(4) singlet channel operators of a given twist is

fully lifted by the order 1/N2 tree-level supergravity anomalous dimensions. Of these op-

erators only the lightest at any given twist receives a λ−
3
2 correction. Similar behaviour

is exhibited in the [0, 1, 0] channel. We interpret this feature having its origins in the ten-

dimensional symmetry described in [13]. Specifically, we trace the origin of this property

to the fact that the (α′)3R4 correction in the type IIB superstring effective action can only

involve exchanged operators of ten-dimensional spin zero. The fact that features of the

ten-dimensional symmetry remain even after including α′ corrections is very surprising, as

one might think this symmetry is inevitably broken by string corrections.

To go beyond order λ−
3
2 , we make the working assumption that the three-point func-

tions remain uncorrected at the next order λ−
5
2 . Then the recent results of [11, 12] allow us

to obtain the spectrum of anomalous dimensions in a similar way. The pattern of only the

lightest states receiving a correction continues, this time corresponding to the operators

of ten-dimensional spins zero and two. This is again consistent with our ten-dimensional

interpretation, since the relevant term in the effective action is (α′)5∂4R4. It follows that

if we take the structure of the spectrum as an assumption together with the vanishing of

the corrections to the three-point functions, we can derive constraints on an ansatz for the

order λ−
5
2 Mellin amplitudes, in a similar spirit to [11, 12]. We show that proceeding in

this way we can fix the λ−
5
2 Mellin amplitudes for the 〈O2O2OpOp〉 family of correlators up

to a single free parameter consistently with [11, 12]. We then employ the above techniques

and assumptions to derive new constraints on the 〈O2O3Op−1Op〉 family of correlators,

again fixing the result up to a single free parameter.

2 Half-BPS correlators in the supergravity limit

We recall that the superconformal half-BPS operators corresponding to single-particle

states take the form

Op = yR1 · · · yRpTr
(
ΦR1 · · ·ΦRp

)
+ . . . (2.1)

where yR is a null so(6) vector which picks out the traceless symmetric part, i.e. the [0, p, 0]

representation of su(4). The dots stand for 1/N2 suppressed multi-trace terms which are

determined by demanding that Op is orthogonal to any multi-trace half-BPS operator

– 2 –



J
H
E
P
1
2
(
2
0
1
9
)
1
7
3

〈Op[Oq1 . . .Oqn ]〉 = 0 [8]. The operator O2 is dual to the graviton supermultiplet and the

higher Op are dual to the Kaluza-Klein modes of the ten-dimensional graviton compactified

on the S5 factor of the AdS5 × S5 background.

Here we are interested in four-point functions of such half-BPS operators,

〈p1p2p3p4〉 := 〈Op1Op2Op3Op4〉 . (2.2)

Superconformal symmetry places strong constraints on the form of such correlators [14, 15].

If we write the correlator as a sum of its free field theory and interacting contributions,

then the interacting contribution takes a particular factorised form,

〈p1p2p3p4〉 = 〈p1p2p3p4〉free + P I H . (2.3)

The factor P is given by

P = g
p1+p2−p43

2
12 g

p43−p21
2

14 g
p43+p21

2
24 g

p3
34 , (2.4)

where pij = pi − pj and the gij = y2
ij/x

2
ij (with y2

ij = yi · yj) are propagator factors which

carry the conformal weights and yi the scaling weights of the correlator. The remaining

factors I and H are then functions of the conformal and su(4) cross-ratios,

u = xx̄ =
x2

12x
2
34

x2
13x

2
24

, v = (1− x)(1− x̄) =
x2

14x
2
23

x2
13x

2
24

,

1

σ
= yȳ =

y2
12y

2
34

y2
13y

2
24

,
τ

σ
= (1− y)(1− ȳ) =

y2
14y

2
23

y2
13y

2
24

. (2.5)

The factor I is given by

I =
(x− y)(x− ȳ)(x̄− y)(x̄− ȳ)

(yȳ)2
. (2.6)

The presence of the four zeros in the numerator is a consequence of the superconformal

Ward identities and is a feature of the contributions of unprotected operators in the con-

formal partial wave expansion of the correlation functions. Only unprotected operators

may contribute to the interacting term since these are the only operators whose conformal

data depend on the gauge coupling.

The factor H = H(u, v;σ, τ) is the only piece which depends on the gauge coupling

and hence is the piece which contains the dynamics of the theory. In the supergravity limit

of large N and large ’t Hooft coupling it admits a double expansion of the form

H = H(0,0) + a
(
H(1,0) + λ−

3
2H(1,3) + λ−

5
2H(1,5) + . . .

)
+O(a2), (2.7)

where to match previous conventions we use a = 1/(N2 − 1) as the expansion parameter

instead of 1/N2 although here the distinction is not really relevant. The leading term H(0,0)

corresponds to the leading large N disconnected contribution which is only non-zero for

correlators of the form 〈ppqq〉 or those related by crossing symmetry. The terms at order
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a are the tree-level contributions with H(1,0) being the tree-level supergravity contribution

and the other terms due to string corrections.

As described in [6, 7], if we perform the combined (Op1 × Op2) and (Op3 × Op4)

operator product expansion, the contributions to H in the supergravity limit are controlled

by unprotected double-trace operators of the form [Op∂`�
1
2 (τ−p−q)Oq][a,b,a]. They have

classical twist τ , spin ` and su(4) representation [a, b, a]. There are typically many such

operators with different values of p and q with same quantum numbers, leading to a mixing

problem. Such operators, being unprotected, acquire anomalous dimensions in the double

large N , large λ expansion,

∆ = ∆(0) + 2a
(
η(0) + λ−

3
2 η(3) + λ−

5
2 η(5) + . . .

)
+O(a2), (2.8)

where ∆(0) = τ+` and η(n) depends on τ , `, a, b and the degeneracy labels. The superscript

in η(n) denotes the order in λ−
n
2 . Note that for later convenience η(n) is in fact half the

anomalous dimension, however, for the rest of this paper, we will simply refer to it as the

anomalous dimension.

The knowledge of the tree-level supergravity contributions H(1,0) due to [1, 2] allows

the mixing between these operators to be resolved leading to a compact formula for their

leading anomalous dimensions η(0) [8]. In fact, for general su(4) channels, not all of the

degeneracy is lifted by the first correction to the dimensions. This feature, as well as the

surprisingly simple form of the anomalous dimensions, is related to a novel ten-dimensional

symmetry which is exhibited in the supergravity tree-level correlators [13]. Here we will

argue that the ten-dimensional connection is also responsible for striking patterns observed

in the structure of the higher corrections η(3), η(5) etc.

Before describing the spectrum we show that the flat space limit dictates the form of

the first string correction H(1,3).

3 The general half-BPS amplitude at order λ−3
2

In [11], it has been demonstrated how matching the Virasoro-Shapiro amplitude by applying

the flat space limit to the AdS5×S5 Mellin amplitude fully determines the coefficient of the

〈22pp〉-family of correlators up to order λ−
3
2 . In fact, at any order in 1/λ the coefficient of

the (polynomial) Mellin amplitude with leading s, t→∞ asymptotics is fixed by matching

the corresponding term in the Virasoro-Shapiro amplitude.

In this section, we restrict our attention to the first order in 1/λ and explain how

the flat space limit together with the formula for the supergravity correlator [1, 2] and its

normalisation as derived in [8] can be used to generalise the results for the special cases

mentioned above, arriving at a formula for the general half-BPS four-point amplitude

〈p1p2p3p4〉 at λ−
3
2 for arbitrary external charges.

3.1 The Mellin space ansatz

Tree-level Witten diagrams are most conveniently represented in Mellin space, where the

Mellin amplitudes are rational, as it is the case for tree level supergravity (with a prescribed
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set of poles and residues, corresponding to the exchanged single-trace operators in a certain

Witten diagram), or polynomial in case of higher derivative corrections to the interaction

vertices. We will thus use the Mellin space formalism for holographic four-point correlators

to describe the interacting part H{pi}(u, v;σ, τ) of a general four-point correlator, where

{pi} denotes the dependence on the four external charges (p1, p2, p3, p4).

We use p43 ≥ p21 ≥ 0 as our convention for the arrangement of charges, and other

cases may be obtained by applying crossing transformations. The inverse Mellin transform

of the interacting part is then given by1

H{pi}(u, v;σ, τ) =

∫ i∞

−i∞

ds

2

dt

2
u

s
2
− p43

2 v
t
2
− p2+p3

2 M{pi}(s, t;σ, τ)Γ{pi}(s, t), (3.1)

where the string of six Γ-functions is defined as

Γ{pi}(s, t) =
∏
i<j

Γ [cij ] , (3.2)

with the Mellin space parametrisation cij = cji given by2

c12 = −s
2

+
p1 + p2

2
, c13 = −u

2
+
p1 + p3

2
, c14 = − t

2
+
p1 + p4

2
,

c23 = − t
2

+
p2 + p3

2
, c24 = −u

2
+
p2 + p4

2
, c34 = −s

2
+
p3 + p4

2
.

(3.3)

Note that the Mellin space Mandelstam variables (s, t, u) satisfy the constraint

s+ t+ u = p1 + p2 + p3 + p4 − 4. (3.4)

Analogous to the double expansion of the interacting part H{pi} in equation (2.7), we

expand the corresponding order a Mellin amplitude in 1/λ according to

M{pi} =M(1,0)
{pi} + λ−

3
2M(1,3)

{pi} + λ−
5
2M(1,5)

{pi} + . . . . (3.5)

The supergravity Mellin amplitude M(1,0)
{pi} (s, t;σ, τ) for arbitrary external charges has

been conjectured in [1, 2] up to an undetermined overall normalisation Np1p2p3p4 , their

result being

M(1,0)
{pi} = Np1p2p3p4

∑
i,j≥0

aijkσ
iτ j

(s− s̃+ 2k)(t− t̃+ 2j)(u− ũ+ 2i)
, (3.6)

1What we callM here is in fact the reduced Mellin amplitude (usually denoted by M̃), which is related

to the full Mellin amplitude M by

M(s, t;σ, τ) = R̂(u, v;σ, τ) ◦ M̃(s, t;σ, τ),

where R̂ is a difference operator mimicking the action of the factor I on the interacting part H. See [2] for

further details, where also a precise definition of the integration contour is given, such that rational parts

of the position space result are correctly recovered from the Mellin integrals.
2We should warn the reader that the variable u is being used to denote two different quantities here: it

is the ordinary conformal cross-ratio as defined in equation (2.5), but in the context of Mellin amplitudes

we also use it as one of the usual Mellin variables (s, t, u) obeying (3.4). We hope the context will make the

distinction clear.
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where k = p3 + min{0, p1+p2−p3−p4
2 } − i− j − 2 and the range of i, j is such that k ≥ 0 in

the sum. Furthermore, we define

s̃ = min {p1 + p2, p3 + p4} − 2,

t̃ = p2 + p3 − 2,

ũ = p1 + p3 − 2.

(3.7)

The overall normalisation Np1p2p3p4 was subsequently determined in [8], and it combines

nicely with the factor aijk into Nijk ≡ Np1p2p3p4aijk, given by

Nijk =
1

i!j!k!

8p1p2p3p4(p43+p21
2 + i

)
!
(p43−p21

2 + j
)
!
( |p1+p2−p3−p4|

2 + k
)
!
. (3.8)

For future convenience, we define Bsugra
{pi} (σ, τ) as the coefficient of the supergravity Mellin

amplitude in the large s, t limit by

Bsugra
{pi} (σ, τ) =

∑
i,j≥0

Nijkσiτ j . (3.9)

Let us now turn our attention to adding string corrections to the supergravity result (3.6),

as already indicated in the expansion (3.5). These 1/λ corrections descend from higher

derivative interaction terms in the AdS5 × S5 effective action, the first two being R4 at

order λ−
3
2 and ∂4R4 at order λ−

5
2 , respectively. In Mellin space, the analytic structure of

tree-level Witten diagrams dictates that for a general correction term of the schematic form

∂2nR4, the corresponding Mellin amplitude is simply a polynomial of degree n, together

with all subleading polynomial amplitudes coming from terms in 10d with legs on S5 [10,

11, 16–18].3 In the same spirit as [11, 12] we can thus make an ansatz of the form

M(1,3)
{pi} = B4

4M4
{pi},

M(1,5)
{pi} = B6

6,jM
6,j
{pi} +B6

5,jM
5,j
{pi} +B6

4M4
{pi},

(3.10)

where Mn
{pi} are polynomial Mellin amplitudes of degree (n − 4) in the Mellin variables

(s, t, u) and their coefficients Bk
n ≡ Bk

n(σ, τ ; {pi}) are in general functions of the internal

cross-ratios (σ, τ) as well as the four external charges.4 Explicit expressions for the basis

of Mellin polynomials for the 〈22pp〉 and 〈23(p − 1)p〉 families of correlators are given in

section 5. Note that adding a term of the same form as the supergravity amplitude M1
{pi}

in the above ansatz (3.10) is precluded since it is not polynomial. Including such a term

would spoil the cancellation of excited string states at low twist between the free theory

contribution and H [19].

3The tree-level corrections to the supergravity Mellin amplitude are polynomial since they correspond

to corrections due to unprotected double-trace operators, whose poles are already present in the gamma

functions in (3.2). The bound on the polynomial comes from considering the flat space limit and moreover

the coefficients of the leading Mellin amplitudes can be fixed by comparing against the flat space 10d IIB

closed superstring amplitude, as we will discuss in the next section.
4The extra index j in Mn,j

{pi}
and Bk

n,j is used when there exists more than one independent Mellin

polynomial of degree (n− 4).
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The first polynomial correction, associated with the R4 vertex, is given by the constant

Mellin amplitude

M4
{pi} = 1, (3.11)

which is trivially crossing symmetric on its own. At order λ−
3
2 , where only M4

{pi} con-

tributes, it will turn out that the simplicity of M4
{pi} together with the knowledge of the

supergravity result (3.6) and its normalisation (3.8) is enough to fix its coefficient B4
4 for

all external charges.

3.2 The flat space limit

Let us briefly explain the method of matching the flat space limit, which was first motivated

by Penedones [16] and explored further in [17]. This method was first applied to the

〈2222〉 correlator by Gonçalves [10], and more recently extended to the 〈22pp〉 family of

correlators [11, 12]. Their discussion is based on previous work in AdS7×S4 [20, 21], whose

logic we will follow here to extend the previous results to the general correlator 〈p1p2p3p4〉
with non-trivial (σ, τ) dependence.

Penedones defines the following relation between the flat space and Mellin amplitudes:

M(sij) =
Rn(1−d)/2+d+1

Γ(Σ− d/2)

∫ ∞
0

dββΣ−d/2−1e−βAFlat

(
2β

R2
sij

)
, sij � 1, (3.12)

where Σ = p1+p2+p3+p4
2 is half the sum of the dimensions of the external operators for

the four-point function under consideration with n = 4, d = 4 and R being the radius of

the AdS space, such that α′ = l2s = λ−
1
2R2. We want to start from this 10 dimensional

expression and restrict the kinematics to the 5 dimensional AdS subspace, or rather R5 ≡
AdS5|R→∞, by integrating over the 5 dimensional wavefunction dual to the internal Kaluza-

Klein modes [21]. Equation (3.12) can now be inverted as,

AFlat(s, t) = lim
R→∞

Γ(Σ− d/2)R6

(∫
S5

d5x
√
g

n∏
i=1

ΨOi
ηi (~n)

)
×
∫ +i∞

−i∞

dα

2πi
α−(Σ−d/2)eαM

(
R2

2α
s,
R2

2α
t

)
. (3.13)

By taking the flat space limit, we should match against the type IIB closed string theory

scattering amplitude of four super-gravitons, which admits an expansion in the string

coupling gs (see e.g. [22])

AFlat = Asugraf(s, t), with

f(s, t) = −stu λ−
3
2R6

64

Γ
(
− s

4λ
− 1

2R2
)
Γ
(
− t

4λ
− 1

2R2
)
Γ
(
− u

4λ
− 1

2R2
)

Γ
(
1 + s

4λ
− 1

2R2
)
Γ
(
1 + t

4λ
− 1

2R2
)
Γ
(
1 + u

4λ
− 1

2R2
) +O(g2

s), (3.14)

where Asugra is the tree-level supergravity scattering amplitude, (s, t, u) are the usual 10d

Mandelstam invariants obeying s + t + u = 0. For our purposes it is enough to consider

the leading term in gs, as it corresponds to the leading large N result in N = 4 SYM

– 7 –
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in the ’t Hooft limit with fixed λ. Worldsheets with genus one and higher contribute to

higher orders in gs, corresponding to subleading 1/N corrections in the CFT (see [11, 23]

for applications to string corrections to the correlator 〈2222〉 at order 1/N4). A further

expansion of f(s, t) in 1/λ gives

f(s, t) =

(
1 + stu

ζ3

32
· λ−

3
2R6 + stu(s2 + t2 + u2)

ζ5

1024
· λ−

5
2R10 + . . .

)
+O(g2

s). (3.15)

As a result of the superconformal Ward Identities the Mellin amplitude M in (3.13) is

related to the reduced Mellin amplitude M defined in equation (3.1), as mentioned in

footnote (1). In the flat space limit this is given by

M(s, t)→ 1

16

(
t2u2 + s2t2σ2 + s2u2τ2 + 2s2tuστ + 2st2uσ + 2stu2τ

)
M(s, t). (3.16)

Using the above definition in (3.13) and comparing with (3.14) we have

f(s, t) =
Γ(Σ− d

2)

16NA
lim
R→∞

R14

∫ +i∞

−i∞

dα

2πi
α−(Σ− d

2
+4)eαM

(
R2

2α
s,
R2

2α
t

)
, (3.17)

where NA is the normalisation constant that takes into account the flat-space supergravity

amplitude, such that the first term in the Mellin expansion matches it. Note that NA has

a non-trivial dependence on (σ, τ), linked to the supergravity coefficient Bsugra
{pi} (σ, τ), see

equation (3.9). Using the ansatz for the expansion of M(s, t) in a = 1
N2−1

and the unfixed

coefficients Bk
n, at O(a) we get

NA =
2Γ(Σ− d

2)

(stu)
lim
R→∞

aR8Bsugra
{pi} (σ, τ)

∫ +i∞

−i∞

dα

2πi
α−(Σ− d

2
+1)eα

=
128π2g2

s l
8
sΓ(Σ− d

2)

(stu)

Bsugra
{pi} (σ, τ)

Γ(Σ− d
2 + 1)

. (3.18)

Now, from the full expansion of the r.h.s. in equation (3.17) we find

f(s, t) =
(stu)

Bsugra
{pi} (σ, τ)

[
Bsugra
{pi} (σ, τ)

(stu)
+ λ−

3
2R6 B4

4(σ, τ)

23(Σ− d
2 + 1)3

+ . . .

]
. (3.19)

Comparing (3.19) with the expansion of the string amplitude in (3.15) we can determine

the unfixed coefficients of the leading polynomial amplitudes, in particular the coefficient

B4
4(σ, τ) of the Mellin amplitude at order λ−

3
2 is given by

B4
4(σ, τ) =

(Σ− d
2 + 1)3ζ3

4
Bsugra
{pi} (σ, τ). (3.20)

Note that this result fully determines the coefficient of the λ−
3
2 Mellin amplitudeM4

{pi} as

a function of the charges (p1, p2, p3, p4). This result relies on the fact that the non-trivial

dependence on the internal cross-ratios is fully captured by the supergravity coefficient

Bsugra
{pi} (σ, τ), with the remaining part of the coefficient depending only on the sum of the

charges Σ. This is a consequence of (σ, τ) not being affected by the flat space limit, since

we restrict the 10 dimensional momenta to a 5 dimensional subspace while the remaining 5

dimensions (in this case compactified to S5 with (σ, τ) being the coordinates of the spherical

harmonics) do not participate in a tree-level scattering process.
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3.3 Result for the Mellin amplitude

Let us now present the formula for the four-point correlator 〈p1p2p3p4〉 at λ−
3
2 for arbitrary

external charges, the main result of this section. The derivation relies on three ingredients:

the simplicity of the Mellin amplitude (3.10) at order λ−
3
2 , the knowledge of the super-

gravity result, its normalisation in particular, and the adaptation of the flat space limit to

correlators with general external charges.

Without further delay, using the relation (3.20) obtained from the flat space limit, we

are led to the compact result

M(1,3)
{pi} =

(Σ− 1)3ζ3

4
Bsugra
{pi} (σ, τ), (3.21)

from which we easily obtain the explicit position space expression by performing the inverse

Mellin transform, resulting in

H(1,3)
{pi} =

(Σ− 1)3ζ3

4
Bsugra
{pi} (σ, τ) u

p1+p2+p3−p4
2 Dp1+2,p2+2,p3+2,p4+2(u, v). (3.22)

For convenience, let us repeat the definition

Bsugra
{pi} (σ, τ) =

∑
i,j≥0

Nijkσiτ j , (3.23)

where Nijk was introduced in equation (3.8).

Our formula is consistent with the results for 〈2222〉 [10] and 〈22pp〉 [11] and by con-

struction obeys the correct crossing transformation properties. We checked explicitly for

many cases that, upon decomposing into conformal blocks, our result (3.22) contributes to

spin 0 only, as expected from the R4 correction term.

In the next section, we will use this result to initiate the study of anomalous dimensions

at order λ−
3
2 for the singlet and the [0, 1, 0] channel.

4 Unmixing the λ−3
2 double-trace spectrum

As mentioned in section 2, the spectrum of exchanged operators in the OPE at leading

order in 1/N consists of a set of degenerate double-trace operators. In this section, we

describe how to resolve the mixing of these operators at order λ−
3
2 , obtaining analytical

formulae for their anomalous dimensions η(3).

We follow the approach developed in [9], where an OPE analysis was used to determine

the spectrum of supergravity anomalous dimensions, denoted by η(0) in equation (2.8).

First, we explain how the same method can be used to unmix further string corrections

to the spectrum. Then we apply the procedure to the singlet and [0, 1, 0] channel of the

su(4) R-symmetry group and compute the anomalous dimensions η(3)|[000] and η(3)|[010],

revealing a surprisingly simple structure. Lastly, we provide an intuitive 10 dimensional

explanation of the observed pattern of anomalous dimensions, which can be used to make

further predictions about the spectrum induced by higher derivative string corrections.
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4.1 The unmixing equations

For simplicity, we restrict the discussion given here to the singlet channel, for which the

relevant set of correlators is the 〈ppqq〉-family.5 In this channel, for every half-twist t = τ/2

and spin ` there are t− 1 degenerate operators which we label by i = 1, . . . , t− 1:{
Ki

}
=
{
O2�

t−2∂`O2,O3�
t−3∂`O3, . . . ,Ot�0∂`Ot

}
. (4.1)

The interacting part of the correlator, Hppqq, admits an OPE decomposition into long

superconformal blocks (see [15, 19, 25–27] and references therein). Projecting onto the

singlet channel, we have the decomposition

Hppqq(u, v)|[0,0,0] =
∑
t,`

At,`Gt,`(u, v), (4.2)

where Gt,`(u, v) is given by the usual four-dimensional conformal block with a shift of four

in its dimension [28, 29]:

Gt,`(u, v) = (−1)`ut
x`+1Ft+`+2(x)Ft+1(x̄)− x̄`+1Ft+`+2(x̄)Ft+1(x)

x− x̄
, (4.3)

with Fρ(x) = 2F1 (ρ, ρ, 2ρ;x) being the standard hypergeometric function.

Due to operator mixing, the coefficients At,` of the superconformal block decomposition

are not in one-to-one correspondence with the OPE three-point functions CppKi . Instead,

they are given by a sum over the degenerate operators Ki:

At,` =

t−1∑
i=1

CppKiCqqKi . (4.4)

Similarly to the dimensions of exchanged operators Ki (see eq. (2.8)), we expand the three-

point functions CppKi around large N and λ,

CppKi = C
(0)
ppKi

+
(
λ−

3
2C

(3)
ppKi

+ λ−
5
2C

(5)
ppKi

+ . . .
)

+O(a), (4.5)

where the superscript in C
(n)
ppKi

again denotes the correction at order λ−
n
2 .

The unmixing equations are stated most conveniently in a matrix form. Hence, let us

assemble the three-point functions and anomalous dimensions at a given half-twist t into

the (t− 1)× (t− 1) matrices

C(n) :=


C

(n)
22K1

C
(n)
22K2

· · · C(n)
22Kt−1

C
(n)
33K1

C
(n)
33K2

· · · C(n)
33Kt−1

...
...

...

C
(n)
ttK1

C
(n)
ttK2

· · · C(n)
ttKt−1

 , η̂(n) :=


η

(n)
1

. . .

η
(n)
t−1

 , (4.6)

5For a detailed explanation and a generalisation to all su(4) channels of the form [a, b, a] we refer the

reader to the articles [8, 24].
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with η̂(n) being diagonal. We also arrange the correlators 〈ppqq〉 into the symmetric matrix

Ĥ(u, v) :=


H2222 H2233 · · · H22tt

H2233 H3333 · · · H33tt

...
...

...

H22tt H33tt · · · Htttt

 . (4.7)

Now, plugging the double expansions (2.8) and (4.5) into the superconformal block decom-

position (4.2), we arrive at the decomposition

Ĥ(u, v) =
∑
t,`

[
Â

(0,0)
t,` + a log(u)

(
Â

(1,0)
t,` + λ−

3
2 Â

(1,3)
t,` + . . .

)
+O(a2)

]
Gt,`(u, v) + . . . ,

(4.8)

where the ellipsis denotes analytic terms in u which are not relevant for this discussion.

Comparing to the expansion (2.7) and keeping terms up to order aλ−
3
2 , this leads to the

unmixing equations

O(1) : Â
(0,0)
t,` = C(0)

(
C(0)

)T
, (4.9)

O(a) : Â
(1,0)
t,` = C(0)η̂(0)

(
C(0)

)T
, (4.10)

O(λ−
3
2 ) : 0 = C(0)

(
C(3)

)T
+ C(3)

(
C(0)

)T
, (4.11)

O(aλ−
3
2 ) : Â

(1,3)
t,` = C(0)η̂(3)

(
C(0)

)T
+ C(0)η̂(0)

(
C(3)

)T
+ C(3)η̂(0)

(
C(0)

)T
, (4.12)

where the zero on the l.h.s. of equation (4.11) comes from the fact that are no 1/λ correc-

tions to the leading N free field correlator H(0,0).

In [9], the first two equations were solved twist by twist to find an analytic formula for

the supergravity anomalous dimensions η̂(0) and to construct the leading order three-point

function matrices C(0).6 The conjectured anomalous dimension formula for a double-trace

operator Opq in a general su(4) channel [a, b, a] reads [8]

η
(0)
t,` |[a,b,a] = −

2M
(4)
t M

(4)
t+`+1(

`+ 2(i+ r) + a− 1+(−1)a+`

2

)
6

, (4.13)

where

M
(4)
t = (t− 1)(t+ a)(t+ a+ b+ 1)(t+ 2a+ b+ 2), (4.14)

the twist τ is parametrised by t = τ−b
2 − a and the degeneracy labels (i, r) are given by

i = 1, . . . , (t− 1), r = 0, . . . , (µ− 1), µ =


⌊
b+ 2

2

⌋
a+ l even,⌊

b+ 1

2

⌋
a+ l odd.

(4.15)

6Explicit data in the singlet channel is available up to twist 48. For some low twist examples see [9],

where a straightforward prescription on how to compute the unmixed three-point functions in the singlet

channel is given (for results in the [0, 1, 0] channel see [24], respectively).
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Note that for µ > 1 and t > 2 there are cases for which the labels (i, r) assume the same

sum (i+r), resulting in a residual degeneracy in the supergravity spectrum.7 Furthermore,

the supergravity anomalous dimension (4.13) is left invariant under the discrete shift

t→ −t− `− 2a− b− 2, (4.16)

which exchanges the two factors in its numerator. As we will discuss later, we find this

symmetry to be present also in the λ−
3
2 and λ−

5
2 anomalous dimensions.

With C(0) and η̂(0) at hand, we can turn our attention to the next two equations,

where we have C(3) and η̂(3) as our unknowns. For a fixed half-twist t, we can first solve

equation (4.11), leaving (t−1)(t−2)
2 undetermined parameters in C(3). Together with the

t− 1 anomalous dimensions η
(3)
i we have t(t−1)

2 unknowns, exactly as many as the number

of conditions we get from Â
(1,3)
t,` in equation (4.12). Thus this is a well defined problem

with a unique solution.

In the following, we apply this analysis to the [0, 0, 0] and [0, 1, 0] channel, for which we

use the 〈ppqq〉 and 〈p(p+ 1)q(q+ 1)〉 families of correlators. Note that our result (3.22) for

the general four-point amplitude at λ−
3
2 provides the necessary data needed to resolve the

mixing of double-trace operators in any su(4) channel of the form [a, b, a]. We will address

this general unmixing problem in the future.

4.2 [0, 0, 0] channel results

Here we describe the solution of the full unmixing problem in the singlet channel. We

obtain the necessary data, namely the correlators of the form 〈ppqq〉 at order λ−
3
2 , from

our new result (3.22). As expected, the conformal block decomposition yields only spin 0

contributions. Solving the unmixing equations (4.11) and (4.12) twist by twist as described

in the previous section, we find

η̂(3) =
{
η

(3)
1 , 0, . . . , 0

}
, C(3) = 0, (4.17)

with η
(3)
1 being consistent with the formula

η
(3)
1 = − ζ3

840
(t− 1)2t3(t+ 1)4(t+ 2)3(t+ 3)2 · δ`,0. (4.18)

Some comments are in order:

• The leading 1/λ correction to the matrix of three-point functions C(3) is identically

zero. A priori, such a correction is not forbidden by consistency of the OPE and its

vanishing is a very non-trivial result.8 We will use this observation and assume the

absence of the subsequent correction C(5) when exploring the spectrum of anomalous

dimensions at order λ−
5
2 in the next section.

7The first instance of residual degeneracy occurs in the [0, 2, 0] channel at twist 8 (t = 3), where the two

operators with labels (i, r) = (1, 1) and (2, 0) have the same supergravity anomalous dimension.
8We would like to thank Ofer Aharony and Shai Chester for encouraging us to revisit the possibility of

1/λ corrections to the three-point functions.
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• The pattern of anomalous dimensions turns out to be surprisingly simple: only the

operator with degeneracy label i = 1 receives a λ−
3
2 correction to its dimension, all

other anomalous dimensions vanish. As we will describe in section 4.4, this pattern

is consistent with predictions from the recently discovered hidden 10d conformal

symmetry of supergravity correlators [13].

• For large t, the anomalous dimension has the asymptotic behaviour

η
(3)
1 → − ζ3

840
t14, (4.19)

a fact which will become important when comparing to the [0, 1, 0] channel anomalous

dimension. Furthermore, η
(3)
1 obeys the symmetry t→ −t− 2.

• Lastly, our result for η̂(3) correctly reproduces the averages of squared anomalous

dimensions derived in [11], see equation (3.11) therein.

4.3 [0, 1, 0] channel results

Let us apply the method described above to solve the mixing problem in a non-trivial su(4)

channel. We choose the [0, 1, 0] channel, where we need data from correlators of the form

〈p(p + 1)q(q + 1)〉. Again, we find contributions to spin 0 only. Performing the unmixing

twist by twist we find similar results as in the singlet channel:

η̂(3)|[0,1,0] =
{
η

(3)
1 |[0,1,0], 0, . . . , 0

}
, C(3)|[0,1,0] = 0, (4.20)

where η
(3)
1 |[0,1,0] is consistent with the formula

η
(3)
1 |[0,1,0] = − ζ3

840
(t− 1)2t3(t+ 1)2(t+ 2)2(t+ 3)3(t+ 4)2 · δ`,0, (4.21)

which is symmetric under t→ −t− 3.

Again, the leading 1/λ correction to the matrix of three-point functions C(3)|[0,1,0]

is zero and only the first operator with degeneracy label i = 1 receives a non-vanishing

correction. For large t it scales like the singlet channel anomalous dimension:

η
(3)
1 |[0,1,0] → −

ζ3

840
t14. (4.22)

This matching of the leading large twist behaviour of anomalous dimensions across different

su(4) channels is in agreement with the 10 dimensional interpretation discussed below.

4.4 10d interpretation of spectrum

Recently, Caron-Huot and Trinh observed a hidden 10 dimensional conformal symmetry,

which allowed them to repackage all half-BPS tree-level supergravity four-point functions

into a single generating function [13].9 This conjecture was inspired by the following ob-

servation: the singlet channel supergravity anomalous dimension η(0) of a double-trace

9See also [30] for a similar conjectured 6d version for AdS3 × S3 supergravity.

– 13 –



J
H
E
P
1
2
(
2
0
1
9
)
1
7
3

operator Opq|[0,0,0] and the partial-wave coefficients of the flat 10d 2 → 2 scattering am-

plitude of axi-dilatons in type IIB supergravity share a common Pochhammer structure in

their denominators:

1

(`10 + 1)6

∼ 1

(`+ 2i− 1)6

, (4.23)

where the l.h.s. depends on an effective 10 dimensional spin `10 = 0, 2, . . . and the r.h.s. is

the denominator of the supergravity singlet channel anomalous dimension η(0)|[0,0,0], which

depends on spin ` and degeneracy label i. For a general su(4) channel [a, b, a], we should

compare to the denominator in equation (4.13), giving the correspondence

1

(`10 + 1)6

∼ 1(
`+ 2(i+ r) + a− 1+(−1)a+`

2

)
6

, (4.24)

where for convenience we repeat the definition of the degeneracy labels (i, r):

i = 1, . . . , t− 1, r = 0, . . . , µ− 1, µ =


⌊
b+ 2

2

⌋
a+ l even,⌊

b+ 1

2

⌋
a+ l odd.

(4.25)

The correspondence (4.24) assigns a value of the effective ten-dimensional spin to each long

double-trace operator in the supergravity spectrum.

Now consider the first string correction at order λ−
3
2 , the spectrum of which we have

computed above for the singlet and [0, 1, 0] channels, see equations (4.17), (4.20). Unex-

pectedly, we found that only the first anomalous dimension with degeneracy label i = 1 is

non-zero. A neat interpretation of this result can be given by the identification of denomi-

nators in (4.24): as the order λ−
3
2 string correction descends from the 10d R4 supervertex,

its ten-dimensional partial-wave decomposition contributes only to spin `10 = 0. Matching

denominators in equation (4.23) we get

`10 = 0 ⇒ (`, i) = (0, 1), (4.26)

i.e. only the anomalous dimension with degeneracy label i = 1 should be non-vanishing,

which exactly coincides with our explicit results for η(3) in equations (4.17) and (4.20)!

The heuristic correspondence (4.24) thus seems to correctly give a prediction for which

four-dimensional double-trace operators acquire an anomalous dimension, depending on the

allowed ten-dimensional spin `10. In fact, in the supergravity case, where operators of any

even spin `10 are exchanged, this does not result in any restrictions on the four-dimensional

quantum numbers (`, i, r), and indeed all operators are found to receive a correction to

their dimensions. However, by assuming this ten-dimensional interpretation remains valid

when considering further string corrections (which give only finite spin contributions to

the partial-wave expansion), we can deduce constraints on the spectrum of anomalous

dimensions, as shown above for the λ−
3
2 case.
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The next string correction at order λ−
5
2 descends from the ∂4R4 supervertex, allowing

spins up to `10 = 2. Matching again the denominators, we find the prediction

`10 = 2 ⇒ (`, i) = (2, 1), (1, 1), (0, 2). (4.27)

Together with the spin `10 = 0 contribution, we therefore expect three anomalous dimen-

sions to be non-vanishing in the [0, 0, 0] channel: the spin 2, i = 1 and the spin 0, i = 1, 2

anomalous dimensions. In the [0, 1, 0] channel, which also receives contributions from odd

spins, we additionally expect the spin 1, i = 1 anomalous dimension to be present. As we

will discuss in the next section, under an additional assumption about the three-point func-

tions, the above structure can be used as a predictive tool to constrain further subleading

corrections to the anomalous dimensions and correlators.

There is one further implication of the relation to ten dimensions, which concerns

the observed coincidence of the large twist behaviour of anomalous dimensions, see equa-

tions (4.19) and (4.22) for a concrete example. In the 10 dimensional conformal four-point

amplitude there is only one primary operator for any even spin `10, which upon dimen-

sional reduction results in multiple 4d primary operators descending from the same 10d

primary.10 We can use this to our advantage by making the following observation: for fi-

nite spin the large twist asymptotics accesses the flat space limit, which can be understood

from the inverse Mellin transform, as defined in equation (3.1). The flat space limit tells

us to look at the large s, t behaviour, which in particular translates into large powers of u

in position space. Restricting ourselves to finite spin contributions, we then see that large

twist indeed corresponds to the flat space limit. Schematically, for finite spin we thus have

the correspondence

flat space limit ∼ large twist asymptotics. (4.28)

In the flat space limit the spectrum is given by the 10d conformal theory. Therefore, at

a given order in 1/λ, we expect the same large twist asymptotics for all four dimensional

operators which descend from a common 10d primary according to equation (4.24), regard-

less of their 4d quantum numbers (such as spin, degeneracy labels or su(4) representation).

This cross-channel matching of the leading twist behaviour can serve as a consistency check

on results for anomalous dimensions and will allow us to fix one more free parameter in

the λ−
5
2 [0, 1, 0] channel spectrum.

5 New results at order λ−5
2

In the previous section we have examined the spectrum of anomalous dimensions of double-

trace operators in the singlet and the [0, 1, 0] channels for the first 1/λ correction. Here, we

will turn our attention to the next order, namely λ−
5
2 , and apply the unmixing procedure

in a similar fashion as before. We will first discuss the singlet channel, for which recently

the 〈22pp〉 family of correlators was completely determined up to this order [11, 12]. In the

last part of this section, we will consider the [0, 1, 0] channel and present results for a new

family of correlators of the form 〈23(p− 1)p〉.
10We want to thank Paul Heslop for discussions on this point.
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5.1 The singlet channel spectrum

Let us start by adapting the general ansatz (3.10) to the 〈22pp〉 family of correlators:

M(1,5)
22pp(s, t) = B6

6,1M6,1
p +B6

6,2M6,2
p +B6

5M5
p +B6

4M4
p, (5.1)

where the basis of Mellin space amplitudes Mn
p (s, t) has one remaining crossing symmetry

(t↔ u) and is given by [18]

M4
p = 1, M5

p = s,

M6,1
p = s2 + t2 + u2, M6,2

p = s2,
(5.2)

and their explicit position space results are given in appendix A.11

The corresponding p-dependent singlet channel coefficients Bk
n have been shown to

obey the following form based on arguments of locality on S5 [12]:12

Bk
n =

p (p)n
(p− 2)!

Ckn(p), (5.3)

where Ckn(p) is a polynomial of degree 2(k − n) in p. It will turn out that a similar result

also holds in the [0, 1, 0] channel. These polynomials have been fully fixed in [11, 12], and

are given by

B6
4 = −p (p)4ζ5

(p− 2)!
2(p4 + 9p3 + 10p2 − 20p− 25), B6

5 =
p (p)5ζ5

(p− 2)!
2p(p− 2),

B6
6,1 =

p (p)6ζ5

(p− 2)!
, B6

6,2 = 0.

(5.4)

In order to solve the full mixing problem (i.e. determining the t− 1 anomalous dimensions

η
(5)
`,i as well as the matrix of three-point function corrections C(5)), we would need the full

〈ppqq〉 family of correlators at λ−
5
2 . However, we can circumvent this obstacle by making

an assumption about the corrections to the three-point functions, which is motivated by

results at the previous order. Recall that by explicit computations in the singlet channel

we have determined C(3) = 0. Let us make the analogous assumption here, namely

C(5) = 0. (5.5)

We do not know if the above assumption is valid in general. However we will now show

that the resulting spectrum of anomalous dimensions is in agreement with the 10d predic-

tions (4.27). The assumption (5.5) then allows us to solve the mixing problem for the λ−
5
2

anomalous dimensions using data from the known 〈22pp〉 series of correlators only.

11Note that compared to the previous order (whereM4
p contributes to spin 0 only), we find an additional

spin 2 contribution from M(6,1)
p . Hence, in order to distinguish the two spin contributions, we will use an

additional subscript in the λ−
5
2 anomalous dimension η

(5)
`,i , with i = 1, . . . , t − 1 as before and ` labelling

the different spins. We will find contributions from ` = 0, 2 in the singlet and from ` = 0, 1, 2 in the [0, 1, 0]

channel.
12The extra factor of p compared to [12] is due to a different normalisation of the external operators, see

equation (2.1) for our conventions.
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For a given half-twist t and spin `, the only unknowns are the anomalous dimensions

η
(5)
`,i , and there are t−1 of them. At the same time, we get t−1 equations from considering

the set of correlators {〈2222〉, 〈2233〉, . . . , 〈22tt〉}. To be more concrete, let us denote the

conformal block decomposition of the log(u) part of H(1,5) for the correlator 〈22pp〉 by

A
(1,5)
p,` . Employing a matrix notation for the mentioned set of t− 1 equations, we obtain

C
(0)
22K1

C
(0)
22K1

· · · C(0)
22Kt−1

C
(0)
22Kt−1

...
...

C
(0)
22K1

C
(0)
ttK1

· · · C(0)
22Kt−1

C
(0)
ttKt−1



η

(5)
`,1
...

η
(5)
`,t−1

 =


A

(1,5)
2,`
...

A
(1,5)
t,`

 . (5.6)

Since the matrix on the l.h.s. is known explicitly [9], we can invert the above equation for

a given t and readily obtain the vector of anomalous dimensions η̂
(5)
` .

Let us move on to the concrete unmixing of the singlet channel, where we start by

considering the spin 2 contribution. Using the procedure described above, we find that the

only spin 2 contribution comes from the combination up(1 + v)Dp+3p+355, and the ` = 2

anomalous dimensions η̂
(5)
2 follow the pattern predicted in equation (4.27), i.e. only the

i = 1 anomalous dimension is non-vanishing:

η̂
(5)
2 =

{
η

(5)
2,1, 0, . . . , 0

}
, (5.7)

with η
(5)
2,1 being consistent with the formula

η
(5)
2,1 = − ζ5

166320
(t− 1)2t2(t+ 1)3(t+ 2)4(t+ 3)3(t+ 4)2(t+ 5)2 · δ`,2, (5.8)

which is symmetric under t→ −t−4. In the large t limit we find the asymptotic behaviour

η
(5)
2,1 → −

ζ5

166320
t18. (5.9)

Moving on to the spin 0 contributions, the combinations D4
p, D

5
p, D

6,1
p , D6,2

p described in

equation (A.1) all contribute. Solving the unmixing equation (5.6) we find that only the

operators with degeneracy labels i = 1, 2 receive a correction, which is again in total

agreement with our 10d interpretation of the spectrum. We obtain

η̂
(5)
0 =

{
η

(5)
0,1, η

(5)
0,2, 0, . . . , 0

}
, (5.10)

with η
(5)
0,1, η

(5)
0,2 being consistent with the formulae

η
(5)
0,1 = −ζ5

(t− 1)2t3(t+ 1)4(t+ 2)3(t+ 3)2
(
4t4 + 16t3 + 14t2 − 4t+ 15

)
4320

· δ`,0,

η
(5)
0,2 = −ζ5

(t− 1)2t3(t+ 1)4(t+ 2)3(t+ 3)2
(
t4 + 4t3 + 26t2 + 44t− 30

)
166320

· δ`,0
(5.11)

which both have the symmetry t→ −t− 2. In the large t limit they behave as

η
(5)
0,1 → −

ζ5

1080
t18,

η
(5)
0,2 → −

ζ5

166320
t18,

(5.12)

and we note that η
(5)
0,2 scales precisely the same way as η

(5)
2,1, as expected from our 10d

interpretation (4.27), since they descend from the same 10d spin `10 = 2 operator.
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5.2 Spectrum constraints

We have already seen that various techniques constrain the form of the p-dependent polyno-

mials and we have also observed very nice and remarkably simple structures in the spectra

of operators at orders λ−
3
2 and λ−

5
2 . Let us now discuss an alternative approach.

We will assume that we do not know the exact form of the p-dependent coefficients B6
n

and we write general polynomial ansätze. Before proceeding, there are some constraints

that we can take into account already at this stage. Firstly, the coefficient B6
6,2 has to

vanish due to the absence of the corresponding term in the flat space limit. Moreover, for

p = 2 the coefficient B6
5 has to vanish as a consequence of crossing symmetry. The ansätze

we make for the coefficients B6
n are then:

B6
4 = ζ5

p

(p− 2)!

9∑
i=0

βip
i, B6

5 = ζ5
p

(p− 2)!
(p− 2)

7∑
i=0

γip
i,

B6
6,1 = ζ5

p

(p− 2)!

7∑
i=0

δip
i, B6

6,2 = 0.

(5.13)

Let us point out once more that we are working under the assumption that the string

corrections to the three point functions are vanishing at this order, see eq. (5.5).

We start by examining the spin 2 sector, where only the coefficient B6
6,1 contributes.

Solving the reduced unmixing equation (5.6), finding that all of the operators receive a

non-vanishing anomalous dimensions, which depend on the free parameters introduced by

B6
6,1. According to the 10d prediction described in section 4.4, we now impose that all but

the i = 1 anomalous dimension are zero, i.e. we demand that η
(5)
2,i = 0, for i = 2, . . . , t− 1.

Imposing these constraints on B6
6,1 we find

B6
6,1 = ζ5

p (p)6

120(p− 2)!
δ1, (5.14)

which is the correct form of the polynomial up to a free parameter. The formula for the

unmixed anomalous dimension is given by eq. (5.8) up to the free parameter δ1, which can

be fixed by matching to the flat space limit (determining δ1 = 120).

Having completely fixed one more polynomial out of the four in eq. (5.13), we proceed

to the spin 0 sector. As before, we unmix the spectrum of operators and we observe that

all of them receive a non-zero anomalous dimension. Following the 10d prescription, we

impose the vanishing of all anomalous dimensions η
(5)
0,i with i > 2, obtaining

B6
4 = −ζ5

p (p)4

(p− 2)!
P4(p),

B6
5 = −ζ5

p (p)5

(p− 2)!

(p− 2)

576

(
(288 + 11β1 − 6β2)p+ 2(1440 + 11β1 − 6β2)

)
,

(5.15)

where P4(p) is the fourth-order polynomial

P4(p) =
1

432

(
864p4 + 3(1152− 11β1 + 6β2)p3 − 2(85β1 − 66β2 + 36β3)p2

+ 12(11β1 − 6β2)p− 72β1

)
.

(5.16)
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We have obtained the predicted form of the coefficients B6
n, see equation (5.3), by using our

spectrum constraints, crossing symmetry and the flat-space limit, under the assumption of

a guided polynomial ansatz. The observation about the form of the polynomials will be

very useful in the study of the [0, 1, 0] channel, as we discuss in the next section.

In fact, we are able to fix one more free parameter by comparing the large t limit of

the anomalous dimensions. The leading t power of the spin 0 anomalous dimension η
(5)
0,2

depends on two free parameters, namely β1 and β2. Matching this to the large t limit of

η
(5)
2,1, which descends form the same 10d operator with `10 = 2, determines

β2 =
11

6
β1 + 240 . (5.17)

The above condition yields

B6
4 = −ζ5

p (p)4

(p− 2)!

(
2p4 + 18p3 +

220p2

3
− 40p+

β1

6
(p2 − 1)− β3

6
p2

)
,

B6
5 = ζ5

p (p)5

(p− 2)!
2p(p− 2) ,

(5.18)

which is equivalent to the result of [11] up to a redefinition of the two remaining

free parameters.

The localisation conditions of [12] also fix B6
4 and B6

5 up to two free parameters. As

observed in [12], combining the localisation constraints with the results of [11], or equiv-

alently the form (5.18), completely fixes the Mellin amplitude. If we take the localisation

constraints of [12] but do not combine them with the results of [11] then the spectrum ob-

tained is such that all operators receive a non-vanishing anomalous dimension. Imposing

the vanishing of the anomalous dimensions of operators of ten-dimensional spin `10 > 2

then also fixes the final form of the Mellin amplitude (5.4).

5.3 The 〈23(p− 1)p〉 family of correlators and the [0, 1, 0] spectrum

We have seen in the previous section that imposing the spectrum constraints, together

with matching the large t asymptotics of the anomalous dimensions according to our 10d

prescription, allows us to derive the correct p-dependent coefficients B6
n in the singlet

channel up to two free parameters. Here, we will use the same approach to study for the

first time the λ−
5
2 correction to the 〈23(p− 1)p〉 family of correlators, from which we can

extract information about the [0, 1, 0] channel anomalous dimensions, denoted by η
(5)
`,i |[0,1,0]

in the following. We parametrise this family by the same p as in 〈22pp〉, such that for p = 3

the two families coincide up to a crossing transformation.

We apply the crossing transformation exchanging the points 2 ↔ 3 (in Mellin space,

this amounts to swapping s↔ u) to the Mellin space basis functions given in equation (5.2),

we find

M4
p|[0,1,0] = 1, M5,1

p |[0,1,0] = s,

M5,2
p |[0,1,0] = u, M6,1

p |[0,1,0] = s2 + t2 + u2,

M6,2
p |[0,1,0] = s2, M6,3

p |[0,1,0] = u2,

(5.19)
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where we had to add the two additional independent polynomial basis elements M5,2
p |[0,1,0]

and M6,3
p |[0,1,0], because the correlator 〈23(p − 1)p〉 has no remaining crossing symmetry.

Their explicit position space results are given in appendix A, from which we find finite spin

contributions to spins ` = 0, 1, 2 only.

For the p-dependent coefficients B6
n,i|[0,1,0] associated with the above Mellin amplitudes

we make the ansätze

B6
4 |[0,1,0] =

1

(p− 3)!

9∑
i=0

β̃ip
i, B6

5,1|[0,1,0] =
1

(p− 3)!

8∑
i=0

γ̃ip
i,

B6
5,2|[0,1,0] =

1

(p− 3)!

8∑
i=0

δ̃ip
i, B6

6,1|[0,1,0] = ζ5
3(p− 1)7

2(p− 3)!
,

B6
6,2|[0,1,0] = 0, B6

6,3|[0,1,0] = 0,

(5.20)

where the vanishing of B6
6,2|[0,1,0] and B6

6,3|[0,1,0], and the form of B6
6,1|[0,1,0] follow from

matching against the flat space limit.

As in the singlet channel, we make the assumption of vanishing λ−
5
2 corrections to the

three-point functions, namely

C(5)|[0,1,0] = 0. (5.21)

Under this assumption, we can use the Mellin amplitudes (5.19) together with the coef-

ficients (5.20) to unmix the spectrum of [0, 1, 0] channel anomalous dimensions η
(5)
`,i |[0,1,0]

and obtain the following:

• The spin 2 operators receive a contribution from B6
6,1|[0,1,0] only and the spectrum

turns out to be of the same form as in the singlet channel discussed previously, i.e.

only the operators with i = 1 receive a correction, confirming our 10d prescription in

a non-trivial su(4) channel.

• In the spin 1 sector, we have an additional contribution from B6
5,2|[0,1,0]. Unmixing

the spectrum and imposing the vanishing of all anomalous dimensions with i > 1,

we are left with one undetermined parameter from B6
5,2|[0,1,0]. We can fix its value

by matching the large t limit of the spin 1 anomalous dimension against the spin 2

scaling, as they descend from the same 10d spin.

• Finally, we proceed by unmixing the spin 0 sector, to which all coefficients B6
n|[0,1,0]

contribute. We are using the 10d interpretation as a prediction mechanism and

we solve the spectrum constraint by imposing zeroes on the anomalous dimensions

appropriately, see eq. (4.26). Imposing these spectrum conditions, we are left with

four free parameters. Both anomalous dimensions depend on these four parameters

and have the expected large t behaviour, η
(5)
0,i |[0,1,0] → t18.

For p = 3, we can match the coefficient polynomials to the 〈2323〉 result, which

we obtain by crossing from the known 〈2233〉 correlator. This provides us with

an additional constraint for each of the non-vanishing polynomials, reducing the
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number of undetermined parameters down to two. Furthermore, we use the large t

limit to perform a cross-channel match for the i = 1 spin 0 anomalous dimension:

η
(5)
0,1|[0,0,0] ∼ η

(5)
0,1|[0,1,0] for large t, which fixes one more parameter. Therefore, we are

finally left with one undetermined parameter: β̃1.

Imposing all of the above constraints, the coefficients B6
n|[0,1,0] turn out to be

B6
4 |[0,1,0] =

(p− 1)5ζ5

36(p− 3)!
P (p), B6

5,1|[0,1,0] =
3(p− 1)6ζ5

(p− 3)!
p(p− 3),

B6
5,2|[0,1,0] =

3(p− 1)6ζ5

(p− 3)!
p, B6

6,1|[0,1,0] =
3(p− 1)7ζ5

2(p− 3)!
,

B6
6,2|[0,1,0] = 0, B6

6,3|[0,1,0] = 0,

(5.22)

with P (p) given by

P (p) = −18p
(
6p3 + 60p2 + 41p− 167

)
+ (p− 3)(p+ 2)β̃1. (5.23)

Note that the above coefficients are consistent with the additional crossing symmetry of

the 〈2334〉 correlator: at p = 4 we find that B6
5,1|[0,1,0] = B6

5,2|[0,1,0], which we did not use

as an input and hence serves as a consistency check.

We observe that in this case, similarly to the singlet channel formula (5.3), the coeffi-

cients Bk
n|[0,1,0] are consistent with the general form

Bk
n|[0,1,0] =

(p− 1)n+1

(p− 3)!
Ckn, (5.24)

where Ckn is a polynomial in p of degree 2(k − n). This is the analogous result of locality

on S5 for the 〈23(p− 1)p〉 correlators considered here.

For the [0, 1, 0] anomalous dimensions, the constraints described above give results

consistent with

η
(5)
2,1|[0,1,0] = − ζ5

166320
(t− 1)2t2(t+ 1)(t+ 2)4(t+ 3)4(t+ 4)(t+ 5)2(t+ 6)2 · δ`,2,

η
(5)
1,1|[0,1,0] = − ζ5

332640
(t− 1)2t2(t+ 1)2(t+ 2)4(t+ 3)2(t+ 4)2(t+ 5)2

(
2t2 + 8t+ 1

)
· δ`,1,

η
(5)
0,1|[0,1,0] = − ζ5

3265920
(t− 1)2t3(t+ 1)2(t+ 2)2(t+ 3)3(t+ 4)2 ·Q1(t) · δ`,0,

η
(5)
0,2|[0,1,0] = − ζ5

17962560
(t− 1)2t3(t+ 1)2(t+ 2)2(t+ 3)3(t+ 4)2 ·Q2(t) · δ`,0, (5.25)

where Q1(t) and Q2(t) are the fourth order polynomials

Q1(t) = 18
(
168t4 + 1008t3 + 1403t2 − 327t− 380

)
+ 5(t− 2)(t+ 5)β̃1,

Q2(t) = 18
(
6t4 + 36t3 + 206t2 + 456t+ 205

)
− (2t+ 1)(2t+ 5)β̃1.

(5.26)

Let us at this point make a remark on the symmetries of the anomalous dimensions: firstly,

η
(5)
2,1|[0,1,0] is symmetric under t → −t − 5. The spin 1 anomalous dimension, η

(5)
1,1|[0,1,0],
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is symmetric under t → −t − 4 and finally the spin 0 formulae have a symmetry under

t→ −t−3, which is in complete agreement with the symmetry the supergravity anomalous

dimension was found to obey, see equation (4.16).

We end this section by commenting on the validity of our results for the 〈23(p− 1)p〉
family of correlators given in (5.22). In the singlet channel, the coefficients B6

k for the

correlators 〈22pp〉 were derived using constraints obtained by matching the tree-level and

one-loop flat space amplitudes [11] and localisation [12], respectively. In contrast, in the

[0, 1, 0] channel, for which no localisation constraints currently exist, we used three different

sets of constraints: matching against the tree-level flat space amplitude, matching known

results at p = 3 as well as our spectrum constraints, which are based on the assumption

that C(5)|[0,1,0] = 0. Even though we can not give a proof of this assumption, we believe

that our final results for the 〈23(p − 1)p〉 correlators are correct in any case, as they are

independent of the precise form of the spectrum. In the case that C(5)|[0,1,0] is non-zero,

we expect a modification in the subleading large t behaviour of the anomalous dimensions

η
(5)
`,i |[0,1,0]. However, the leading large t asymptotics would not change because it is fully

determined by the flat space limit, as argued above equation (4.28).

6 Conclusions

Let us conclude with mentioning some open questions and possible future directions:

• We have seen that the first 1/λ correction to the three-point functions in the singlet

and [0, 1, 0] channel vanish, i.e. C(3)|[0,0,0] = C(3)|[0,1,0] = 0. We expect this result to

extend to all su(4) channels. These careful cancellations in the unmixing equations

are highly non-trivial and it would be fascinating to get a better understanding of

this surprising result from a purely CFT point of view. It would also be interesting

to test our working assumption of the vanishing at higher orders in 1/λ.

• As already mentioned before, our result (3.22) for the order λ−
3
2 correlator with

arbitrary external charges provides the necessary data to attack the general mixing

problem for any su(4) channel [a, b, a]. This general analysis can be carried out along

the lines of [8], where the corresponding supergravity mixing problem was resolved.

Using our 10 dimensional interpretation of the spectrum, we expect only the spin 0

anomalous dimension in the [0, b, 0] channel with degeneracy labels (i, r) = (1, 0) to

be non-vanishing. We hope to report on this in the near future.

• We would like to consider higher 1/λ corrections and investigate how constraining our

spectrum conditions are. In particular, it would be interesting to combine the spec-

trum conditions with constraints obtained from extending other methods to higher

orders, for example results from supersymmetric localisation [12] or matching with

one-loop string amplitudes in the bulk-point limit [11].

• We believe that the full implications of the observed 10 dimensional conformal sym-

metry of supergravity amplitudes [13] are still not fully explored. The observed
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pattern in the string corrections to the spectrum hints at their common 10 dimen-

sional origin, which we conjecture to persist to all orders in 1/λ. An additional hint

comes from considering the spectrum in a large twist limit, where anomalous di-

mensions descending from the same 10d operator share the same leading large twist

asymptotics. It would be very interesting to investigate this connection further.

• We observed that the λ−
3
2 and λ−

5
2 anomalous dimensions are invariant under the

discrete symmetry t→ −t−`−2a−b−2, a symmetry which is also present in the su-

pergravity anomalous dimensions η(0). We would like to gain a better understanding

of the origin and implications of this symmetry.
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A D-representation of Mellin basis

Here we collect the position space results Dn
p corresponding to the singlet and [0, 1, 0]

channel Mellin amplitudes Mn
p associated with the two families of correlators we study.

For the singlet channel, we find have

D4
p = upDp+2,p+2,4,4(u, v),

D5
p = 2up

(
2Dp+2,p+2,4,4(u, v)−Dp+2,p+2,5,5(u, v)

)
,

D6,1
p = 2up

(
2(1 + u+ v)Dp+3,p+3,5,5(u, v)− (4 + 4p− p2)Dp+2,p+2,4,4(u, v)

)
,

D6,2
p = 4up

(
Dp+2,p+2,6,6(u, v)− 5Dp+2,p+2,5,5(u, v) + 4Dp+2,p+2,4,4(u, v)

)
,

(A.1)

where we used various identities amongst D-functions to simplify the results.13

As expected, we find that the Dn
p with n > 1, corresponding to polynomial Mellin am-

plitudes, give only finite spin contributions. Note that the D-functions appearing in (A.1)

can be classified according to their highest spin contributions, and we find they fall into

the three families

upDp+2,p+2,n,n → spin 0,

up+1Dp+3,p+3,n,n → spin 0,

(1 + v)upDp+3,p+3,n,n → spin 0,2.

(A.2)

For the position space results Dn
p |[0,1,0] corresponding to the [0, 1, 0] channel Mellin ampli-

tudes Mn
p |[0,1,0] we obtain

D4
p|[0,1,0] = up−1Dp+1,p+2,4,5(u, v),

D5,1
p |[0,1,0] = up−1

(
5Dp+1,p+2,4,5(u, v)− 2Dp+1,p+2,5,6(u, v)

)
,

13See for example [25] for a useful collection of D-identities.
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D5,2
p |[0,1,0] = up−1

(
(p− 7)Dp+1,p+2,4,5(u, v) + 2Dp+1,p+2,5,6(u, v) + 2Dp+2,p+2,4,6(u, v)

)
,

D6,1
p |[0,1,0] = 2up−1

((
p2 − 5p+ 39

)
Dp+1,p+2,4,5(u, v) + 2(p− 14)Dp+1,p+2,5,6(u, v)

+ 4Dp+1,p+2,6,7(u, v)− 22Dp+2,p+2,4,6(u, v) + 4Dp+2,p+2,5,7(u, v)

+4Dp+3,p+2,4,7(u, v)
)
,

D6,2
p |[0,1,0] = up−1

(
25Dp+1,p+2,4,5(u, v)− 24Dp+1,p+2,5,6(u, v) + 4Dp+1,p+2,6,7

)
,

D6,3
p |[0,1,0] = up−1

(
(p− 7)2Dp+1,p+2,4,5(u, v) + 4(p− 8)Dp+1,p+2,5,6(u, v) + 4Dp+1,p+2,6,7

+4(p− 8)Dp+2,p+2,4,6(u, v) + 8Dp+2,p+2,5,7(u, v) + 4Dp+3,p+2,4,7

)
.

(A.3)

As in the singlet channel we find that we have finite spin contributions only, and we observe

that the above D-functions fall into the three families:

up−1Dp+1,p+2,n,n+1 → spin 0,

up−1Dp+2,p+2,n,n+2 → spin 0,1,

up−1Dp+3,p+2,n,n+3 → spin 0,1,2.

(A.4)
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