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1 Introduction, results and synopsis

Whether or not asymptotically de Sitter spacetime can exist as a solution of string theory

has been one of the fundamental conundrums in string theory ever since the dramatic

discovery of dark energy in the late 1990s [1, 2]. This question is still considered open [3, 4],

and the interest in this hard and fundamental issue has been reignited recently [5, 6].

Within the standard low-energy limit of string theory, we focus on the effective action

for Einstein’s gravity (we concentrate on the observed 4-dimensional case) in the familiar

format (we adopt the “mostly positive” metric signature throughout):

Seff =

∫
d4x
√
g

(
− 1

8πG
Λ +

1

16πG
R+ aRµνR

µν + bR2 + cRµνρσR
µνρσ + . . .

)
. (1.1)

The coefficients a, b, c as well as the omitted metric/curvature terms are completely de-

termined by the renormalization of the underlying worldsheet theory [7, 8], and the usual

formulation of (target) spacetime in string theory, identified with the vev’s of certain “co-

ordinate” quantum fields in the underlying worldsheet field theory [9–11]. Also omitted

from (1.1) are “matter” terms, the relevant of which are discussed below.
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In particular, we will focus on a class of models arising from type IIB/F-theory, the

so called ‘axilaton’ models1 [12–17]: (1) evade the oft-mentioned no-go theorem2 [19–22],

(2) form a discretuum owing to their stringy SL(2;Z) monodromy, (3) the overall length-

scale ` is determined by dimensional transmutation, (4) require gs∼O(1), with an effective

incorporation of S-duality, and (5) relate two classes of standard supersymmetric string

theory solutions [23, 24] and [25], and a third, novel class. This resonates with some

recent assessments [26], and some features of the recent efforts [27, 28]; it reminds of the

“T-fold” constructions [29–32], and qualifies the standard low-energy effective theory limit

description as encouraging but incomplete: more of the stringy degrees of freedom must

be included, as also advocated recently in the phase-space approach [33–41], and also in

the different, earlier double field theory approach [42–46]. These characteristics jointly

imply that a more accurate description of de Sitter spacetime in string theory can only be

achieved beyond the standard low-energy effective field theory limit.

Section 2 reviews the ‘axilaton’ models as an iterative deformation of Minkowski su-

persymmetric string (and F-)theory compactifications into de Sitter solutions with cosmo-

logically broken supersymmetry. Focusing on the ‘axilaton’ background in the F-theory

formulation of type-IIB string theory [23], we show in section 3 that the above-listed prop-

erties (2)–(3) imply the various parameters in these models to be stable. The key re-

sults (4)–(5) are discussed in section 4.

In section 5, we discuss analogous constructions driven by the dynamics of compactifi-

cation moduli, which then resemble the T-folds [29–32] wherein (T-dual) mirror-symmetry

is involved in patching local charts. The ‘axilaton’ models involve S-duality in a simi-

lar vein, so that these two construction types combine easily and define a very general

class of models. Also, the Minkowski→ de Sitter metric deformation correlates with the

desingularization of the total spacetime in ‘axilaton’ models, implying (if tentatively) that

3+1-dimensional de Sitter spacetime occurs generically within string theory, via so-called

exceptional subspaces [47].

2 Non-holomorphic deformations in F-theory

Our ‘axilaton’ models are a deformation of the stringy cosmic string, and as such are effec-

tive stringy solutions [48]. They are naturally equipped with the generalized geometric (and

non-commutatively doubled) spacetime structure discussed recently in [33–41], which is a

unique characteristic of (even effective) string theory. As we will show, no such generalized

geometric stringy solution has moduli: each is stabile by virtue of a (Coulomb/QCD-like)

“dimensional transmutation” mechanism. We emphasize that this is not the usual mech-

anism for understanding the emergence of (metastable) de Sitter space in string theory,

where one invokes an effective potential that explicitly shows the possible emergence of

1The admittedly playful name is a reminder that the deformation family of the spacetime varying string

vacua of refs. [12–17] are driven by the background values of the axion-dilaton system and their axial

SL(2;Z) monodromy in a transversal 2-dimensional plane Y 2, around the non-compact spacetime, W . The

succinct name also saves us from repeated circumlocutions that perforce include this string of references.
2For other examples that evade the no-go theorem, see [18].
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a moduli-free metastable de Sitter solution. (A good example of a generalized geometric

solution with such features is based on asymmmetric orientifolds, as discussed in [49, 50]).

However, the non-commutatively doubled spacetime structure of our solution allows for a

dual interpretation, in analogy with the discussion of confinement in QCD in terms of dual,

magnetic, variables [51, 52]: this enables, in principle, a construction of an effective poten-

tial and the canonical discussion of moduli stabilization in terms of such an effective poten-

tial, written however in terms of dual spacetime variables; we defer this to a separate study.

In particular, the ‘axilaton’ models were developed [12–17] as an iterated, non-holo-

morphic deformation (and partial decompactification) of standard string compactifications,

focusing for simplicity on the special case driven by the axion-dilaton system in the F-theory

description of type-IIB string theory [23]. These models turn out to relate well-known F-

theory configurations, imply a dependence on additional stringy degrees of freedom, and

are related to the recently uncovered non-commutatively doubled phase-space formulation

of string theory [33–41]. Furthermore, this sets the stage for an improved understanding of

the resulting de Sitter spacetimes, to which we will turn in the latter sections of the paper.

First however, we provide a roadmap to this iterative and ultimately non-holomorphic

deformation and specify the notation, setting the stage for deriving and discussing the

above-itemized key results in sections 3 and 4, and generalizations in section 5.

2.1 A roadmap

The ‘axilaton’ deformation family of models is constructed by starting with an F-theoretic

type-IIB string theory spacetime, W 3,1 × Y 6(×T 2), where the complex structure of the

zero-size “hidden” T 2 fiber of F-theory is identified with the axion-dilaton τ
def
= α+ ie−Φ

modulus [23].3

1. Deform this à la stringy cosmic strings [53, 54] into4 W 3,1 o Y 2 × Y 4, where:

(a) τ and the observable spacetime W 3,1 (via warped metric) vary over Y 2,
(b) Y 2 → S1 ×Z , with the polar parametrization reiθ = `ez+iθ,
(c) Y 4 = K3 or T 4 preserves supersymmetry.5

While τ (and the “hidden” T 2) is holomorphic over Y 2≈C1 = (P1 r {∞}), W 3,1
(zi,θi)

are cosmic 3-branes at special isolated points (zi, θi) ∈ Y 2 [53, 54].

2. Deform τ to vary non-holomorphically, only over S1⊂Y 2, while the metric varies

only over Z ⊂Y 2, — and turns complex beyond z0, which locates the circular naked

singularity. As the proper distance to both ends of z ∈Z = (− sgn(z0)·∞, z0) is infi-

nite, Z ≈ R1 always: Y 2≈C1 has been punctured into S1×Z and the cosmic branes

of step 1 in the above roadmap have effectively coalesced to z → z0 and − sgn(z0)·∞.

3. Cross-patching the two distinct solutions, Z+ = (−∞, z0] for z0 > 0 and Z−= [z0,∞
)

for z0 < 0, at z= 0 into two annuli/cylinders: one with the naked singularity at the

ends of Z ≈ R1 and one without, but both with extra, δ(z)-localized matter required

by matching conditions [13].

3As usual, only the complex structure of the T 2 is relevant, with the volume having been shrunk to zero.
4Here, we borrow the group-theoretic symbol “o” to denote that W 3,1 varies (is fibered) over Y 2.
5It is straightforward to also fiber Y 4 over Y 2, thus relating the ‘axilaton’ models to the virtually

ubiquitous K3- and elliptic fibration models; see section 5.
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δ(z)-matter

+∞

z0 > 0

−∞
z0 < 0

+∞

δ(z)-matter

z0z0

z0z0

naked singularity at z0> 0

naked singularity at z0< 0

Figure 1. Plotting (vertically) the proper distance against (radially) the circumference in the

horizontal plane; the two simple solutions (center), patched solutions (left and right).

4. Deforming the W 3,1
z=0 metric to de Sitter (Λb > 0) removes the spacetime curvature

singularities at z0 ∈ Z of the Minkowski solution [12, 13].

As noted in steps 2 and 3 of the above roadmap, proper distance to both ends of z ∈
(− sgn(z0)∞, z0) is infinite, as is the proper circumference at z0; see figure 1. Therefore, all

versions of Y 2 in the ‘axilaton’ configurations are diffeomorphic to annuli/cylinders, which

are non-compact Calabi-Yau 1-folds.

Warping. While D = 6 is the phenomenologically relevant case, where W 3,1
z=0 is D−2 =

3+1-dimensional, working in a general D-dimensional background highlights the inherent

D-dependence. Having fixed Y 4 = K3 or T 4, we omit this factor until section 5.

The codimension-2 solution W 3,1 o (S1×Z ) of the final step 4 in the above roadmap,

has a positive cosmological constant, Λb, along W 3,1, and the warped metric is:

ds2 = A2(z) ḡab dxadxb + `2B2(z) (dz2 + dθ2) , (2.1a)

ḡab dxadxb = −dx2
0 + e2

√
Λb x0 (dx2

1 + . . .+ dx2
D−3) , (2.1b)

where z := log(r/`) ∈ Z [16].

The modulus. The two explicit solutions for τ satisfying the above separation of vari-

ables [12, 13]:

τI(θ) = b0 + i g−1
s eω(θ−θ0), (2.2a)

τII(θ) =
(
b0 ± g−1

s tanh[ω(θ−θ0)]
)
± i g−1

s sech[ω(θ−θ0)] (2.2b)

are anisotropic and aperiodic over |θ| ≤ π, but exhibit a non-trivial SL(2;Z) monodromy for

specific choices in the effective parameter space (b0, ω, gs); the θ0-dependence in (2.2) may

be absorbed by suitably redefining gs [12]. With the Teichmüller metric Gτ τ̄ = −1/(τ−τ̄)2,

the Gτ τ̄ |∂τ |2 addition to the action (1.1) is SL(2;Z)-invariant.

The metric. With the metric (2.1a) axially symmetric while τ is independent of the

radial distance from the cosmic brane (2.2), the Einstein equation simplifies to:

Rµν = Gτ τ̄ ∂µτ∂ν τ̄
def
= T̃µν = diag[0, · · ·, 0, (ω/2`)2] , with Gτ τ̄ = − 1

(τ−τ̄)2
. (2.3)
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Thereby, although the total spacetime W 3,1 oY 2×Y 4(×T 2) in fact does admit a Ricci-

flat metric, the background ‘axilaton’ configuration (2.2) drives the spacetime metric to

deform away from the Ricci-flat choice. This deviation from Ricci-flatness is clearly charac-

terized (2.3) by the anisotropy ω ∈ R (so ω2 > 0) that induces supersymmetry breaking [12],

and by the characteristic (transversal) length scale ` in Y 2.

For ω 6= 0 (τ 6= const.), one has a perturbative, analytic solution:6

A(z) = Z(z)

(
1− ω2z2

0(D−3)

24(D−1)(D−2)
Z(z)2 +O(ω4)

)
, (2.4a)

B(z) =
1

`z0

√
Λb

(
1− ω2z2

0

8(D−1)
Z(z)2 +O(ω4)

)
, (2.4b)

where Z(z)
def
= 1−z/z0 for z0 > 0. Spacetime is asymptotically flat approaching the horizon

z= z0 (at infinite proper distance) [16], in agreement with the behavior of Rindler space [57].

In sharp contrast, the Λb = 0 Minkowski solution [12, 13] is radically different:

Ã(z) = Z(z)
1

(D−2) , B̃(z) = Z(z)
− (D−3)

2(D−2) e−
1
2

(Z(z)−1)[ξ(Z(z)+1)+2] , (2.5)

and exhibits a naked singularity at z= z0, beyond which the metric becomes complex.

The parameter ξ counts cosmic branes in units of ± 1
12 [53], and was set to ξ= − 1 in

ref. [16]. The radical difference between the Λb 6= 0 de Sitter solutions (2.4) and the Λb = 0

Minkowski solution (2.5) indicates that this is not at all a straightforward Λb → 0 limit,

reminding of the radical metric changes in the “blowup” surgery [58].

2.2 Phenomenology

General case. Whereas Λb > 0 (i.e., ω2 > 0) desingularizes the metric (2.1) with (2.4),

eq. (2.5) is still a good approximation to eq. (2.4) away from z0.7 In particular, by com-

paring eq. (2.4) with eq. (2.5) close to the core one can show that [12, 16]:

z0 = − h
h′

∣∣∣∣
z=0

, ξ =

(
h′′

2h′
− ω2h

8h′

)∣∣∣∣
z=0

, ω2
0

def
= 8ξ/z0, (2.6a)

` = Λ
−1/2
b

√√√√ h′′h
− (D−4)

(D−2)

(D − 2)(D − 3)

∣∣∣∣
z=0

, h(z)
def
= A(z)D−2 = (1−z/z0)D−2. (2.6b)

That is, given a smooth solution defined by (2.4) and parameterized in terms of (z0, ω,Λb),

this solution close to z = 0 can be interpreted as a cosmic brane solution with parameters

(z0, ξ, `) determined by the (z0, ω,Λb) through eqs. (2.6). Alternatively, we can solve for Λb,

Λb =

(
ω2 − ω2

0A
2|z=0

)
4`2(D − 2)(D − 3)

def
=

∆ω2

4`2(D − 2)(D − 3)
. (2.7)

The anisotropy, ω, determines the stress tensor (2.3) for the de Sitter (Λb> 0) solution,

and approaches the anisotropy, ω0, at z→ 0, of the Minkowski (Λb = 0) cosmic brane solu-

tion. The cosmological constant is thus directly related to the non-trivial variation of the

6This solution is of the same form as that discussed by Gregory [55, 56] for the U(1) vortex solution.
7This was first shown by Gregory [55, 56] and later realized in the present context in ref. [16].
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modulus τ — and thereby the string coupling constant — as a function of θ! This gives a

very non-trivial relation between the stringy moduli, and hence string theory itself, and a

positive Λb. Furthermore, Λb > 0 is equivalent8 to ω2 > ω2
0, so that ω2 = 0 also implies that

ω2
0 = 0. The latter being a necessary condition for restoring supersymmetry establishes the

important relation between supersymmetry breaking and a positive cosmological constant.

Finally, the Newton constant, G
(D−2)
N = M

−(D−4)
D−2 , in D−2 dimensions and the volume

of the transverse space, Y 2, are [16]:

G
(D−2)
N = M

−(D−2)
D Vol(Y 2)−1 , and Vol(Y 2) ∼ π

D−3

`√
Λb

. (2.8)

The volume of the transverse space, Vol(Y 2), has been explicitly shown to be finite but

large in spite of its non-compactness and the infinite proper distance to z0 [16]; see also

eq. (3.3). This factor drives the exponentially large MD−2/MD hierarchy, and was then

shown [16] to imply the following relation,

ΛD−2 ∼
(

π

D−3

)2

M D−2
D−2 (`MD−2)2

(
MD

MD−2

)2D−4

, (2.9)

where ΛD−2 = Λb/G
(D−2)
N is the energy density in D−2 dimensions.

Four dimensions. Employing the phenomenologically relevant case of D= 6, recall that

` is the characteristic Vol(Y 2)-related size of the cosmic brane. Whereas no concrete

physical mechanism is known to determine this scale, we will return to this question below.

However, should ` be stabilized by a longitudinal 4-dimensional physics mechanism,9 then

` ∼M−1
4 and (up to factors of O(1))

Λ4 ∼M 4
4

(
M6

M4

)8

. (2.10)

The original scenario of ref. [16] with D= 6 then applies, wherein the 10-dimensional space-

time of the Type IIB string theory was first compactified on a 4-dimensional supersymmetry

preserving space,10 Y 4, of characteristic size M−1
10 = M−1

6 ∼ (10 TeV)−1 ∼ 10−19 m. The

cosmic brane of ref. [16] then describes a 3+1-dimensional de Sitter spacetime, with the

characteristic scale M4 ∼ 1019 GeV. Furthermore, L
def
= Λ

−1/2
b ∼ 1041 GeV−1 ∼ 1025 m,

provides a natural scale which coincides with the Hubble radius.

Conversely, although the generic ‘axilaton’ models break supersymmetry, their param-

eter space contains the ω→ 0 supersymmetric and well understood limits [23, 24] and [25]

(see (4.7), below), wherein(
Λb ∼M4

P (Msusy/MP )8
)
→ 0, i.e., Λb,Msusy → 0. (2.11)

The ‘axilaton’ deformation family of models are thus explicitly constructed as

supersymmetry-breaking and positive (de Sitter) cosmological constant inducing defor-

mations of the familiar supersymmetric (and Minkowski) configurations in F-theory.

8That Λb must be positive follows directly from the defining equation for the warp factor A(z) [16].
9There exist both field and string theory arguments of this type [59–61]; see also below.

10All remaining supersymmetry will be broken by the cosmic brane solution [12].
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3 The main point

Given the above properties of our solution, the main new point we want to make regard-

ing the existence of de Sitter backgrounds in string theory is as follows: string theory

has purely stringy degrees of freedom (for example, the difference between the left and

right string modes) not captured by the usual effective field theory/spacetime description

used in the standard discussions, based on string compactifications, regarding the problem

of de Sitter space in string theory [62–64]. Such purely stringy (and, in general, chiral

and non-commutative) degrees of freedom are captured in a non-commutative phase-space

formulation of string theory [33–41]. In that formulation, we can integrate over such

dual/“momentum” stringy degrees of freedom in order to generate an effective spacetime

description. This differs from the usual effective field theory approach and reproduces to

lowest order the sequestering mechanism [65], as reported elsewhere [66]. Our proposal is

that this procedure will naturally lead to an effective de Sitter background, by inducing

an effective dilaton (captured by the above ωθ-dependence) background which corresponds

to the dilaton profile of our solution. This effective dilaton profile is anisotropic, and it is

precisely the degree of anisotropy, ω, that generates a positive cosmological constant of our

solution.

The resulting de Sitter background can be understood as a geometric deformation re-

lating different well understood supersymmetric backgrounds of F-theory. (In addition, as

we argue below, the resulting de Sitter space can be also understood as a blow-up resolution

of a singular Minkowski limit.) The above see-saw like relation between the cosmological

constant scale and the scale of gravity and the scale of particle physics/supersymmetry

breaking, is set by the requirements of a stringy SL(2;Z) monodromy (as we shall argue

in what follows) and in particular the S-duality part of it, by viewing our solution as an

S-fold11 in the context of the recent phase-space formulation of string theory [33–41] (and

earlier, in the double field theory approach [42–46]). In this framework, it is not possible

to derive a standard effective potential for some fields/moduli that produces vacuum ex-

pectation values for those fields. (Usually the vacuum is of a supersymmetric (AdS) kind

and the de Sitter solution is a long lived excitation around that vacuum produced by some

stringy configurations, such as brane-antibrane systems, and stabilized by fluxes [62–64]).

In our proposal, we have, in principle, a cosmological de Sitter “blow-up” of a singular

Minkowski background and a cosmologically induced supersymmetry breaking, and the

hidden phase-space formulation operating behind the scenes and relating various energy

scales via a natural see-saw like formula.

Viability. The ‘axilaton’ models (2.1) evade the oft-quoted no-go theorem [20, section 6]

(see also ref. [21, pp. 480–482] or the recent exhaustive review [22, section 12.5]) primar-

ily by being non-compact: following the stringy cosmic strings analysis [53, 54], we may

compactify Y 2 by including the limit-points z → ±∞, and reexamine the behavior of the

warp-factors over this now compact “internal” space. In particular, neither the Λb> 0 warp

11The notion of S-folds was originally coined by Hull in [31] being the S-duality analog of the T-folds [29,

30, 32].
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factors (2.4) nor their Λb = 0 variant (2.5) vanish at z → ±∞ as would be required of these

singularities in a compactification of (Y 2 ∪ {±∞}) ≈ P1 [20, section 6.2]. In addition,

ref. [20, section 6.2] emphasizes the importance of higher-curvature terms in (1.1) — which

are known to enable the evasion of the no-go theorem. It would be clearly desirable to

determine their effect on the ‘axilaton’ deformation family of models, but this remains an

open question for now. Similarly, we defer the precise F-theory/heterotic dual of these con-

siderations, and expected evasion of the dual no-go results [67, 68] to a subsequent effort.12

In turn, this family of models are driven by a highly nontrivial source: the energy-

momentum tensor of the τ = τ(θ) configurations (2.2) is non-zero and forces the metric (2.1)

to not be Ricci-flat (2.3). In particular, the axion-dilaton configuration (2.2) provides an

exotic matter background, since its energy-momentum tensor is indefinite over Y 2 [13]:

[Tµν ] = [T (r) ηab ]⊕ diag

[
−1

8
ω2r−2,

1

8
ω2`−2

]
,

T (r) = −1

8
ω2`−2

[
1+

1

8
ω2 log(r/`)

]
(r/`)2+ 1

8
ω2 log(r/`)

(3.1)

This violates several of the energy positivity conditions (but none within the brane-world

W 3,1), reminding of the standard characteristics of traversable Lorentzian wormholes [69].

3.1 Stability

Monodromy and discretuum. For the axion-dilaton configurations (2.2) to specify

stringy rather than merely supergravity solutions, their parameters b0, ω, gs must be re-

stricted so that τ = τ(θ) would exhibit an SL(2;Z)-monodromy rather than a continuous

SL(2;R)-transformation. Thus furnishing discrete SL(2;Z)-orbits and since dim SL(2) = 3,

the 3-parameter family of choices (2.2) τ = τ(θ; b0, ω, gs) is naturally expected to form

a discretuum. Since the axion-dilaton system naturally couples to fluxes, the well-known

eponymous string theory results [70–72] corroborate the discreteness of the ‘axilaton’ con-

figurations (2.2), as do the general string theory expectations [73, 74]. While we are not

aware of a rigorous proof, this is strongly supported by the results of refs. [75, 76]. This

implies that most of the continuous (b0, ω, gs)-parameter space is the non-stringy “swamp-

land” — except for the discrete subset of SL(2;Z)-isolated points within it.

With this in mind, the ‘axilaton’ family of models can vary continuously only via the

metric parameters z0 and ` (i.e., Λb), which are independent of b0, ω, gs. Eqs. (2.4), (2.6)

and the Y 2-geometry that they parametrize (see figure 1) and the fact that z0 is at infinite

proper distance [13] jointly imply that the transversal length-scale ` in Y 2 remains the

only continuously variable physically relevant parameter. As discussed above, in justify-

ing (2.10), no definitive physical mechanism is known for stabilizing `, although there do

exist arguments to this end both in field and in string theory [59–61]. This already provides

the ‘axilaton’ models with an unexpected and high degree of stability.

12These standard no-go theorems follow within the context of supergravity and the stringy α′ corrections.

We will give a general comment about how the non-commutative phase-space formulation of string theory

goes around this standard set-up at the end of section 5.
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Finally, compactifying Type IIB theory on some supersymmetry-preserving space Y 4

does involve its various moduli, but the choice of Y 4 and stabilization of its moduli is

beyond our present scope. In turn, there is no modulus associated with the transverse

space Y 2 other than its volume-related size, `, to which we return shortly. The non-

compact solutions for Y 2 depicted in figure 1 are bi-holomorphic to either C∗ (far left),

a punctured disk with a boundary (middle) or to an annulus with boundaries (far right);

each of those has an essentially unique complex structure and so can have no complex

structure moduli.13 In fact, even the (re)compactified version of Y 2 → P1 has no complex

structure deformation, and is characterized only by its volume-related size, `.

RG-flow and dimensional transmutation. In fact, the above fairly geometric presen-

tation of the construction implies more: it also indicates that the parameter ` is determined

dynamically, by a variant of the well-known “dimensional transmutation” phenomenon.

To this end, we reiterate that ` is a “free” parameter (turning up as an “integration

constant” in solving a differential equation), and is necessary on dimensional grounds in

the codimension-2 solution (2.1). It characterizes the behavior of the metric (2.1a), its

curvature (2.3), and its value sets the volume-scale for the transverse plane Y 2. Both

qualitatively and computationally, this emergence of ` is analogous to the well-understood

emergence of ΛQCD, which is determined by the Landau pole in the αQCD(q) coupling con-

stant. Although the Landau pole of αQCD(q) is in momentum space, whereas the naked

singularity (in the ‘axilaton’ configurations and so for the dilaton field) is located in posi-

tional space (Y 2), the principle and the mechanism are the same.

This analogy is indeed justified as it stems from the underlying fact that the Y 2-metric

(wherein ` locates the naked singularity) is determined by the Einstein equation — which

is by Friedan’s argument [7, 8] the (Gell-Mann-Low) β-function in the 1+1-dimensional

worldsheet QFT:

βµν(g/T ) = − ε
T
gµν +Rµν +

1

2
TRµρσκRν

ρσκ +O(T 2). (3.2)

where the temperature T is identified with α′ of string theory, and ε parametrizes di-

mensional regularization, and the metric and its curvature tensors explicitly depend on

`; see (2.1a) and (2.3). This has been extended canonically to include other target-

spacetime fields (dilaton, axion, and fermions) [77–80]; see also [81–83]. Their inclusion

effectively modifies the Rµν-term in (3.2) so as to include the appropriate “Ricci-form”

energy-momentum tensor T̃µν , which is for the ‘axilaton’ models given in (2.3) and explic-

itly includes (ω/2`)2.

Since ω is the discrete SL(2,Z)-anisotropy of the ‘axilaton’ configuration (2.2), the

numerical value of the only remaining parameter, `, must be determined dynamically, as

a renormalization fixed point, and may only be estimated by perturbative computations.

Thus, instead of seeking a potential for a modulus to be stabilized and to determine ` as

a vev, akin to the Higgs mechanism, the above facts establish an analogue with the QCD

route to the QFT topic of “hidden symmetry” and associated dynamical stabilization of `:

13We should like to thank Paul Green for discussion on this matter.
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the concrete value of ` is determined by the vanishing of βµν(g/T ), where higher-T (i.e.,

α′) corrections correct any estimate.

Combined effect. On the geometric side, ` is determined (again, up to next order renor-

malization) simultaneously by both the area (volume) and the curvature of the transverse

space Y 2, taken from the explicit formula [15, eqs. (14)–(15)]:

MD−4
D−2 = MD−2

D 2π`2 |z0|−
D−1

2(D−2) ×

{
Γ
(

D−3
2(D−2) ; 1

z0

)
for z0 > 0,

γ
(

D−3
2(D−2) ; 1

z0

)
for z0 < 0,

(3.3)

where Γ(· · ·; 1
z0

) and γ(· · ·; 1
z0

) are the “big” and “little” complementary incomplete gamma-

functions. Although the proper distance to the naked singularity is infinite and so `-

independent, the proper area is finite and scales with `2. In turn, ` also appears in the stress-

energy-momentum tensor of the ‘axilaton’ system, and so at once characterizes both the

(Ricci) curvature of Y 2 and the (‘axilaton’) matter distribution that causes this curvature.

Finally, note that the value of Λ scales by the inverse of `2, rather than the size of the 3+1

dimensional brane-world. In particular, because ` is the fundamental scale introduced by

dimensional transmutation in z := log(r/`), as is familiar from the logarithmic behavior of

the Green’s function in codimension-2 solutions, this allows for the inverse relation between

the energy scale associated with Λ and the scale associated with GN . That is the underlying

reason for the emergence of the see-saw relation (2.10) between the scale associated with

Λ and the 3+1 dimensional Planck scale.

The above-outlined analogy between ` in position space and ΛQCD in momentum space,

as well as the dual determination of both the area of Y 2 and its (Ricci) curvature by `

reflects the inherent S-duality of the ‘axilaton’ configuration, strong-dilaton coupling, and

therefore a need to go beyond the standard and familiar EFT analysis. Such an approach

has indeed been advanced recently, based on the inherently non-commutative phase-space

approach [33–41] and relying on results in non-commutative QFT. This approach is nat-

urally implemented in the case of our solution which is a deformation of a stringy cosmic

string, and which can be therefore understood as an effective string theory (along the lines

suggested by Polchinski and Strominger in [48]). The effective world-sheet description of

our solution can be thus, to leading order, framed using the formalism of [33–41], which in

turn leads to an effective non-commutative description of our solution in terms of doubled

and generalized-geometric phase-space data. This then affords a complementary analysis,

which does corroborate our present arguments for stability of `, but is both conceptually

and technically beyond the present scope, and has been published separately [66].

4 Novel features and consequences

We now show that the anisotropy of (2.2) forces the ‘axilaton’ models to include the

strong-coupling regime, and that these models also turn out to relate well-known (and

supersymmetric) F-theory backgrounds [23, 24] and [25].
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4.1 Anisotropy

The SL(2;Z) monodromy requires that (gDs
def
=
〈
e−Φ

〉
W oY 2) ∼ O(1), which also agrees with

modular invariance: the ‘axilaton’ models require string theory to not be weakly coupled

throughout W oY 2. We therefore expect higher order corrections. Nevertheless, within

the (D−2)-dimensional spacetime

@ W D−1,1
z=0 : gD−2

s = gDs
√
α′/Vol(Y 2)� 1, (4.1)

since Vol(Y 2) has been shown to be large [12]: string theory is thus weakly coupled within

W D−1,1
z=0 , and therein the low-energy effective field theory approximation is well justified.

In going beyond the tree-level approximation consider evaluating the string theory

scattering cross-section for any particular process in the D-dimensional spacetime, where

gDs ∼ O(1). In this double expansion, ordered by powers of α′ and of gs, the latter is equiva-

lently ordered by the genus of the interacting worldsheet surface. Compare now the genus-g

contributions in any such computation with those at genus-(g+1) — with everything else the

same. In a straightforwardly pragmatic sense, the relative ratio of such two contributions

provides a measure as to how reliable string-perturbative computations are, i.e., how weakly

(or strongly) string theory is coupled; dub this the effective string coupling parameter g(eff)
s .

All such ratios (for any particular physical process) will necessarily depend on the

local value of the dilaton field14 (and possibly also the axion). In the ‘axilaton’ models,

these fields vary over the D-dimensional spacetime, and so does then also this effective

string coupling, g(eff)
s . Notably, the ‘axilaton’ configurations (2.2) imply g(eff)

s < 1 in some

θ-directions in Y 2, g(eff)
s ∼ 1 in others, and even g(eff)

s > 1 within the τI configuration:

g(eff)
s [τI(π−ε)]� 1 whereas g(eff)

s [τI(π+ε)]� 1, for ω ∼ O(1). (4.2)

Because of the discontinuity of ∆τI(π) = e2πω, the ‘axilaton’ models thereby explicitly

patch effectively weakly-coupled string theory to effectively (S-dual) strongly-coupled string

theory across the θ = π direction in Y 2.15 With gDs ∼ O(1) and by gluing regimes with

reciprocally weak/strong effective string interactions (4.2), this S-duality patching makes it

evident that the low-energy tree-level effective field theory approximation is sorely lacking.

Given the important role of modular invariance and the SL(2;Z) transformations for

our solution, and in particular, the S-duality part of SL(2; Z), we want to draw an analogy

with what is known about T-duality and T-folds in the context of the double field theory,

and the phase-space formulation of string theory. We propose that our solution should

be naturally viewed from a phase-space point of view, as an S-duality analog of the T-

fold, that we call an S-fold, which glues the weakly and the strongly coupled regimes of

our solution.16 In order to make sense of this picture, we need to include stringy degrees

14The “running” of coupling parameters, i.e., the dependence of the interaction strength on the colliding

momenta is of course familiar in quantum field theory, and naturally translates also into a dual dependence

on the collision proximity. While different in technical details, the fact that the dilaton and the string

interaction strength can vary over the position (and momentum space) is conceptually the same.
15This is akin to the T-fold solutions [29–32], where local chart patching involves (T-duality) mirror-

symmetry.
16This use of S-folds has also recently occurred in the context of SCFT in various dimensions, e.g., [84].

It also resonates with the U-duality results in the so-called exceptional geometry [85–89].
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of freedom required for such a phase-space formulation that are not taken into account

in the effective field theory discussion In particular, the usual identification of the target

space being spanned by only the sum
〈
X̂µ
L(τ, σ)+X̂µ

R(τ, σ)
〉

should be amended. The S-

dual (and strongly stringy-coupled) patching (4.2) indicates a need for (re)incorporating

other stringy degrees of freedom, and at the very least also
〈
X̂µ
L(τ, σ)−X̂µ

R(τ, σ)
〉
: these

vev’s being determined by linear combinations of the canonically conjugate/dual Schrö-

dinger center-of-mass operators [11] x̂µ and p̂µ(τ/p+) implies the need to (re)incorporate

the “momentum” space into this more complete description of the target space in string

theory; we return to this in the next section. This then leads to a (non-commutative)

phase-space geometry of the type discussed in [33–41].

4.2 Holomorphic limits

As indicated by the deformation from step 1 to 2 in the roadmap in section 2, the non-

holomorphic axion-dilaton configurations (2.2) are a deformation of the holomorphic con-

figuration achieved by removing the anisotropy: ω→ 0. This results in the familiar and

well understood type IIB orientifold limit of F-theory [23, 24] with τ = α+i e−Φ = const.

However, starting with the configuration (2.2), it is also possible to find another novel

holomorphic solution, by enforcing the Cauchy-Riemann conditions

∂u

∂r
=

1

r

∂v

∂θ
and

∂v

∂r
= −1

r

∂u

∂θ
, for

{
u(r, θ) = <[f(r, θ)],

v(r, θ) = =[f(r, θ)],
(4.3)

in systematic iterations. For example and definiteness, start with τII(θ) = −τ0 tanh(ωθ) +

i τ0 sech(ωθ), i.e., with u0(r, θ) = τ0 tanh(ωθ). The second of the Cauchy-Riemann condi-

tions in (4.3) then implies that

∂v

∂r
=
τ0

r
tanh′(ωθ), tanh′(ωθ)

def
=

∂

∂θ
tanh(ωθ),

so v1(r, θ) = τ0 log(r) tanh′(ωθ) + f(θ), (4.4)

where f(θ) is an unknown integration r-constant. Solving in turn the first Cauchy-Riemann

equation (4.3) for u(r, θ), we complete the first iteration:

u1(r, θ) =
1

2
τ0 log2(r) tanh′′(ωθ) + log(r)f ′(θ) + g(θ), (4.5)

where g(θ) is another integration r-constant. This u1(r, θ) matches the supersymmetric

axion [25] in the limit ω → 0 upon choosing τ0 7→n/2πω and g(θ) 7→u0(r, θ) = τ0 tanh(ωθ).

With this u1(r, θ), we compute v2(r, θ) from the first and u2(r, θ) from the second Cauchy

Riemann equation (4.3), and so on. Expanding also in θ, re-summing and combining with

the result of the same procedure starting from v0(r, θ) = τ0 sech(ωθ) produces:

τII = τ0

(
tanh(ωθ) + i sech(ωθ)

)
→ τ0

(
tanh[ω(θ−iz)] + i sech[ω(θ−iz)]

)
, (4.6)
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with z= log(r) (and `= 1 for simplicity). The non-holomorphic configuration (2.2b) then

has two distinct holomorphic limits, and relates them:[
b0+τ0

(
tanh(ωθ)+i sech(ωθ)

)] iterate (4.3)−−−−−−−→
θ→ θ−iz

[
b0+τ0

(
tanh[ω(θ−iz)]+i sech[ω(θ−iz)]

)]yω→ 0
yO(ω)[

(α, e−Φ) = (b0, τ0)
]

[23, 24]
←transition−−−−−−→

(2.2b): τII

[(
[b0+τ0ωθ] , τ0[1−ωz]

)]
[25]
.

(4.7)

This then defines the ‘axilaton’ τII -transition, which relates the constant axion-dilaton

configurations [23, 24] and the (“helicoidal axion”) D7 instanton [25] after choosing τ0 7→
n
2πg
−1
s and identifying ω 7→ gs. This also relates (2.2b) to its “holomorphization” (4.7,

top-right), implemented by the simple analytic continuation θ → θ−i log(r/`), which then

itself provides a (third) related holomorphic Ansatz for the axion-dilaton system, and so a

candidate related supersymmetric configuration.

The same can be done with the other ‘axilaton’ solution (2.2a), also resulting in the

straightforward analytic continuation τI(θ)→ τI(θ−iz). The resulting analogous ‘axilaton’

τI -transition is: [
b0+iτ0e

ωθ
]

iterate (4.3)−−−−−−−→
θ→ θ−iz

[
b0+iτ0e

ω(θ−iz)
]yω→ 0

yO(ω)[
(α, e−Φ) = (b0, τ0)

]
←transition−−−−−→

(2.2a): τI

(
[b0+τ0ωz] , τ0[1+ωθ]

)
,

(4.8)

wherein the bottom-right corner, O(ω)-configuration has a θ vs. z
def
= log(r/`) dependance

that is (z, θ)→ (−θ, z) rotated from the one in (4.7, bottom-left).

5 Generalizations and implications

The above-discussed ‘axilaton’ models in fact have a natural generalization to other moduli,

appear naturally within a generic Ricci-flat description of spacetime, and give further

evidence to a possible dependence on additional stringy degrees of freedom.

Diversity. As indicated at the outset [12], analogous models can be built driven by

other moduli fields, φα. This generalization then allows the Y 4-moduli to (also) vary

over Y 2 = S1×Z . If φα = φα(θ) is again aperiodic and anisotropic, and since the Weil-

Petersson-Zamolodchikov metric in moduli spaces of Calabi-Yau varieties is the natural

generalization of the Teichmüller metric [90], φα(θ) will have to exhibit a “mapping class

group” monodromy, generalizing SL(2;Z); see, e.g., refs. [91, 92] for a concrete example. We

then expect the dynamics and phenomenology to be similar to the one driven by τ = τ(θ).

It of course remains to verify that ` ∼ size(Z ) may be chosen so as to satisfy the experimen-

tal limits on extra dimensions while preserving other desirable phenomenological features.

For example, choosing φ = φ(θ) to be the size (“breathing”) modulus of Y 4, the

model patches, akin to (4.2), the “large” and the “small” copies of Y 4 across the identified

endpoints of θ ∈ [−π, π]. This is precisely the crux of the T-fold constructions [29–32].

Conversely then, it is natural to ask whether these already generalized constructions can
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be deformed akin to the ‘axilaton’ models. On the other hand, the corresponding analogue

of the “holomorphization” (4.6), as implemented in (4.7) by the analytic continuation

θ → θ−i log(r/`) eerily reminds of the analytic continuation J → J+iB of the Kähler

form, which has ever since [93–95] and especially [96, 97] become sine qua non, in the

study of moduli spaces of Calabi-Yau n-folds.

Conversely then, the non-holomorphic and anisotropic configurations (2.2) driving the

‘axilaton’ deformation family of models (2.1)+(2.4) are easily seen to be analogous to

the (exceptional) B → 0 limit in the by now much better understood moduli space of

Calabi-Yau n-folds. The fact that it is this non-holomorphic and anisotropic configura-

tion (2.2) that also parametrizes both supersymmetry breaking and the possibility of the

Minkowski→ de Sitter deformation warrants a closer analysis of these ‘axilaton’ models.

Genericity. The Euclidean analytic continuation of the 9+1-dimensional spacetime in

the type IIB string theory has to be Ricci-flat (and complex owing to its N = 2 su-

persymmetry), whether compact or not, and hence is a (possibly non-compact) complex

5-dimensional product of Calabi-Yau and abelian factors. This certainly resonates with

the geometric quantization conclusion, that Ricci-flatness, complex and Kähler structures

in the loop-space all appear in “the string equation of motion” [98–103].

Just as Calabi-Yau 3-folds generically contain many isolated P1’s, the so-called

O(−1,−1)-curves, which are small resolutions of nodes, (i.e., double-points, A1-

singularities, conifold singularities) [104], Calabi-Yau 5-folds generically contain many iso-

lated Fano (c1 > 0) compact complex surfaces S [47]. For a Calabi-Yau 3-fold, these

exceptional O(−1,−1)-curves have a bulk Kähler metric which is generally null, but is

straightforwardly deformed into a positive metric by adding a multiple of the intrinsic vol-

ume form [58]. Analogously, the bulk Kähler metric of the above Calabi-Yau 5-fold is null

on the exceptional complex surfaces S, but is straightforwardly deformed into a positive

metric by adding a multiple of the Kähler metric specified by the intrinsic volume form of

S, which we dub the “bulk+local metric deformation.”

Analytically continuing this Euclideanized Ricci-flat 10-fold back to a 9+1-dimensional

spacetime, at least some of the generically occurring exceptional complex surfaces S within

Calabi-Yau 5-fold will map to 3+1-dimensional sub-spacetimes. Within these 3+1-dimensi-

onal spacetime bubbles, the “bulk+local metric deformation” would naturally correspond

to the Minkowski→ de Sitter desingularization deformation discussed in section 2, with

Λb > 0 parametrizing the size of the analytically continued S. This is indeed the defor-

mation employed within the uncompactified four dimensional spacetime W 3,1 in section 2,

as discussed right after (2.5). We conjecture that a very similar, “de Sitter-izing,” su-

persymmetry breaking metric deformation may be employed within at least some of the

generically plentiful exceptional surfaces S.

5.1 Seeing double

In any worldsheet field theory underlying superstring theory, the large modes (with wave-

lengths λ > `s :=
√
α′) of both coordinate fields X̂µ

L, X̂µ
R probe the target space X , whereas

stringy-small modes (with λ < `s :=
√
α′) of both X̂µ

L, X̂µ
R probe X̃ , the mirror spacetime.
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φ
pφ

φ
pφ

(b) (c)

Figure 2. The phase-space of a point particle moving along a circle with fixed radius, at finite

speed in b), and at infinite speed in c).

The full target space of string theory is therefore (locally) a product of these two fac-

tors, the latter of which is naturally identified to be the (T-dual) mirror of the former.

This strongly resonates with the phase-space theory discussed at the end of section 4 and

in [33–41], which may be justified conceptually also as follows:

1. Consider a point-particle moving on a rigid circle.

(a) At first blush, the phase-space of a point-particle on a circle is a cylinder, where

the (vertical) R1-like pφ-generator represents momentum, at each point of the

circle of possible positions, φ.

(b) However, pφ → +∞ and pφ → −∞ are indistinguishable: if one moves infinitely

fast, it does not matter in which direction one is moving. This compactifies the

momentum direction into a circle, and the phase-space into a ring-torus (adding

a copy of the position-circle at pφ-infinity).

(c) However, when one moves infinitely fast, one is simultaneously everywhere, so

that the positional circle at pφ-infinity shrinks to a point.

The final, (b)→ (c) step in this progression of modeling the phase-space of a point-

particle on a circle thus looks as in figure 2.

2. The configuration space of a particle moving on an n-torus is Tn = Rn/Λ, whereas

its momentum space is naturally the (mirror) dual torus, T̃n = Rn/Λ∗. This makes

the phase-space into T 2n ∼ R2n/(Λ ⊕ Λ∗), — except that again the total space is

singular “at infinity.”

3. For Calabi-Yau varieties, there exists a conjecture:17

(a) a completion of each fiber of T ∗M is a mirror of the Calabi-Yau variety M ;

(b) a completion of T ∗M is a “double Calabi-Yau space,” singular “at infinity.”

This would imply the “true home” for the above-cited phase-space (x, x̃)-geometry to

be such a singular foliation, X >X̃ , of the usual spacetime X and its mirror X̃ : locally at

any generic point, X >X̃ looks like a product, but over certain locations in one factor, the

other may singularize. By mirror symmetry, neither of the two factors is a preferred base of

a fibration, and the total space may well be singular — as is the right-hand side illustration

in figure 2. Furthermore, X >X̃ is naturally endowed with a non-commutativity structure

induced ultimately from the symplectic position-momentum structure on the worldsheet,

17Dec. 1993, Lexington: http://www.ams.org/meetings/sectional/1890 program ssh.html#title.
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as employed in [33–41]. Incidentally, this target space doubling is also suggested from a

closer look at geometric quantization, since it in fact involves the oriented (and so doubled)

loop-space [98–103]. This seems to resonate with the considerable work in the last decade

on the relation between non-commutativity and T-folds, S-folds, and “non- geometry” in

general; see [105–108] and references therein. Separately, Calabi-Yau manifolds have been

shown to independently appear in the momentum space of physical processes; see [109, 110]

and references therein. Clearly, the R3,1-factor and its dual in X >X̃ are diffeomorphic,

but may well have different — and presumably complementary — metric properties, the

study of which we defer for now.

5.2 More on stability

To recap, our ‘axilaton’ models that realize a positive cosmological constant within string

theory depend on two types of parameters: the b0, ω, gs parametrizing the axion-dilaton

system (2.2) are restricted by modular invariance to a discrete subset of SL(2; Z)-isolated

points. In turn, the metric (2.1)–(2.4) depends on `, which we argued can be stabilized

dynamically by dimensional transmutation due to the codimension-2 nature of the models

at hand.

Second, the see-saw formula (2.10) for the cosmological constant in our model can be

also understood as an example of a formula required by T-duality, given, first, the scale

of non-commutativity of the phase-space formulation [33–41] (set by an effective size of

the string), and captured by the parameter ω in our model, and, second, given the Planck

scale (set by the value of the dilaton, viewed as the relevant volume form of the stringy

phase-space), and captured by the parameter ` of our model.

More intuitively, the stringy de Sitter space can be understood as a blow-up in the

“Calabi-Yau-ization” of the 10 dimensional Minkowski habitat of string theory, as implied

by the “Einstein equation” in the stringy loop space, which implies an infinite dimensional

Ricci-flat/Calabi-Yau nature of the stringy configuration space [98–103]. The value of the

cosmological constant is then the size of the relevant blow-up fixed by the requirements

of T-duality (“mirror symmetry”) in the phase-space reformulation of the geometry of the

stringy loop space. Then the basic idea is that the stringy stability of a “stringy de Sitter

spacetime” follows from an optimization between the short- and the long-distance spacetime

physics emerging from the phase-space formulation of string theory, the geometry of which

is really responsible for the appearance of a positive cosmological constant in the first place.

The actual construction reviewed in this paper can be therefore understood as an

illustrative toy model for this new, intrinsically non-commutative phase-space picture of

string theory that naturally leads to de Sitter backgrounds, and which we hope to explore

in more detail in a sequel to this note.

6 Summary, outlook and conclusions

In this paper, we argue that the ‘axilaton’ models [12–17] imply a dependence on additional

stringy degrees of freedom, and are related to the recently uncovered non-commutatively
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doubled phase-space formulation of string theory [33–41]. Furthermore, this improves the

understanding of how de Sitter spacetimes may be realized in string theory.

In particular, (1) the driving sources (2.2) admit a “holomorphization” (4.6), and

thereby two separate supersymmetric limits (4.7), whereby the ‘axilaton’ configura-

tions (2.2) relate these two distinct and well known supersymmetric configurations, as

well as the third holomorphic and possibly supersymmetric configuration (4.6). In addi-

tion, (2) the aperiodic anisotropy of the axion-dilaton configuration (2.2) exhibits a type

of chart-patching (4.2) that explicitly employs S-duality, and so implies that the ‘axilaton’

models cannot be limited to weak string coupling. It is important to note that (3) the

‘axilaton’ configurations (2.2) may equally well be used for other moduli, where the aperi-

odic anisotropy implies chart-patching (4.2) that employs T-duality — strikingly similar to

the T-folds [29–32]. Also, (4) the “holomorphization” (4.6) bears a strikingly similarity to

the by now very well understood J→ J+iB analytic continuation of Kähler moduli spaces

of Calabi-Yau n-folds. By converse, the physics driven by the ‘axilaton’ configurations

are then fairly ubiquitous, and correspond to the B → 0 limit in the moduli space of

Calabi-Yau n-folds. Furthermore, (5) the Euclidean version of the Minkowski→ de Sitter

deformation within the 3+1 dimensional spacetime W 3,1
z=0 seems strikingly similar to the

deformation of the Kähler metric in the blowup or small resolution exceptional sets. Since

exceptional complex 2-folds are ubiquitous (as small resolutions of nodes) within Calabi-

Yau (complex) 5-folds, in a converse Lorentzian analytic continuation, at least some of

those complex 2-folds could serve as 3+1-dimensional (sub)spacetimes — and should ad-

mit a de Sitter metric à la (2.1)+(2.4). Finally, (6) the value of Λ (2.7) scales as `−2,

where ` is the fundamental scale introduced by dimensional transmutation in z := log(r/`)

in (2.1). That is the underlying reason for the emergence of the see-saw relation between

the scale associated with Λ and the 3+1 dimensional Planck scale.

As explained in the main body of the paper, the ‘axilaton’ solutions discussed herein

can be viewed as a well-defined deformation of the stringy cosmic strings/branes in type

IIB/F-theory, and the latter can, at least in principle, be related to a deconstruction

of the cosmological constant from 3- to 4-dimensional spacetime. What is meant here

is the old observation of Witten [111] about the peculiar features of supersymmetry in

3-dimensional spacetime, where due to the presence of conical defects in 3-dimensional

gravity, the supercharges do not have to be globally defined, so one has supersymmetry

but not the degeneracy in masses between bosons and fermions — the mass splitting is

controlled by the strength of the conical defect. By deconstruction (performed in [112], but

also discussed in [113]), one can obtain a 4-dimensional version of Witten’s argument, albeit

now with stringy defects. These stringy defects are generically strongly coupled in the 4-

dimensional continuum limit, and could be naturally related to the non-supersymmetric

stringy cosmic strings. So, in principle, our construction can be connected to this narrative,

even though the details remain to be worked out.

Finally, as discussed at the end of section 5 and motivating a sequel to this note [66],

the latter few of the above observations imply that the familiar point-field limit descrip-

tion of spacetime is in fact incomplete: more of the stringy degrees of freedom must be

included, extending the stringy target space into a certain double, tentatively modeled on

the corresponding phase-space.

– 17 –
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[58] P. Green and T. Hübsch, Calabi-Yau hypersurfaces in products of semiample surfaces,

Commun. Math. Phys. 115 (1988) 231 [INSPIRE].

[59] I. Antoniadis, R. Minasian and P. Vanhove, Noncompact Calabi-Yau manifolds and localized

gravity, Nucl. Phys. B 648 (2003) 69 [hep-th/0209030] [INSPIRE].

[60] G.R. Dvali and G. Gabadadze, Gravity on a brane in infinite volume extra space, Phys.

Rev. D 63 (2001) 065007 [hep-th/0008054] [INSPIRE].

[61] E. Kiritsis, N. Tetradis and T.N. Tomaras, Induced brane gravity: realizations and

limitations, JHEP 08 (2001) 012 [hep-th/0106050] [INSPIRE].

[62] S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys.

Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].

[63] V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli

stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058]

[INSPIRE].

[64] M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733

[hep-th/0610102] [INSPIRE].

[65] N. Kaloper and A. Padilla, Vacuum energy sequestering: the framework and its cosmological

consequences, Phys. Rev. D 90 (2014) 084023 [Addendum ibid. D 90 (2014) 109901]

[arXiv:1406.0711] [INSPIRE].
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