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constrains the bulk coupling constants in this theory. In the bulk, the sum rule is related

to the speed of radial propagation, while on the boundary, it governs the spreading of

nonlocal operators. When the spreading speed approaches the speed of light, the sum rule
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1 Introduction

Effective field theories (EFTs) underlie our understanding of virtually every physical phe-

nomenon. However, not every effective theory has a short-distance (or high-energy) comple-

tion satisfying basic physical principles such as locality and causality [1], and it is important

to find precise ways of separating the landscape of consistent low-energy effective theories

from the swampland of inconsistent theories [2]. Identifying the boundaries in the space
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of EFT parameters can strongly shape our interpretation of current and future measure-

ments of these parameters. Moreover, the relation between low-energy (IR) observables

and the associated high-energy (UV) description can define clear experimental targets or

even suggest new types of measurements altogether.

Cosmology is a domain where understanding the validity of our effective descriptions is

particularly crucial. An important feature of inflationary correlation functions is that they

probe physics at a fixed energy scale set by the expansion rate during inflation. We cannot

rerun the history of the universe with a larger value of that expansion rate to learn about

the UV completion of inflation. A central challenge of modern cosmology is to extract the

microscopic origin of inflation from the data available, i.e. from precision measurements of

low-energy observables.

A conservative way of assessing the validity of an EFT is by studying the analytic

structure of the associated scattering amplitudes [1, 3–17]. This allows certain low-energy

parameters to be written as sums over high-energy contributions. These so-called “sum

rules” provide powerful relations between IR observables and UV degrees of freedom. Uni-

tarity often constrains the UV contributions to be positive, leading to interesting posi-

tivity constraints on parameters of the EFT. Unfortunately, these type of arguments are

challenging to apply in a cosmological setting, because Lorentz invariance is broken by

the time-dependent background. Nevertheless, nontrivial constraints can be derived from

causality on subhorizon scales. These types of constraints, while less stringent than the

related sum rules in flat space, hint at deeper structures in the space of EFTs. Since these

causality arguments apply equally in a variety of background geometries, they suggest that

more rigorous bounds might not be limited by the spacetime geometry in which they were

originally derived. While such results can be compelling and useful, it remains an im-

portant challenge to derive these constraints rigorously in cosmological backgrounds (see

e.g. [5, 18, 19]).

Interestingly, inflation has a direct analogue in anti-de Sitter (AdS) spacetime, where it

becomes dual to a renormalization group flow in the boundary QFT [20–25]. The problem

of finding consistent cosmologies is therefore analogous, though not exactly equivalent, to

mapping out the space of possible RG flows. The latter is of course an important problem

in its own right. RG flows between unitary QFTs are highly constrained, most famously by

the array of C-theorems in two [26], three [27], four [28, 29], and possibly higher (e.g. [30])

dimensions. These constraints are linked to the role of quantum information in quantum

field theory [31, 32] and, in holographic theories, the C-theorems are realized as constraints

on the emergent geometry [33].

The AdS/CFT dictionary ties the RG flow of a holographic QFT to the breaking

of radial translations in the AdS background. The Goldstone boson associated with this

symmetry breaking can be described by an effective theory [34]. This EFT is in one-

to-one correspondence with the EFT of inflation [35, 36], after interchanging time in dS

with the radial coordinate in AdS. The problem of finding constraints on the EFT of

inflation therefore has an analogous problem in AdS. Since the boundary dual of the EFT

of holographic RG is Lorentz invariant and unitary, the usual constraints on the boundary

QFT still apply.
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In this paper, we will derive new constraints on holographic RG flows and explore

their relation to inflationary models. We will study a special class of ‘slow’ holographic

RG flows, in which the C-function changes slowly along the flow, and the β-function is

constant (though not necessarily small) over a large range of scales. While leading to

unconventional RG flows, this is a natural limit to consider because it is analogous to the

canonical inflationary evolution, where the Hubble scale changes slowly and the couplings

in the EFT of inflation are approximately constant. The constraints on such RG flows,

and their derivation, are reminiscent of the four-dimensional a-theorem of Komargodski

and Schwimmer [28, 29].

Our main result will be a sum rule related to the speed at which objects fall along the

radial direction of AdS, which we will denote by cr. This sum rule relates the deviation of

this “infall speed” from the speed of light to an integral of the four-point amplitude of the

trace of the stress tensor, Tµµ , in the dual QFT. When cr approaches the speed of light,

the sum rule forces an infinite number of operators in the bulk EFT to vanish, suggesting

that the theory becomes free in this limit, as conjectured for inflation in [5]. Our derivation

relies on the fact that the EFT of holographic RG flows contains interactions that induce

an anomalous dimension for a spin-2 operator in the dual QFT. It is well known that in a

CFT, such anomalous dimensions obey positive sum rules [37–40], and we will show that

similar techniques carry over to slow RG flows despite the breaking of conformal invariance.

On the boundary, the parameter cr is the speed at which a local wavepacket of

Tµµ spreads under time evolution, analogous to the butterfly velocity vB in quantum

chaos [41, 42]. The operator Tµµ is a dynamical probe of the RG flow that explores different

scales as a function of time. At early times, the wavepacket is localized to a small region,

so it is an operator in the UV theory. As the operator spreads, it explores larger distance

scales. The rate of spreading depends on the details of the RG flow, until eventually it

becomes large enough to be an operator in the IR theory. Throughout this process, the

operator must, of course, spread no faster than the speed of light, so it is natural to find a

positive sum rule involving 1 − c2
r .

Returning to inflation, the analogue of the infall speed cr is the propagation speed of

inflationary fluctuations, cs, which is often referred to as the inflationary “speed of sound”.

This speed is directly related to the leading non-Gaussianities in single-field inflation [43].

As we will show, the same techniques used to derive the sum rule for holographic RG flows

can be applied to obtain a sum rule relating inflationary couplings, including cs, to prop-

erties of the UV completion. However, in this case, the UV behavior of the corresponding

four-point function is poorly understood and there is no known positivity condition like

that used to derive the RG constraints. The interpretation of the inflationary sum rule

is therefore unclear. If our constraints on cr can be translated to cs, this would imply

that the limit cs ≈ 1 is necessarily (canonical) slow-roll inflation with only perturbative

higher-derivative interactions.

Our approach, using AdS holography to motivate constraints in de Sitter, is connected

to the dS/CFT correspondence [23, 44–46]. However, we use only a very weak form of the

correspondence, in mapping kinematics from AdS to dS. In the end, our results do not

rely on dS/CFT, or require quantum gravity in de Sitter to be holographic.
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While our specific derivation will depend crucially on AdS holography, holography

itself demands that our constraint on cr also has a purely bulk description. Moreover, one

might suspect that the argument in the bulk does not depend on the global properties

of the spacetime, as for similar sum rules in pure AdS that match known constraints in

Minkowski space. Indeed, we will show that there are equivalent causality constraints for

both the EFT of holographic RG flow and the EFT inflation, though they are not precisely

equivalent to the constraints implied by our sum rule. These results are suggestive of an

inflationary analogue of our constraints, but a rigorous derivation remains an interesting

direction for future work.

Outline. The paper is organized as follows: in section 2, we review the EFT of inflation

and its relation to the EFT of holographic RG flows. In section 3, we derive a sum rule

for the infall speed of the holographic RG flow, using known analyticity properties of deep

inelastic scattering. In section 4, we speculate about the relevance of these results for

inflation. We present our conclusions in section 5. Three appendices contain additional

material: in appendix A, we provide details of the computations described in section 3. In

appendix B, we prove that the (indirect) calculation of the anomalous dimension using deep

inelastic scattering necessarily agrees with the result of a more direct one-loop calculation.

In appendix C, we study the specific effective theory arising from the DBI action and show

how, in this case, all EFT parameters are fixed in terms of the propagation speeds cs and cr.

Notation and conventions. We will use the following notation for the coordinates on

the (A)dS spacetimes:

dS4

bulk xµ µ = 0, 1, 2, 3 (∇φ)2 ≡ gµν∂µφ∂νφ
boundary xi i = 1, 2, 3 (∂φ)2 ≡ δij∂iφ∂jφ

AdSd+1

bulk xM M = 0, . . . , d (∇φ)2 ≡ gMN∂Mφ∂Nφ

boundary xα α = 0, . . . , d− 1 (∂φ)2 ≡ ηαβ∂αφ∂βφ

We use the first few letters of the greek alphabet (α, β, . . .) for the indices of the AdS bound-

ary coordinates to distinguish them from the dS bulk coordinates (µ, ν, . . .). The dS bound-

ary indices are raised/lowered/contracted with δij . The AdS spacetime is in Lorentzian

signature, with boundary indices raised/lowered/contracted using ηαβ in mostly-plus sig-

nature. Bulk and boundary derivatives are denoted by ∇ and ∂, respectively. We set

~ = c = 1.

2 From inflation to RG flow

Inflation can be understood as the spontaneous breaking of microscopic time translations1

in a quasi-de Sitter spacetime (see figure 1). In particular, ending inflation requires a phys-

ical clock (often a rolling scalar field) that defines a preferred time-slicing. A powerful way

to describe the low-energy dynamics of this symmetry breaking phenomenon is in terms of

1By the breaking of “time translations” we really mean the breaking of the global part of time reparam-

eterizations. For a careful discussion of this point, see [47, 48].
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Figure 1. During inflation (left), the time dependence of a matter field φ(η) induces a preferred

time slicing of the quasi-de Sitter background. The analog in AdS is a slow RG flow (right) induced

by the radial profile φ(z) of a bulk field. In both cases, the low-energy dynamics can be described

by Goldstone fluctuations around the homogeneous background.

the Goldstone boson associated with the broken symmetry. The “effective field theory of

inflation” is the most general effective theory of this Goldstone mode, allowing all terms

consistent with the nonlinearly realized symmetry [35, 36]. From the bottom up, the cou-

plings in this EFT are free parameters, constrained only by naturalness considerations and

cosmological observations. An important question is which Goldstone couplings are allowed

from the top down. Are there sum rules and sign constraints imposed by consistency of

the UV completion of inflation?

In this section, we will introduce the analogue of inflation in AdS, where the breaking of

radial diffeomorphisms induces a “slow RG flow” in the boundary field theory (see figure 1).

As for inflation, this RG flow can be described by the Goldstone boson associated with

the symmetry breaking [34]. In section 3, we will adopt recent CFT/bootstrap methods to

derive new constraints on this RG flow.

2.1 Effective theory of inflation

We begin with a lightning review of the EFT of inflation [35, 36] (see also [47, 48]). Let us

write the line element during inflation as

ds2 = −dt2 + a2(t)dxidx
i , (2.1)

where the Hubble rate H ≡ ∂t ln a is approximately, but not exactly, constant. Fluctuations

around this background can be described by the Goldstone boson π(t, xi) associated with

the broken time translations. To construct the Goldstone action, it is useful to define a

variable that transforms linearly under the symmetry:

U ≡ t+ π(t, xi) . (2.2)
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Under a diffeomorphism t → t + δt, the Goldstone transforms as π → π − δt, so that

U transforms as a scalar. To leading order in derivatives, the most general action of the

Goldstone boson is [35]

S =

∫
dtd3x a3

[
M2

pl

(
1

2
R− (3H2 + Ḣ) + Ḣgµν∂µU∂νU

)

+

∞∑
n=2

1

n!
Mn(U)

[
gµν∂µU∂νU + 1

]n
+ · · ·

]
, (2.3)

where the structure in the first line is enforced by tadpole cancellation. Taking the so-

called decoupling limit M2
pl →∞ and Ḣ → 0, while keeping M2

plḢ fixed, leads to a non-

relativistic QFT in a fixed background [49]. In this limit, dynamical gravity decouples and

the Goldstone boson description becomes exact.2 In the following, we will assume this

limit and set Mpl ≡ 1.

We will take the parameters of the EFT to be time independent. This choice is tech-

nically natural, since the theory of the fluctuations inherits an additional global shift sym-

metry, U → U + c, in this limit. The resulting action then has an effective time-translation

symmetry in the IR, with a corresponding conserved current that can be written as

tµ = T 0µ + jµ , (2.4)

where T 0µ and jµ are the currents associated with time translations in the UV and with

the additional shift symmetry, respectively. An important consequence of this effective

time-translation symmetry is the scale invariance of cosmological correlators.

While scale invariance is an approximate symmetry in all inflationary models, confor-

mal invariance is generically broken and only re-emerges in slow-roll inflation. To see this,

note that Lorentz boosts are generated by the currents Kµνλ = xµT νλ−xνTµλ. This time

the shift symmetry cannot be used to restore the broken boosts, since it does not trans-

form as a tensor. As a result, the de Sitter isometries, SO(d, 1), are broken down to spatial

rotations and time translations (i.e. scale transformations), SO(d) × U(1). Cosmological

correlators then exhibit scale invariance, but are not conformally invariant. An exception

occurs in the slow-roll limit (Mn>1 → 0), where the theory reduces to a free relativistic

scalar in the decoupling limit. Since the theory becomes free, it contains approximately

conserved higher-spin currents which allow for an emergent Lorentz symmetry as a diag-

onal combination of the UV Lorentz group and these global higher-spin symmetries. The

interactions of slow-roll inflation beyond the decoupling limit are then controlled by the

weakly broken conformal symmetry [50–52].

Expanding (2.3) to quadratic order in π, we find

L0 = −Ḣ
[
c−2
s π̇2 − a−2(∂π)2

]
, (2.5)

2Using the Goldstone boson description while neglecting dynamical gravity is accurate up to corrections

of the order of H2/M2
pl and Ḣ/H2.
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where (∂π)2 ≡ δij∂iπ∂jπ and we have introduced the sound speed

c2
s ≡

Ḣ

Ḣ − 2M2

, (2.6)

which describes the speed of propagation of the inflationary fluctuations. In canonical

slow-roll inflation, with M2 = 0, it equals the speed of light, cs = 1, but more generally the

broken Lorentz symmetry of the background allows for cs 6= 1. Up to quartic order, and

at leading order in derivatives, the Goldstone Lagrangian has the following interactions

Lint = (1− c−2
s )Ḣ

[
−π̇(∇π)2 +

1

4
(∇π)4

]
− 2M3

[
2

3
π̇3 − π̇2(∇π)2

]
+

2

3
M4 π̇

4 , (2.7)

where (∇π)2 ≡ gµν∂µπ∂νπ. Additional higher-derivative operators should also be included

in the EFT [35], but they often give suppressed contributions to cosmological correlators.

Because Lorentz symmetry is broken, time and space derivatives cannot be treated

on an equal footing. To avoid this complication, we rescale the spatial coordinates as

x→ x̃ = c−1
s x. This rescaling restores a fake Lorentz symmetry in the quadratic Lagrangian

L̃0 = c3
sL0 =

1

2
f4
π

[
π̇2 − a−2(∂̃π)2

]
≡ −1

2
(∇̃πc)2 , (2.8)

where f4
π = 2|Ḣ|cs is the symmetry breaking scale and πc ≡ f2

ππ is the canonically-

normalized Goldstone mode. The dimensionless power spectrum of primordial curva-

ture perturbations, ζ = −Hπ, is given by 2π∆ζ = (H/fπ)2, and the observed size of

ζ-fluctuations, ∆ζ ≈ 4.5× 10−5, implies the hierarchy fπ = 59H. In terms of the rescaled

coordinates, time and space are again on an equal footing, at least perturbatively, and the

relative impact of each operator can be read off from the couplings alone.

It is useful to measure the parameters of the EFT of inflation in terms of the symmetry

breaking scale:

Mn ≡ cn
f4
π

c2n−1
s

, (2.9)

where c2 ≡ 1
4(1 − c2

s) and the factors of cs were introduced to ensure that cn ∼ O(1)

is natural even for small values of cs [5]. In DBI inflation (see appendix C), all EFT

parameters cn are fixed in terms of the sound speed cs (or equivalently c2); in particular,

c3 = −6c2
2 and c4 = 60c3

2. The interaction Lagrangian (2.7) then becomes

L̃int =− 2

Λ2

[
c2 π̇c(∇̃πc)2+

(
(1−c2

s)c2+
2

3
c3

)
π̇3
c

]
(2.10)

+
1

2Λ4

[
c2 (∇̃πc)4+2

(
(1−c2

s)c2+2c3

)
π̇2
c (∇̃πc)2+

(
(1−c2

s)
2 c2+4(1−c2

s)c3+
4

3
c4

)
π̇4
c

]
,

where Λ ≡ fπcs. We see that a small sound speed, cs � 1, implies large interactions

because of the reduced cutoff scale Λ in (2.10). The corresponding non-Gaussianity of the

initial conditions is [48]

fNL ≈
[
−85

81
c2 +

40

243
c3

](
fπ
Λ

)2

, (2.11)
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where fNL∆ζ measures the deviation from Gaussianity. Constraints on the CMB bispec-

trum [53] translate into fNL = −26 ± 47 (68% CL), which means that the universe is

Gaussian at the 10−3 level. Marginalizing over c3, this implies the following bound on the

inflationary sound speed

cs > 0.021 (95% CL) . (2.12)

For comparison, canonical single-field slow-roll inflation requires cs > 0.34 [5] to be consis-

tent with a single weakly coupled scalar at the scale fπ. Deviations from cs = 1 in that

case only arise from perturbative higher-derivative interactions, such as (∇φ)4.

2.2 EFT of holographic RG flows

A holographic RG flow is a deformation of AdS/CFT in which a relevant operator is added

to the boundary action,

S = SCFT + λ

∫
ddxΦ(x) . (2.13)

The scalar operator Φ has scaling dimension ∆ < d, which breaks conformal invariance

and triggers an RG flow to the infrared. The trace of the stress tensor, T ≡ Tµµ , is related

to the operator Φ via the beta function, T = β Φ. Poincaré invariance in preserved. The

geometry dual to the perturbed field theory is

ds2 = dr2 + a2(r)dxαdxα , (2.14)

where the scale factor asymptotically takes the AdS form a(r)→ er/` as r →∞, but differs

in the interior. We take the boundary metric to be d-dimensional Minkowski spacetime.

The solution is supported by nontrivial matter fields. We focus on single-field flows, in

which the only fields that participate are the metric and the bulk scalar φ dual to the op-

erator Φ, with background profile φ = φ0(r). According to the usual AdS/CFT dictionary,

the asymptotic behavior of φ0(r) is related to the QFT coupling constant λ.

The analogue of inflation is a quasi-AdS RG flow, where the “Hubble parameter” H ≡
∂r ln a is approximately, but not exactly, constant. This is equivalent to the assumption

that the holographic C-function [33],

C(r) =
πd/2

Γ[d/2]

(
Mpl

H

)d−1

, (2.15)

is nearly constant. Fluctuations around the “slow-flow” background can be organized into

an effective field theory [34]. In fact, it is easy to see that there is a one-to-one map between

the EFT of inflation described above and the EFT of holographic RG flow. As before, we

introduce the Goldstone boson via U ≡ r + π(r, xα) and write its effective action as

S ⊃
∫

drddx
√
g

[
H ′(∇U)2 +

∞∑
n=2

1

n!
Mn(U)

[
(∇U)2 − 1

]n
+ · · ·

]
, (2.16)
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where (∇U)2 ≡ gMN∂MU∂NU . Like in the EFT of inflation, we will take the parameters

of the Goldstone action to be nearly constant, in the sense that ∂rMn/Mn � H. This

choice is again protected by the shift symmetry3 U → U + c.

At quadratic order in π, we get

L0 = H ′
[
c2
r(π
′)2 + a−2(∂π)2

]
, (2.17)

where we have introduced4

c2
r ≡

H ′ + 2M2

H ′
. (2.18)

Note that H ′ < 0, so that cr < 1 requires M2 > 0. In the bulk, the parameter cr is the

speed at which particles fall into the AdS spacetime. We will therefore call it the infall

speed. In the dual boundary QFT, the parameter cr is the speed at which certain smeared

operators spread as a function of time. We will discuss this further in section 2.4.

Up to quartic order, the Goldstone interactions are

Lint = −(1−c2
r)H

′
[
π′(∇π)2 +

1

4
(∇π)4

]
+2M3

[
2

3
(π′)3 + (π′)2(∇π)2

]
+

2

3
M4(π′)4 . (2.19)

Defining the rescaled radial coordinate r̃ = c−1
r r, a fake AdS invariance can be restored in

the quadratic Lagrangian

L̃0 = crL0 = −1

2
fd+1
π

[
(∂r̃π)2 + a−2(∂π)2

]
≡ −1

2
(∇̃πc)2 , (2.20)

where fd+1
π ≡ 2|H ′|cr is the symmetry breaking scale and π2

c ≡ fd+1
π π2 is the canonically-

normalized Goldstone mode. After the rescaling, the scale factor is a(r̃) ≈ eH̃r̃, where

H̃ ≡ crH . (2.21)

The interaction Lagrangian (2.19) becomes

L̃int =
2

f
(d+1)/2
π

[
c2

cr
a−2∂r̃πc(∂πc)

2+

(
c2+ 2

3c3

c3
r

)
(∂r̃πc)

3

]
(2.22)

+
1

2fd+1
π

[
c2a
−4(∂πc)

4+
2(c2+2c3)

c2
r

a−2(∂r̃πc)
2(∂πc)

2+

(
c2+4c3+ 4

3c4

c4
r

)
(∂r̃πc)

4

]
,

where we have defined

Mn ≡ fd+1
π

cn
cr

= −2H ′ cn . (2.23)

Notice that the scaling with cr in (2.23) is different from the scaling with cs in (2.9). With

this choice of scalings, we have cn ∼ O(1) in both cases. In appendix C, we demonstrate

this for the DBI action.
3Global symmetries in the bulk act on the boundary QFT, but do not have an associated conserved

current, which would require an additional gauge field in the bulk. This is particularly unusual for a shift

symmetry, since φ → φ + c implies the existence of an exactly marginal operator, such that every CFT

along the conformal manifold is equivalent, i.e. shifting the coupling by a constant returns the same CFT.

See [54] for a recent discussion.
4Note that our definition of the propagation speed is different from that used in [34].
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A crucial feature of the Goldstone Lagrangian is that the infall speed cr controls not

only the kinetic term, but also the (∂π)4 interaction, according to the relation

c2 =
1

4
(1− c2

r) . (2.24)

Note that cr measures the propagation speed in the radial direction of AdS, while fluctu-

ations in the transverse directions always move at the speed of light. However, the (∂π)4

interaction does affects the transverse speed of propagation if we deform the background by

a gradient in the transverse directions [1]. The relation (2.24) therefore connects the prop-

agation speed in the radial direction to the transverse propagation speed around nontrivial

backgrounds.

2.3 Scale-but-not-conformal QFT

Inflationary correlators typically exhibit approximate scale invariance, consistent with cos-

mological observations. On the other hand, the inflationary background generically breaks

conformal invariance. By construction, the bulk description of slow RG flows exhibits the

same phenomenon. It is natural to wonder how this manifests itself on the boundary QFT,

especially because scale-but-not-conformal invariance is highly constrained in relativistic

QFTs [55–57].

The breaking of conformal invariance on the boundary is captured by the trace of the

stress tensor T . To normalize the two-point function of T , we recall that it is dual to the

curvature perturbation in the bulk, ζ ≈ −Hπ = −H̃π/cr. Using (2.20), we then have

〈T (~k)T (−~k)〉′ = β2〈Φ(~k)Φ(−~k)〉′ ≈ c2
r

(
fπ

H̃

)d+1

kd , (2.25)

for odd dimensions d. Letting 〈Φ(~k)Φ(−~k)〉′ ≡ kd, this implies

|β| = cr

(
fπ

H̃

)(d+1)/2

� c−2
r ≥ 1 , (2.26)

where we imposed f
(d+1)/2
π c3

r � H̃(d+1)/2, in order for the bulk EFT (2.22) to be weakly

coupled and under control. In addition, the decoupling of gravity in the bulk corresponds

to taking N → ∞ on the boundary. In the boundary QFT, we are therefore working in

the limit

N2 � |β| � 1 . (2.27)

As we will now discuss, the fluctuations are still scale-invariant, despite the large β-function.

For concreteness, let us consider a slow RG flow that is triggered by turning on a slightly

relevant operator with a large coupling. Specifically, we take the operator Φ in (2.13) to

have dimension ∆ = d − ε. The decoupling limit in the bulk then corresponds to taking

the coefficient λ → ∞, while holding β = −λε � 1 fixed and much smaller than N2. In

this limit, the boundary correlators become exactly scale invariant, i.e. although |β| � 1,

scale invariance is only broken at O(ε). Conformal invariance, on the other hand, can be

– 10 –
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time

IR

UV

R(t)

W (0)

Generic RG flow

cr < 1

W (0)

Slow RG flow

Figure 2. Illustration of the growth of an operator in the vacuum state of a QFT for a generic RG

flow (left) and the slow RG flow (right). The operator W is smeared within a small region near the

origin. As the operator spreads in space, it probes larger scales, and effectively transitions from the

UV CFT at early times to the IR CFT at late times. The growth curve R(t) depends on the UV

operator and the details of the RG flow. In the slow RG limit, the operator grows linearly over a

large range of scales. The speed of operator growth dR/dt is then equal to the AdS infall speed cr.

broken by much larger amounts. This does not violate existing constraints on scale-but-

not-conformal theories (e.g. [55–57]), because of the unusual limit that is being taken.5

Had we fixed λ, while taking the limit ε→ 0, we would have recovered scale and conformal

invariance as expected. What is more remarkable is that in the decoupling limit scale

invariance and conformal invariance are broken6 at different orders of λ.

2.4 Operator growth in RG flows

The infall speed cr introduced in section 2.2 has an interesting interpretation in the dual

QFT on the boundary: it is the speed at which certain non-local operators spread in space,

as a function of time (see figure 2). It is also a probe of the physics along the RG flow. As

we will now explain, this connection between operator growth and RG flow is relevant also

in non-holographic QFTs.

A relativistic QFT flows to scale-invariant fixed points in the UV and IR. It is widely

believed, and in many cases proven, that the fixed points are also conformally invariant [58].

Typically, the RG flow between the fixed points is viewed as an abstract flow in the space

of Lagrangians, or as a change in the effective description of a given theory as a function

of scale. It can also be probed dynamically. To illustrate the latter point of view, let us

consider the thought experiment pictured in figure 2. We assume that the QFT has a

characteristic mass scale M , which can be viewed as the UV cutoff of the infrared theory

or the scale of the operator deforming the CFT in the UV. Suppose an operator W (0)

5It remains a possibility that even the behavior in the decoupling limit is inconsistent. After all, scale

invariance of the boundary correlators originates from a global shift symmetry in the bulk, which is generally

thought to be forbidden in a theory of quantum gravity. We are assuming that the breaking of this symmetry

decouples as Mpl →∞, but it is conceivable that there is some fundamental obstacle to taking the limit in

this way.
6Given that the metric is still approximately AdS, the graviton and any spectator fields are approximately

scale and conformally invariant. In this sense, the unusual breaking pattern is isolated to a sub-sector of

the full QFT.
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is localized in a small region of size R(0) � M−1 near the origin. Effectively, W (0) is

an operator in the UV CFT. Under time evolution, W (t) spreads out in space, exploring

different scales along the RG flow. Eventually, when it becomes of size R(t)� M−1, it is

an operator in the IR CFT. The growth curve R(t) depends on the choice of UV operator

W (0) and on the details of the RG flow.

Note that we are discussing the size of the Heisenberg operator,

W (t) = eiHtW (0)e−iHt , (2.28)

where W (0) is the operator at t = 0. This can be measured, for example, by the size of its

commutators with local operators, [W (t),O(t = 0, ~x)], as a function of ~x. (See [59, 60] for

recent discussions in the condensed matter context.) Roughly speaking, R(t) is the region

where these commutators are large. In a relativistic theory, this is obviously constrained

to be within the lightcone, so R(t) ≤ t and R′(t) ≤ 1, and in a free theory, R(t) = t.

Similarly, if W is a local operator in an undeformed CFT, then it spreads at the speed of

light, so the growth curve R(t) is just the usual lightcone. More general operators, and

even local operators in interacting non-conformal theories, may not spread at the speed of

light, so R(t) can be nontrivial. It should be possible to define R(t) in general, but we will

only give a precise definition in holographic theories, where this experiment is interpreted

as dropping a particle into the bulk and letting it fall in the radial direction.

To interpret the infall speed cr, we choose the operator W (0) to be a wavepacket

localized near the origin, with timelike momentum, built by smearing the trace of the

stress tensor:

W (0) ≡
∫

ddx′ e−iωt
′
e−(t′2+~x′2)/σ2

Tµµ (t′, ~x ′ ) . (2.29)

The width and frequency of the wavepacket satisfy σM � 1 and ωσ � 1, so that at early

times, the evolution of W is controlled by the UV CFT. For t � M−1, the growth is

linear at the speed of light. In the bulk theory, W creates a π particle that starts near the

conformal boundary at x = z = 0, and then falls radially inward (see for example [61]). The

purpose of the wavepacket is to localize this particle on a worldline, rather than sending a

wave of π in all directions into the bulk.

We can now give the precise definition of the operator growth curve R(t): it is the

size of the boundary region necessary to reconstruct the infalling π-particle at time t. In

empty AdS, a radially falling particle would travel on a null geodesic, with dr/dt = −er/`.
At time t, it can be reconstructed on the boundary in a region of size R(t) = t, so the

dual operator on the boundary spreads at the speed of light. This is a special feature

of a CFT, and once conformal invariance is broken, we should not expect this operator

to spread at the speed of light. Indeed, in a background corresponding to a nontrivial

RG flow, it spreads more slowly. The full curve R(t) can be calculated by entanglement

wedge reconstruction, along the lines of [42]. It is the size of the boundary region whose

holographic entanglement surface reaches to the point r(t) in the bulk. There are generally

three effects from the RG flow that need to be accounted for: the change in radial null

geodesics, the change in the shape of the entanglement wedge, and the interactions of the

field π with the background φ0(r). Having said that, we will not need this full machinery,
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because in the slow-RG limit, the metric is very close to AdS. Only the last effect, self

interactions, modifies the infall speed of the Goldstone particle, cr = −a−1dr/dt. The

reconstruction region on the boundary is simply R = a−1, as in empty AdS. The rate of

operator spreading is therefore equal to the infall speed:

dR

dt
= cr . (2.30)

Another assumption of the slow-RG limit is that cr is constant over a large range of scales.

This leads to linear operator growth, inside an effective lightcone of slope c−1
r , as in the

right panel of figure 2.

There is an interesting parallel between this picture and the spread of quantum chaos

at finite temperature [41, 62]. Chaos spreads linearly at the butterfly velocity vB. In

holographic theories, the butterfly velocity can also be calculated from the speed of radial

infall, but the experiment is done in a black hole geometry rather than an RG flow [42, 63].

The picture of operator growth that we have just described is very similar to the spread of

chaos, but it is in the vacuum state of a non-conformal QFT, rather than a thermal state,

and the butterfly velocity vB is replaced by the RG velocity cr. It would be interesting to

explore this parallel more deeply.

3 Bounds from deep inelastic scattering

Deep inelastic scattering (DIS) is an interesting way to study strongly coupled theories

(see figure 3). While the target may not have a small parameter in which to explore the

system, DIS introduces an additional weakly coupled probe that provides a new degree

of control. Not only has DIS proved essential for the discovery of asymptotic freedom in

QCD, but it has also been a valuable tool for understanding the structure of more general

QFTs (including CFTs). Moreover, the DIS amplitude is also a natural object to compute

using holography, as it is essentially a bulk four-point function in momentum space. In

this section, we will explore how constraints on the DIS amplitude in the boundary QFT

will lead to sum rules for bulk couplings.

We begin, in section 3.1, with a brief review of deep inelastic scattering and derive

a sum rule for the spin-s moments of the DIS amplitude. In section 3.2, we specialize to

QFTs with holographic duals. We first relate the DIS amplitude to a four-point function

of a scalar operator O and then show that the spin-2 moment of the amplitude is related

to the spin-2 anomalous dimension of O [37, 38]. In section 3.3, we compute this anoma-

lous dimension holographically in terms of the bulk interactions of the Goldstone EFT.

There are various approaches in the literature to calculate these anomalous dimensions

holographically [64–66], but they typically rely on conformal invariance. Instead, we will

calculate the DIS amplitude directly using momentum-space Witten diagrams, and extract

the anomalous dimension from the result. We then present a sum rule for the EFT pa-

rameters cr and c3. Finally, we discuss the theoretical implications of our result, first for

cr ≈ 1 (section 3.4) and then for cr � 1 (section 3.5).
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qα

Pβ Pβ Pβ

qα qα

Figure 3. Illustration of deep inelastic scattering (left) and the DIS amplitude (right).

3.1 Review of deep inelastic scattering

In any DIS calculation, the probe couples to the QFT of interest through a specific operator,

which, in the context of QCD, is usually the electromagnetic current. We will denote the

probe particle by φ and couple it to a scalar operator O via the interaction gφO, where

the coupling g can be chosen to be arbitrarily weak. Our analysis will hold for any scalar

operator O, but we will eventually specialize to the case O = T , where T is the trace of

the stress tensor.

The probe particle scatters off a state in the strongly coupled theory by exchanging

O with momentum q (see figure 3). The amplitude for the elastic scattering φP → φP is

related by unitarity to the inelastic cross section via

2ImM(φP → φP ) =
∑
f

∫
dΠf |M(φP → f)|2 , (3.1)

where f is any possible final state of phase space density dΠf . At leading order in g, these

amplitudes are given by

iM(φP → f) = ig

∫
ddy eiq·y〈f |O(y)|P 〉 , (3.2)

iM(φP → φP ) = (ig)2

∫
ddy eiq·y 〈P |T(O(y)O(0))|P 〉 , (3.3)

where T denotes time ordering. The elastic amplitude is a particularly useful object for

two reasons: i) at sufficiently low center-of-mass energies, the scattering is controlled by

the operator product expansion (OPE) and ii) the imaginary part is related to the to-

tal inelastic cross section and is necessarily positive. Combining these insights with an-

alyticity of the amplitudes has led to interesting constraints on the low-energy descrip-

tion, including sign and convexity constraints on anomalous dimensions of minimum-twist

operators [37, 38, 67].

The use of the DIS amplitude is natural in holographic theories, because bulk interac-

tions control the anomalous dimensions and OPE coefficients in the boundary QFT [64, 65].

When the bulk theory is Lorentz invariant and the boundary theory is a CFT, sign con-

straints on the anomalous dimensions of boundary operators [40] reproduce known sign
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constraints on the bulk EFT, derived from the positivity of scattering amplitudes [1].

When the bulk breaks AdS invariance, the bulk scattering methods are less effective [5],

but we still expect the bounds from the DIS amplitudes on the boundary to apply.

In the following, we will study the DIS amplitude defined in (3.3):

A(q, P ) ≡ i
∫

ddy eiq·y 〈P |T(O(y)O(0))|P 〉 , (3.4)

which, in the limit of large q2, can be simplified by using the OPE. For real operators O,

the OPE only gets contributions from even spins. Moreover, only “primary” operators7

need to be considered, since operators that can be expressed as a total derivative do not

contribute to the relevant correlation function because of momentum conservation. We can

therefore write

O(y)O(0) ∼
∑

s=0,2,···

∑
n∈Is

f (n)
s (y) yα1 · · · yαs O(n)

α1...αs(0) , (3.5)

where Is denotes the set of primary operators of spin s. Imposing scale invariance, the

coefficient functions in (3.5) are constrained to take the form

f (n)
s (y) ≡ c(n)

s yτ
(n)
s −2∆ , (3.6)

where τ
(n)
s ≡ ∆

(n)
s − s is the twist of the operator. Using

〈P |O(n)
α1...αs(0)|P 〉 = d(n)

s [Pα1 . . . Pαs − traces] , (3.7)

where d
(n)
s are dimensionful coefficients, we can write the DIS amplitude as

A(q, P ) =
∑

s=0,2,···

∑
n

c̃(n)
s d(n)

s

(
[P · ∂q]s − traces

)
q2∆−τ (n)s −d , (3.8)

with the momentum-space OPE coefficients

c̃(n)
s = 2d+τ

(n)
s −2∆πd/2

Γ(d/2−∆ + τ
(n)
s /2)

Γ(∆− τ (n)
s /2)

c(n)
s . (3.9)

It is convenient to switch to an alternative parameterization in terms of

x ≡ q2

2P · q
. (3.10)

High-energy scattering then corresponds to the limit x → 0. Keeping only the leading

terms for large q2, we find

A(x, q2) ≈
∑

s=0,2,···
c̃(∗)
s d(∗)

s x−s(q2)∆−d/2−τ (∗)s /2 , (3.11)

where the asterisks denote quantities associated with minimal-twist operators.

7For the lack of a better term, we call operators that cannot be expressed as derivatives of other operators

“primary”, in analogy with primaries in a CFT. However, it is important that our analysis does not assume

conformal invariance at any point.
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Figure 4. Illustration of the analytic structure of the DIS amplitude.

We have just seen that the OPE is useful for large x, while the physically relevant

regime is |x| ∈ [0, 1]. The OPE limit and the small-x regime can be related by a contour

deformation in the complex x-plane. Note that kinematics requires −(P + q)2 ≥ 0 and

the DIS amplitude has a branch cut x ∈ [−xc, xc], with xc = (1 + P 2/q2)−1. Since we

work at large q2 and fixed P 2, we can set xc = 1. Let us consider the s-th moment of the

amplitude, as(q
2), defined as the integral of xs−1A(x, q2) around the closed contour shown

in figure 4. This moment is determined by the discontinuity across the branch cut:

as(q
2) ≡ 1

2πi

∮
dxxs−1A(x, q2) =

2

π

∫ 1

0
dxxs−1 Im[A(x, q2)] . (3.12)

To write this sum rule, we have assumed polynomial boundedness of the amplitude for

small values of x, i.e. limx→0A(x, q2) ≤ x−M+1, for some integer M . (Below, we will

assume that the bound is strong enough to permit a spin-2 sum rule.) For large q2, the

DIS amplitude (3.11) then implies

as(q
2)→ c̃(∗)

s d(∗)
s (q2)∆−d/2−τ (∗)s /2

=
2

π

∫ 1

0
dxxs−1 Im[A(x, q2 →∞)] ,

(3.13)

which relates the OPE coefficients to an integral of the DIS amplitude. By unitarity, we

have Im[A(x, q2)] ≥ 0, so that the moments as are positive and c̃
(∗)
s d

(∗)
s ≥ 0. Moreover, we

must have as > as+2, which implies

τ (∗)
s < τ

(∗)
s+2 , (3.14)

i.e. the minimum twist is a non-decreasing function of spin.
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3.2 Sum rule in holographic QFTs

So far, our discussion has been valid for general QFTs. We will now specialize to QFTs

with holographic duals. In particular, we consider a general scalar operator O of dimension

∆ in a large-N theory. The N =∞ limit is a mean-field theory, where we can use conformal

invariance, but the interactions may break conformal symmetry. Following Komargodski

et al. [67], we now construct the DIS amplitude for a such a QFT using the momentum state:

|P 〉 =

∫
ddy eiP ·yO(y)|0〉 ≡ O(P )|0〉 . (3.15)

The DIS amplitude (3.4) then reduces to a four-point function8

A(q, P ) =

∫
ddy e−iq·y 〈0|O(−P )T(O(y)O(0))O(P )|0〉

= 〈O(−P )O(q)O(−q)O(P )〉′ .
(3.16)

In this section, we first show how to extract the spin-2 anomalous dimension, γ2, from this

four-point function and then translate the sum rule for the spin-2 moment of the DIS am-

plitude into a sum rule for γ2. In the next section, we will compute the four-point function

holographically in terms of bulk interactions and use this to obtain a sum rule for certain

parameters of the EFT of holographic RG flow.

First, we note that the operator O is normalized such that

〈O(x)O(y)〉 = CO |x− y|−2∆ , (3.17)

〈O(p)O(−p)〉′ = AO p
2∆−d , with AO = 2d−2∆πd/2

Γ(d/2−∆)

Γ(∆)
CO . (3.18)

We are interested in the contribution of the following spin-2 composite operator

O(2)
αβ ≡ P

γδ
αβ

[
O∂γ∂δO − b∆∂γO∂δO

]
, (3.19)

where P γδαβ = δγαδδβ − d−1gαβg
γδ is the projector onto the traceless part. The relative

coefficient in (3.19) is set by requiring O(2)
αβ to be a conformal primary in the N = ∞

theory, which leads to9

b∆ =
∆ + 1

∆
. (3.20)

Assuming that the spin-2 operator has scaling dimension ∆2, it appears in the OPE as

O(y)O(0) = · · ·+ c
(0)
2 |y|

∆2−2∆−2yαyβO(2)
αβ (0) + · · · . (3.21)

8These correlators include only the connected piece. The disconnected term has zero imaginary part.

Also, in this section and below, we perform the Fourier transform in Euclidean signature. Equation (3.4)

was in Lorentzian signature, so it differs by a factor of i.
9The simplest way to derive this is to compute 〈O(2)

αβ (x)O2(y)〉 by Wick contractions and requiring it to

vanish. Equivalently, (3.19) is the specific linear combination that is annihilated by the special conformal

generator Kα.
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At large N , composite operators have small anomalous dimensions, so ∆2 = 2∆ + 2 + γ2,

with γ2 � 1. The OPE coefficient c
(0)
2 is determined by comparison with the Taylor

expansion,

O(y) = y · ∂O(0) +
1

2
(y · ∂)2O(0) + · · · (3.22)

O(y)O(0) ⊃ 1

2
yαyβO∂α∂βO = c

(0)
2 yαyβO(2)

αβ + c′yαyβ∂α∂β(O2) , (3.23)

where the last equality sets

c
(0)
2 = [2(b∆ + 1)]−1 =

∆

2(2∆ + 1)
. (3.24)

Finally, Wick contractions using the Green’s function (3.17) lead to

〈P |O(2)
αβ (0)|P 〉 = − 1

c
(0)
2

A2
O P

γδ
αβPγPδP

4∆−2d . (3.25)

The overall minus sign arises from the Fourier transform of the derivatives. This sign is ulti-

mately responsible for connecting the positivity of amplitudes with negativity of anomalous

dimensions. The bulk interactions are responsible for a number of 1/N corrections, but at

leading order in 1/N , only the anomalous dimension γ2 contributes to the DIS amplitude

A(q, P ) ⊃ −γ2 c(d)A2
O P

4∆−2d q−d−4

[
(P · q)2 − 1

d
P 2q2

]
, (3.26)

with c(d) ≡ 2d−1d(d + 2)πd/2 Γ(d/2). Note that γ2 � 1 appears as a prefactor in the

amplitude after taking the Fourier transform of (3.21). One could have anticipated this

from (3.21) as the OPE becomes analytic in y when γ2 = 0. As a result, the Fourier

transform must be a δ-function of q when γ2 = 0 and the q−d−4 contribution in (3.26)

must vanish as γ2 → 0. This can be seen directly from expanding denominator of (3.9) in

γ2 � 1. In appendix B, we show that the appearance of γ2 in (3.26) is not a coincidence

and follows from an explicit one-loop calculation of the anomalous dimension.

Starting from the amplitude, one finds that the spin-2 moment is given by

a2(q2) = −1

4
γ2 c(d)A2

O P
4∆−2d q−d . (3.27)

This is the small-γ expansion of the general result for the second moment in (3.13). (There

is no log q due to a cancellation with a gamma function from (3.9).) The result (3.12) then

implies the following sum rule for the spin-2 anomalous dimension:

γ2 = − 8

π

1

c(d)A2
O

1

P 4∆−2d
lim
q→∞

qd
∫ 1

0
dxx Im[A(x, q2)] , (3.28)

where the limit q → ∞ has been applied to isolate the minimum-twist operator from the

higher-twist operators. In practice, our effective description has a UV cutoff Λ and the

limit q2 →∞ means q2 → Λ2.

– 18 –



J
H
E
P
1
2
(
2
0
1
9
)
1
3
4

Figure 5. Witten diagrams associated with the contact interaction (∂πc)
4 and the exchange

interactions arising from ∂rπc(∂πc)
2 and (∂rπc)

3.

Of special interest will be the case where O is proportional to the trace of the stress

tensor in d = 3 dimensions. Setting ∆ = d = 3, we have c(3) = 30π2 and hence find

γ2 = − 4

15π3

1

A2
O

1

P 6
lim
q→∞

q3

∫ 1

0
dxx Im[A(x, q2)] . (3.29)

Because Im[A(x, q2)] ≥ 0, must have γ2 ≤ 0. Moreover, in the limit γ2 → 0, we must have

γs>2 = 0, because of the twist is a convex function of the spin, cf. (3.14). We will explore

this further in section 3.4.

3.3 Matching bulk and boundary

We will now translate (3.29) into a constraint on the EFT of holographic RG flow. The

upshot of the previous section is that, for d = 3, we are looking for all contributions to

the four-point function that behave as (P · q)2P 6/q7. At tree level, there are two types of

Witten diagrams to consider, contact and exchange diagrams (see figure 5). The contact

diagrams are the easiest to understand, so we will consider these first.

For any contact interactions of the form shown in figure 5, all propagators carry a

momentum P or q and thus do not depend on P · q. Any nontrivial x-dependence must

therefore arise from the interaction vertex itself, namely from derivatives acting on the

external lines. It is easy to see that producing a spin-s moment of the DIS amplitude

requires a vertex with at least 2s transverse derivatives. In any dimension, only a single

contact interaction in the Lagrangian (2.22) contributes to the spin-2 DIS amplitude:

Lint ⊂
1

4!
λ4

1

fd+1
π

a−4(∂πc)
4 , (3.30)

where λ4 ≡ 3(1 − c2
r). We are interested in the DIS amplitude for the trace of the stress

tensor. Holographically, the operator dual to T is the scalar metric perturbation ζ, which

is related to the canonically-normalized Goldstone mode by πc ≈ −f (d+1)/2
π ζ /H. The full

calculation is presented in appendix A. For d = 3, the result is

A(q, P ) ⊃ 55

24
λ4

f4
π

H4

(2P · q)2P 6

q7
. (3.31)
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This contribution is not manifestly positive, but gives the same answer (up to factors of

fπ/H) as the covariant (∇φ)4 interaction in pure AdS. The reason for the agreement

is that the additional contact terms containing r-derivatives, which are needed to make

the interaction covariant, do not contribute to the spin-2 moment. Demanding that this

contribution alone is positive forces λ4 ≥ 0 [40], in agreement with the flat-space result [1].

The contributions to the DIS amplitude from exchange diagrams with cubic vertices

are significantly more involved than the contact interaction. The reason is that the internal

bulk-bulk propagator carries a momentum q ± P , which leads to an infinite series in x−s

when expanded in P � q. As a result, the contribution to the spin-2 moment is not isolated

to a particular combination of contractions of derivatives on the external lines.

It is well known that, for large twist, the spin-s anomalous dimensions computed

in AdS are directly related to the corresponding spin-s partial waves of the flat-space

scattering amplitude in the bulk (e.g. [65]). However, at finite twist, such a connection

is not guaranteed and indeed the exchange diagrams that contribute to γ2 do not appear

in the spin-2 partial wave of the flat-space amplitude computed in [5]. The origin of this

difference is that, in flat space, the spin-2 component of the amplitude from exchange

diagrams cancels in the sum over contractions. These cancelations depend crucially on the

flat-space propagator and do not arise for the AdS exchange diagrams. As a result, we find

that the spin-2 contribution to the DIS amplitude in the dual QFT is related to a spin-0

amplitude of the flat-space S-matrix.

At leading order in derivatives, the EFT of slow RG flow contains only two cubic

interactions

Lint =
1

3!

1

f
(d+1)/2
π

[
λ3 a

−2∂r̃πc (∂πc)
2 + λ̃3 (∂r̃πc)

3
]
, (3.32)

where λ3 ≡ 12c2/cr and λ̃3 ≡ (12c2 + 8c3)/c3
r . This allows for three distinct exchange

contributions to the DIS amplitude, which are computed explicitly in appendix A. For

d = 3, the result is

A(q, P ) ⊃
[

495

512
λ̃2

3 −
605

256
λ3λ̃3 +

6655

4608
λ2

3

]
f4
π

H4

(2P · q)2P 6

q7
. (3.33)

The signs in this expression are nontrivial and important, given that A(q, P ) is required to

be positive by unitarity. Furthermore, unlike for the contact contribution, the sign of the

first and third terms cannot be absorbed into the signs of the couplings.

Adding (3.31) and (3.33), we find that the total DIS amplitude is

A(q, P ) ⊃
[

55

24
λ4 +

495

512
λ̃2

3 −
605

256
λ3λ̃3 +

6655

4608
λ2

3

]
f4
π

H4

(2P · q)2P 6

q7
. (3.34)

Recalling from section 2.3 that T is normalized in d = 3 such that AO=T = c2
rf

4
π/H̃

4 [46],

we use (3.26) to obtain

γ2 =− 1

π2

(
H̃

fπ

)4(
11

36
λ4+

33

256
λ̃2

3−
121

384
λ3λ̃3+

1331

6912
λ2

3

)

=− 1

π2

(
H̃

fπ

)4[
11

12
(1−c2

r)+
33

4c6
r

(
3

2
c2+c3

)2

− 121

4c4
r

c2

(
3

2
c2+c3

)
+

1331

48c2
r

c2
2

]
,

(3.35)
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where, in the second equality, we used the relations between λ3, λ̃3, λ4 and cr, c2, c3.

Using (3.28) and c2 = 1
4(1− c2

r), we arrive at the following sum rule

(
1− c2

r

)
+ f(cr, c3) =

1

55π

(
fπ

H̃

)4

lim
q→∞

q3

∫ 1

0
dxx Im[A(x, q2)] , (3.36)

where H̃ = crH is the effective curvature scale and we have defined

f(cr, c3) ≡ 1

c6
r

(
3c3 +

1

8

(
9− 20c2

r + 11c4
r

))2

≥ 0 . (3.37)

The fact that this expression organizes into a single perfect square is nontrivial. We note

that the left-hand side of (3.36) is manifestly positive for 0 < cr ≤ 1. We therefore do

not find any surprising constraints on the couplings of the EFT from positivity of the DIS

amplitude. The power of the sum rule is twofold: first, given the IR quantities on the left,

we can infer properties of the UV amplitude on the right. Second, the sum rule can be

recycled to constrain an infinite tower of higher-derivative operators through (3.12).

3.4 Freedom at the speed of light

It is natural to expect our sum rule to be particularly illuminating when the propagation

speed approaches the speed of light, cr → 1. Bulk causality forbids cr > 1 and sum rules

usually simplify when positivity constraints are saturated. In the context of inflation, this

expectation motivated the conjecture in [5] that cs = 1 should be a free theory (in the

decoupling limit). We will now establish a similar result for the holographic RG flow.

Evaluating the sum rule (3.36) for cr = 1, we get

9c2
3 =

1

55π

(
fπ

H̃

)4

lim
q→∞

q3

∫ 1

0
dxx Im[A(x, q2)] . (3.38)

This constraint alone is still consistent with a wide range of interacting EFTs. However,

bulk causality requires c3 = 0 when cr = 1. To see this, we change the background by

writing π = αr + π̃, for some α � 1. The infall speed for π̃ then is c̃r = 1 − 8αc3. Since

α can have any sign this implies superluminal propagation10 unless c3 = 0. Expanding

the action to order α2, one would furthermore find that c4 ≥ 0. Imposing the additional

constraint c3 = 0 on (3.38) forces the integrated DIS amplitude to vanish at high energies,

lim
q→∞

q3

∫ 1

0
dxx Im[A(x, q2)] = 0 . (3.39)

This constraint on the UV behavior feeds back into the EFT through the higher-spin DIS

amplitudes. Up to a power of x, the integrand in (3.39) controls all of the moments as(q
2),

10In a relativistic theory, the commutator of two operators must vanish outside the light cone in any

state of the theory. We can therefore test the consistency of the theory by expanding around nontrivial

backgrounds [1], where the propagation speed is a direct reflection of the commutator and hence of causality.
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for s ≥ 2. Specifically, using (3.39) and positivity of the cross section Im[A(x, q2)] ≥ 0, for

cr = 1, we have

lim
q→∞

q3as(q
2) = lim

q→0
q3 2

π

∫ 1

0
dxxs−1 Im[A(x, q2)] = 0 . (3.40)

These higher-spin DIS amplitudes get non-zero contributions in the bulk EFT from contact

interactions of the form

Lint ⊃ ∂α1...αiπc ∂
α1...αiπc ∂αi+1...αsπc ∂

αi+1...αsπc . (3.41)

By construction, the contractions in the Witten diagram give either (P · q)s or (P · q)0 and

therefore these interactions do not contribute to a2(q2). This means that all such couplings

must vanish if cr = 1.

The argument for the vanishing of higher-derivative operators can be extended from

cr = 1 to the limit cr → 1. Causality constraints around nontrivial backgrounds can be

applied when 0 < (1 − c2
r) � 1 if we impose that the gradient satisfies α . 1, so that we

are within the regime of validity of the EFT. Forbidding superluminal propagation in the

radial direction then requires |c3| . (1− c2
r), so the sum rule becomes

(
1− c2

r

)
+O

(
(1− c2

r)
2
)

=
1

55π

(
fπ

H̃

)4

lim
q→∞

q3

∫ 1

0
dxx Im[A(x, q2)] , (3.42)

as cr → 1. Furthermore, combining this constraint with (3.40) bounds the strength of an

infinite tower of couplings in terms of 1 − c2
r .

The above results provide support for the conjecture that cr = 1 is a free theory (in

the decoupling limit). The sum rule and bulk causality force both an infinite number of

operators in the EFT to vanish and the DIS amplitude to become trivial in the high-energy

limit. However, not all operators of the EFT are constrained in this way. In particular,

the operators associated with Mn>3 do not contribute to as≥2(q2) or Im[A(P, q)] at this

order in H/fπ and therefore are do not appear on either side of the sum rule. However, the

presence of such operators would still produce nontrivial higher-point amplitudes in the

QFT and thus would be indirectly constrained by the restrictions on the DIS amplitude.

A similar situation arises in energy correlators for certain extremal limits. It was shown

in [68] that such theories are free by bounding the size of (n+ 1)-point energy correlators

in terms of n-point correlators.

3.5 Implications for slow motion

It is also interesting to explore the meaning of the sum rule in the limit cr � 1, where the

interactions become large. For generic c3, the sum rule in (3.36) then takes the form

f(c2, c3) =
1

c6
r

(
3

2
c2 + c3

)2

+O(c−2
r ) =

1

495π

(
fπ

H̃

)4

lim
q→∞

q3

∫ 1

0
dxx Im[A(x, q2)] . (3.43)

Self-consistency of this sum rule imposes a constraint on the DIS amplitude, including its

high-energy behavior. In particular, the limit on the right-hand side of (3.43) should be
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finite, so the integrated amplitude must scale as q−3 for q → ∞. The precise meaning

of this constraint is somewhat unclear. Curiously, the best known UV-complete model of

small cr, the DBI action, does not match the c−6
r scaling displayed in (3.43). In this case,

the parameters c3 and c2 are related as 3
2c2 + c3 = 3

8c
2
r(1− c2

r) (see appendix C), so that

f(c2, c3) =
1

16

(1− c2
r)

2

c2
r

(DBI) , (3.44)

which scales as c−2
r rather than c−6

r , for small cr. This implies that the UV behavior of

the DIS amplitude dual to a bulk DBI theory is weaker at high energies than for a generic

higher-derivative theory. Presumably the origin of this cancelation has a deeper origin in

the form of the UV-completeness of DBI.

Finally, at small cr, the convexity of the minimum-twist anomalous dimensions bounds

the higher-spin anomalous dimensions γs>2 in terms of γ2. These higher-spin anomalous

dimensions can be related to couplings in the bulk EFT in the same way as in the case

of spin 2, the only difference being the number of qα-derivatives that must appear for

the contact diagrams. Exchange diagrams contribute to the entire tower of minimal-twist

anomalous dimensions but, at least for c2 and c3, are consistent with γs < γs+2 in the

absence of additional contact interactions. For small cr, these higher-derivative operators

may also modify the dispersion relation of the fluctuations with higher powers of momenta,

ω = csk+k2/ρ+· · · . Convexity in spin ensures that higher-derivative interactions cannot be

parametrically larger than the interactions associated with c2 and c3. A similar statement

for the parameters of the EFT of inflation would have important observational implications.

4 From RG flow to inflation

The sum rule derived in the previous section relied heavily on the dual QFT being rela-

tivistic and unitary. The absence of a similar dual field theory in de Sitter space might

seem to imply that the constraints derived here have no counterpart in cosmology. On the

other hand, holography demands that our sum rule has a bulk interpretation. Indeed, when

the bulk is described by pure AdS, similar constraints on the dual CFT [19, 40, 69] are

related to sub-horizon physics and can be derived from bulk causality [1, 18]. Since local

causality arguments are relatively insensitive to the asymptotic structure of the spacetime,

they translate more readily between AdS and dS. Hence, if our sum rule can be related

to local causality constraints in the bulk, it may be easier to see what it could imply for

inflation. This path from AdS to dS, illustrated in figure 6, is similar to the logic that gives

rise to the “quasi-bounds” on graviton couplings obtained in [18, 19] and has also appeared

in the connection between AdS and holographic cosmology in [25].

In this section, we will first show in what sense our sum rule is (and is not) a conse-

quence of bulk causality. In particular, we will explain that the sign constraints implied

by the sum rule are related to superluminal propagation in the transverse directions, but

do not capture causality in the radial direction. We will then show that the bulk causality

constraints found in AdS for both the transverse and radial directions apply equally to the

equivalent couplings in the EFT of inflation.
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unitarity +
analyticity ?

causality causality

AdS dS

boundary

bulk

Figure 6. Connections between bulk causality and boundary unitarity in AdS and dS spacetimes.

On the AdS side, unitarity and analyticity arguments can be formulated rigorously on the boundary

and map to solid causality constraints in the bulk. On the dS side, on the other hand, the rules of

the boundary QFT are much less well established. However, existing causality constraints in AdS

can be mapped to equivalent constraints in dS. We therefore anticipate that boundary constraints

derived in AdS will apply in dS without necessarily defining an equivalent boundary description.

4.1 Relation to bulk causality in AdS

It is natural to think that the sign constraint implied by our sum rule has an obvious

interpretation from causality, namely cr ≤ 1. Certainly, if we impose causality in this way,

the amplitude is always positive, as required by unitarity. On the other hand, the sum

rule alone does not imply this constraint on cr, nor does it capture causality constraints

on other parameters. As explained in section 3.4, forbidding superluminal propagation

around nontrivial backgrounds requires c3 = 0 and c4 ≥ 0, when cr = 1. Yet, in the DIS

amplitude, the contribution to from c3 is always positive and c4 does not appear at all.

A likely explanation for this mismatch between the bulk causality constraints and

the boundary DIS amplitude is that the missing bulk constraints arise from superluminal

propagation in the radial direction, while the DIS amplitude is only sensitive to propagation

in the transverse directions. A similar phenomenon has been observed in the context of the

conformal collider bounds on stress-tensor OPE coefficients in CFTs [70]. In the bulk, the

collider bounds are derived from causality in the transverse directions [71], while, on the

boundary, they can be derived either by DIS [67] or by microcausality of local operators

in the CFT [72, 73]. On the other hand, stronger causality bounds were derived in [18]

from propagation in the radial direction. These bounds can also be derived using CFT

techniques [69, 74], but only with more elaborate sum rules that take advantage of the

special structure of holographic CFTs, including large N and a large gap in the spectrum

of higher-spin operators.

There is a sharp connection between the positivity of our sum rule and propagation

speeds in the transverse directions, even though the sum rule constrains the radial speed cr.

Recall that when cr ≈ 1, our sum rule simplified to (3.42), so that the positivity of the

amplitude implies the constraint cr ≤ 1. This can also be derived from transverse causality

alone. Recall that, for cr ≈ 1, only λ4(∂π)4 contributes to the sum rule. Expanding π

around a gradient in any transverse direction, π = αβx
β + π̃, one then finds superluminal
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propagation unless λ4 ≥ 0 [1]. Since λ4 ∝ 1 − c2
r , this implies cr ≤ 1. Although this is a

bound on the radial propagation speed, we see that it fundamentally came from causality

in the transverse directions.

One additional complication of bulk causality constraints is controlling the impact of

dynamical gravity [6, 8, 75–77]. This is particularly relevant in the forward limit where the

gravitational contributions diverge [75]. Our holographic sum rule avoids these complica-

tions because there is no gravity on the boundary theory of AdS where our sum rule is

derived. We did make use of the decoupling of gravity in the bulk to simplify our calcula-

tion of the DIS amplitude. On the boundary, the decoupling limit corresponds to dropping

the stress tensor in the OPE, but this contribution can be included rigorously. While dy-

namical gravity remains part of the challenge to finding a purely bulk description of our

sum rule, the successful match between bulk [18] and boundary constraints [69, 74] on the

gravitational action suggests that this isn’t a fundamental obstacle.

4.2 From bulk causality to inflation

We have seen that bulk causality in the EFT of RG flow plays a crucial role in the structure

of the sum rule. In particular, the result that the theory becomes free when the propagation

speed approaches the speed of light is only implied when the sum rule is combined with bulk

causality constraints in the radial direction. The EFT of inflation is subject to precisely

the same causality constraints derived from expanding around nontrivial backgrounds [5].

In particular, in the limit cs → 1, the Lagrangian takes the form

L̃ = −1

2
(∂πc)

2 − 2

f2
π

[
2

3
c3π̇

3
c

]
+

1

2f4
π

[
4c3π̇

2
c (∂πc)

2 +
4

3
c4π̇

4
c

]
. (4.1)

Expanding around πc = −αf2
πt+ π̃c, the propagation speed for π̃c becomes c2

s = 1 + 8αc3

(to linear order in α). Since α can have either sign, subluminality then requires c3 = 0.

Setting c3 = 0 and expanding to order α2 gives c2
s = 1 − 4α2c4, which implies c4 ≥ 0.

Furthermore, if we could add an interaction of the form λ4(∂iπ)4, while keeping cs = 1,

expanding around a gradient in the transverse direction, π = αix
i+ π̃, would again require

λ4 ≥ 0. The equivalence between the causality constraints in these two EFTs provides

circumstantial evidence that freedom at the speed of light is also a property of the EFT of

inflation, as originally conjectured in [5].

A critical difference between holographic RG and inflation is that for inflation there

is no unitarity QFT dual in which to define the sum rule. Nevertheless, all quantities

appearing in the AdS sum rule were calculated from a bulk four-point function. We can

calculate an equivalent inflationary four-point function at the future boundary of dS using

A ≡ δ4Ψ/δζ4, where Ψ is the wavefunction of the universe [46]. Although this is not

a typical (in-in) cosmological correlator, it is still a quantity we can calculate using the

effective theory of inflation. Following the same procedure as in AdS, we are then led to

the following sum rule

(c−2
s − 1) + f(c2, c3) ∝ lim

q→∞
q3

∮
dxxA(x, q2) , (4.2)
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where (1 − c2
r) → (c−2

s − 1) is just the map from cr → cs and f(c2, c3) is the contribution

from exchange diagrams in de Sitter. In principle, this relates observable quantities to the

UV, but unfortunately, the analytic properties of the de Sitter four-point function, A(x, q2),

are not known, so that positivity is not guaranteed. Addressing these questions rigorously

is further compounded by the lack of a rigorous observable in cosmological spacetimes in

the presence of dynamical gravity.

A more direct approach, taken in [5], is to use bulk scattering to derive sum rules for the

EFT parameters. This approach can be applied to either EFT, but in both cases positivity

of the sum rule has not been established without Lorentz invariance. Nevertheless, using

the two-to-two amplitude of the Goldstone boson in the forward limit, A(s), a sum rule

can be derived for the couplings of the EFT of inflation [5]

(c4 + 1)−
[
(2c3 + 1)− a(cs)

]2 − b(cs) =
Λ4

π

∫ ∞
−∞

ds
Im[A(s)]

s3
, (4.3)

where a(cs) and b(cs) are positive functions of cs < 1 and vanish at cs = 1. Unlike in

relativistic theories, the right-hand side of (4.3) is not known to be positive, mainly because

there is no non-relativistic analogue of crossing symmetry to constrain the integral for

negative s. Despite this caveat, in specific examples the right-hand side is positive, in which

case this expression puts constraints the amplitude and sign of c4, in terms of c3 and cs.

5 Conclusions

Understanding the space of inflationary models and renormalization group flows are two

central problems in fundamental physics. In both cases, the vast space of theories presents

a serious challenge for organizing and classifying the possibilities. Inflation describes a

time-dependent gravitational background, where dynamical effects such as particle pro-

duction, thermalization and even eternal inflation may occur as part of the inflationary

history. In contrast, RG flows can be nontrivial in the vacuum state and describing the

range of possibilities remains an open problem even for relativistic theories in flat space.

Nevertheless, we expect the space of viable inflationary models and RG flows to satisfy

a common set of basic principles such as locality, causality and unitarity. In some cases,

these principles can be distilled into sum rules which directly relate the long-distance phe-

nomenology to the ultimate microscopic building blocks. Revealing new and unexpected

connections in the properties of viable theories is a common goal for both fields.

Holography provides an interesting connection between inflation and special types of

slow RG flow. Concretely, the EFT of Goldstone fluctuations during inflation [35] is in

one-to-one correspondence with a similar EFT in AdS [34], where it maps to an RG flow in

a relativistic and unitary QFT. In this paper, we explored the relationship between these

effective field theories in more detail. We obtained new constraints on the parameters that

controls the speed of propagation of scalar metric perturbations, called cs and cr in the two

cases, respectively. The propagation speed cr has a natural interpretation on the boundary

as the speed at which an operator, initially localized in space, spreads under time evolution.

Using deep inelastic scattering in the dual QFT, we derived the sum rule (3.36) for cr
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and one additional cubic interaction c3, and showed that unitarity implies an interesting

positivity constraint. This sum rule relates two parameters in the low-energy effective

description to the UV behavior of the theory. In the limit cr → 1 causality requires c3 to

vanish and the sum rule requires an infinite number of higher-derivative operators to vanish

as well. This suggests that the bulk theory becomes free as cr → 1. While an analogous

sum rule for cs has been obtained for inflation [5], it has (so far) not been possible to derive

the same positivity properties. Such a positivity constraint would provide a valuable tool

for interpreting the measurements of primordial non-Gaussianity from inflation, since it

would turn any constraint on cs into a bound on an infinite number of other operators.

More generally, the relation between the two EFTs studied in this paper suggests that

a number of ideas developed in the context of inflation will have interesting analogues in RG

flow. A deeper understanding of the allowed space of RG flows could therefore significantly

impact our view on viable inflationary models, and vice versa. For example, we observed

that fairly conventional inflationary models correspond in AdS to nearly scale-but-not-

conformal field theories. Similarly, models like axion monodromy inflation [78, 79] would

further motivate more exotic RG flows [80], including discrete scale invariance [81, 82],

disorder [83] and Anderson localization [84, 85] along the RG flow. Our hope is that the

flow of information works in both directions, such that our knowledge of relativistic QFT

can be used to derive insights into inflation and our knowledge of the space of inflationary

models can motivate new questions about the space of interesting RG flows.
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A Anomalous dimensions from holography

In this appendix, we compute the spin-2 moment of the DIS amplitude for the Goldstone

action (2.22). The calculations will be performed in Poincaré coordinates, where the AdS

metric takes the form

ds2 =
dz2 + dxαdxα

(H̃z)2
. (A.1)

The appearance of H̃ = crH, rather than H, is a reminder that this is not the physical

metric, but only the effective metric for the π-fluctuations in the r̃-coordinates introduced

in section 2.2.
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A.1 Contact diagrams

Whether or not a contact interaction contributes to a spin-s moment depends on the types

of derivatives acting on the bulk-to-boundary propagators. It is easy to see that only a

single interaction in (2.22), namely 1
4!λ4(∂πc)

4, contributes to the spin-2 moment. For this

interaction, the DIS amplitude becomes

A(q, P ) =
16

4!
λ4 c

4
r

(
fπ

H̃

)d+1 ∫ dz

zd+1
(P · q)2z4 z2dKν(qz)2Kν(Pz)2

z2d
0 Kν(qz0)2Kν(Pz0)2

, (A.2)

where ν ≡ ∆−d/2, the functions Kν are Bessel functions arising from the bulk-to-boundary

propagators, and z0 is the regulator of the bulk AdS spacetime. Consistency of the ampli-

tude requires that qz0 < 1, but allows for qz > 1. Since the integral in (A.2) is exponentially

suppressed for qz > 1, it has most of its support in the region Pz . P/q � 1. We can

therefore expand the integrand in powers of Pz � 1, such that the amplitude becomes

A(q,P )≈ 2

3
λ4 c

4
r

(
fπ

H̃

)d+1∫
dz (P ·q)2zd+3Kν(qz)2 1

z2d
0 (aν(qz0)−ν+bν(qz0)ν)2

z2ν
0

z2ν

×
[
1+· · ·+ bν

aν
P 4ν(z4ν−4z2νz2ν

0 +3z6
0)

]
,

(A.3)

where Kν(x→ 0) = aνx
−ν [1 +O(x2)] + bνx

ν [1 +O(x2)]. To extract the spin-2 component,

we isolate the piece scaling as P 4νq−d−4, cf. (3.26). The relevant term in (A.3) is

A(q, P ) ⊃ 2

3
λ4 c

4
r

(
fπ

H̃

)d+1

(P · q)2P 4ν

∫
dz zd+3Kν(qz)2 (qz0)2ν

z2d
0 a2

ν

b2ν
a2
ν

z2ν
0 z2ν ,

=
55

24
λ4

f4
π

H4

(2P · q)2P 6

q7
, (A.4)

where, in the second line, we have evaluated the integral for d = 3. It is important that we

calculated the coefficient of P 4ν in the limit ν → 3/2, to keep it distinct from semi-local

terms that do not contribute to the anomalous dimension and scale as P 6 for general d

and ν.

A.2 Exchange diagrams

Exchange diagrams involving two cubic vertices introduce an infinite series of terms con-

taining powers of P ·q arising from the momentum propagating in the internal line, namely

P ± q. This gives contributions to the DIS amplitude at all spins. The spin-2 component

is again extracted by isolating the terms scaling as P 4νq−d−4.

The Goldstone Lagrangian (2.22) has two cubic interactions

Lint =
1

3!

1

f
(d+1)/2
π

[
λ3 ∂r̃πc(∂πc)

2 + λ̃3 (∂r̃πc)
3
]
, (A.5)

where λ3 ≡ 12c2/cr and λ̃3 ≡ (12c2 + 8c3)/c3
r . To compute the exchange contributions

associated with these interactions, we need the following bulk-to-bulk and bulk-to-boundary
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propagators

GQ(z1, z2) = IQ(z1)KQ(z2) , z2 > z1 , (A.6)

FQ(z) =
zd/2Kν(Qz)

z
d/2
0 Kν(Qz0)

, (A.7)

where IQ(z) = zd/2Iν(Qz) and KQ(z) = zd/2Kν(Qz), with Q labelling the norm of the

momentum in the transverse directions.

The contribution proportional to λ̃2
3 is the most straightforward to calculate since all

contractions are equivalent:

A(q, P )λ̃23
= 2λ̃2

3 c
4
r

(
fπ

H̃

)d+1 ∫ ∞
0

dz1

(z1)d+1

∫ z1

0

dz2

(z2)d+1
z3

2z
3
1

×
[
F ′P (z2)F ′q(z1)I ′Qt(z1)F ′P (z2)F ′q(z2)K′Qt(z2) + {P → −P}

]
,

(A.8)

where ′ = z∂z, Qt ≡ |P + q| =
√
P 2 + q2 + 2P · q. The contribution coming from P → −P

is the u-channel exchange, while the t-channel vanishes for these momenta. Expanding in

powers of P · q/q2, and extracting the term proportional to P 4νq−d−4, we find

A(q, P )λ̃23
⊃ 495

512
λ̃2

3

f4
π

H4

(2P · q)2P 6

q7
, (A.9)

where we have set d = 3.

The amplitudes at order λ2
3 and λ3λ̃3 are somewhat more involved as there are now

contractions of the λ3-vertex that are not equivalent. Dropping terms suppressed by powers

of (P/q)2 � 1, the contribution proportional to λ2
3 is

A(q,P )λ23 =
2

9
λ2

3 c
4
r

(
fπ

H̃

)d+1∫ ∞
0

dz2

(z2)d+1

∫ z2

0

dz1

(z1)d+1
z2

1z
2
2 (A.10)([

(P ·q)FP (z2)(Fq(z1)I ′Qt(z1)+F ′q(z1)IQt(z1))−(q2+P ·q)F ′P (z2)Fq(z1)IQt(z1)
]

[
(P ·q)FP (z2)(Fq(z2)K′Qt(z2)+F ′q(z2)KQt(z2))−(q2+P ·q)F ′P (z2)Fq(z2)KQt(z2)

]
+{P →−P}

)

⊃ 1045

1536
λ2

3

f4
π

H4

(2P ·q)2P 6

q7
, (A.11)

where, in the final line, we have evaluated the integrals for d = 3 and isolated the term

with the correct scaling.

The computation of the λ3λ̃3 contribution is essentially a combination of the previous

two. We take the integral in (A.10) and turn it into two new integrals: we first replace the

z1-integrand in (A.10) with the z1-integrand from (A.8) (times 3 for combinatorics) and
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then repeat the procedure, but with the z2-integrand. Performing the integrals, for d = 3,

we get

A(q, P )λ3λ̃3 ⊃ −
605

256
λ3λ̃3

f4
π

H4

(2P · q)2P 6

q7
. (A.12)

The sign of this term is less significant than that of the other exchange diagrams, as it can

be absorbed into the relative sign between the couplings λ3 and λ̃3.

The above results are still missing terms coming from derivatives acting on the step

functions that implement the z-ordering of the full Green’s function:

GQ(z1, z2) = θ(z2 − z1)GQ(z1, z2) + θ(z1 − z2)GQ(z2, z1) . (A.13)

Derivatives acting on θ(zi − zj) produce a delta function δ(zi − zj), which reduces the

integral to a contact interaction. Because these terms are effectively contact terms, the

internal propagator produces no additional P ·q dependence. The only contributions to the

spin-2 moment of the DIS amplitude can therefore arise from transverse derivatives acting

on the external lines, which produces factors of (P · q)2. There is one such term coming

from a specific contraction of the λ2
3 diagram:

A(q, P )λ23 ⊃
55

72
λ2

3

f4
π

H4

(2P · q)2P 6

q7
. (A.14)

Had we calculated the spin-0 contribution to the amplitude, we would have had to include

similar terms proportional to λ̃2
3 and λ̃3λ3.

Adding all the exchange contributions, we finally get

A(q, P ) ⊃
[

495

512
λ̃2

3 −
605

256
λ3λ̃3 +

6655

4608
λ2

3

]
f4
π

H4

(2P · q)2P 6

q7
. (A.15)

Despite the somewhat unusual numbers appearing in the coefficients, all of these terms are

needed to make the contributions from the exchange diagrams manifestly positive.

B Relation to one-loop anomalous dimensions

Throughout our analysis in section 3, we have used constraints on the anomalous dimen-

sion γ2 interchangeably with the positivity of the DIS amplitude itself. This connection

appeared to arise accidentally in (3.26) after expanding to leading order in γ2 � 1. What

remains counterintuitive is that anomalous dimensions are usually associated with log-

divergences and are therefore universal, while the DIS amplitude as a whole is not. In

this appendix, we will explain this apparent coincidence by demonstrating that the anoma-

lous dimension appearing in the DIS amplitude (3.26) necessarily agrees with the direct

one-loop calculation.

Consider perturbing the boundary QFT by the spin-2 operator defined in (3.19),

S → S + λαβ
∫

ddx O(2)
αβ , (B.1)
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where λαβ is a symmetric traceless tensor. The anomalous dimension of O(2)
αβ can be

extracted from the one-loop correction to the β-function via the relation

βαβ = (d− ∆̄− γ2)λαβ , (B.2)

where ∆̄ = 2∆ + 2 for this spin-two operator and we have dropped terms beyond linear

order in the coupling. To determine the β-function, we calculate the power spectrum of O.

Using (3.25), the tree level contribution, at linear order in λαβ , is

〈O(P )O(−P )〉′tree ⊃ 2(b∆ + 1)A2
Oλ

αβPαPβP
4∆−2d , (B.3)

where AO and b∆ were defined in (3.18) and (3.20), respectively. By writing the perturba-

tion in momentum space, we see that the one-loop correction is obtained by gluing together

two of the legs in the DIS amplitude,

〈O(P )O(−P )〉′1-loop = −(b∆ + 1)

∫
ddq

(2π)d
λαβqαqβ A(q, P ) (B.4)

⊃ γ2(b∆ + 1)c(d)A2
OP

4∆−2dλαβP γP δ
∫

ddq

(2π)d
q−d−4qαqβqγqδ , (B.5)

where, in the second line, we have substituted (3.26), as this leads to the only log-divergence

relevant to the β-function. Using the symmetry of the integral and tracelessness of λαβ to

replace

λαβP γP δ qαqβqγqδ →
2

d(d+ 2)
λαβPαPβq

4 , (B.6)

we find the following log-divergence:

2γ2(b∆ + 1)A2
OP

4∆−2dλαβPαPβ log Λ . (B.7)

Comparing (B.3) to (B.7), we see that holding the power spectrum fixed requires

βαβ =
dλαβ

d log Λ
⊃ −γ2λ

αβ , (B.8)

which proves that γ2 is indeed the one-loop anomalous dimension; cf. (B.2).

C Propagation speeds for the DBI action

In this appendix, we study the specific effective theory arising from the DBI Lagrangian:

L = −Λ4

√
1 +

∂µφ∂µφ

Λ4
. (C.1)

This is the unique higher-derivative theory that is known to have a consistent UV comple-

tion. As we will see, in this case, all couplings of the EFT are determined in term of the

propagation speeds cs and cr, for dS and AdS, respectively. We will determine the scaling

of the EFT parameters in the limit {cs, cr} � 1.
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C.1 Inflation

We first consider (C.1) in an inflationary background. We will take the flat-space limit, so

that we can write φ = φ̇t+ ϕ, for φ̇ = const. The Lagrangian then becomes

L = −Λ4

√
1− φ̇2

Λ4
− 2ϕ̇φ̇

Λ4
+
∂µϕ∂µϕ

Λ4
(C.2)

= −Λ4cs +
1

2cs

[
1

c2
s

ϕ̇2 − ∂iϕ∂iϕ
]

+O(ϕ3) , (C.3)

where we have dropped a total derivative term proportional to ϕ̇ and identified the sound

speed as

c2
s ≡ 1− φ̇2

Λ4
. (C.4)

We see that cs → 0 when φ̇2 → Λ4.

To connect this to the Goldstone EFT of section 2.1, it is convenient to write the DBI

action in terms of U = t+ π, with π ≈ ϕ/φ̇. In the limit cs � 1, we then get

L ≈ −Λ4cs

√
1 +

1

c2
s

(∂µU∂µU + 1) (C.5)

≈ −Λ4cs

[
1 +

∞∑
n=1

cn
n!

1

c2n
s

(∂µU∂
µU + 1)n

]
, (C.6)

where cn =
√
π/(2 Γ[3/2 − n]). We see that DBI naturally produces Mn ∝ c−2n+1

s , as

anticipated with our choice of scaling in (2.9).

C.2 RG flow

Next, we repeat the exercise for the case of slow RG flow, where the evolution of φ is in

the radial direction of the AdS background. We write φ = φ′r + ϕ, with φ′ = const, so

that the DBI Lagrangian becomes

L = −Λ4

√
1 +

φ′2

Λ4
+

2ϕ′φ′

Λ4
+
∂µϕ∂µϕ

Λ4
(C.7)

= −Λ4c−1
r +

cr
2

[
ϕ̇2 − ∂iϕ∂iϕ− c2

rϕ
′2
]

+O(ϕ3) , (C.8)

where the infall speed is

c−2
r = 1 +

φ′2

Λ4
. (C.9)

We see that cr � 1 now requires φ′2 � Λ4. Taking this limit, and ignoring potential

concerns about the validity of the effective description,11 the DBI Lagrangian becomes

L ≈ −f4
√

1 + c2
r + (∂MU∂MU − 1) , (C.10)

11Naively, we might expect the description to break down at the scale Λ controlling the higher-derivative

expansion in (C.1). However, the DBI action is UV-complete up to corrections that are proportional to the

“acceleration” of the field. It is therefore reasonable to trust the theory even when φ′ � Λ2, provided that

φ′′ is small.
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where we have defined f4 ≡ Λ2|φ′| and U = r + π, with π = ϕ/φ′. Matching this to the

expansion in (2.16), we find

M2 =

(
1

4
− 3

8
c2
r

)
f4 , (C.11)

M3 =

(
−3

8
+

15

16
c2
r

)
f4 = −3

2
(1− c2

r)M2 . (C.12)

In terms of the parameters c2 and c3 defined in (2.23), this becomes

c3 = −3

2
(1− c2

r)c2 . (C.13)

Using this in the sum rule (3.36), we find

(1− c2
r) +

1

16

(1− c2
r)

2

c2
r

=
1

55π

(
fπ

H̃

)4

lim
q→∞

q3

∫ 1

0
dxx Im[A(x, q2)] , (C.14)

which relates the infall speed for DBI to an integral over the DIS amplitude. Notice that

for cr � 1, the left-hand side scales as c−2
r , which is to be compared to the scaling c−6

r for

a generic higher-derivative theory. This cancelation calls for a deeper explanation.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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