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1 Introduction

Conformal field theories (CFTs) are quite essential in different branches of physics — par-

ticularly in statistical mechanics, condensed matter theory and string theories. They also

play an important role in our present day understanding of quantum field theories. Quan-

tum field theories can be thought of as conformal field theories deformed by some relevant

perturbations. In that sense CFTs are very special points in the space of all quantum field

theories. CFTs appear in physical systems when there is no characteristic length scale.

Therefore the correlation functions can only have power laws. It was pointed out in the

early 90’s [1–3] that the structure of general CFTs allows the presence of multiplicative

logarithms in correlation functions even at an RG fixed point. Such theories are called

logarithmic conformal field theories (LogCFTs). Since CFTs come with no length/mass

scale, one may wonder how there can be logarithms in their correlation functions. The

answer lies on non-diagonalizable action of some operators of the type of a Hamiltonian.

Let’s see via an illustrative toy example how logarithms can appear in a CFT. Suppose

the dilatation operator L0 ∼ x ∂
∂x acts non-diagonally on a two component scalar G,

L0G =

[
∆ 0

1 ∆

][
g1(x)

g2(x)

]
(1.1)

where L0 = [x ∂
∂x , x

∂
∂x ] and G =

[
g1(x)

g2(x)

]
. From this non-diagonal action of L0 we get the

following equations,

x g′1(x) = ∆ g1(x) (1.2)

x g′2(x) = ∆ g2(x) + g1(x) . (1.3)

– 1 –



J
H
E
P
1
2
(
2
0
1
9
)
1
1
4

These are two first order differential equations with the following solutions,

g1(x) = B x∆ (1.4)

g2(x) = Ax∆ +B x∆ log(x) . (1.5)

From representation theory perspective these are irreducible but indecomposable represen-

tation of conformal group. This implies that the transformation of a two component scalar

of dimension ∆ involves a logarithm in the correlation function. In general there can be

logarithmic multiplets of rank r ≥ 1 which can be built by acting on r primary states |Oi〉
for i = 1, · · · r obeying the highest-weight condition,

Kµ|Oi〉 = 0 , (1.6)

where Kµ is the generator for the special conformal transformation. Hence a LogCFT

consists of r-primaries and all their descendants. However, LogCFTs are less constrained

than unitary rational CFTs. In [4] Cardy took a complementary approach considering

LogCFTs as limits of ordinary, non-logarithmic CFTs, whose physical interpretation is

already well understood, as a parameter is taken to a particular value. In this way the

properties of the corresponding LogCFTs can be derived and we are able to understand ex-

actly where the logarithms should appear in the physical observables. While that approach

was quite general, it was illustrated with several examples of physical interest, including

quenched random magnets, self-avoiding walks, and percolation which makes it evident

that LogCFTs are not merely mathematical artifact. One of the earliest physical systems

LogCFTs made its appearance was in the context of polymers and percolation [2, 5]. Sev-

eral works has been done in other statistical mechanical systems e.g. 2D turbulence [6–8],

and the abelian sand-pile model [9–11]. There are also applications in quantum condensed

matter systems like disordered [12, 13] and the quantum Hall systems [14–17]. LogCFTs

have also been studied in the context of worldsheet string theory [18–23] and AdS/CFT

correspondence [24–28]. Recently Witten [29] found the necessity for LogCFTs in a first

principle string theory derivation of entanglement entropy.

Although the existence and appearance of LogCFTs in many physical systems are

known for a long time, very little has been explored particularly in higher dimensions (see

e.g. [30]). In higher dimensional CFTs conformal bootstrap has been used very success-

fully to study the spectrum, chaos, etc. The idea of conformal bootstrap is to constrain

a theory by exploiting the underlying conformal symmetry. The four point function of a

CFT can be studied by imposing crossing symmetry and this leads to non-trivial constraint

on the spectrum of the theory. The study of conformal bootstrap was initiated in [31–34]

which is revived in its modern incarnation in [35] and subsequently studied in [36–45]. For

numerical bootstrap unitarity (i.e. positivity of OPE coefficients) plays an important role.

Thus within known numerical techniques it’s not easy to implement conformal bootstrap

to LogCFTs. On the other hand there are analytical methods namely large spin boot-

strap [46–59] and Polyakov-Mellin bootstrap [60–64] where one doesn’t necessarily require

unitarity. This note is our first step toward exploring the plethora of interesting LogCFTs

which appear in different branches of physics as mentioned above, using analytic bootstrap.

– 2 –
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We will also see that the constraints imposed by crossing symmetry on the four point cor-

relator dictate the spectrum of the large spin sector of LogCFT. This is an universal sector

and any particular LogCFT should contain this at leading order in large spin. In this sense

our computation can be considered as a natural starting point to explore any LogCFT. In

this article we use the conformal bootstrap techniques in the large spin limit to compute

the anomalous dimension of logarithmic operators for a particular type of LogCFT. We

also compute it (strictly speaking, for a special case) from effective dual gravitational de-

scription where anomalous dimension of the double-trace operators is identified with the

binding energy of two rapidly rotating particles inside AdS [48]. By doing so we show that

cluster decomposition principle holds true even for non-unitary LogCFTs as long as the

scaling dimensions are positive.

The paper is organised as follows. In section 2 we introduce the concept of Logarithmic

Generalised Free Field (LGFF) theory and perform the meanfield analysis for rank-2 log-

arithmic scalar correlators. Section 3 describes how to compute the leading correction to

the anomalous dimension of rank-3 even spin double trace logarithmic operators appearing

in the spectrum. In section 4 we independently compute the anomalous dimension from

a dual bulk effective theory. We conclude with some forward-looking remarks about the

possible future directions in section 5. Appendices contain some details of the computation.

2 Logarithmic generalized free fields

In this section we consider a particular four dimensional LogCFT (following [30] and the

references therein): the logarithmic counterpart of the well-known generalized free fields

(GFF). In particular, this is a theory of a rank-two scalar multiplet φi (i = 1, 2) of

dimension ∆φ with the following two-point function,

〈φi(x)φj(0)〉 =
1

|x|2∆φ

(
− lnx2 1

1 0

)
ij

. (2.1)

The operator content of the φi × φj OPE consists of the unit operator 1 as well as a

tower of “double-trace” primaries O(n,`)
ij . For even ` and fixed n there are three different

double-trace operators, whereas for odd ` there is only one which form a rank-3 and rank-1

multiplet respectively. For the simplest case with n = 0 scalar this logarithmic triplet is

defined by the following operators,

S1 =
1

2
:(φ1)2 : , S2 = :φ1φ2 : , S3 = :(φ2)2 : (2.2)

where : : denotes normal ordering. Now we would like to bootstrap the four point correlator

of four identical scalar rank-2 logarithmic operators.

Let us begin with a brief review of how the bootstrap equation can be used to reproduce

the results from the mean field theory correlator in the usual (or non logarithmic) CFT.

Consider a four-point correlator of four identical scalar operators φ of dimension ∆φ. This
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correlator has a conformal block decomposition is s and t channel.

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
1

(x12 x34)2∆φ

(
1 +

(
u

v

)∆φ

+ u∆φ

)
=

1

(x12 x34)2∆φ

∑
∆,`

c∆,` G∆,`(u, v)

=
1

(x13 x24)2∆φ

∑
∆,`

c∆,` G∆,`(v, u), (2.3)

where xij = xi − xj and the conformal cross ratios are defined as,

u =
x2

12 x
2
34

x2
13 x

2
24

= z z̄, v =
x2

14 x
2
23

x2
13 x

2
24

= (1− z)(1− z̄) . (2.4)

We will interchangeably use u, v or z, z̄. Here ∆, `, c∆,`, are the dimension, spin and OPE

coefficients of the operators getting exchanged in the intermediate channel and G∆,`(u, v)

are the conformal blocks,

G∆,`(u, v) =
1

2`
z z̄

z − z̄

(
k2`+τ (z) kτ−2(z̄)− k2`+τ (z̄) kτ−2(z)

)
, (2.5)

with,

kβ(x) = xβ/2 2F1

(
β

2
,
β

2
;β;x

)
. (2.6)

The equality of the first and the third line of (2.3) reads,

1 + v−∆φ + u−∆φ = v−∆φ
∑
∆,`

c∆,` G∆,`(v, u). (2.7)

In mean field theory the intermediate operators consist of the identity and the double-trace

operators On,` having dimension ∆ = 2∆φ + 2n+ `. Now let us focus on (2.7) in the limit

u ∼ 0. The conformal blocks G∆,`(v, u) can be schematically expanded around u ∼ 0

as follows,

v−∆φG2∆φ+2n,`(v, u) ∼
∞∑
m=0

um fm(v) + log u
∞∑
m=0

um f̃m(v). (2.8)

Note that the l.h.s. of (2.7) has a power law singularity as u−∆φ whereas each term on

the r.h.s. has a log u singularity. Hence the power law singularity can not be reproduced

by summing over a finite number of terms on the r.h.s. . It can be shown [46, 47] that by

summing over large spin `� 1 operators in the r.h.s. we can reproduce the l.h.s. of (2.7).

This indicates why the large spin operators are important to reproduce the mean field

theory of an ordinary CFT.

Now we will discuss the importance of large spin operators in the context of LogCFT

following the same steps as above. We consider the four-point function of a rank two scalar

– 4 –



J
H
E
P
1
2
(
2
0
1
9
)
1
1
4

operator φi of dimension ∆φ
1. It was shown in [30] that the four point function can be

written as,

〈φi(x1)φj(x2)φk(x3)φ`(x4)〉 = Fijk`(u, v, ζm)P∆φ∆φ∆φ∆φ
(xn) (2.9)

where,

P∆1∆2∆3∆4(xn) =
∏
n<r

1

|xnr|∆n−∆r−Σ/3
, Σ :=

4∑
i=1

∆i , (2.10)

and,

ζm = ∂∆m lnP∆1∆2∆3∆4(xn) . (2.11)

Fijk` is a tensor which must satisfy the cyclic permutation symmetry under the exchange

of (x1, x2, x3, x4)→ (x2, x3, x4, x1) combined by the exchange x1 ↔ x2,

Fijk`(u, v, ζ1, ζ2, ζ3, ζ4) = Fjk`i(v, u, ζ2, ζ3, ζ4, ζ1) = Fjik`(u/v, 1/v, ζ2, ζ1, ζ3, ζ4) . (2.12)

Following the steps mentioned in [30] it can be shown that the constraints imposed by

conformal invariance on Fijk` allows this to be written in terms of five conformally invariant

functions Fα(u, v), α = 1, · · · 5 as follows,

F1111 = F1(u, v) +
∑
i

ζiF2(u, v) + (ζ1 ζ2 + ζ3 ζ4)F3(u, v)

+ (ζ1 ζ3 + ζ2 ζ4)F3(1/u, v/u) + (ζ1 ζ4 + ζ2 ζ3)F3(v, u)

+
∑
i<j<k

ζi ζj ζk F4(u, v) + ζ1 ζ2 ζ3 ζ4F5(u, v),

F1112 = F2(u, v) + ζ1F3(v, u) + ζ2F3(1/u, v/u) + ζ3F3(u, v)

+ (ζ1 ζ2 + ζ1 ζ3 + ζ2 ζ3)F4(u, v) + ζ1 ζ2 ζ3F5(u, v)

F1122 = F3(u, v) + (ζ1 + ζ2)F4(u, v) + ζ1 ζ2F5(u, v)

F1222 = F4(u, v) + ζ1F5(u, v)

F2222 = F5(u, v) . (2.13)

Hence the conformal bootstrap constraint on the correlator essentially reduces to the fol-

lowing crossing symmetry condition on the functions Fα(u, v),

Fα(u, v) = Fα(v, u) = Fα(u/v, 1/v) for α = 1, 2, 4, 5;

F3(u, v) = F3(u/v, 1/v) . (2.14)

Each of these functions can be decomposed into conformal blocks which results in five

bootstrap equations for Fα(u, v). Let us focus on the bootstrap equation for F2(u, v),

F2(u, v) = F2(v, u) . (2.15)

1For simplicity we consider only rank two operators. However, this can be generalised to higher rank

operators as well.
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In this case the exchange operators in each channel are rank-r operator (r = 3 for even spin

and r = 1 for odd spin) Op of spin ` having the three-point function 〈φiφjOp〉 characterized

by the following OPE coefficients λijp,

λ11p = ap, λ12p = λ21p = bpλ22p = cp for even `, p = 1, 2, 3,

λ11p = 0, λ12p = −λ21p = b̃p, λ22p = 0, for odd `, p = 1 . (2.16)

The conformal block decomposition for F2(u, v) is given by summing over even and odd

spin rank-r operators Op with dimension ∆ and spin `,

F2(u, v) =
∑
O
DOG∆,`(u, v,∆i) (2.17)

where,

DO =
r∑

p,q=1

[ap + bp(∂∆1 + ∂∆2) + cp ∂∆1 ∂∆2 ][bq + cq ∂∆3 ]V pq(∂O) for even ` ,

DO =
r∑

p,q=1

b̃p b̃q(∂∆2 − ∂∆1)V pq(∂O) for odd ` ,

V pq(∂) =

{
∂n/n!, if n = p+ q − r − 1 ≥ 0

0, if n < 0
(2.18)

and the G∆,`’s are defined in (2.24). For identical scalars the odd spin contribution vanishes

because of the following identity (see [65–67]),

∂

∂∆1

G∆,`(u,v,∆i)

∣∣∣∣
∆i=∆φ

= · · ·= ∂

∂∆4

G∆,`(u,v,∆i)

∣∣∣∣
∆i=∆φ

=
1

12
log

(
v

u2

)
G∆,`(u,v,∆i)

∣∣∣∣
∆i=∆φ

.

(2.19)

The four point function in the mean field theory can be computed using Wick’s theorem

and is given by [30],

F2(v, u) =
1

6

[( v
u2

)∆φ/3
log
( v
u2

)
+
( u
v2

)∆φ/3
log
( u
v2

)
+ (u v)∆φ/3 log(u v)

]
. (2.20)

In this case the operators On,` have known OPE coefficient q
n,`

[68],

q
n,`

=
2` (∆1+1−h)n (∆2+1−h)n (∆1)`+n (∆2)`+n

`!n!(h+`)n (∆1+∆2+n+1−2h)n (`+2n+∆1+∆2−1)` (∆1+∆2+`+n−h)n
(2.21)

where h=d/2=2, (a)b= Γ(a+b)
Γ(b) . The s-channel decomposition of the correlator is given by,

F2(u, v) =
1

6

(
v

u2

)∆φ/3

log

(
v

u2

)
+

∞∑
`,n=0

D(n,`)G∆,`(u, v,∆i)

∣∣∣∣
∆i=∆φ,∆=2∆φ+2n+`

(2.22)

– 6 –
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with,

D(n,`) = ∂∆φ
q
n,`

+ q
n,`

(2∂∆ + ∂∆1 + ∂∆2 + 2∂∆3) , (2.23)

G∆,`(u, v,∆i) = u−
1
6

(∆1+∆2+∆3+∆4) v
1
6

(−∆1+2∆2+2∆3−∆4) G∆,`(u, v) . (2.24)

For simplicity we will focus on the double trace operators O0,` with n = 0. The bootstrap

equation (2.15) is in general quite complicated to solve and we will see that it simplifies in

the limit v � u � 1 and ` � 1. In this limit we approximate z̄ ∼ 1 − v, z ∼ u and the

leading term in (2.20) is given by,

F2(v, u) ∼ 1

6

( u
v2

)∆φ/3
log

(
u

v2

)
. (2.25)

In (2.22) the first term is the contribution from the identity operator exchange. We will

now use (2.15) to reproduce (2.25) from the s- channel of (2.15) . In the ` � 1 limit the

OPE coefficient and its derivative can be approximated as follows,

q
0,`
∼
√
π 2−2∆φ−`+2 `2∆φ− 3

2

Γ2(∆φ)
, (2.26)

∂∆φ
q

0,`
∼ −
√
π 2−2∆φ−`+3`2∆φ− 3

2

Γ2(∆φ)
(ψ(∆φ)− log `+ log 2) , (2.27)

where ψ is the digamma function. For large ` and n = 0 we can approximate (2.22) by,

F2(u, v) ∼ β
∑
`�1

−
42 `2∆φ−1u∆φ (ψ(∆φ) + log(2)− log `)

Γ2(∆φ)
K0

(
2`
√
v
)

+ β log u
∑
`�1

23−2∆φ `2∆φ−1 u∆φ

Γ2(∆φ)
K0

(
2`
√
v
)

+ β
1

3
log

(
v

u2

) ∑
`�1

23−2∆φ `2∆φ−1 u∆φ

Γ2(∆φ)
K0

(
2`
√
v
)
, (2.28)

where,

β = u−2∆φ/3 v∆φ/3 , (2.29)

and K0 is a modified Bessel function of the second kind. We can approximate the large `

sum by an integral
∑
`�1

→ 1

2

∫
d` where the 1

2 indicates that we are summing over only

even spin operators. The integrals we need are of the following kind (see [69, 70] for similar

analysis),∫ ∞
`0

`2∆φ−1−aK0(2`
√
v) log ` = −

v−∆φ+a/2 Γ2(∆φ − a/2)

8

(
log v − 2ψ(∆φ − a/2)

)
+ · · · ,∫ ∞

`0

`2∆φ−1−aK0(2`
√
v) =

1

4
v−

a
2
−∆φΓ2

(a
2

+ ∆φ

)
+ · · · (2.30)

– 7 –
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where the dots denote the subleading terms in v. Using this in (2.28) we get,

F2(u, v) ∼ 1

6

(
u

v2

)∆φ/3

log

(
u

v2

)
. (2.31)

Thus we see that the leading behavior of t-channel in the limit v � u� 1 is reproduced

by summing over large spin double trace operators in the s-channel of (2.15) .

The above result may seem like a mere consistency check. But it is worth noting that,

just like GFF, given a primary operator O with twist τ in a LogCFT at large spin there

must exist an infinite tower of primaries with twist 2τ +n where n = 0, 1, 2, . . . in order to

satisfy crossing symmetry. Since this is just consequence of crossing symmetry this large

spin spectrum is universal i.e. independent of particular LogCFT. In this sense, the starting

point of large spin analysis for any given LogCFT should be identical to this section.

3 Computing the anomalous dimensions at large `

In this section we will use the bootstrap equation (2.15) to compute the anomalous di-

mension of the large spin operators O0,` in an interacting LogCFT with the following

dimension,

∆ = 2∆φ + `+ γ
0,`
. (3.1)

In order to do so we focus on the subleading corrections to (2.15) in the v � u� 1 limit.

To compute the anomalous dimension we need to focus on the coefficient of γ0,` u
∆φ log u

from (2.22).

F2(u, v)

∣∣∣∣
log u

∼
∑
`�1

D(n,`)G(u, v,∆,∆i)

∣∣∣∣
log u

. (3.2)

At this point we assume that γ0,` has the following expansion in the `� 1 limit,

γ
0,`
∼ γ0

`a
+ · · · , (3.3)

where the dots denote the subleading terms in ` . We have to determine the constant a and

the ` independent piece γ0 from the bootstrap equation. To extract the log u term above,

we have to use the integrals (see (2.30)). This results in the following term from (3.2),

F2(u, v)

∣∣∣∣
log u

∼ γ0 u
∆φ/3v(3a−4∆φ)/6 Γ2

(
∆φ − a

2

)
Γ2 (∆φ)

(
ψ
(

∆φ −
a

2

)
− ψ (∆φ)

)
. (3.4)

Now we focus on the t-channel. The t-channel has an expansion controlled by the

twist of the exchange operator and the subleading correction comes from the minimal twist

operators Om of spin `m, dimension ∆m and twist τm . We assume that the operator

dimensions are always positive and τm > 0. We will focus on the coefficient of log u which

comes from the t channel and match it with (3.4) . We will use the following expansion for

the t-channel conformal block [46],

Gτm,`m(v, u) ∼ Cm v
τm
2 (1− u)`m 2F1

(
τm
2

+ `m,
τm
2

+ `m, τm + 2`m, 1− u
)
. (3.5)

– 8 –
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At small u we have,

2F1

(
β, β, 2β; 1−u

)
=

Γ(2β)

Γ2(β)

∞∑
n=0

(
(β)n
n!

)n
un
[
2

(
ψ(n+ 1)−ψ

(τm
2

+ `m + n
))
− log u

]
.

(3.6)

To obtain the log u term we will also need the expression for derivative of G(v, u) w.r.t.

∆ which is given by,

∂∆G∆,`(v,u) =
1

2`
(1−z)(1−z̄)

z̄−z

(
∂∆k2`+τ (1−z̄)kτ−2(1−z)+k2`+τ (1−z̄)∂∆kτ−2(1−z)

−∂∆k2`+τ (1−z)kτ−2(1−z̄)−k2`+τ (1−z)∂∆kτ−2(1−z̄)

)
.

(3.7)

A typical term in the above expression gives,

∂∆k∆+`(x) =
1

2
log x k∆+`(x) + x

∆+`
2 ∂∆ 2F1

(
∆ + `

2
,

∆ + `

2
,∆ + `, x

)
. (3.8)

In the small u limit, the log u terms can appear from the derivative of hypergeometric

pieces as follows,

∂∆G∆,`(v, u) ∼ 1

2`
v
τ
2 (1− u)

τ
2

+` ∂∆ 2F1

(
∆ + `

2
,

∆ + `

2
,∆ + `, 1− u

)
. (3.9)

Similarly for rth derivative log u dependent terms can arise from,

∂r∆G∆,`(v, u) ∼ 1

2`
v
τ
2 (1− u)

τ
2

+` ∂r
∆ 2F1

(
∆ + `

2
,

∆ + `

2
,∆ + `, 1− u

)
. (3.10)

To collect the contribution to the coefficients of log u we need to use the integral represen-

tation of hypergeometric function, [71]),

2F1

(
∆ + `

2
,

∆ + `

2
,∆ + `, 1− u

)
=

Γ(∆ + `)

2πiΓ4(∆+`
2 )

∫ i∞

−i∞
Γ2

(
∆ + `

2
+ t

)
Γ2(−t)ut dt.

(3.11)

Since u� 1 we close the contour to the right hand side and pick residue from the double

pole from Γ2(−t). It will produce two kind of terms: u0 (non-log term) and u0 log u (log u

term). The relevant terms that can give log u terms in the t-channel are given by,

DOG(v, u)

∣∣∣∣
relevant

=
r∑

p,q=1

ap bqV
pqG(v, u) + (ap cq + 2 bp bq) ∂1V

pq G(v, u)

=

r∑
p,q=1

ap bq

( u
v2

)∆φ/3
[
∂m

m!
G∆,`(v, u)

]
u0 log u

+
r∑

p,q=1

(ap cq + 2 bp bq)
1

12
(log u)

( u
v2

)∆φ/3
[
∂m

m!
G∆,`(v, u)

]
u0

, (3.12)
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wherem=p+q−r−1 from (2.18). Notice that all other terms will have (logu)2, (logu)(logv)

etc. Here we are interested in only log u terms. For minimal twist operator exchange in

t-channel,

∂m∆Gτm,`m(v, u) ∼ 1

2`m
v
τm
2

[
Imlog u(τm, `m) + Imnon−log u(τm, `m)

]
(3.13)

where,

Imlog u(τ, `) = ∂m∆

(
Γ(∆ + `)

Γ4(∆+`
2 )

Γ2

(
∆ + `

2
+ t

))∣∣∣∣
t=0,∆=τ+`

,

Imnon−log u(τ, `) = 2 γE ∂
m
∆

(
Γ(∆ + `)

Γ4(∆+`
2 )

Γ2

(
∆ + `

2
+ t

))∣∣∣∣
t=0,∆=τ+`

+ ∂m∆ ∂t

(
Γ(∆ + `)

Γ4(∆+`
2 )

Γ2

(
∆ + `

2
+ t

))∣∣∣∣
t=0,∆=τ+`

. (3.14)

Finally, the coefficient of log u term in the t-channel is given by,

F2(v,u)

∣∣∣∣
logu

=DOG(v,u)

∣∣∣∣
logu

=

r∑
p,q=1

apbq

( u
v2

)∆φ/3
[

1

m!2`m
vτm/2Imlogu(τm, `m)

]

+

r∑
p,q=1

(apcq+2bpbq)
1

12

( u
v2

)∆φ/3
[

1

m!2`m
vτm/2Imnon−logu(τm, `m)

]
. (3.15)

Comparing (3.4) and (3.15) we can see that the bootstrap equation is satisfied if

a = τm . Clearly, this expansion (3.3) is valid only when τm > 0 which may not be true for

any nonunitary theory where there is a possibility that ∆m < 0. Hence this is true only for

a subsector of nonunitary theories where the dimensions are always positive. This results

in the following anomalous dimension,

γ0 =
2Γ2(∆φ)

Γ2(∆φ − τm
2 )(−ψ(∆φ) + ψ(∆φ − τm

2 ))

×
r∑

p,q=1

1

m! 2`m

[
ap bqI

m
log u(τm, `m) +

1

12
(ap cq + 2 bp bq) I

m
non−log u(τm, `m)

]
. (3.16)

As long as there is no operator with negative scaling dimension in the theory, the anomalous

dimension γ
0,`
∼ γ0

`τm with τm > 0 and in the strict `→∞ limit γ
0,`

vanishes. This suggests

that cluster decomposition holds even for LogCFTs with positive scaling dimensions, which

are necessarily non-unitary. In the next section we will see this has nice bulk interpretation

as well. It means that two corresponding particles which are rapidly rotating in AdS space

are well separated from each other.

4 The dual gravity picture

The expression for the anomalous dimension derived above in (3.16) is the main result of

this note. Since there exists a holographic model dual to LogCFTs, it would be nice to
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see if the anomalous dimension can be interpreted (at least the parametric behaviour) via

holography. There are some works in the literature that study dual of LogCFTs [24, 25, 72].

Here we consider a particular case of the main result, namely we consider a simplified

setup where the minimal twist, τm = 2. Consequently we can have a simple2 dual gravity

description in the bulk. In this setup we try to compute the anomalous dimension of the

exchanged operator for LogCFT derived above from dual classical gravity. We follow the

formalism in [48] to obtain the anomalous dimension. It is known from the literature [24,

25, 72], dual gravitational effective theory of a LogCFT is given by some higher derivative

EOM. E.g. for a rank-r LogCFT the dual scalar field in AdS satisfies the following EOM,

(�−M2)r Φ
(r)
LCFT = 0. (4.1)

In this paper we focus on rank-2 multiplet and therefore the EOM

(�−M2)2 ΦLCFT = 0

(�−M2) (�−M2) ΦLCFT︸ ︷︷ ︸
ΦCFT

= 0. (4.2)

By definition ΦCFT is the solution of KG equation in AdSd+1,3

ds2 =
1

cos2 ρ

(
− dt2 + dρ2 + sin2 ρ dΩ2

d−1

)
, (4.3)

where ρ = π
2 is the boundary and we have taken the AdS radius to be one. We will

be using global metric because the connection between fields in AdS and operators with

definite scaling dimension in the CFT is more transparent in global coordinates than in

Poincaŕe patch. The solution to the EOM is known [73, 74] and is given by,

ΦCFT(x) =
∑
n,`,J

φn`J(x)an`J + φ∗n`J(x)a†n`J , (4.4)

where,

φn`J =
1

N∆,n,`
eiωn,`t Y`J(Ω) sin` ρ cos∆ ρ 2F1

(
− n,∆ + n+ `, `+

d

2
, sin2 ρ

)
(4.5)

ωn,` ≡ ∆ + 2n+ `, M2 ≡ ∆(∆− d) (4.6)

N∆,n,` ≡ (−1)n

√
n! Γ2(`+ d

2) Γ(∆ + n− d−2
2 )

Γ(n+ `+ d
2) Γ(∆ + n+ `)

(4.7)

and a†n`J , an`J are creation and annihilation operators respectively.

2Of course this won’t reproduce the full parametric behaviour of the anomalous dimension. We leave

that detailed computation for future work.
3The bulk analysis is valid for arbitrary d. However in order to compare this with the LogCFT we will

explicitly choose d = 4.
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Solution to the bulk EOM. To obtain ΦLCFT (which we call Φ now onward for brevity)

one needs to solve the following differential equation

(�−M2) Φ = ΦCFT (4.8)

This is nothing but KG equation with a known source term Φn,`,J which is the solution

to the homogeneous KG equation in AdSd+1. The standard approach to solve such an

inhomogeneous partial differential equation is by using Green function method. For that

we need to solve the KG equation with a delta function source

(�−M2)G(x− x′) = δd+1(x− x′), (4.9)

then integrate that solution over the known function ΦCFT

Φ(x) =

∫
√
g dd+1x′G(x− x′) ΦCFT(x′). (4.10)

The bulk-to-bulk propagator (Green functions) can be written as an infinite sum over

the normalizable modes using the general Green’s function formula [73]

iG(x, x′) =

∫
dω

2π

∑
n′,`′, ~m′

eiω(t−t′) φ
∗
n,`,~m(~x)φn,`,~m(~x′)

ω2
n′,`′ − ω2

, (4.11)

where the normalizable modes φn,`,~m(x) are known functions,

φn,`,~m(x) = Y`m(Ω) sin` ρ cos∆ ρP `+d/2−1,ν
n (cos 2ρ), (4.12)

where Pm,νn (cos 2ρ) are Jacobi polynomials. From (4.5), (4.10) and (4.11) we can get the

solution for (4.8) as follows (see appendix B for details),

Φ(x) =

∫ √
−g dd+1x′G(x, x′) ΦCFT(x′)

=
Y ∗`J(Ω)eiωn,`t

iN∆,n,`

n!

(`+ d
2)n

(sin ρ)`(cos ρ)∆
∞∑
m=0

1

(ω2
m,` − ω2

n,`)
P `+d/2−1,ν
m (cos 2ρ)

×
∫ π/2

0
dρ′(sin ρ′)2α+1(cos ρ′)2β−1Pα,νm (cos 2ρ′)Pα,νn (cos 2ρ′)

≡
Y ∗`J(Ω)eiωn,`t

iN∆,n,`

n!

(`+ d
2)n

(sin ρ)`(cos ρ)∆ f(ρ), (4.13)

where
√
−g = (sin ρ′)−d−1 (cos ρ′)d−1, and α = `+ d

2 − 1; β = ∆− d
2 = ν.

To obtain the solution Φ(x) one needs to compute f(ρ) by performing the m sum and

ρ′ integral. The alternative way would be to use (4.13) as an ansatz to the differential

equation (4.8), and solve for f(ρ). Pursuing the latter route we end up with the following

differential equation

f ′′(ρ)−
(
(2∆− 3) tan ρ− (2`+ 3) cot ρ

)
f ′(ρ)− (∆− ω + `)(∆ + ω + `)f(ρ) = sec2 ρ,

(4.14)
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which can be solved exactly (see appendix B for details) to get the solution

f(ρ) = −γE
(−1)n Γ(∆− 2)Γ(n+ `+ 2)

Γ(n+ ∆− 1)Γ(`+ 2)
2F1

(
−n, n+ `+ ∆; `+ 2; sin2 ρ

)
. (4.15)

Finally the full solution to (4.8) is given by,

Φ(x) = −γE
Y ∗`J(Ω)eiωn,`t

iN∆,n,`
(sin ρ)`(cos ρ)∆ n!

(`+ d
2)n

Γ(∆− 2) Γ(n+ `+ 2)

Γ(n+ ∆− 1) Γ(`+ 2)

× 2F1

(
−n, n+ `+ ∆; `+ 2; sin2 ρ

)
. (4.16)

The anomalous dimension as binding energy. Since we know the solution to the

dual bulk scalar field in AdS, following [46, 48, 74] we can try to extract the anomalous

dimension as binding energy of two-particle state. As we have mentioned before, global

AdS is very useful to have such a bulk interpretation because time translations in global

AdS are generated by the dilatation operator D of the dual CFT, and therefore anomalous

dimensions in the CFT are equivalent to energy shifts of bulk states due to interactions.

Here we calculate the first order shift in energy due to (Newtonian) gravitational in-

teraction between the two rapidly orbiting particles. To simplify the computation, follow-

ing [48], we fix one of them at the center of AdS5,4 and the other one will be moving with

an effective large orbital angular momentum `orb. This is equivalent to studying orbital

motion of a massive particle in AdS5-Schwarzschild black hole.

ds2 = N(r)dt2 − 1

N(r)
dr2 − r2dΩ2

3 (4.17)

with,

N(r) = 1− µ

r2
+

r2

R2
AdS

, (4.18)

and the mass of the BH is given by, MBH = 3 vol(S3)
16πG

N
µ. Note that the coordinate r of

this metric is related to (4.3) via the map: r = tan ρ. The wave function in r coordinate

reduces to,

Φ(x) =

(
1

ε
− γE

)
1

iN∆,n,`orb

n!

(`orb + d
2)n

Γ(∆− 2) Γ(−`orb − 1)

Γ(n+ ∆− 1) Γ(−n− `orb − 1)︸ ︷︷ ︸
N

× r`orb

(1 + r2)
`orb

2

1

(1 + r2)
∆
2

2F1

(
−n, n+ `orb + ∆; `orb + 2;

r2

1 + r2

)
︸ ︷︷ ︸

R(r)

× Y ∗`J(Ω) eiωn,`orb
t. (4.19)

4Notice that the bulk can be of arbitrary spacetime dimensions. We are choosing AdS5 because in the

CFT side we have used 4d conformal block expressions. Presumably the whole setup will go through for

any d ≥ 3.
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We are interested in computing the energy shift of the orbiting particle due to gravi-

tational attraction. In first oder in perturbation the shift in energy is given by,

δEorb = 〈n,`orb|δH|n,`orb〉

=−µ
4

∫
drr3d3Ω

〈
n,`orb

∣∣∣∣( r−2

(1+r2)2 (∂tφ)2+r−2 (∂rφ)2

)∣∣∣∣n,`orb

〉
,

(4.20)

δEorb (n,`orb) =−µ
2
|N |2

∫
rdr

(
1

(1+r2)2 ω
2
∆n`orb

|R(r)|2+(∂rR(r))2

)
, (4.21)

where R(r) is the radial part of the wavefunction. We want to compute this binding energy

and compare that with the anomalous dimension γ0 given in (3.16). Therefore it will suffice

if we focus on the regime: n = 0 and `orb � 1, where our CFT computation is valid. In

this limit,

R(r) =
r`orb

(1 + r2)
`orb

2

1

(1 + r2)
∆
2

, (4.22)

N = iγE

√
Γ(`orb + ∆)

Γ(∆− 1)Γ(`orb + 2)

Γ(∆− 2)

Γ(∆− 1)
. (4.23)

Performing the r integral we find,

δEorb (0, `orb) = −µ
2
|N |2

(
−

Γ
(
∆ + 3

2

)
(∆ + `orb)2Γ

(
`orb + 1

2

)
2Γ(`orb + ∆ + 2)

+
Γ
(
∆ + 1

2

)
(∆ + `orb)((4∆ + 3)`orb −∆)Γ

(
`orb − 1

2

)
8Γ(`orb + ∆ + 2)

)
≈ − γ2

E

2GN MBH

3π

∆(∆− 1)Γ2(∆− 2)

Γ2(∆− 1)

(
1

`orb
− 1

`2orb

)
. (4.24)

Note that the formula we have is for a particle’s motion around the black hole. But

originally we had two particle orbiting rapidly in vacuum AdS5 as a the dual to double-trace

primary operator. Therefore we need to map back to that two particle picture (see [48])

to obtain,

δEorb (0, `orb) ≈ − γ2
E

2GN ∆1

3π

∆2(∆2 − 1)Γ2(∆2 − 2)

Γ2(∆2 − 1)

(
2∆1

`2

)
. (4.25)

It is evident that (4.25) doesn’t identically match to (3.16) that we derived using analytic

bootstrap techniques. This is not unexpected, given the simpleminded dual gravity model

for LogCFT we have considered. The only thing we want to extract from this result is the

large ` dependence. The binding energy which is equivalent to the anomalous dimension

in the LogCFT side decreases like 1
`2

since ` is large. In the `→∞ limit, δEorb → 0, which

means the particles are far from each other in AdS space and therefore effectively behave

as “free” particles. This is a statement of cluster decomposition of the LogCFT in dual

AdS language.
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5 Conclusion

In this paper we have studied logarithmic conformal field theory using analytic bootstrap

techniques in four dimensions. In particular, we studied the four point correlator of rank-

2 identical logarithmic scalars. Using the bootstrap techniques we have shown how the

intermediate double-trace operators in the large spin limit can reproduce the mean field

theory correlator. We have computed the leading correction to the anomalous dimension of

even spin rank-3 operators appearing in the OPE of two rank-2 logarithmic scalars in the

large spin limit. LogCFTs are known to have holographic dual. The anomalous dimension

of the double trace operators due to stress tensor exchange in four dimensions can be

interpreted as the binding energy of the two particles rotating rapidly in global AdS. Our

results also indicate that cluster decomposition holds (at least for large spin sector) even

for certain class of non-unitary CFTs namely LogCFTs in d > 2 with no operator with

negative scaling dimensions. This is an interesting feature since unitarity condition plays

key role in proving cluster decomposition for ordinary CFTs. There are many interesting

directions to pursue in future.

• The subleading corrections in 1/` to the anomalous dimension can be computed. This

can be simplified in Mellin space following [58]. One can also take into account the

higher twist double trace operators for n 6= 0. It would be nice to compute the anomalous

dimension in the bulk side due to the exchange of higher rank stress-tensor. Moreover, the

bulk and boundary analysis of rank-2 LogCFTs may be generalised to rank-r LogCFTs

by incorporating higher derivative action in the dual rank-r LogCFTs. It would be

interesting to repeat the analysis in general dimensions.

• In this note we have not used the mean field values of OPE coefficients ap, bp, cp for the

minimal twist operators in (3.16). Given a LogCFT one can compute these coefficients.

As LogCFTs are necessarily non-unitary they can, in general, be complex numbers. This

can lead to some interesting physical phenomena both in the LogCFT side and in the

dual bulk picture (e.g. the energy and loci of the rotating particles).

• Probably the most physically interesting systems to study are those LogCFTs which

appear in condensed matter systems. For example, it would be nice to explore the Q-

state Potts model using conformal bootstrap. As we have mentioned before the large spin

sectors of all these particular systems are identical and we have already analysed that in

section 2 in this paper. Also, in principle, the same large spin systemics should work for

computing the corresponding anomalous dimensions for all those interesting LogCFTs.

• Another interesting but somewhat different direction will be to explore other known or

conjectured non-unitary CFTs (which are not necessarily LogCFTs) by the same tech-

nique. E.g. one can analytically bootstrap non-unitary N = 4 theory [75] in 4d with

the gauge group U(N +k|k). This theory is said to be indistinguishable from its unitary

cousin namely N = 4 SYM with gauge group SU(N) in arbitrary orders in 1/N . Since

bootstrap methods are non-perturbative one can hope to capture their difference which

is expected to be O(e−N ).

We hope to return to some of these problems in future.
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A Conformal blocks at large `

The conformal block in four dimensions is given by,

G∆,`(u, v) =
1

2`
z z̄

z − z̄

(
k∆+`(z) k∆−`−2(z̄)− k∆+`(z̄) k∆−`−2(z)

)
. (A.1)

We will be working in the limit ` → ∞ keeping v `2 = y fixed. Note that k2`+τ (z) is

proportional to z` and since we are in the regime z � 1. Hence this term is exponentially

suppressed at large ` and we are left with,

G∆,`(u, v) ∼ 1

2`
u k∆+`(z̄) k∆−`−2(z), (A.2)

where,

k∆−`−2(z) = u
τ
2 + · · · (A.3)

and the dots indicate higher order terms in u. For k∆+`(z̄) let us consider the integral

representation of the hypergeometric function in the limit `→∞,

2F1

[
∆ + `

2
,
∆ + `

2
,∆ + `, z̄

]
= 2F1

[
τ

2
+ `,

τ

2
+ `, τ + 2`, 1− v

]
=

Γ(2`)

Γ2(`)

∫ 1

0

dt

t(1− t)

(
t(1− t)
1− t v

)`
≈ 22`−1

√
`√

π

∫ 1

0
dt

t`−1

1− t
e
− t y

(1−t) y . (A.4)

Now we define a new variable s = t
1−t and rewite the integral as,

2F1

[
τ

2
+ `,

τ

2
+ `, τ + 2`, 1− v

]
∼ 22`−1

√
`√

π

∫ ∞
0

ds

s
e−

s y
`
− `
s

=
22`
√
`√

π
K0(2`

√
v) +O(1/`) . (A.5)

Now we will see how the derivative of (A.2) behaves in the large ` limit.

∂∆G∆,`(u, v) ∼ 1

2`
u

[
1

2
log z̄ k∆+`(z̄) k∆−`−2(z) +

1

2
log z k∆+`(z̄) k∆−`−2(z)

+ z̄
∆+`

2 ∂∆ 2F1

[
∆ + `

2
,

∆ + `

2
,∆ + `, z̄

]
k∆−`−2(z)

+ z
∆−`−2

2 k∆+`(z̄) ∂∆ 2F1

(
∆− `− 2

2
,

∆− `− 2

2
,∆− `− 2, z

)]
. (A.6)
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Note that,

log z̄ = log(1− v) = −v +O(v2). (A.7)

Hence the term involving log z̄ in (A.6) is subleading in v and can be ignored. Now we look

at the derivatives of the 2F1.

∂∆ 2F1

(
∆− `− 2

2
,
∆− `− 2

2
,∆− `− 2, z

)
=
∞∑
n=0

zn Γ(τ − 2)Γ
(
n+ τ

2 − 1
)2

n! Γ
(
τ−2

2

)2
Γ(n+ τ − 2)

(
Hn+ τ

2
−2 −Hn+τ−3 −H τ

2
−2 +Hτ−3

)
. (A.8)

The leading term vanishes for n = 0 and this is again subleading in u. Hence, we can

ignore this term as well. We will finally focus on the second line of (A.6). Using the

integral representation of the hypergeometric function we get,

∂∆ 2F1

[
∆+`

2
,
∆+`

2
,∆+`, z̄

]
= ∂∆

∫ 1

0
dt

Γ(`+∆)(−(t−1)t)
1
2

(∆+`−2)(1−tz̄)
1
2

(−∆−`)

Γ
(
`+∆

2

)2
=

∫ 1

0
dt

(−(t−1)t)`+
τ
2
−1Γ(2`+τ) log

(
(t−1)t
tz̄−1

)
(1−tz̄)−`−

τ
2

2Γ
(
`+ τ

2

)2
−
∫ 1

0
dt

(−(t−1)t)`+
τ
2
−1Γ(2`+τ)(1−tz̄)−`−

τ
2

Γ
(
`+ τ

2

)2
×
(
ψ
(
`+

τ

2

)
−ψ(2`+τ)

)
. (A.9)

In order to do the integral we define a new variable s = t
1−t and rewrite the first integral

as follows,∫ ∞
0

s y e−
s y
`
− `
s

(
1

`2s
+

1

s2

)
ds = 4

√
v K1 (2

√
y) + subleading terms . (A.10)

Hence this is suppressed in v and can be ignored. In the `→∞ limit,

2ψ(2`+ τ)− 2ψ

(
1

2
(2`+ τ)

)
∼ 2 ln (2) +O(1/`) . (A.11)

Hence, we have ∑
`�1

2 q0,` ∂∆G∆,`(u, v) = 2

(
u

v2

)∆φ
3

log 2 . (A.12)

B Some details of the bulk computation

Let’s start with the solution (4.13) for the differential equation (4.8),

Φ(x) =

∫ √
−g dd+1x′G(x, x′) ΦCFT(x′)

=

∫ √
−g dt′dρ′dΩ′

∫
dω

2πi

∑
n,`,~m

eiω(t−t′)

ω2
n,` − ω2

φ∗n,`,~m(~x)φn,`,~m(~x′)

× 1

N∆,n,`
eiωn,`t

′
Y`J(Ω′) sin` ρ′ cos∆ ρ′ 2F1

(
− n,∆ + n+ `, `+

d

2
, sin2 ρ′

)
. (B.1)
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Although we write (B.1) for arbitrary d, we will work in d = 4 in what follows. The above

integration is over all coordinates i.e. t′, ρ′ and Ω′. Performing the t′ integral first and then

the ω integral we get,

Φ(x) =

∫ √
−g dρ′dΩ′

∑
n′,`′, ~m′

φ∗n′,`′, ~m′(~x)φn′,`′, ~m′(~x
′)

i(ω2
n′,`′ − ω2

n,`)

× eiωn,`t

N∆,n,`
Y`J(Ω′) sin` ρ′ cos∆ ρ′ 2F1

(
− n,∆ + n+ `, `+

d

2
, sin2 ρ′

)
. (B.2)

The modes φn,`,~m(x) are known functions,

φn,`,~m(x) = Y`m(Ω) sin` ρ cos∆ ρP `+d/2−1,ν
n (cos 2ρ), (B.3)

where Pm,νn (cos 2ρ) are Jacobi polynomials. Next we use the orthogonality of spherical

harmonics (see e.g. complement AVI of [76])∫
dΩ′Y ∗`′m′(Ω

′)Y`J(Ω′) = δ`,`′δJm′ , (B.4)

to obtain,

Φ(x) =

∫ √
−gdρ′

∑
n′

1

(ω2
n′,`−ω2

n,`)
P
`+d/2−1,ν
n′ (cos2ρ)P

`+d/2−1,ν
n′ (cos2ρ′)

×Y ∗`J(Ω)(sinρ)`(cosρ)∆ eiωn,`t

iN∆,n,`
(sinρ′)2`(cosρ′)2∆

2F1

(
−n,∆+n+`,`+

d

2
,sin2 ρ′

)
=
Y ∗`J(Ω)eiωn,`t

iN∆,n,`

n!

(`+ d
2)n

(sinρ)`(cosρ)∆
∑
n′

1

(ω2
n′,`−ω2

n,`)
P
`+d/2−1,ν
n′ (cos2ρ)

×
∫ π/2

0
dρ′(sinρ′)2`−d−1(cosρ′)2∆+d−1P

`+d/2−1,ν
n′ (cos2ρ′)P `+d/2−1,ν

n (cos2ρ′)

≡
Y ∗`J(Ω)eiωn,`t

iN∆,n,`

n!

(`+ d
2)n

(sinρ)`(cosρ)∆ f(ρ) , (B.5)

where
√
−g = (sin ρ′)−d−1 (cos ρ′)d−1, and α = `+ d

2 − 1; β = ∆− d
2 = ν.

To obtain the solution Φ(x) one needs to compute f(ρ). One way would be to perform

the n′ sum and ρ′ integral. Here we take an alternative approach, namely we substi-

tute (B.5) to (4.8) as an ansatz to get the following differential equation for f(ρ),

f ′′(ρ)−
(
(2∆− 3) tan ρ− (2`+ 3) cot ρ

)
f ′(ρ)− (∆− ω + `)(∆ + ω + `)f(ρ) = sec2 ρ.

(B.6)

All one needs to do is to solve for f(ρ). The equation (B.6) is an second-order inho-

mogeneous ODE. Let’s make the following change of variables,

z = cos2 ρ.

Above equation (B.6) reduces to,

(1− z)z f ′′(z) +
(
c− (a+ b+ 1)z

)
f ′(z)− abf(z) = zq, (B.7)
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with,

a =
1

2
(∆− ω + `) = −n,

b =
1

2
(∆ + ω + `) = n+ `+ ∆

c = ∆− 1

q = −1. (B.8)

The corresponding homogeneous ODE is the standard hypergeometric differential equation,

(1− z)z f ′′(z) +
(
c− (a+ b+ 1)z

)
f ′(z)− abf(z) = 0, (B.9)

with the following solution,

fh(z) = C1 2F1(a, b, c; z) + C2 z
1−c

2F1(b− c+ 1, a− c+ 1, 2− c; z) . (B.10)

Imposing regularity at the centre of AdS (z → ∞), forces one to choose C2 = 0. Other

boundary condition fixes the normalization C1 = N∆,`,m. The inhomogeneous DE (B.6),

has the following particular solution,5

fp(z) =
Γ(1 + q) Γ(c− 1)

Γ(c)
2F1(a, b; c; z) . (B.11)

Notice that the solution (B.11) is well behaved for all values of q, except for q ∈ Z− . One

can analytically continue to complex q = q1 + iq2. Then for any negative integer q = −p,
one can expand Γ(1 + q) in small complex neighborhood as following,6

Γ(1 + q) = Γ(1− p+ iε)

=
(−1)p−1

(p− 1)!

(
1

iε
+ ψ(p) +O(ε)

)
. (B.12)

It is evident that in the limit ε→ 0, only the imaginary part blows up, whereas the real part

is independent of ε.7 Thus there is a consistent prescription of extracting ε independent

value as follows

Γ(1− p) =
(−1)p−1

(p− 1)!
ψ(p). (B.13)

Here we are particularly interested in q = −1 i.e. p = 1, for which

Γ(1 + q) = ψ(1) = − γE . (B.14)

5See eq. (12) and eq. (13) of [77].
6Near any simple pole at z = −n, where n ∈ Z

+

,

Γ(−n+ z) =
(−1)n

n!

(
1

z
+ ψ(n+ 1) +O(z)

)
.

7The function Γ(1+q) is analytic on the complex q-plane with q ∈ Z
−

removed — which is an open set.

Therefore one can approach the disconnected singular points at q ∈ Z
−

from any directions in the complex

q-plane. The finite part will be independent of the cut-off.
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Therefore the particular solution reduces to,

fp(z) = − γE
Γ(c− 1)

Γ(c)
2F1(a, b; c; z). (B.15)

The argument of the hypergeometric function is z = cos2 ρ. Since we want the solution

with the variable sin2 ρ, let’s use the following identity,

2F1(−m, b; c; z) =
(c− b)m

(c)m
2F1(−m, b; b− c−m+ 1; 1− z), (B.16)

to get,

fp(z) = − γE
Γ(c− 1)

Γ(c)

(c− b)n
(c)n

2F1(−n, b; b− c− n+ 1; 1− z)

= − γE
Γ(∆− 2) Γ(n+ `+ 2)

Γ(n+ ∆− 1) Γ(`+ 2)
2F1

(
−n, n+ `+ ∆; `+ 2; sin2 ρ

)
. (B.17)

Now we have all the ingredients to write down the full solution to (4.8),

Φ(x) = − γE
Y ∗lJ(Ω)eiωn,`t

iN∆,n,l
(sin ρ)`(cos ρ)∆ n!

(`+ d
2)n

Γ(∆− 2) Γ(n+ `+ 2)

Γ(n+ ∆− 1) Γ(`+ 2)

× 2F1

(
−n, n+ `+ ∆; `+ 2; sin2 ρ

)
. (B.18)
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