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1 Motivation

The absence of new physics discoveries at the LHC leaves the gauge hierarchy problem

unsolved, so that the origin of the smallness of the Higgs mass remains unknown. While

solutions relying on low-scale supersymmetry are still possible, it certainly becomes in-

creasingly relevant to explore viable alternative scenarios. One such approach is built

around models based on classical scale invariance [1–7], in which the Lagrangian contains

exclusively dimensionless parameters and where all mass scales arise by dimensional trans-

mutation. Apart from their connection to the hierarchy problem, classically scale-invariant

theories recently received some attention because of the role they could play in facilitating

strongly supercooled phase transitions with various interesting implications for the physics

of the early Universe and the detection of gravitational waves [8–15]. In the present pa-

per we will investigate the interplay between the aforementioned two crucial features of

scale-invariant models more closely.

To set the stage, let us briefly review the most important aspects of scale-invariant

theories, in particular their relation to the hierarchy problem and supercooled phase tran-

sitions. At the core of the considered class of models is the dynamical breaking of scale

invariance, which is essential to explaining the existence of massive particles. It can proceed

in two complementary ways: either in the perturbative or in the strong coupling regime.

Here, we will focus on the former approach, where scale invariance is radiatively broken

by renormalization group (RG) effects à la Coleman-Weinberg [16, 17]. It is well-known

that this type of symmetry breaking works in the minimal Standard Model (SM), but

is phenomenologically excluded due to the large observed Higgs and top quark masses.

Consequently, viable theories must extend the SM by additional scalar degrees of freedom.

These scalar fields can then dynamically acquire a finite vacuum expectation value (VEV)

thus spontaneously breaking classical scale invariance. The created scale subsequently
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needs to be communicated to the SM sector, which is usually realized via the portal term

between the SM Higgs doublet and the new scalar(s), see e.g. ref. [3]. Alternatively, the

electroweak scale can be radiatively generated from quantum fluctuations of heavy right-

handed neutrinos [18–22], which simultaneously produce light active neutrino masses via

the type-I seesaw mechanism [23–26]. Interestingly, both methods of scale transmission

are anticipated to be testable by gravitational wave detectors [8, 13]. In this work, we will

concentrate on the minimal portal model [27, 28], which can additionally be probed at col-

liders. The study of radiative symmetry breaking in this model effectively boils down to the

minimization of a multi-scalar effective potential. For this purpose an elegant, yet approx-

imative method proposed by Gildener and Weinberg is often employed [29], which relies on

the existence of an exact flat direction in the model’s tree-level potential. In order to make

sure that our findings are not an artifact of such a strong assumption, we implemented and

used a numerical method that does not depend on similar approximations.

Regardless of the concrete implementation of classical scale invariance and the numer-

ical treatment of its breaking, its connection to resolving the hierarchy problem always

relies on the following property: in the absence of explicit mass scales in the underlying

theory, the anomalous breaking of scale invariance by quantum effects only introduces a

logarithmic sensitivity of infrared to ultraviolet physics [1], where the latter is usually as-

sumed to be connected to gravity. In order for the above statement to remain true, there

cannot be any physical thresholds between the scale of radiative symmetry breaking and

the Planck scale [4]. In particular, this implies that the electroweak scale can only be

stabilized against the Planck scale in a classically scale-invariant model, if the RG flow of

the theory’s couplings across said energy range is free of Landau poles [3, 4].

As mentioned earlier, classical scale-invariance is also interesting because of its con-

nection to strongly supercooled cosmic phase transitions (PT). To appreciate this feature,

let us mention that the amount of supercooling in a successful first-order PT – and thus

its strength as well as that of the associated gravitational wave signal [30–34] – is lim-

ited in conventional models built around polynomial scalar potentials [35]. Scale-invariant

theories, on the other hand, are based on a nearly-conformal effective potential and can

thus circumvent the aforementioned upper limits [36]. Depending on the concrete scenario,

supercooling can even become so strong that the scale-symmetry-breaking PT does not

complete until the Universe cools down to temperatures of the order of the QCD scale [9–

11]. In such cases, the chiral PT of QCD is anticipated to proceed anyway, which will

eventually induce electroweak symmetry breaking [9].

The paper is organized as follows. In section 2.1, we present the basics of the mini-

mal phenomenologically viable scale-invariant model at zero temperature. section 2.2 then

outlines our procedure for studying radiative scale symmetry breaking and the subsequent

generation of the electroweak scale. In section 2.3 we incorporate finite-temperature ef-

fects into the minimal model by calculating the daisy-corrected thermal one-loop effective

potential. We furthermore give a brief general discussion on the scale-symmetry-breaking

phase transition. In section 3.1, we investigate how the realization of strong supercool-

ing is influenced by requiring RG consistency. Potential gravitational wave signatures are

discussed in section 3.2, where we also comment on whether a viable dark matter (DM)

candidate can be accommodated. We finally conclude in section 4.
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2 Minimal viable classically scale-invariant realization

2.1 The model at zero temperature

The minimal classically scale-invariant extension of the Standard Model (SM) which is

consistent with current phenomenological observations and which can avoid Landau poles

below the Planck scale, features two real scalar gauge singlets [27]. The model’s tree-level

potential is given by

Vtree(H,S,R) =λ(H†H)2 +
1

4
λsS

4 +
1

4
λrR

4

+
1

2
λφs(H

†H)S2 +
1

2
λφr(H

†H)R2 +
1

4
λsrS

2R2 , (2.1)

where S and R denote these novel scalar degrees of freedom. In order to simplify the

potential we assumed the existence of a Z2 symmetry under which R transforms non-

trivially,1 such that the terms odd in R are absent. In eq. (2.1), the SM Higgs doublet H

can be parametrized in terms of real fields, namely

H =
1√
2

(
χ1 + iχ2

φc + φ+ iχ3

)
, (2.2)

where φ denotes the neutral CP-even Higgs field, while the χi with i = 1, 2, 3 represent

the Goldstone bosons. The classical field φc converges in vacuum toward vφ = 246 GeV.

Similarly, we parametrize S = sc + s, with a fluctuation field s and a background field

sc that approaches a finite value vs in the vacuum, thus spontaneously breaking classical

scale invariance. Furthermore, in accordance with the discussion in ref. [27], we will only

be interested in parameter points where the R singlet does not acquire a finite vacuum

expectation value (VEV), i.e. where the Z2 symmetry introduced above is also a symmetry

of the true vacuum. Correspondingly, we write R = r in what follows. Based on the

described symmetry breaking pattern, one can now identify the terms in the potential (2.1)

from which the masses of the scalar particles arise. We write

Vtree ⊇
1

2

(
φ s
)
m2

(
φ

s

)
+

1

2
m2
rr

2 +
1

2
m2
χχ

2
i , (2.3)

with the CP-even scalars’ mass-squared matrix

m2 ≡ m2(φc, sc) =

(
3λφ2

c + 1
2λφss

2
c λφsφcsc

λφsφcsc 3λss
2
c + 1

2λφsφ
2
c

)
≡

(
A B
B C

)
, (2.4)

where the last equality is introduced for later convenience. The field-dependent tree-level

masses for r and the Goldstone bosons read

m2
r(φc, sc) =

1

2
(λφrφ

2
c + λsrs

2
c) and m2

χ(φc, sc) = λφ2
c +

1

2
λφss

2
c . (2.5)

1Such a choice can be motivated by dark matter (DM) stability. Indeed, we will comment on the

possibility of explaining DM with the considered model in section 3.2.
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In order to obtain the masses of the remaining CP-even scalars, we diagonalize eq. (2.4)

and obtain

m2
±(φc, sc) =

1

4

[
(6λ+ λφs)φ

2
c + (6λs + λφs)s

2
c

±
√

[(6λ− λφs)φ2
c − (6λs − λφs)s2

c ]
2 + 16λ2

φsφ
2
cs

2
c

]
,

(2.6)

where the + (−) subscript denotes the larger (smaller) eigenvalue.

For the phase transition analysis we include the full set of one-loop corrections to the

tree-level scalar potential. While the temperature-dependent terms will be introduced in

section 2.3, here we define the usual Coleman-Weinberg potential [16] employing the MS

renormalization scheme and Landau gauge

VCW(φc, sc) =
1

64π2

∑
i

nim
4
i (φc, sc)

(
log

m2
i (φc, sc)

µ̄2
− ci

)
, (2.7)

so that ci = 3/2 for fermions and scalars, whereas ci = 5/6 for gauge bosons. Additionally,

we fix the renormalization scale µ̄ such that µ̄2 = v2
s + v2

φ. The number of real degrees

of freedom of particle species i (including an additional minus sign for fermionic fields) is

denoted as ni. The sum in eq. (2.7) is taken over all relevant fields, i ∈ {+,−, r, χ, t,W,Z},
thereby also consistently including the leading fermionic (top quark) and gauge boson (W

and Z) SM contributions associated with the following field-dependent tree-level masses

m2
t (φc) =

1

2
y2
t φ

2
c , m2

W (φc) =
1

4
g2 φ2

c , m2
Z(φc) =

1

4
(g2 + g′

2
)φ2

c . (2.8)

Here, g and g′ are SU(2)L and U(1)Y gauge coupling constants and yt is the top quark

Yukawa coupling. Note that top quark, W , Z and would-be Goldstone boson contribu-

tions enter in eq. (2.7) with prefactors of ni = −12, 6, 3, and 3, respectively, while ni = 1

otherwise.

2.2 Finding consistent parameter sets

In eq. (2.1) we introduced six quartic couplings, among which only λr does not enter

in the expressions for scalar tree-level masses. That coupling will be set to zero at the

renormalization point µ̄ throughout the analysis. In what follows, we will briefly describe

our strategy for determining the remaining couplings. The input parameters are vs, vφ and

the (tree-level) mixing angle that diagonalizes the mass-squared matrix of φ and s, denoted

θp. Given that vφ = 246 GeV, the magnitude of vs is conveniently regulated by another

dimensionless parameter θm which is defined as θm = arctan(vφ/vs). The following three

conditions determine λ, λφs and λs unambiguously:

(i) Working in Landau gauge, the masses of the would-be Goldstone bosons evaluated

at the vacuum need to (approximately) vanish, which implies λφs ' −2λ tan2 θm
according to eq. (2.5) and the definition of θm.

(ii) The neutral scalar mass-squared matrix of eq. (2.4) is diagonalized if the mixing angle

θp is defined as θp = 1
2 arctan 2B

A−C , where A, B, and C were defined in eq. (2.4).
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(iii) Either m2
+ or m2

− evaluated at the vacuum needs to be approximately

m2
Higgs = (125 GeV)2. To be more precise, one of the CP-even scalars needs to have

the mass and the couplings of the observed Higgs boson.

By using (i) and (ii), one can derive the expression C = A (1 + 2 tan θm/ tan 2θp), which

nicely illustrates the relation between (ii) and (iii). Namely, in the phenomenological

limit of small mixing, A is approximately equal to the mass of SM Higgs boson, whereas

C corresponds to the mass of another CP-even scalar. Given that θm is in the range

(0, π/2), it is the sign of θp which determines whether the SM-like Higgs is the lighter or

heavier CP-even boson. From θp > 0, it follows that m2
Higgs = m2

−, whereas θp < 0 implies

m2
Higgs = m2

+.

After determining λ, λφs and λs, we still need to fix the values of the portal couplings of

the r field, namely λsr and λφr. We infer these values from the two stationarity conditions

∂V (φ, vs)

∂φ

∣∣∣∣
φ=vφ

= 0 and
∂V (vφ, s)

∂s

∣∣∣∣
s=vs

= 0 , (2.9)

where V = Vtree+VCW, see section 2.1 for the definitions. Furthermore, it is crucial to check

that the Hessian matrix of V is positive definite. In that case the parameters obtained from

eq. (2.9) indeed produce a minimum at (vφ, vs). Note that V also depends on yt, g and g′

through the Coleman-Weinberg term. We derive the values of these parameters at the µ̄

scale from the well-known SM one-loop RG equations.

Let us note that the outlined procedure does not take into account loop corrections

to the masses of scalar particles (not to be confused with the VEVs vφ and vs which are

set to the desired values at the one-loop level). Demanding the one-loop mass of the SM-

like Higgs to be equal to 125 GeV, would significantly complicate our already nontrivial

procedure for generating parameter points. Although our results are not very dependent

on the exact values of the scalar masses, we have computed one-loop corrections to the CP-

even mass-squared matrix for all generated parameter points in order to check the impact

of radiative corrections. We generally find that the mass eigenvalue associated with the

SM-like Higgs remains of order 100 GeV, indicating that loop corrections are subdominant

in this case. This is expected because the impact of new physics that is close to the

electroweak scale, combined with the usual loop suppression factors should not result in

too large radiative contributions to the SM-like Higgs mass. Let us also note the following

interesting property that our loop-level analysis has shown: in most cases, the SM-like

Higgs turns out to be heavier than the second eigenstate at one loop, even when it was

lighter at tree-level. This is related to radiative contributions of the r field. To be more

precise, λsr, being typically the largest quartic coupling in the model, can yield significant

negative corrections which may substantially reduce the tree-level mass of the eigenstate

mainly consisting of the singlet field s. Note that the impact of r loops to the mass of

the SM-like Higgs is much weaker simply because λφr is smaller than λsr for all parameter

points that we found. Finally, note that we have also checked that mixing imposed at

tree-level is radiatively stable.

After obtaining the parameter points for different values of θm and θp, we applied the

renormalization group equations (RGE) to each set of generated quartic couplings in order

– 5 –
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to identify the parameter points for which there are no Landau poles below the Planck

scale.2 Such parameter sets will be in focus of section 3.

2.3 The model at finite temperatures

Our investigation of the model’s phase structure will be based on the daisy-improved one-

loop finite-temperature effective potential Veff (see e.g. [37]), whose global minimum de-

termines the theory’s true ground state, and which can be written as

Veff(φc, sc, T ) = V0(φc, sc) + VCW(φc, sc) + VFT(φc, sc, T ) + Vring(φc, sc, T ) . (2.10)

Here, V0(φc, sc) = Vtree(φc/
√

2, sc, 0) with the tree-level potential from eq. (2.1), and the

Coleman-Weinberg contribution VCW was already given in eq. (2.7). Employing the same

field-dependent tree-level masses mi and multiplicities ni as introduced in section 2.1, the

one-loop finite-temperature contribution to the effective potential reads

VFT(φc, sc, T ) =
T 4

2π2

∑
i

ni Ji

(
m2
i (φc, sc)

T 2

)
, (2.11)

with Ji being the usual thermal functions appropriate to bosonic and fermionic loops,

JB,F(r2) =

∫ ∞
0

dxx2 log
(

1∓ e−
√
x2+r2

)
,

which can be readily approximated using Bessel functions, see e.g. [38]. Finally, for the

purpose of improving the robustness of our perturbative approach, we include the so-called

ring terms into our calculation [39], namely

Vring(φc, sc, T ) = − T
12

∑
i∈bosons

ni

([
M2
i (φc, sc, T )

]3/2
−
[
m2
i (φc, sc)

]3/2
)
. (2.12)

Here, each bosonic degree of freedom is supposed to have thermal mass-squared M2
i , while

m2
i is the corresponding zero-temperature field-dependent mass-squared from section 2.1.

For CP-even scalars, the thermal masses M2
± are obtained as the eigenvalues of the matrix

m2 + Π, where m2 is given in eq. (2.4), and Π is the matrix of thermal self-energies with

the following diagonal entries

Πφ(T ) =
T 2

48

(
24λ+ 2λφs + 2λφr + 12y2

t + 9g2 + 3g′
2
)
,

Πs(T ) =
T 2

24
(6λs + 4λφs + λsr) .

(2.13)

The thermal self-energy of the r field can be computed to be

Πr(T ) =
T 2

24
(6λr + 4λφr + λsr) , (2.14)

2The RGEs for the considered model may be found in [27].

– 6 –



J
H
E
P
1
2
(
2
0
1
9
)
1
5
8

while that of the Goldstone bosons matches Πφ(T ) from eq. (2.13). Thermal mass-squares

for r and the Goldstone bosons are simply calculated as the sum of field-dependent tree-

level mass-squares and the respective thermal part Π. In the gauge sector, only longitudinal

components of the SM gauge bosons contribute. To be more precise, we have [39]

ΠT
B(T ) = ΠT

Wi
(T ) = 0 , ΠL

Wi
(T ) =

11

6
g2T 2 , ΠL

B(T ) =
11

6
g′

2
T 2 . (2.15)

For the neutral gauge bosons it is convenient to work in the mass basis and identify thermal

masses of Z and γ which read (see e.g. [12])

M2
Z,γ(φc, T ) =

1

2

[
(g2+g′

2
)

(
1

4
φ2
c +

11

6
T 2

)
±

√
(g2−g′2)2

(
1

4
φ2
c +

11

6
T 2

)2

+
1

4
φ4
cg

2g′2

]
.

(2.16)

In order to be phenomenologically viable, the low-temperature phase of the minimal

conformal model must exhibit a vacuum that spontaneously breaks both scale-invariance

and the electroweak symmetry, vs 6= 0 6= vφ, see ref. [27]. One of the main purposes of this

paper is to investigate the question of how the aforementioned vacuum may emerge from

a fully symmetric ground state, vs = vφ = 0, in the early Universe. The formalism to do

so is well developed so we only briefly sketch it here.

We start with the general observation that the scale-symmetry-breaking phase tran-

sition in a classically conformal model is necessarily of first order, see e.g. refs. [8, 13].

This type of transition is known to proceed via the nucleation of bubbles containing the

true ground state, which subsequently grow inside an expanding Universe that is still in the

metastable phase. At which temperature the phase transition completes (if at all) therefore

crucially depends on the rate Γ of bubble nucleation, on the one hand, and on the Hubble

parameter H, on the other hand. The former quantity can be estimated as [30, 31, 40]

Γ(T ) ' T 4

(
S3

2πT

)3/2

e−S3/T . (2.17)

The theory’s three-dimensional Euclidean action S3 in the above expression is to be eval-

uated for the O(3)-symmetric bounce solution ~Φb(r) := (φb(r), sb(r))ᵀ, which is obtained

by simultaneously solving the scalar fields’ coupled equations of motion,

d2~Φ

dr2
+

2

r

d~Φ

dr
= ~∇ΦVeff , (2.18)

subject to the boundary conditions ~Φ→ 0 as r →∞ and d~Φ/dr = 0 at r = 0. In all of

the above, r denotes the radial coordinate of three-dimensional space. In the context of

the present paper, we use the CosmoTransitions code [41] both to solve the system in

eq. (2.18) and to calculate the resulting action S3[~Φb(r)].

As previously indicated, the second crucial quantity regarding the investigation of the

phase transition is the Hubble parameter, which, in the considered scenario, can be written

in terms of the Universe’s radiation and vacuum energy densities ρrad and ρvac, respectively:

H2(T ) =
ρrad(T ) + ρvac(T )

3M2
Pl

=
1

3M2
Pl

(
π2

30
g∗T

4 + ∆V (T )

)
. (2.19)
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Here, MPl = 2.435× 1018 GeV stands for the reduced Planck mass, while g∗ is the effective

number of relativistic degrees of freedom. The vacuum contribution to the Hubble parame-

ter is given by the potential difference between the false ground state at ~Φ = (0, 0) and the

true one at ~Φ = (vφ(T ), vs(T )), that is ∆V (T ) := Veff(0, 0, T )− Veff(vφ(T ), vs(T ), T ). Note

that the vacuum term is typically only relevant in the case of strong supercooling, i.e. if the

phase transition does not complete until the Universe cools down far below the critical tem-

perature Tc, at which the two aforementioned ground states are energetically degenerate.

Comparing the rate Γ from eq. (2.17) to the Hubble parameter H from eq. (2.19) even-

tually allows us to estimate the temperature Tn (henceforth referred to as the nucleation

temperature), at which both efficient bubble nucleation and growth are possible, namely

Γ(Tn)
!

= H4(Tn) . (2.20)

In evaluating the above condition we will ignore the factor (S3/(2πT )3/2) in eq. (2.17),

which only slowly varies with S3/T as compared to the exponential factor. Furthermore,

we will exploit the fact that whenever the vacuum contribution is relevant, it can be reliably

approximated by its zero-temperature value, i.e. ∆V (T ) ≈ ∆V (T = 0) for all T � Tc.

3 Results

3.1 Relation between supercooling and RG consistency

In order to investigate the electroweak phase transition (EWPT) in the minimal scale-

invariant model, we sampled phenomenologically viable parameter points by applying the

procedure outlined in section 2.2. For each point we then constructed the finite-temperature

effective potential presented in section 2.3. Note that we studied both possibilities of

identifying the SM-like Higgs particle with one of the eigenstates of the mass matrix from

eq. (2.4), i.e. either with the heavier or lighter one.

As was already demonstrated in ref. [27], the value of the portal coupling λsr at the scale

of radiative symmetry breaking is crucial for the successful implementation of the minimal

scale-invariant model. On the one hand, λsr needs to be relatively large so that the second

scalar singlet, r, is heavy enough to outweigh the top-quark and thereby stabilize the one-

loop vacuum. On the other hand, too large values lead to the appearance of Landau poles

at some scale ΛUV below the Planck scale and thus necessarily imply the reintroduction of

fine-tuning according to the arguments of ref. [4]. As can be seen from the left panel of

figure 1 where we show ΛUV in the λsr-Tn plane, it turns out that λsr . 0.3 is required in

order to avoid Landau poles below the Planck scale3 (parameter points shown in red).

3While this is a robust statement for the considered model with extra scalars, the conclusions may

change in different non-minimal realizations of classical scale invariance. For instance, in viable conformal

models containing an extended gauge sector [12, 14] strong supercooling can be circumvented by choosing

& O(10−1) values for the extra gauge couplings. Unlike in the scalar case, this coupling is renormalized

multiplicatively due to the protective gauge symmetry and therefore typically exhibits a more stable RG

flow, so that sub-Planckian Landau poles can also be avoided for larger initial values of the gauge coupling

at the TeV scale.
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From the same plot, we see that the temperature Tn at which the EWPT completes

generally grows for increasing values of λsr. Since the phase transition’s critical temper-

ature Tc was found to always be within one order of magnitude, the value of Tn gives

an approximate measure for the amount of supercooling, namely smaller Tn corresponds

to stronger supercooling. The left panel of figure 1 now shows that we find parameter

points, for which the EWPT is only moderately supercooled and can therefore complete in

the usual way via bubble nucleation and percolation at temperatures up to 100 GeV (blue

points). However, all these points feature Landau poles far below the Planck scale and

must be regarded as inconsistent if one demands the hierarchy problem to be absent.

For fully consistent points with λsr . 0.3, the Hubble expansion parameter is larger

than the bubble nucleation rate even at sub-GeV temperatures, so that eq. (2.20) cannot be

satisfied. This indicates that the Universe undergoes an extended vacuum-dominated epoch

across orders of magnitude in temperature, i.e. the EWPT is significantly supercooled.

However, even for very small λsr, supercooling cannot continue indefinitely. Rather, the

completion of the EWPT is induced by the chiral phase transition of QCD at tempera-

tures of the order of the QCD scale TQCD ' 100 MeV [9]. The parameter sets for which this

happens are shown along the horizontal line at Tn = 100 MeV in the left panel of figure 1.

While the aforementioned fully consistent points are drawn in red, it is furthermore inter-

esting to note that the chiral phase transition can also halt supercooling for parameter sets

that feature sub-Planckian Landau poles.

The physical picture for the EWPT triggered by QCD effects is as follows: the QCD

chiral phase transition with six massless flavors leads to the formation of chiral quark

condensates, which, via Yukawa interactions with the SM Higgs field, induce terms lin-

ear in φ [43]. Due to its large Yukawa coupling yt ' 1, the dominant contribution comes

from the top quark condensate. The term linear in φ subsequently induces a finite vac-

uum expectation value for that field, namely vQCD

φ ' O(100 MeV), which spontaneously

breaks electroweak symmetry. Such a VEV then generates a mass term for the s field,

m2
s = (λφs/2)[vQCD

φ ]2. Since λφs is negative for all of our parameter points, this mass coun-

teracts the thermal self-energy Πs (expression given in eq. (2.13)). As the temperature

drops, the thermal contribution ceases and at the point when the two contributions are

equal (matching absolute values, signs are still different), the s field starts rolling down the

potential toward the true minimum, provided that the field did not already tunnel before-

hand in a first-order phase transition. Numerically, we have found that this occurs between

Tend = 8 MeV and 33 MeV for vQCD

φ = 100 MeV. Clearly, such temperatures are still above

those at which Big Bang Nucleosynthesis (BBN) results can constrain new physics, making

the outlined cosmological scenario viable. Note that Tend is proportional to vQCD

φ , so that

BBN limits could only play a role if the QCD scale was an order of magnitude smaller than

expected, which is essentially inconsistent with QCD lattice results [44, 45]. Once the s

field has settled at its minimum, the known electroweak scale vφ = 246 GeV emerges via

the portal coupling λφs.

In the right panel of figure 1 we show the nucleation temperature in the θp-θm plane.

The part of parameter space, in which the model features perturbativity up to the Planck

scale and thus may accommodate a solution to the hierarchy problem, is shown in blue. As

– 9 –
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Figure 1. Temperature Tn at which the electroweak phase transition (EWPT) completes in the

minimal scale-invariant model. Since the EWPT is at the latest induced by the chiral phase tran-

sition of QCD, we never show nucleation temperatures below TQCD ' 100 MeV. Both panels are

based on the same set of parameter points, which was constructed using the method outlined in

section 2.2 and assuming that the SM-like Higgs is the lightest of the CP-even scalar eigenstates at

tree-level. Left : Tn plotted against the portal coupling λsr. The color code indicates the lowest RG-

scale ΛUV at which a Landau pole appears. In particular, only the red points for which ΛUV .MPl

are fully consistent in the sense that they can stabilize the electroweak against the Planck scale.

Right : Tn (color code and black contours) in the plane spanned by θp and θm or vs, respectively.

The fully consistent region of parameters free from sub-Planckian Landau poles is shown in blue. In

the remaining part of the shown parameter space, we also present scenarios for which perturbativity

is violated; in the pale region supercooling is halted only by QCD phase transition, while in the

orange and red regions the EWPT completes via bubble nucleation. While for completeness we

show the full range of θp note that only θp . 0.44 region is unexcluded from collider searches [42].

already elaborated, it is QCD effects that induce electroweak and scale symmetry breaking

in this region. The corresponding angles θm are rather small (equivalent to large values of

vs). This is expected as the mass of the r field grows with λsrv
2
s , so that for larger values

of vs smaller couplings suffice to stabilize the one-loop vacuum. Hence, the blue region

corresponds to the previously discussed λsr . 0.3 window. In the same plot one can also

observe a relatively large part of parameter space in which Landau poles do appear below

the Planck scale, but the chiral phase transition is still responsible for the generation of

the electroweak scale (pale color). As vs further decreases, the region in which the EWPT

completes via bubble nucleation at temperatures above the QCD scale is reached. However,

as already argued, the model cannot stabilize the electroweak against the Planck scale in

this part of parameter space. Note also the existence of a region in which we found no

solutions using our approach of section 2.2.

3.2 Dark matter and gravitational waves

The DM candidate in the model is the scalar gauge singlet r which is stable due to the im-

posed Z2 symmetry. The authors of ref. [10] have proposed that a significant fraction of DM

may come from a “supercool” component. This is essentially a thermal abundance of the
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massless r field that gets diluted during the supercooling phase when the Universe expands

exponentially. Eventually, the period of supercooling ends and the phase transition com-

pletes, so that r becomes massive with the dark matter yield of
[
45/(2π4g∗)

]
(Tend/Tinfl)3.

Here, Tinfl is the temperature below which the Universe starts being vacuum dominated

during supercooling. In our model it equals the temperature TRH to which the thermal

plasma is reheated after the phase transition has completed. For all viable benchmark

points that do not feature Landau poles below the Planck scale, we have found that the

“supercool” DM abundance cannot account for the total DM abundance. Furthermore and

more importantly, we also found that TRH is always larger than the freeze-out temperature

(this statement is independent of the value of vQCD

φ ). This essentially implies that the “su-

percool” abundance in the considered scenario does not leave any imprint and is effectively

washed out since after reheating, r undergoes standard freeze-out. While we have identified

several benchmark points that yield a consistent DM abundance from freeze-out, we do

not perform a detailed DM study here, but rather refer the interested reader to the vast

literature on Higgs portal DM models (see e.g. review [46] and references therein).

Lastly, let us comment on gravitational wave signatures that may originate in this

model from potentially strong first-order cosmic phase transitions [30–34]. Since the elec-

troweak phase transition for all fully consistent parameter points is delayed down to sub-

GeV temperatures, the QCD phase transition occurs while quarks are still massless. Such

a transition is known to be of first order [47] and was shown to produce a stochastic

gravitational wave background in the range of proposed near-future detectors, provided

the chiral phase transition does not proceed too quickly [9, 48]. However, recent explicit

calculations indicate that the transition does complete very fast, so that the associated

gravitational waves signal may be too weak to be observable [49]. Let us also note that

there could potentially be another first-order phase transition associated with the sponta-

neous breakdown of scale symmetry and following the QCD phase transition. As already

briefly discussed in section 3.1, after the generation of a finite vQCD

φ , the s field will either

roll down the potential or undergo a first-order phase transition. While we do not study

which of the two scenarios occurs for our parameter points, note that the latter option

is not expected to produce an observable gravitational wave signature [11], implying that

both cosmological scenarios are phenomenologically equivalent.

4 Summary and conclusions

In the absence of any new findings at the LHC, the gauge hierarchy problem remains one

of the greatest challenges in high-energy physics. Among various proposals for its solution,

classically scale-invariant theories belong to the most minimal options, typically requiring

only rather simple extensions of the Standard Model (SM) particle content. In this paper we

explored the electroweak phase transition (EWPT) in the scale-invariant model in which the

SM is supplemented with two extra scalar gauge singlets. This model was previously shown

to offer the minimal phenomenologically consistent framework. Let us point out that the

analysis techniques employed to investigate radiative symmetry breaking in the literature

chiefly boil down to the Gildener-Weinberg approach relying on the existence of exact flat
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directions in the tree-level potential. In this work, however, we took a complementary and

more general approach in which both tree-level and radiative terms in the potential play a

role in the generation of the electroweak scale.

We argued that consistently avoiding the hierarchy problem in the model requires

the absence of sub-Planckian Landau poles. As a consequence, we found that the portal

couplings of the viable parameter points must necessarily be smaller than O(10−1). This

has a rather significant imprint on the physics of the early Universe. In particular, we

found that with such small couplings, the nucleation rate of critical bubbles containing the

true electroweak vacuum cannot compete with the Hubble expansion even at relatively low

temperatures. The EWPT can therefore not complete conventionally via bubble nucleation.

Instead, the chiral phase transition of QCD plays a crucial role in inducing the EWPT and

generating the electroweak scale. Before reaching the QCD phase transition temperature,

the Universe experiences an epoch of vacuum-dominated expansion, in which it is still in

the symmetric phase. In other words, the EWPT is strongly supercooled. The amount

of supercooling decreases if larger portal couplings are considered. However, the model is

then no longer perturbative all the way up to the Planck scale and can thus not avoid the

gauge hierarchy problem.

We conjectured that the described relation between renormalization group consistency

and strongly supercooled scale-generating phase transitions is generally true in purely

scalar classically scale-invariant extensions of the SM. In contrast, strong supercooling

may be prevented in scale-invariant gauge extensions of the SM by choosing large enough

gauge couplings.

Let us stress that even though supercooling is usually associated with a rather strong

gravitational wave signal, particularly in the context of scale-invariant models, we con-

cluded that there would be no testable stochastic gravitational wave background pro-

duced in association with the aforementioned cosmology in the considered minimal scale-

invariant model.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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