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analytic features in the soft limit provide a smoking gun for new particles at the inflation

scale. While this approach is very powerful to probe particles of the mass near the Hubble

scale, the signal is exponentially suppressed for heavy particles. In this paper, to enlarge

the scope of the cosmological collider, we explore a new approach to probing spins of

heavy particles from signs of Wilson coefficients of the inflaton effective action and the

corresponding primordial non-Gaussianities. As a first step, we focus on the regime where

the de Sitter conformal symmetry is weakly broken. It is well known that the leading

order effective operator (∂µφ∂
µφ)2 is universally positive as a consequence of unitarity. In

contrast, we find that the sign of the six derivative operator (∇µ∂νφ)2(∂ρφ)2 is positive for

intermediate heavy scalars, whereas it is negative for intermediate heavy spinning states.

Therefore, under the assumption of tree-level UV completion, the sign can be used to probe

spins of heavy particles generating the effective interaction. We also study phenomenology
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Keywords: Cosmology of Theories beyond the SM, Effective Field Theories, Scattering

Amplitudes

ArXiv ePrint: 1906.11840

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP12(2019)107

mailto:s-kim@stu.kobe-u.ac.jp
mailto:tnoumi@phys.sci.kobe-u.ac.jp
mailto:181s113s@stu.kobe-u.ac.jp
mailto:szhouah@ust.hk
https://arxiv.org/abs/1906.11840
https://doi.org/10.1007/JHEP12(2019)107


J
H
E
P
1
2
(
2
0
1
9
)
1
0
7

Contents

1 Introduction 1

2 Spin-dependence of six derivative operators 3

2.1 A basis of general UV amplitudes 4

2.2 Positivity and the beyond 6

2.3 Open superstring amplitudes 8

2.4 KK graviton 10

3 De Sitter four-point functions 12

3.1 A brief review of the in-in formalism 13

3.2 Comparison of the two shapes 14

4 Inflationary three-point functions 16

5 Outlook 18

A Comments on loops 20

A.1 Scalar loop 20

A.2 Fermion loop 21

A.3 On loops for inflation 22

B Details on flat space limit 22

1 Introduction

The energy scale of inflation could be as high as 1013 GeV, hence it would be a phenomenon

at the highest energy scale we may explore. In particular, primordial non-Gaussianities

can be thought of as an extremely high energy particle collider. For example, their non-

analytic behaviors in the soft limit are associated with on-shell particle creations and thus

provide a direct evidence of new particles at the inflation scale [1–4]. Just like resonance

signals at particle colliders, it is very powerful to probe particles with the mass m near

the Hubble scale H. Such an approach is dubbed the cosmological collider program and

has been studied intensively [1–42]. For heavy particles, on the other hand, the signal is

exponentially suppressed by the Boltzmann factor. For scalars, this factor reads e
−π

√
m2

H2−
9
4 ,

which is as small as 10−4 even for m = 3H! Therefore, it is desirable to develop a new

approach to probing heavy particles to enlarge the scope of the cosmological collider.1

1In contrast to ordinary colliders, we cannot build a new cosmological collider with a higher energy H!
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Now let us recall our history of particle physics, where not only resonance signals,

but also detailed studies of low-energy effective interactions have been useful to probe new

particles. A typical example is the prediction of weak bosons, where angular dependence

of the Fermi interactions played an important role. Following the history, we would like

to apply a similar idea to inflaton effective interactions and primordial non-Gaussianities.

Recall that the inflaton enjoys a shift symmetry under the slow-roll approximation. Its

effective Lagrangian then reads [43]

Lφ = −1

2
(∂µφ)2 +

α

Λ4
(∂µφ∂

µφ)2 + . . . , (1.1)

where the dots stand for higher dimensional operators and the cutoff Λ is typically asso-

ciated to the mass of intermediate heavy states. Remarkably, it is well known that α is

always positive in a wide class of theories as a consequence of unitarity and analyticity of

scattering amplitudes [44] (see, e.g., [45–57] for recent applications). While the positivity

is an elegant consistency condition on IR effective theories,2 detailed informations of the

UV theory, e.g., spins of heavy states, are obscured at the cost of universality.

In this paper we would like to go beyond the positivity and develop an approach to

probing spins of heavy states from signs of inflaton effective interactions and the corre-

sponding primordial non-Gaussianities. As a first step, we focus on the regime where the

de Sitter conformal symmetry is weakly broken.3 In this regime, we may focus on operators

with four inflaton fields for the study of primordial three-point and four-point functions:

Lφ = −1

2
(∂µφ)2 +

α

Λ4
(∂µφ∂

µφ)2 +
β

Λ6
(∇µ∂νφ)2(∂ρφ)2 + . . . , (1.2)

which provides the most general effective Lagrangian up to six derivatives after using tree-

level equations of motion to remove operator degeneracy. In contrast to α, the sign of β

cannot be fixed by analyticity and unitarity essentially because the corresponding four-

point amplitude vanishes in the forward limit. In other words we may have a chance to

probe spins of heavy states from its sign. By generalizing the analysis in [44] to non-forward

amplitudes, we show that

1. β > 0 for intermediate heavy scalars, whereas β < 0 for heavy spinning states with

spin l = 2, 4, 6, . . ., as long as four-point amplitudes are bounded as < s2 in the high

energy limit (s is the standard Mandelstam variable).

Note that our conclusion is about intermediate “states,” which can be multi-particle states

in general. See appendix A for more comments. While the argument is applicable to a

wide class of theories, it cannot be applied directly to the effective coupling generated

2In other words, if experiments find violation of the positivity bounds, we have to change our approach

to UV completion in a drastic way, which is also an interesting possibility.
3The nonlinearity parameter fNL for three-point functions is generically smaller than O(1) in this regime.

At this cost, we may utilize developments on Lorentz invariant four-point amplitudes instead. The same

remark applies to the elegant works [4, 36] based on the de Sitter invariant four-point functions. In order

to study the regime fNL > O(1), we need to incorporate more general higher derivative operators such as

(∂µφ∂
µφ)n (n ≥ 3) or work in the effective field theory of primordial perturbations [58].
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Four derivative Six derivative Dominant UV States

IR a2,0 > 0, α > 0

a2,1 < 0, β > 0 Scalar

a2,1 = 0, β = 0 Exact Cancellation

a2,1 > 0, β < 0 Spin l = 2, 4, 6 . . .

Table 1. The sign of α in the low energy EFT (or equivalently the coefficient a2,0 of s2 in the

low-energy four-point scattering) is universally positive. On the other hand, the sign of β (or

equivalently the coefficient a2,1 of s2t in the low-energy four-point scattering) reflects which UV

states provide dominant contributions to low-energy scattering. The conclusion summarized in the

table applies to any weakly coupled, Lorentz-invariant, analytic and unitary UV completion as well

as effective interactions mediated by KK gravitons.

by the exchange of KK gravitons, which is one of the main targets in the cosmological

collider program,4 essentially because it involves gravitational dynamics (see section 2.4

for details). Interestingly, however, we find that

2. the six derivative operator generated by the KK graviton exchange has a negative

coefficient β < 0.

This shows that a non-positive coefficient β ≤ 0 is a sign of heavy spinning particles

with the spin l = 2, 4, 6 . . . in a wide class of theories in our interests. This is one of the

main results in our paper. See table 1 for a summary. We also study phenomenology of

primordial non-Gaussianities thereof.

The organization of the paper is as follows. In section 2 we first study the relation

between the sign of the six derivative operator (∇µ∂νφ)2(∂ρφ)2 and the spins of intermedi-

ate heavy states. We then study shapes of four-point functions (section 3) and three-point

functions (section 4) to clarify if those generated by the six derivative operator are dis-

tinguishable from the four derivative ones. We conclude in section 5 with a discussion of

future directions.

2 Spin-dependence of six derivative operators

In this section we clarify the spin-dependence of the six derivative operator. In section 2.1

we first introduce a general basis of four-point amplitudes consistent with the Froissart-

Martin bound neglecting gravitational effects. We then utilize it in section 2.2 to show

that the sign of the six derivative operator is positive (negative) for intermediate heavy

scalars (spinning states). In section 2.3 we consider open superstring theory as an example

for UV completion. There we demonstrate that the six derivative operator vanishes as a

consequence of cancellation between intermediate scalars and spinning particles. Besides,

in section 2.4, we study amplitudes mediated by the Kaluza-Klein graviton, to which we

4See, e.g., [37] for non-analytic behaviors of primordial non-Gaussianities generated by KK gravitons.

While the signature discussed there provides a direct evidence of massive spin 2 particles, it is exponentially

suppressed by the Boltzmann factor unfortunately. On the other hand, the heavy mass suppression of the

signal we discuss in this paper is polynomial ∼ (H/mKK)4.
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Figure 1. Integration contour and analytic structure: The red lines represent branch cuts associ-

ated to multi-particle states generated by loops, whereas the red dots are single poles associated to

single-particle states. The left panel is the integration contour used to read off the IR coefficients.

By deforming it into the one on the right panel, we may clarify how the UV data is encoded into

the IR coefficients.

cannot apply the results in sections 2.1–2.2 in general because of gravitational effects, but

it is of great interests in the cosmological collider program. A remark on loops is also given

in appendix A.

2.1 A basis of general UV amplitudes

Let us consider four-point scattering amplitudes M(s, t) of identical massless scalars and

elaborate on the relation between IR coefficients and the UV spectrum. For this purpose,

we generalize the analysis in [44] to non-forward amplitudes (see also [47]). First, from the

IR point of view, it is convenient to expand the amplitude M(s, t) in Mandelstam variables

s and t as

M(s, t) =
∞∑

p,q=0

ap,qs
ptq , (2.1)

where we assumed that gravity is subdominant to neglect massless cuts and the massless

graviton pole. The coefficient function of sp can then be evaluated by the contour integral,

∞∑
q=0

ap,qt
q =

∮
ds

2πi

M(s, t)

sp+1
, (2.2)

where the integration contour is defined such that it encircles the origin s = 0 and the

integrand is analytic inside the contour except for the origin (see the left panel of figure 1).

Also we take t infinitesimal to avoid unphysical poles.

Next, we deform the contour as depicted in the right panel of figure 1 by assuming that

the amplitude is analytic away from the real axis on the physical sheet. If the amplitude

– 4 –
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is bounded as |M(s, t)| < |s|p at UV, the integral at infinity vanishes to obtain∮
ds

2πi

M(s, t)

sp+1
=

(∫ ∞
m2

0

+

∫ −m2
0−t

−∞

)
ds

2πi

M(s+ iε, t)−M(s− iε, t)
sp+1

, (2.3)

where ε is an infinitesimal positive constant and m0 is the mass of the lightest intermediate

(massive) state. In general the amplitude contains single poles associated with tree-level

exchange and branch cuts associated with loops, so that the integral is given by

r.h.s. of (2.3) =
∑
n

[
g2nPln

(
1 + 2t

m2
n

)
(m2

n)p+1
−
g2nPln

(
1 + 2t

m2
n

)
(−m2

n − t)p+1

]

+
∑
l

∫ ∞
s∗

dM2ρ(M2, l)

[
Pl
(
1 + 2t

M2

)
(M2)p+1

−
Pl
(
1 + 2t

M2

)
(−M2 − t)p+1

]
, (2.4)

where the first line and the second line correspond to single poles and branch cuts, re-

spectively. Pn(z) is the Legendre polynomial, mn and ln are the mass and spin of the

intermediate particle labeled by n, and gn characterizes the three-point amplitude of two

massless scalars and one massive particle n. ρ(M2, l) is a spectral density for the transition

amplitude from two massless particles to multi-particle states with the energy M and total

angular momentum l. s∗ is the minimum energy squared of intermediate multi-particle

states. For notational simplicity, we write eq. (2.4) as

r.h.s. of (2.3) =
∑
n

[
g2nPln

(
1 + 2t

m2
n

)
(m2

n)p+1
−
g2nPln

(
1 + 2t

m2
n

)
(−m2

n − t)p+1

]
, (2.5)

where one should understand that
∑

n stands for both of the discrete sum for tree-level

exchange and the integration (continuous sum) for loops. Note that since we are considering

identical external massless scalars, the intermediate state can have an even spin only ln =

0, 2, 4, . . . as required by the exchange symmetry (for simplicity, we use “spins” to denote

total angular momenta of multi-particle states as well). See, e.g., [59] for details.

We now conclude that the IR coefficients are given in terms of the UV data as

∞∑
q=0

ap,qt
q =

∑
n

[
g2nPln

(
1 + 2t

m2
n

)
(m2

n)p+1
−
g2nPln

(
1 + 2t

m2
n

)
(−m2

n − t)p+1

]
. (2.6)

Note that this relation is applicable only for p satisfying |M(s, t)| < |s|p at UV. On general

grounds, we assume that the UV amplitude is bounded as |M(s, t)| < |s|2, which is required

by the Froissart-Martin bound [60] for example.5 Hence, the relation is applicable only for

p ≥ 2. It is also instructive to reorganize the amplitude as

M(s, t) =
∑
n

g2n P`n

(
1 +

2t

m2
n

)[
1

m2
n − s

+
1

m2
n + s+ t

]
+ α0(t) + α1(t)s . (2.7)

5To be precise, the Froissart-Martin bound is applicable only in gapped theories and in the regime

0 ≤ t < 4m2 (m is the mass of external particles). However, its use can be justified by turning on a tiny

mass of the scalar as a regulator, which does not change the conclusion of our analysis. Also note that the

inflaton indeed has a tiny mass which is suppressed due to the slow-roll conditions, even though the mass

is negligible as long as we are interested in non-Gaussianities generated by higher derivative operators.
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Here we introduced αp(t) =
∑∞

q=0 apqt
q for p = 0, 1, which cannot be determined by the

contour deformation argument in the above. Eq. (2.7) provides a basis of general UV am-

plitudes which reproduce the correct factorization and satisfy the Froissart-Martin bound.

2.2 Positivity and the beyond

We then explore imprints of the UV data on the IR coefficients ap,q. First, from eq. (2.6),

the IR coefficients read

ap,q =
∑
n

g2n
(m2

n)p+q+1

[
(ln − q + 1)2q

(q!)2
+

q∑
k=0

(−1)p+q+k
(ln − k + 1)2k(p+ 1)q−k

(k!)2(q − k)!

]
, (2.8)

where (x)n = Γ(x + n)/Γ(x) = x(x + 1) · · · (x + n − 1) is the shifted factorial (also called

the Pochhammer symbol) and we used

Pn(z) =

n∑
k=0

(−n)k(n+ 1)k
(k!)2

(
1− z

2

)k
=

n∑
k=0

(n− k + 1)2k
(k!)2

(
z − 1

2

)k
. (2.9)

Let us next take a closer look at the first few orders in the t expansion:

0. O(t0) (q = 0)

First, the leading order coefficients in the t expansion are given by

ap,0 =


2
∑
n

g2n
(m2

n)p+1
for even p ,

0 for odd p ,

(2.10)

which is nothing but the well-known positivity bounds on the O(s2n) coefficients of

forward amplitudes [44]. This bound is universal and elegant, but detailed informa-

tion such as spins of the UV states is obscured at the cost of universality.

1. O(t1) (q = 1)

Similarly, the next-to-leading order coefficients read

ap,1 =


∑
n

g2n
(m2

n)p+2

(
2l2n + 2ln − p− 1

)
for even p ,

(p+ 1)
∑
n

g2n
(m2

n)p+2
for odd p .

(2.11)

The point here is that the sign of ap,1 for even p depends on the spin ln of the

intermediate states. More explicitly, we find that intermediate states with the spin

higher (lower) than the critical value l∗ = (
√

2p+ 3− 1)/2 gives a positive (negative)

contribution to ap,1. In particular, the critical value is l∗ ∼ 0.8 for p = 2. In terms of

the effective Lagrangian (1.2), it means that β is positive only for intermediate scalars

as we discuss shortly. This six derivative operator is the first nontrivial operator in

the derivative expansion which may be used to probe spins of intermediate states.

On the other hand, ap,1 for odd p is universally positive.

– 6 –
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2. O(t2) (q = 2)

As a next example, let us consider the O(t2) term, for which we find

ap,2 =


1

2

∑
n

g2n
(m2

n)p+3

(
l2n − p− 2

) (
l2n + 2ln − p− 1

)
for even p ,

1

2
(p+ 1)

∑
n

g2n
(m2

n)p+3

(
2l2n + 2ln − p− 2

)
for odd p .

(2.12)

For odd p, there exists a critical spin l∗ = (
√

2p+ 5 − 1)/2 below (above) which

ap,q is negative (positive). On the other hand, for even p, there exists a window√
p+ 2 − 1 < ln <

√
p+ 2 inside (outside) which ap,q is negative (positive). Note

that it has a width 1, so that at most one value of spin can be inside the window.

For example, the window is 1 < ln < 2 for p = 2, hence a2,2 = 0 for spin 2, whereas

a2,2 > 0 for other even spins. Similarly, spin 2 is inside the window for p = 4, 6.

3. Higher orders

It is straightforward to go higher in a similar way. First, ap,q is a polynomial in

ln of order 2q for even p and order 2q − 2 for odd p. It is positive when the spin

ln is sufficiently large for fixed p, q. On the other hand, the contribution from a

scalar ln = 0 is simply (−1)p+q(p + 1)q/q!(m
2
n)p+q+1,6 hence the sign depends only

on (−1)p+q. The sign for general spin depends on details of the polynomial in ln and

the phase structure will be richer for higher q. However, we will not go into more

details because such higher order terms are not easy to probe phenomenologically,

leaving it for future work.

To summarize, we have elaborated on the relation between the sign of IR coefficients ap,q
and the spin of intermediate heavy states. The result can also be rephrased in terms of

EFT coefficients as follows: for example, four-point scattering amplitudes can be evaluated

from the effective Lagrangian (1.2) as

M(s, t) =
4α

Λ4
(s2 + t2 + st)− 3β

Λ6
(s2t+ st2) + . . . , (2.13)

where the dots stand for higher derivative terms negligible at low-energy. We then find

a2,0 =
4α

Λ4
, a2,1 = −3

β

Λ6
. (2.14)

Therefore, our analysis on a2,1 implies that the coefficient β of the six derivative operator

(∇µ∂νφ)2(∂ρφ)2 is positive only for intermediate scalars. In other words, detection of

negative or vanishing β is a smoking gun of spinning heavy states with the even spin

ln = 2, 4, . . ..7 This is one of our main results.

6Note that this expression is applicable only for q 6= 0.
7To unitarize theories with a massive particle of spin 2 or higher in a weakly coupled regime, one would

expect an infinite Regge tower of higher spin particles. If it is a universal requirement of weakly coupled

UV completion, we could think of a non-positive β as a sign of the infinite higher spin tower.

– 7 –
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It should be noted again that our results are about the spins (or total angular momenta)

of heavy states, which can be multi-particle states when loop effects are dominant. However,

in the case of inflation, the inflaton has to enjoy the approximate shift symmetry. As a

result, the loop effects are generically suppressed by either weak couplings or slow-roll

parameters as we discuss in appendix A.3. In such a case, we can use the sign of effective

interactions to probe the spins of the intermediate heavy particles exchanged at the tree-

level without swamped by multi-particle states associated with loops.

2.3 Open superstring amplitudes

In the previous subsection we have shown that the non-positivity of the coefficient β of

the six derivative operator (∇µ∂νφ)2(∂ρφ)2 is a signature of higher spin states. However,

it does not mean that β ≤ 0 holds in all theories with higher spins because intermediate

scalars may dominate to make β positive. Therefore, it is useful to demonstrate that there

indeed exists a UV completion with higher spins and a non-positive β. In this subsection

we study open superstring theory to provide a concrete example for such a UV completion.

Let us consider four-point scattering of identical massless scalars (an extra-dimensional

component of the gauge boson) localized on a D3 brane in the open superstring. The

corresponding disk amplitude reads8 (see, e.g., [61])

M(s, t) =
(
s2 + t2 + u2

) [B(−s,−t)
s+ t

+
B(−t,−u)

t+ u
+
B(−u,−s)
u+ s

]
, (2.15)

where u = −s− t and B(a, b) is the Euler beta function,

B(a, b) =

∫ 1

0
dxxa−1(1− x)b−1 =

Γ(a)Γ(b)

Γ(a+ b)
. (2.16)

We also took the unit in which the open string spectrum is given by m2 = 0, 1, 2, . . .. At

IR, we may expand the amplitude in the Mandelstam variables as

M(s, t) = π2
(
s2 + st+ t2

)
+
π4

12

(
s2 + st+ t2

)2
+ . . . , (2.17)

where the dots stand for fifth and higher orders in Mandelstam variables. We find that

the six derivative operator vanishes, which means that there exists an exact cancellation

between scalars and higher spins.

It is also instructive to explicitly see how the cancellation happens between scalars and

higher spins by comparing the open string amplitude (2.15) with the master formula (2.7) to

read off the cubic couplings gn. First, the amplitude (2.15) has single poles associated with

particles of the mass squared m2 = 1, 3, 5, . . .. For example, the residue of the s-channel

pole reads

Ress→nM(s, t) = −
4
(
t2 + nt+ n2

)
(t+ 1)n−1

n!
(n = 1, 3, 5, . . .) . (2.18)

8We suppressed an overall positive coefficient associated with normalization of the string coupling.

– 8 –
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l

g2nl n
1 3 5 7 9

0 10
3

14
5

425
168

76517
32400

552711
246400

2 2
3

59
7

4805
504

693133
71280

789591
81536

4 0 27
35

13625
1848

5363491
514800

134401437
11211200

6 0 0 3125
5544

1831963
356400

18101799
2094400

8 0 0 0 823543
2316600

17891847
5532800

10 0 0 0 0 43046721
206926720

Table 2. Numerical value of g2nl.

It is a polynomial in t of order n + 1, which consists of contributions from intermediate

particles with spin up to n+ 1. More explicitly, we expand it by Legendre polynomials as

Ress→nM(s, t) = −
∑
l

g2nl Pl

(
1 +

2t

n

)
, (2.19)

where gnl characterizes cubic coupling of two massless scalars and the massive particle of

the mass squared m2 = n and spin l.9 For example, the n = 1 sector is given by

g210 =
10

3
, g212 =

2

3
. (2.20)

Note that odd spins do not appear as an intermediate particle because of the exchange

symmetry of identical scalars mentioned earlier. We then find that the n = 1 sector gives

a negative contribution to the coefficient a2,1 of s2t:

a2,1 =
∑
n,l

g2nl
n4
(
2l2 + 2l − 3

)
3
∑
l=0,2

g21l
(
2l2 + 2l − 3

)
= −4 , (2.21)

where we used eq. (2.11). In other words, the scalar contribution dominates over the higher

spin one in this sector. It is straightforward to generalize the argument to general n. g2nl
for the first several orders are given in table 2. We find that for n = 3, 5, . . . higher spins

dominate over scalars to obtain a positive contribution to a2,1. In figure 2, for illustration,

we provide a plot for the coefficient of s2t,

nmax∑
n=1

n+1∑
l=0

g2nl
n4
(
2l2 + 2l − 3

)
, (2.22)

obtained after summing up over n from 1 to nmax, which shows that the coefficient ap-

proaches to 0 asymptotically as we increase nmax.

To summarize, a2,1 and therefore the Wilson coefficient β of the six derivative operator

(∇µ∂νφ)2(∂ρφ)2 vanish in the open superstring, which provides a concrete example for UV

completion with higher spins and a non-positive β.

9To be precise, the string spectrum generically contains multiple species of particles for given n and l,

hence g2nl is a summation over the cubic coupling squared of them.
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Coefficient of s2

Coefficient of s2t

Figure 2. The coefficients of s2 (blue) and s2t (red) obtained after summing up over n from 1 to

nmax: As the positivity bound implies, each sector labeled by n contributes to the s2 coefficient

positively. On the other hand, the n = 1 sector gives a negative contribution to the s2t coefficient,

which is canceled by positive contributions from n ≥ 3 to obtain a vanishing coefficient in the limit

nmax →∞ representing the open superstring amplitude.

2.4 KK graviton

So far we have discussed the spin-dependence of the coefficients of the six-derivative oper-

ator based on the Froissart-Martin type bound on top of the unitarity and analyticity of

scattering amplitudes. An important assumption there was that gravity is subdominant as

we noted below eq. (2.1). Even before looking at the six-derivative operator, it is known

that the positivity of the s2 coefficient is subtle in the presence of gravity because the

t-channel graviton exchange diagram behaves as ∼ s2

t
in the forward limit t→ 0 and dom-

inates over contributions from massive states [44]. Similarly, at least naively, it is not clear

if the spin-dependence of the s2t coefficient discussed in the previous subsections is appli-

cable in the presence of gravity.10 Therefore, it is nontrivial if the sign of the six-derivative

operator can be used to probe spins of heavy states in models with the Kaluza-Klein (KK)

graviton, where the massless graviton inevitably appears. For this reason, in this subsec-

tion we study the six-derivative operator generated by the KK graviton by evaluating the

four-point scattering amplitude explicitly.

What characterizes the KK graviton χµν is its coupling to the energy-momentum tensor

Tµν of other particles. Its 4D Lagrangian reads

Lχ = −1

4
χµνEαβµν χαβ −

m2

8

(
χ2
µν − χ2

)
+ gχµνTµν + . . . , (2.23)

10Recently ref. [53] demonstrated that the positivity of the s2 coefficient holds if the contributions to

the s2 coefficient from Regge states (which UV complete gravity) are subdominant compared to those from

other massive states. This provides a quantitative criterion for the statement that gravity is negligible. A

similar argument should hold for the O(s2tn) coefficients.
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where we introduced χ = χµµ and g parametrizes the coupling of the KK graviton and the

energy-momentum tensor. The dots stand for interaction terms with two or more χ, which

are not relevant for our purpose. The kinetic operator Eαβµν is defined by

Eαβµν χαβ = −1

2

[
�χµν − ∂µ∂αχαν − ∂ν∂αχαµ + ∂µ∂νχ− ηµν

(
�χ− ∂α∂βχαβ

)]
. (2.24)

Note that the kinetic and mass terms are the standard Fierz-Pauli ones (see, e.g., [62–64]).

This type of Lagrangian appears, e.g., in the Randall-Sundrum (RS) I scenario [65], which

has a discrete spectrum of the KK gravitons. Inflaton in this context has been studied

in [66–73] and the oscillatory features of non-Gaussianities associated with the on-shell KK

graviton creation were studied recently in [37]. We emphasize that the mass m and the

coupling g are model-dependent, but the existence of the interaction χµνTµν is universal

due to the KK graviton nature.

We then study the effective interactions of massless scalars mediated by the KK gravi-

ton. For this, we use the energy-momentum tensor,

Tµν = ∂µφ∂νφ−
1

2
ηµν∂σφ∂

σφ , (2.25)

where we dropped terms arising from interaction terms because they are not relevant for our

argument based on four-point amplitudes. Recall that the propagator of the KK graviton

is given by (see, e.g., [62–64])

Pµνab =
Fµνab
m2 + k2

, (2.26)

with the projector,

Fµνab = ηµ(aηνb) −
1

3
ηµνηab

+
1

m2

[
kak(µην)b + kbk(µην)a −

1

3
kµkνηab −

1

3
kakbηµν

]
+

2

3

kµkνkakb
m4

. (2.27)

Here we used a normalized symmetrizer A(ab) =
1

2
(Aab + Aba). We then obtain the four-

point amplitude of identical massless scalars,

M(s, t) =
g2

6

[
−2s2 + 3

(
t2 + u2

)
m2 − s

+
−2t2 + 3

(
u2 + s2

)
m2 − t

+
−2u2 + 3

(
s2 + t2

)
m2 − u

]
, (2.28)

where u = −(s+ t). Note that the amplitude behaves as ∼ s2 for large s, so that it requires

an appropriate UV completion at some scale. On the other hand, the IR expansion reads

M(s, t) =
4g2

3m2

(
s2 + st+ t2

)
+

5g2

2m4

(
s2t+ st2

)
+ · · · . (2.29)

We find that both of s2 and s2t have a positive coefficient. Interestingly, the sign happens

to be the same as the massive spin 2 exchange discussed in section 2.2. Therefore, a non-

positive coefficient β implies a spinning heavy state also in the KK graviton case. We again
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emphasize that the previous argument cannot directly be applied to the KK graviton case

at least naively because of the t-channel graviton pole mentioned earlier, so that a separate

analysis was required.11

To conclude this section, a nonpositive coefficient β of the six derivative operator

(∇µ∂νφ)2(∂ρφ)2 is a signature of intermediate spinning particles with even spin l = 2, 4, . . ..

This conclusion is applicable to both (a) non-gravitational theories which respect the

Froissart-Martin bound and (b) models with the KK graviton. See also table 1 for a

summary of this section.

3 De Sitter four-point functions

In the rest of the paper we apply our argument on sign of the six derivative operator to

cosmological settings. We start from the effective action of a massless scalar φ with a shift

symmetry on exact de Sitter space:

S =

∫
dτd3x

√
−g
[
− 1

2
(∂µφ)2 +

α

Λ4
(∂µφ∂

µφ)2 +
β

Λ6
(∇µ∂νφ)2(∂ρφ)2 + . . .

]
, (3.1)

where the dots stand for operators with more derivatives and/or φ. As we have discussed,

the four-derivative operator has to be always positive α > 0, whereas the sign of β tells

us which of intermediate heavy scalars and spinning states are dominant. Here one might

wonder if we can apply our argument based on the flat space scattering directly to the

de Sitter case. Indeed, the counting of derivatives becomes ambiguous due to curvature

couplings. For example, we may write a six-derivative operator,

β̃

Λ6
R(∂µφ∂

µφ)2 ∼ H2

Λ2

β̃

Λ4
(∂µφ∂

µφ)2 , (3.2)

which vanishes on flat space. However, such effects are subdominant to the four-derivative

operator α by a factor of H2/Λ2, hence the use of our flat space results is justified as long

as H � Λ. It is indeed the case because the de Sitter temperature is around the Hubble

scale H and the validity of the EFT description requires H � Λ. Note that thermal

production of heavy particles are exponentially suppressed by the Boltzmann factor, so

that their effects are negligible compared to the above mentioned curvature effect.

11Indeed, the IR coefficients in eq. (2.29) are different from the ones in eqs. (2.10)–(2.11), even though

the signs are the same. It does not imply any contradiction in general, but it could provide an interesting

direction of the future studies: as we mentioned at footnote 10, we expect that the spin-dependence (2.11)

of the six-derivative term will hold even in the presence of gravity, if the contribution of the Regge states is

subdominant. If it is true, it would imply that the general results should hold if the KK graviton coupling

g in eq. (2.23) is big enough (or if the KK scale is low enough) to dominate over the Regge states effect.

Then, the Lagrangian (2.23) with a big g (or a small m), which is phenomenologically interesting, could be

incomplete even as a low-energy EFT because of the mismatch. It would require other couplings such as the

dilatonic coupling to resolve the mismatch for example. If the mismatch could never be resolved by such

couplings, it would imply that models with the KK graviton with a big g (compared to the gravitational

coupling) and a small m (compared to the mass scale of Regge states, i.e., the string scale in stringy UV

completion) are in the swampland. We leave such a direction for the future work.
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Our question is now to clarify if we can distinguish the six-derivative operator from

the leading-order four-derivative operator. For this purpose, in the rest of this section,

we calculate late-time four-point functions generated by these two operators and discuss

difference in the shape. Note that the four-point functions calculated in this section are

applicable also to inflation at least in the regime where the special conformal symmetry is

weakly broken. We also study inflationary three-point functions in the next section.

3.1 A brief review of the in-in formalism

We use the in-in formalism to calculate late-time n-point functions of φ in de Sitter space.

With an interaction Hamiltonian HI(τ), the late-time correlator of an operator O(τ) is

evaluated as (see, e.g, [74–76])

〈O(0)〉 = 〈0|
[
T̄ ei

∫ 0
−∞ dτ1HI(τ1)

]
O(0)

[
Te−i

∫ 0
−∞ dτ2HI(τ2)

]
|0〉 , (3.3)

where T and T̄ denote the time-ordering and anti-time-ordering operators, respectively.

We choose the Bunch-Davies vacuum as the state |0〉. For our purpose, the first order in

HI(τ) is enough to work with, so that we have

〈O(0)〉 = 2Im

∫ 0

−∞
dτ〈0|O(0)HI(τ)|0〉 , (3.4)

where we assumed O is real. In the conformal time, the second order action reads

S2 =

∫
dτd3x

1

2H2τ2

[
φ′2 − (∂iφ)2

]
, (3.5)

where H is the (constant) Hubble parameter and the prime denote a derivative in conformal

time τ . In the interaction picture, the massless scalar φ can then be quantized as

φk(τ) = uk(τ)ak + u∗k(τ)a†−k , (3.6)

with the standard commutation relations,

[ak, a
†
k′ ] = (2π)3δ(3)(k− k′) , others = 0 . (3.7)

The mode function follows the equation of motion,

u′′k − 2τ−1u′k + k2uk = 0 , (3.8)

and it is normalized as (
uku

∗
k
′ − u′ku∗k

)
= iH2τ2 . (3.9)

For the Bunch-Davis vacuum, we have a mode function,

uk(τ) =
H√
2k3

(1 + ikτ)e−ikτ . (3.10)
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Figure 3. Equilateral configurations of four momenta

3.2 Comparison of the two shapes

We then investigate the shape of four-point functions with the Lagrangian (3.1). Since

there are no three-point interactions, the interaction Hamiltonian relevant for us is simply

a minus of the quartic Lagrangian:

H4 =

∫
d3x

[
− α

Λ4

(
φ′2 − (∂iφ)2

)2
+

β

Λ6
H2τ2

(
φ′2 − (∂iφ)2

)
×
(

(φ′′ + τ−1φ′
)2 − 2(∂iφ

′ + τ−1∂iφ)2 + (∂i∂jφ+ τ−1δijφ
′)2
)]
, (3.11)

where the subscript 4 indicates that it contains four φ. It is straightforward to calculate

the four-point function of φ by using eq. (3.4). Schematically, we write

〈φk1(0)φk2(0)φk3(0)φk4(0)〉 = (2π)3δ

(∑
i

ki

)[
αA(ki) + βB(ki)

]
, (3.12)

where A(ki) and B(ki) are associated with the four-derivative and six-derivative operators,

respectively. Since the full shape is somewhat complicated to present, our shape analysis

focuses on two particular limits of momentum configurations, the equilateral limit k1 =

k2 = k3 = k4 and the flat space limit k1234 = k1 + k2 + k3 + k4 → 0, which are useful to

distinguish the two shapes.

Equilateral limit. As depicted in figure 3, momentum configurations in the equilateral

limit are characterized by k1 = k2 = k3 = k4 = k, the angle γ between the two isosceles
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triangles, and the angle θ between k1 and −k2 up to an overall rotation which does not

affect scalar four-point functions. In this language we have

k1 · k2 = −k2 cos θ , k1 · k3 = k2 · k4 = k2
(

cos θ + 1

2
cos γ +

cos θ − 1

2

)
,

k3 · k4 = −k2 cos θ , k1 · k4 = k2 · k3 = k2
(
−cos θ + 1

2
cos γ +

cos θ − 1

2

)
. (3.13)

Then, the shape functions A(ki) and B(ki) are evaluated as

A(ki) =
H8

256Λ4k9
(

cos2 θ(103 cos2 γ + 309)− 206 cos θ sin2 γ + 103 cos2 γ + 173
)
, (3.14)

B(ki) =
H10

4096Λ6k9
(
− 1311 cos3 θ sin2 γ − cos2 θ(1111 cos2 γ + 8577)

+ 6155 cos θ sin2 γ − (3733 cos2 γ + 3155)
)
. (3.15)

We find that the θ-dependence is qualitatively different among the two: the four-derivative

and six-derivative operators generate up to the second and the third order harmonics in

θ, respectively. Therefore, the coefficient of cos 3θ can be used to probe the six-derivative

operator without swamped by the four-derivative one.

More generally, the n-th order harmonics in θ is sensitive to the 2n-derivative operators.

It is essentially because mode functions of all external scalars and their conformal time

derivatives do not depend on the angles θ and γ, and thus all the angular dependence

is through spatial derivatives in the effective interactions. In this way, the equilateral

configurations parameterized by θ and γ, and especially the θ-dependence of four-point

functions is useful to separate out contributions from each order in the derivative expansion.

Flat space limit k1234 → 0. Another interesting limit is the so-called flat space limit

k1234 = k1 + k2 + k3 + k4 → 0 with ki 6= 0, which is analogous to the flat space limit of

AdS correlators proposed by Raju [77]. Note that this limit cannot be achieved by physical

momentum configurations of dS correlators, hence it requires analytic continuation. By

virtue of analytic continuation, we may probe deep inside the horizon τ → −∞ or in other

words high-energy scattering on de Sitter. As demonstrated in [4, 78], correlators in this

limit are proportional to the corresponding flat space amplitudes. In our setup the flat

space limit k1234 → 0 reads

A(ki) = 24
α

Λ4

H8(k212 − k2I )(k234 − k2I )
4k21k

2
2k

2
3k

2
4k

5
1234

+ 2 Permutations +O(k−41234) , (3.16)

B(ki) = −180
β

Λ6

H10(k212 − k2I )2(k234 − k2I )
4k21k

2
2k

2
3k

2
4k

7
1234

+ 5 Permutations +O(k−61234) , (3.17)

where we used shorthand notations k12 ≡ k1 + k2, k34 ≡ k3 + k4, and kI = k1 + k2. Note

that the leading order of A gives the flat space scattering amplitude ∼ s2, if we identify

k12 and k34 as the energy variable and kI as the three momentum. On the other hands,

B gives the flat space scattering amplitude ∼ s3. More detailed analysis of the flat space

limit is given in appendix B, to which we refer the readers with interests.
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4 Inflationary three-point functions

Next we investigate inflationary three-point functions. We use the same inflaton Lagrangian

as section 3 (with an appropriate slow-roll potential) and turn on a time-dependent inflaton

background φ̄(t) to write

φ(t,x) = φ̄(t) + δφ(t,x) , (4.1)

where δφ(t,x) denotes inflaton fluctuations. We assume that ˙̄φ is nearly constant under the

slow-roll approximation (the dot denotes a derivative in physical time t as usual). Also, as

we mentioned earlier, we focus on the regime the de Sitter conformal symmetry is weakly

broken, so that we neglect higher order terms in ˙̄φ in the following analysis. Under this

assumption, the cubic interaction Hamiltonian is given by

H3 =

∫
d3x

[
4α

Λ4

1

Hτ
˙̄φδφ′(δφ′2 − (∂iδφ)2)

− 2Hβ ˙̄φ

Λ6

[
τδφ′

(
(δφ′′ + τ−1δφ′

)2 − 2(∂iδφ
′ + τ−1∂iδφ)2 + (∂i∂jδφ+ τ−1δijδφ

′)2
)

+
(
δφ′2 − (∂iδφ)2

)(
∂2i δφ+ 3τ−1δφ′

)]]
, (4.2)

where the subscript 3 indicates that it contains three δφ. Since the cubic interaction is

O( ˙̄φ), corrections to the quadratic Lagrangian are not relevant for our purpose, so that we

use the uncorrected linear equation of motion,

δφ′′ − 2τ−1δφ′ − ∂2i δφ = 0 , (4.3)

and the corresponding mode functions for canonical quantization. When calculating three-

point functions, we may use eq. (4.3) to simplify the cubic Hamiltonian (4.2) as

H3 =

∫
d3x

[
4α ˙̄φ

HΛ4τ
δφ′(δφ′2 − (∂iδφ)2)− 4Hβ ˙̄φ

Λ6τ

[
δφ′
(
δφ′2 − (∂iδφ)2

)
+ 2(δφ′)3

]
− Hβ ˙̄φ

Λ6

d

dτ

(
3δφ′3 + 2τδφ′2(∂2i δφ)− 3δφ′(∂iδφ)2 + τ∂2i δφ(∂jδφ)2

)]
, (4.4)

where the second line is a total time derivative that is not relevant in the following calcu-

lation.12 Note that the first term of the β term in the first line is the same as the α one

up to an overall constant. Now it is straightforward to calculate three-point functions of

the scalar curvature perturbation ζ = −(Hδφ)/ ˙̄φ. We schematically write

〈ζk1ζk2ζk3〉 = −H
3

˙̄φ3
〈δφk1δφk2δφk3〉

≡ (2π)7P 2
ζ

1

k21k
2
2k

2
3

δ

(∑
i

ki

)[
αA3pt(ki) + βB3pt(ki)

]
, (4.5)

12In the in-in formalism, it is sometimes dangerous to neglect total time derivatives because they may

provide a non-vanishing boundary term in general. However, it is easy to see that the boundary terms we

dropped vanish at the future boundary τ = 0 and thus we may safely focus on the first line of eq. (4.4).
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Figure 4. Shape of A3pt(left) and B′3pt(right): both of them have a peak at the equilateral

configuration k1 = k2 = k3, but the height at the folded configuration k1 = k2 = k3/2 is different

by a factor ∼ 3.

where A3pt and B3pt are contributions from the four-derivative and six-derivative operators,

respectively. Pζ is the scalar power spectrum given by

Pζ =
H2

(2π)2
H2

˙̄φ2
. (4.6)

Then, the shape function A3pt is evaluated as [79]

A3pt(k1, k2, k3) =
˙̄φ2

Λ4k1k2k3(k1 + k2 + k3)2

×
[
k51 + 2k41k2 + 2k41k3 − 3k31k

2
2 + 2k31k2k3 − 3k31k

2
3 − 3k21k

3
2

− 8k21k
2
2k3 − 8k21k2k

2
3 − 3k21k

3
3 + 2k1k

4
2 + 2k1k

3
2k3 − 8k1k

3
2k

2
3

+ 2k1k2k
3
3 + 2k1k

4
3 + k52 + 2k42k3 − 3k32k

2
3 − 3k22k

3
3 + 2k2k

4
3 + k53

]
.

(4.7)

On the other hand, B3pt is

B3pt(k1, k2, k3) = −H
2

Λ2
A3pt(k1, k2, k3) + B′3pt(k1, k2, k3) (4.8)

with B′3pt defined by

B′3pt(k1, k2, k3) =
24 ˙̄φ2H2k1k2k3

Λ6(k1 + k2 + k3)3
, (4.9)

which is associated to the second term (δφ′)3 of the β term in eq. (4.4).
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Next we discuss how to distinguish the three-point functions generated by the six-

derivative operator from other contributions. First, as depicted in figure 4, both the leading

contribution from the four-derivative operator and the next-to-leading one from the six-

derivative operator have a peak at the equilateral configuration. Therefore we need to look

at details of the shape. For this purpose, we may use, e.g., the ratio between the equilateral

configuration and the folded one:

A3pt(0.5, 0.5, 1)

A3pt(1, 1, 1)
∼ 0.32 ,

B′3pt(0.5, 0.5, 1)

B′3pt(1, 1, 1)
∼ 0.84 . (4.10)

It is also worth clarifying if the shape has degeneracy with other operators we have ne-

glected. As we mentioned, the shape B′3pt is from the operator (δφ′)3, which arises from the

six-point effective interaction (∂µφ∂
µφ)3 as well. One would then wonder if (∇µ∂νφ)2(∂ρφ)2

and (∂µφ∂
µφ)3 are degenerate as long as we look at inflationary three-point functions. How-

ever, recall that (∂µφ∂
µφ)3 provides the interaction (δφ′)3 at the cubic order in ˙̄φ. To work

at this order, we need to take into account corrections to the linear equation of motion (4.3)

when simplifying the cubic Hamiltonian, which gives a new operator on top of the ones in

eq. (4.4). Hence, the potential degeneracy of (∇µ∂νφ)2(∂ρφ)2 and (∂µφ∂
µφ)3 are resolved

by carefully studying higher order terms in ˙̄φ which we neglected. Besides, these two oper-

ators generate different shapes of inflationary four-point functions because the four-point

interaction of δφ originating from (∇µ∂νφ)2(∂ρφ)2 is Lorentz invariant, but the one from

(∂µφ)6 is not.

To end this section, we estimate the nonlinearity parameter fNL and note the limitation

of our present work for the near future phenomenology. First, fNL sourced by the four-

derivative operator is estimated as

fNL ∼
〈ζζζ〉
〈ζζ〉〈ζζ〉

∼
˙̄φ2

Λ4
, (4.11)

so that the observable non-Gaussianity fNL & 1 can be achieved only when ˙̄φ2 & Λ4.

However, contributions from the six-point interaction
γ

Λ8
(∂µφ∂

µφ)3 and higher are non-

negligible in the regime ˙̄φ2 & Λ4 as long as we employ the ordinary order-estimation of the

effective theory, i.e., if the dimensionless parameter γ is O(1) for example. Therefore, our

argument based on the truncation at the four-point level is not applicable to the regime

fNL & 1 generically, which motivates further studies along the line of our present work.

5 Outlook

To enlarge the scope of the cosmological collider, we initiated a program decoding imprints

of heavy particles from effective interactions of primordial perturbations. In this paper, as

a first step in this direction, we studied spin-dependence of four-point effective interactions

of the inflaton. It is well known that the sign of the four-derivative operator (∂µφ∂
µφ)2

is universally positive [44] as a consequence of unitarity and analyticity of scattering am-

plitudes together with the Froissart-Martin bound. In contrast to the universal positivity
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bound, we demonstrated that the sign of the six-derivative operator (∇µ∂νφ)2(∂ρφ)2 is

positive for intermediate scalars, whereas it is negative for intermediate spinning states.

In particular, a non-positive coefficient requires heavy spinning particles with the spin

s = 2, 4, . . . in tree-level UV completion. This result applies, e.g., to (1) non-gravitational

theories enjoying the Froissart-Martin bound and (2) effective interactions generated by

the KK graviton. We thus conclude that we may probe spin of heavy intermediate states

from the sign of effective interactions by going beyond the positivity bound.

We also studied phenomenology of primordial non-Gaussianities thereof. Since the six-

derivative operator is the next-to-leading order correction in the inflaton effective action,

we need to explore how to distinguish it from the leading order correction, i.e., the four-

derivative operator. First, we found that they are distinguishable from angular dependence

of de Sitter four-point functions, especially in the equilateral limit. On the other hand, both

operators generate three-point functions with a peak at the equilateral configuration, so

that a detailed analysis of the full shape is required to distinguish the two from three-point

functions. We again emphasize that the signals we studied are generated by intermediate

off-shell heavy particles, so that it is free from the exponential Boltzmann suppression in

contrast to the previous studies in the cosmological collider program [1–4].

There are various directions to explore along the line of our present work. First of all,

the present paper focused on a regime where the de Sitter conformal symmetry is weakly

broken to neglect six-point interactions such as (∂µφ∂
µφ)3 and higher. As we mentioned,

primordial non-Gaussianities in this regime are generically small fNL . 1 if we employ the

usual order-estimation of the effective theory. It would be interesting to explore a concrete

UV model which has an observable non-Gaussianity fNL & 1, but negligible higher-point

effective interactions. A more challenging, but important direction is to extend our analysis

to the effective field theory of inflation [58], or equivalently to incorporate the higher-point

inflaton effective interactions, which covers the regime fNL & 1 in a general context. In

this regime, we cannot utilize, e.g., the Lorentz invariance and crossing symmetry anymore

(see [45] for related discussions), so that we would need another UV input such as Lorentz

symmetry restoration at high energy [80]. It would also be interesting to generalize our work

to include external spinning particles, e.g., for applications to graviton non-Gaussianities

and phenomena other than inflation. We hope to report our progress in these directions

elsewhere in the near future.
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A Comments on loops

As we mentioned, the intermediate states generating effective interactions can be multi-

particle states associated with loops. It will then be useful to demonstrate which sign of s2t

appears in typical loop diagrams. For illustration, here we consider one-loop amplitudes

with an internal massive scalar/fermion.

A.1 Scalar loop

Let us begin by the following two-scalar model:

L = −1

2
(∂µφ)2 − 1

2
(∂µσ)2 − 1

2
m2σ2 − g1

2
φσ2 − g2

4
φ2σ2 , (A.1)

where σ is the massive particle to be integrated out and the interactions are parameterized

by the couplings g1 and g2. Four-point scattering amplitudes of φ at one-loop are then

M(s, t) =
g22
2

[
Ibub(k1 + k2) + Ibub(k1 + k3) + Ibub(k1 + k4)

]
− g21g2

[
Itri(k1 + k2,−k4) + 5 permutations

]
+ g41

[
Ibox(k1, k1 + k2,−k4) + 2 permutations

]
. (A.2)

Here we defined the bubble, triangle, and box integrals by

Ibub(K1) =

∫
ddl

(2π)d
1

(l2 +m2)((l +K1)2 +m2)
, (A.3)

Itri(K1,K2) =

∫
d4l

(2π)4
1

(l2 +m2)((l +K1)2 +m2)((l +K2)2 +m2)
, (A.4)

Ibox(K1,K2,K3) =

∫
d4l

(2π)4
1

(l2+m2)((l+K1)2+m2)((l+K2)2+m2)((l+K3)2+m2)
, (A.5)

where the loop integral over l is already Wick rotated. Also the bubble integral (A.3) is

defined in d = 4 − ε and the UV divergence ∼ 1/ε has to be subtracted by a counterterm

appropriately. Using the standard Feynman integrals, we may rewrite the integrals as

Ibub(K1) =
Γ
(
2− 1

2d
)

Γ
(
1
2d
)

(4π)d/2Γ(2)Γ
(
1
2d
) ∫ 1

0
dx
(
x(1− x)K2

1 +m2
)−(2−d/2)

, (A.6)

Itri(K1,K2) =
1

16π2

∫ 1

0
dx1dx2dx3 δ (x1 + x2 + x3 − 1)D−1123 , (A.7)

Ibox(K1,K2,K3) =
1

16π2

∫ 1

0
dx1dx2dx3dx4δ (x1 + x2 + x3 + x4 − 1)D−21234 , (A.8)

where we introduced

D123 = −(K1x1 +K2x2)
2 +K2

1x1 +K2
2x2 +m2 , (A.9)

D1234 = −(K1x1 +K2x2 +K3x3)
2 +K2

1x1 +K2
2x2 +K2

3x3 +m2 . (A.10)
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It is now easy to evaluate IR coefficients analytically by expanding the integrand in Ki.

The four- and six-derivative terms of the amplitude then read

M(s, t) =
3g41 − 8g21g2m

2 + 6g22m
4

5760π2m6

(
s2 + st+ t2

)
− 10g41 − 27g21g2m

2 + 18g22m
4

80640π2m10
st(s+ t) . (A.11)

Here and in the next subsection we suppress a constant piece, which can be eliminated by

the φ4 counterterm, as well as higher derivative terms. We find that the coefficient of s2 is

positive as required by unitarity. On the other hand, the sign of s2t depends on the ratio

of g21 and g2.

A.2 Fermion loop

We next consider a model of a massless (pseudo-)scalar φ and a fermion ψ:

L = −1

2
(∂µφ)2 + iψ̄/∂ψ −mψ̄ψ − yφψ̄Γψ , (A.12)

where Γ = 1 (Γ = iγ5) when φ is a scalar (pseudo-scalar).

External pseudo-scalar. Four-point scattering amplitudes of a pseudo-scalar φ (Γ =

iγ5) at one-loop can be expressed in terms of the integrals (A.3)–(A.5) as

M(s, t) = −2y4
[
2
(
Ibub(k1 + k2) + Ibub(k2 + k3)

)
− suIbox(−k1, k2, k2 + k3)

− s
(
Itri(−k1, k2) + Itri(−k3, k4)

)
− u
(
Itri(−k4, k1) + Itri(−k2, k3)

)]
+ 2 permutations . (A.13)

The four- and six-derivative terms of the amplitude are then given by

M(s, t) =
y4

240π2m4
(s2 + st+ t2) +

y4

672π2m6
st(s+ t) . (A.14)

The coefficient of s2 is positive as required by unitarity, whereas the sign of s2t is positive,

hence spinning intermediate states dominate over scalar ones.

External scalar. Similarly, one-loop four-point amplitudes of a scalar φ (Γ = 1) are

M(s, t) = −2y4
[
2
(
Ibub(k1 + k2) + Ibub(k2 + k3)

)
− (su− 32m4)Ibox(−k1, k2, k2 + k3)

− (s+ 8m2)
(
Itri(−k1, k2) + Itri(−k3, k4)

)
− (u+ 8m2)

(
Itri(−k4, k1) + Itri(−k2, k3)

)]
+ 2 permutations . (A.15)

The corresponding four- and six-derivative terms read

M(s, t) =
11y4

720π2m4
(s2 + st+ t2)− 13y4

10080π2m6
st(s+ t) . (A.16)

The coefficient of s2 is positive as required by unitarity, whereas the sign of s2t is negative,

hence scalar intermediate states dominate over spinning ones.
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A.3 On loops for inflation

We have demonstrated that the sign of the s2t term generated by loops of heavy fields

depends on details of the interactions, essentially because multi-particle states generated

by loops may have various spins. While it is interesting that we may use the sign to probe

interactions generating loop diagrams, a remark is needed in the context of inflation. As

we mentioned, the inflaton enjoys an approximate shift symmetry to respect the slow-roll

conditions. Therefore, we may focus on shift-symmetric interactions as far as observable

non-Gaussianities are concerned. However, the interactions we discussed in this appendix

break the shift symmetry of φ, so that the corresponding non-Gaussianities will be slow-roll

suppressed. As far as we know, there are no renormalizable shift-symmetric interactions

whose effects appear only at the loop level. For example, the quasi-single field inflation [1]

accommodates renormalizable interactions of a shift-symmetric scalar (the inflaton) and a

massive scalar which source observable non-Gaussianities. However, effects of the massive

scalar already appear at the tree-level and thus the loop effects are subdominant. It would

be interesting to explore a natural UV model which accommodates dominant loop effects

generating observable non-Gaussianities.13 Even though we leave it for future work, such a

direction would be important because the sign of s2t directly probes spins of heavy particles

exchanged at the tree-level if the loop effects are subdominant.

B Details on flat space limit

In this appendix we elaborate on the relation between de Sitter correlators in the flat space

limit k1234 → 0 and scattering amplitudes. As an illustrative example, let us consider

four-point interactions of a massless scalar φ schematically of the form,

S4 =
apqrs

Λp+q+r+s

∫
d4x
√
−gg•• . . . g•• (∇µ1 . . .∇µpφ)(∇ν1 . . .∇νqφ)

× (∇ρ1 . . .∇ρrφ)(∇σ1 . . .∇σsφ) , (B.1)

where there are p + q + r + s derivatives in total and their indices have to be contracted

by the inverse metric g•• appropriately (we leave • = µi, νi, ρi, σi unspecified). Note that

p+ q + r + s should be an even integer. We work in the conformal time coordinates.

The de Sitter four-point function is then given by

〈φk1(0)φk2(0)φk3(0)φk4(0)〉 = (2π)3δ

(∑
i

ki

)
× (−2)

apqrs
Λp+q+r+s

Im

[
uk1(0)uk2(0)uk3(0)uk4(0)

∫ 0

−∞
dτ(Hτ)p+q+r+s−4η•• . . . η••

× (∇µ1 . . .∇µpu∗k1(τ))(∇ν1 . . .∇νqu∗k2(τ))(∇ρ1 . . .∇ρru∗k3(τ))(∇σ1 . . .∇σsu∗k4(τ))

]
+ 23 permutations, (B.2)

13Fermion loops generated by higher derivative operators were studied, e.g., in [20, 81]. It would be

interesting to construct a UV completion of the effective interactions studied there.
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where η•• is the flat space metric and uki(τ) denotes the mode function (3.10) of φ. Also

spatial derivatives should be understood as spatial momenta ki.

Notice here that the integral (B.2) is a linear combination of the integrals,∫ 0

−∞
τneik1234τdτ = (−1)nn! (ik1234)

−1−n , (B.3)

with (spatial) momentum-dependent coefficients, so that the highest power in n is dominant

in the flat space limit k1234 → 0. It implies that the contributions from connections are

subleading compared with the normal derivative terms in the flat space limit. We therefore

focus on the following part of the integral:∫ 0

−∞
dτ(Hτ)p+q+r+s−4η•• . . . η••(∂µ1 . . . ∂µpu

∗
k1(τ))(∂ν1 . . . ∂νqu

∗
k2(τ))

× (∂ρ1 . . . ∂ρru
∗
k3(τ))(∂σ1 . . . ∂σsu

∗
k4(τ)) . (B.4)

We may further simplify the integral in the flat space limit by using the high energy limit

of the mode function,

u∗k(τ)→ − iH√
2k
τeikτ . (B.5)

Under this approximation, we find

∂τu
∗
k → −(ik)× iH√

2k
τeikτ . (B.6)

If we think of k as the energy variable and define a four-momentum as

kµ = (−k,k) , (B.7)

the previous expression becomes

Hp+q+r+s

4
√
k1k2k3k4

∫ 0

−∞
dττp+q+r+seik1234τ

× ip+q+r+sη•• . . . η••(k1µ1 . . . k1µp)(k2ν1 . . . k2νq)(k3ρ1 . . . k3ρr)(k4σ1 . . . k4σs)

= (p+ q + r + s)! (ik1234)
−1−(p+q+r+s) H

p+q+r+s

4
√
k1k2k3k4

× ip+q+r+sη•• . . . η••(k1µ1 . . . k1µp)(k2ν1 . . . k2νq)(k3ρ1 . . . k3ρr)(k4σ1 . . . k4σs) , (B.8)

where the last line is nothing but what we encounter in the computation of flat space

amplitudes. In summary, the four-point correlator in the flat space limit yields

〈φk1(0)φk2(0)φk3(0)φk4(0)〉 k1234→0−−−−−→ (2π)3δ

(∑
i

ki

)
× apqrs

Λp+q+r+s
H4

4
√
k31k

3
2k

3
3k

3
4

2(p+ q + r + s)!(k1234)
−1−(p+q+r+s) H

p+q+r+s

4
√
k1k2k3k4

× η•• . . . η••(k1µ1 . . . k1µp)(k2ν1 . . . k2νq)(k3ρ1 . . . k3ρr)(k4σ1 . . . k4σs)

+ 23 permutations, (B.9)

where H4

4
√
k31k

3
2k

3
3k

3
4

comes from the contribution of external legs uk1(0)uk2(0)uk3(0)uk4(0).

The last line gives the flat space amplitude.
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