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1 Introduction

In Newtonian mechanics the first step in studying motion of objects is to fix a reference

frame. Though transformation laws between frames are studied afterwards, without fixing

a reference it is not even possible to describe the location of the objects by coordinates.

The importance of fixing a reference appears similarly in studying the super Chern-Simons

matrix models.
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The simplest super Chern-Simons matrix model describing M2-branes is the ABJM

matrix model. The ABJM theory [1–3] is the N = 6 superconformal Chern-Simons theory

with gauge group U(N1)k × U(N2)−k and two pairs of bifundamental matters where the

subscripts denote the Chern-Simons levels. The ABJM matrix model is the partition

function of the ABJM theory on S3, which is originally defined by the infinite-dimensional

path integral and reduces to a finite-dimensional matrix integration after applying the

localization technique [4]. This theory describes the worldvolume theory of min(N1, N2)

M2-branes with |N2 −N1| fractional M2-branes on the background geometry C4/Zk. The

description is understood from the brane configuration in type IIB string theory. Hinted by

the number of unbroken supercharges, it was known that the theory is realized in the brane

configuration of D3-branes on a circle S1 with a perpendicular NS5-brane and a (1, k)5-

brane relatively tilted by an angle parametrized by k where the numbers of D3-branes are

N1 and N2 in each interval. After performing T-duality and lifting to M-theory, we obtain

the background geometry of M2-branes.

The relation among matrix models, spectral theories and topological strings is revealed

through the study of instanton expansion in the ABJM matrix model. Though the rela-

tion was eventually established for general rank deformations, the analysis starts from the

simplest case with equal ranks N2 = N1 = N . On one hand, in studying the expression of

the instanton corrections, a crucial proposal of the Fermi gas formalism was made in [5].

Namely, it was found that the grand canonical partition function without rank deformations

is expressed by the Fredholm determinant

Ξk(z) = Det(1 + zĤ−1). (1.1)

The spectral operator Ĥ takes the form

Ĥ = Q̂P̂, (1.2)

with

Q̂ = 2 cosh
q̂

2
, P̂ = 2 cosh

p̂

2
, (1.3)

where q̂ and p̂ are the canonical coordinate and momentum operators satisfying the canon-

ical commutation relation [q̂, p̂] = i~ with the identification ~ = 2πk. This is reminiscent

of the P1 × P1 geometry [5, 6] if we introduce

Q̂ = eq̂, P̂ = ep̂, (1.4)

and express Ĥ by these canonical operators Ĥ = (Q̂
1
2 + Q̂−

1
2 )(P̂

1
2 + P̂−

1
2 ) where the

Newton polygon of the resulting curve is nothing but that of P1 × P1 after a change of

variables. On the other hand, the large N behavior N
3
2 of the degrees of freedom of N

M2-branes known from the gravity side [7] was reproduced by computing the free energy

of the ABJM matrix model [8, 9]. Subsequently various corrections were studied including

the sum of all perturbative corrections [5, 10], worldsheet instantons [8, 11], membrane

instantons [5, 11–13] and their bound states [14]. Interestingly, it was found that, although
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both the coefficients of the worldsheet instantons and those of the membrane instantons

are divergent, the divergences are all canceled and the sum is free of divergences [12].

Finally, from all the expansions and the cancellation mechanism, it was found that the

final expression of the instanton corrections is given by the sum of the free energy of

topological strings and the derivative of its refinement [15] on local P1 × P1 geometry.

After removing the connection to the matrix models, these observations further led [16] to

conjecture that the Fredholm determinant of a general spectral operator is equal to the

free energy of topological strings on a background read off from the spectral operator.

There are several generalizations of this theory. One interesting direction is to increase

the numbers of NS5-branes and (1, k)5-branes. Then, the brane configuration is labeled

by a digit sequence {sa}Ra=1 with sa = ±1 where sa = +1 and sa = −1 correspond to an

NS5-brane and a (1, k)5-brane respectively. The worldvolume theory of {sa}Ra=1 is a quiver

U(N)R N = 4 superconformal Chern-Simons theory of circular type with Chern-Simons

levels given by [17]

ka =
k

2
(sa − sa−1). (1.5)

We often refer this theory and the corresponding matrix model obtained from the localiza-

tion technique as the (p1, q1, p2, q2, · · · ) theory and the (p1, q1, p2, q2, · · · ) model when the

digit sequence is

{sa}Ra=1 = {+1, · · · ,+1︸ ︷︷ ︸
p1

,−1, · · · ,−1︸ ︷︷ ︸
q1

,+1, · · · ,+1︸ ︷︷ ︸
p2

,−1, · · · ,−1︸ ︷︷ ︸
q2

, · · · }. (1.6)

As in the case of the ABJM theory, the relation among super Chern-Simons matrix models,

spectral theories and topological strings holds again. In [18], it was found that, for the

(p1, q1, p2, q2, · · · ) model, the grand canonical partition function without rank deformations

is expressed by the Fredholm determinant (1.1) of the spectral operator

Ĥ = · · · Q̂q2P̂p2Q̂q1P̂p1 , (1.7)

in the inverse order of (p1, q1, p2, q2, · · · ). This generalization of the Fermi gas formalism

was used in [19] to study the (2, 2) model extensively. After all the studies of the instanton

effects it was found that the geometrical background of topological strings is local del Pezzo

D5. The appearance of local del Pezzo D5 is again natural from the viewpoint of [16] since

the spectral operator Ĥ = Q̂2P̂2 gives exactly the Newton polygon of local del Pezzo D5.

To understand the relation in more details, rank deformations of the (2, 2) model

were studied in [20]. Combined with the results obtained from rank deformations of the

(1, 1, 1, 1) model [21] through the Hanany-Witten transition [22], it was found that the

parameter spaces of both models are connected smoothly. Among others it was pointed

out that, though in rank deformations we have several ranks appearing, for the relation

to topological strings to work correctly, we have to fix the power of the fugacity so that it

matches to one of the ranks in defining the grand canonical partition function [20]. Then,

the grand canonical partition function with rank deformations is described by the free

energy of topological strings if we assume that the BPS indices are split suitably. The split
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of the BPS indices which form representations of D5 is further explained [23] by assuming

an unbroken subgroup of D5 and studying the decomposition of the representations into

the subgroup. Especially, it was found that the unbroken subgroups of the (2, 2) model

and the (1, 1, 1, 1) model without rank deformations are D4 and A2 × (A1)2 respectively.

It is curious to ask whether we can explain the unbroken subgroup directly from the

matrix model. In [24] the idea of quantum curves was introduced by identifying the spectral

operator with those obtained from similarity transformations. Then, as the classical curves

enjoying the D5 Weyl symmetry, it can be shown that its quantum cousin also satisfies the

same Weyl symmetry with a slight modification of the parameters. After identifying the

location of our matrix model in the parameter space, we can ask what subgroup of the D5

Weyl symmetry the matrix model preserves. After our full analysis in [24], it turns out

that the unbroken subgroups match completely with the results from topological strings.

Thus, the symmetry breaking patterns of the matrix models without rank deformations

were explained clearly from the study of quantum curves. In [24] some rank deformations

were also identified, though the full studies of rank deformations were postponed.

In this paper, we head for the identification of the full rank deformations in the param-

eter space of quantum curves. For this purpose, we need to reconsider the identification

even without rank deformations. In [24] it was explained that, depending on the unbroken

symmetry, we can consider cosets transforming among the parameters of quantum curves,

which generate several points in the parameter space and invalidate the one-to-one corre-

spondence of the ranks and the parameters. The main idea to avoid the difficulty comes

back to the idea appearing at the beginning of this paper, the introduction of reference

frames. With the idea of fixing a reference frame we are able to get rid of the ambiguity.

More concretely, by looking back to each of the main characters in the correspondence,

the brane configuration, the spectral theory and the topological string theory, we find

without difficulty that the idea of the reference frame is omnipresent. Let us explain each

of them separately. Firstly, in discussing the brane configuration, we often exchange branes

with the Hanany-Witten transition. As already pointed out in [22], the rule of the Hanany-

Witten transition can be derived from the NS/R charge conservation. Namely, by requiring

that the NS/R charges computed from the numbers of branes on the left and on the right are

conserved, we can derive the rules of the Hanany-Witten transition. However, in discussing

the branes on the left or on the right in a compact circle S1 with two sides identified, we

need to specify asymptotic D3-branes, which break the circle into a segment. This idea of

cutting the circle open serves the role of fixing a reference frame in the brane configuration.

Secondly, from the viewpoint of the spectral theory, although the spectrum of a quantum

operator is generally invariant under similarity transformations and we defined quantum

curves with the identification of the similarity transformations in [24], the expression of the

spectral operator Ĥ itself and the parameters of the quantum curve are always given after

fixing the order of the operators. Also, in one of the Fermi gas formalisms for the matrix

model with rank deformations (called the closed string formalism), the spectral operator or

the quantum curve is obtained by integrating out all of the fractional brane backgrounds.

In this sense, we need to fix the closed string background to be that with minimal number

of D3-branes to consider the spectral operator. Thirdly, in the topological sting theory, as
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we mentioned previously, for the correspondence between matrix models and topological

strings, we need to match the power of the fugacity with one of the ranks of the partition

function, which serves as fixing a reference frame.

After clarifying the idea of fixing a reference frame, we can identify the three-

dimensional space of rank deformations in brane configurations in the five-dimensional

space of quantum curves. By comparing the two parameter spaces and their symme-

tries, we find a novel symmetry for brane configurations which is not obtained from the

Hanany-Witten transition or other well-known discrete symmetries. We also find that the

identification of rank deformations in quantum curves is consistent with the description in

spectral theories and topological strings.

The organization of this paper is as follows. In section 2, we elaborate the idea of

fixing a reference frame in reviewing various aspects of the correspondence, such as brane

configurations, super Chern-Simons matrix models and quantum curves. After that, using

the idea of fixing a reference we identify the rank deformations in the parameter space of

the quantum curves in section 3. Then we present some non-trivial checks from the relation

to spectral theories in section 4 and from the relation to topological strings in section 5.

Finally we conclude with some further directions. Appendix A is devoted to clarification of

the closed string formalism which is helpful for us to study the relation to spectral theories

in section 4, while appendix B is a collection of non-perturbative effects and characters for

the study in section 5.

2 Reference frame

In this section we review brane configurations in type IIB string theory, super Chern-Simons

matrix models obtained from the brane configurations by the localization technique and

quantum curves obtained in the analysis of the matrix models. In reviewing each topic we

emphasize that we have often unconsciously taken the idea of fixing a reference frame for

granted. We believe that the importance of fixing a frame in discussing the correspondence

was not pointed out explicitly previously and we try to explain our idea carefully through

the reviews of various aspects.

2.1 Brane configurations

In this subsection, we review the brane configurations of our interest and explain the idea

of fixing a reference frame in it. Before it, we start with recapitulating the Hanany-Witten

transition. In [22] a supersymmetric brane configuration in type IIB string theory was con-

sidered which consists of a NS5-brane (in the 012456 plane) and a D5-brane (in the 012789

plane) placed at different positions on a line (along the 3 direction) (see figure 1). It was

proposed that, when the two 5-branes move across, a D3-brane (in the 0123 plane) stretch-

ing between the two 5-branes is generated. The physics for these two brane configurations

are considered to be equivalent and the equivalence in changing the configurations is called

the Hanany-Witten transition. The Hanany-Witten transition is further generalized to a

supersymmetric system with two general types of 5-branes and general numbers of D3-

branes on each interval, where to preserve the supersymmetry the (p, q)5-brane is placed
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   



Figure 1. The simplest example of the Hanany-Witten transition. After the exchange of two

5-branes, a D3-brane is generated.

in the 012[4, 7]θ[5, 8]θ[6, 9]θ plane with [a, b]θ being the direction of ~ea cos θ + ~eb sin θ and

tan θ = q/p. For our purpose, we consider a configuration with the two types of 5-branes

being an NS5-brane and a (1, k)5-brane with k > 0 and the numbers of D3-branes in each

interval being1 K, L and M (see figure 2). Then, the Hanany-Witten transition claims

that, when the two 5-branes are exchanged, the number of D3-branes between two 5-branes

becomes K +M −L+ k. Namely, if we denote the NS5-brane by •, the (1, k)5-brane by ◦
and the D3-branes by their numbers, the Hanany-Witten transition claims the equivalences

· · ·K • L ◦M · · · ' · · ·K ◦ (K +M − L+ k) •M · · · ,
· · ·K ◦ L •M · · · ' · · ·K • (K +M − L+ k) ◦M · · · , (2.1)

where we express the Hanany-Witten transition by the equivalence '. We also apply the

transition to trivial exchanges of the same type and obtain

· · ·K • L •M · · · ' · · ·K • (K +M − L) •M · · · ,
· · ·K ◦ L ◦M · · · ' · · ·K ◦ (K +M − L) ◦M · · · . (2.2)

Note that an overall addition of the numbers of D3-branes, K → K + N , L → L + N ,

M → M + N , does not affect the relative numbers of D3-branes in the Hanany-Witten

transition.

As explained in [22] the transition can be understood from charge conservation.

Namely, if we focus on the NS5-brane •, the Hanany-Witten transition can be derived

by requiring that the charge

qRR = −(#D5)|L − (#D5)|R
2

+ (#D3)|L − (#D3)|R, (2.3)

is preserved under the exchange of 5-branes. Here (#D5)|L/R denotes the number of D5-

branes located to the left/right of the original NS5-brane • while (#D3)|L/R means the

number of D3-branes ending on the NS5-brane • from the left/right. Already at this point

we easily find that if we consider the 3 direction to be a compact circle S1 instead of a

line (as in the brane configuration of the ABJM theory), the concept of left or right is

1The rank deformations are restricted by supersymmetries [22] though we only consider the deformations

formally without referring to the restriction.
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   

    

Figure 2. The Hanany-Witten transition of our main interest in this paper. In the following we

often denote the brane configuration by · · ·K • L ◦M · · · ' · · ·K ◦ (K + M − L + k) •M · · · for

simplicity, where • is an NS5-brane and ◦ is a (1, k)5-brane.

ambiguous unless we specify an interval between two 5-branes as a reference frame and

do not consider the exchange of 5-branes across this interval. In other words, we cut the

compact circle S1 open into a segment and bring the two ends to the infinity.

Now let us turn to the supersymmetric brane configuration of our main interest2 with

two NS5-branes and two (1, k)5-branes on a compact circle S1 (see figure 3). We denote

the brane configuration by a bracket

〈N1 •N2 •N3 ◦N4 ◦〉, (2.4)

where we place the reference interval which 5-branes do not move across at the ends and

denote the number of D3-branes in each interval between two 5-branes along this line as

N1, N2, N3, N4 respectively. We omit displaying the number of D3-branes after the last

(1, k)5-brane ◦, which is of course N1 from the original periodicity of S1. Namely in the

present case we fix the interval with N1 D3-branes as the reference and do not consider the

exchange of 5-branes across this interval. From the Hanany-Witten transition explained

above, we obtain many non-trivial relations of physically equivalent brane configurations

including

〈N1 •N2 •N3 ◦N4 ◦〉 ' 〈N1 •N2 ◦ (N2 +N4 −N3 + k) •N4 ◦〉, (2.5)

which played an important role in computing the partition function of the super Chern-

Simons matrix model in [20].

Note that, besides the Hanany-Witten effect, it is natural to assume that the brane

configuration also enjoys a few rather trivial symmetries, similar to the charge conjugation

or the parity in usual field theories. If we reverse the 789 directions we effectively change

the signs of k and find

〈N1 •N2 •N3 ◦N4 ◦〉 ' 〈N1 ◦N2 ◦N3 •N4 •〉, (2.6)

while if we reverse all of the spacetime directions, we obtain the relation

〈N1 •N2 •N3 ◦N4 ◦〉 ' 〈N1 ◦N4 ◦N3 •N2 •〉. (2.7)

2Our arguments apply to general brane configurations as well such as that for the original ABJM theory.

We mainly focus on this model because its abundance actually simplifies our arguments.
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   

  

 

 








Figure 3. The brane configuration corresponding to (2.4).

The symmetries discussed in this subsection generate a large number of symmetries. For

example, by combining (2.6) and (2.7), we immediately find

〈N1 •N2 •N3 ◦N4 ◦〉 ' 〈N1 •N4 •N3 ◦N2 ◦〉. (2.8)

Also, by exchanging two (1, k)5-branes with two NS5-branes in (2.7) using the Hanany-

Witten transition (2.1) so that the order of the 5-branes is preserved, we find

〈N1•N2•N3◦N4 ◦〉' 〈N1•N1+N2−N3+2k•2N1−N3+4k◦N1−N3+N4+2k◦〉, (2.9)

while by the trivial exchange of the Hanany-Witten transition (2.2) we obtain

〈N1 •N2 •N3 ◦N4 ◦〉 ' 〈N1 •N1 +N3 −N2 •N3 ◦N4 ◦〉,
〈N1 •N2 •N3 ◦N4 ◦〉 ' 〈N1 •N2 •N3 ◦N1 +N3 −N4 ◦〉. (2.10)

2.2 Super Chern-Simons matrix models

In this subsection we recapitulate matrix models associated to brane configurations dis-

cussed in the previous subsection and explain again how the concept of fixing a reference

frame appears in the matrix models. It was known that the worldvolume theory of the

D3-branes for those supersymmetric brane configurations on a circle (which are dual to the

M2-branes on supersymmetric backgrounds after taking T-duality and the M-theory lift)

is described by the supersymmetric Chern-Simons theory of the Â quiver [1–3, 25] and the

partition function on S3 reduces to a matrix model using the localization technique [4, 26].

Concretely, the partition function of the worldvolume theory of the D3-branes with R

perpendicular 5-branes reduces to a matrix model

Z
{sa}Ra=1
k ({Na}Ra=1) =

R∏
a=1

eiΘa
∫ R∏

a=1

DNaλa
Na!(2π)Na

R∏
a=1

Z(Na, Na+1;λa, λa+1), (2.11)

– 8 –
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where each component is3

eiΘa = i−
1
2

sign(ka)N2
a , DNaλa =

Na∏
la=1

Dλa,la , Dλa,la = dλa,la exp

(
ika
4π

λ2
a,la

)
,

Z(Na, Na+1;λa, λa+1) =

∏Na
la<l′a

2 sinh
λa,la−λa,l′a

2

∏Na+1

la+1<l′a+1
2 sinh

λa+1,la+1
−λa+1,l′a+1

2∏Na+1

la+1=1

∏Na
la=1 2 cosh

λa+1,la+1
−λa,la

2

.

(2.12)

The Chern-Simons level ka is determined by (k > 0)

ka =
k

2
(sa − sa−1), (2.13)

where the sign sa = ±1 represents the type of the a-th 5-brane, with sa = +1 and sa = −1

being the NS5-brane and the (1, k)5-brane respectively and the two ends identified by

s0 = sR. Thus, the sequence of the two types of 5-branes on a circle S1 in the previous

subsection is translated into the digit sequence of {sa}Ra=1 in the matrix model. The

argument Na of the partition function (2.11) originating from the number of D3-branes in

each interval denotes the rank of the gauge group and we continue to call them ranks even

in the matrix model. After fixing a matrix model with a digit sequence {sa}Ra=1, we often

omit displaying {sa}Ra=1 explicitly. Note that at this stage the concept of the reference

frame has not appeared.

In connecting the super Chern-Simons matrix models to spectral theories or topological

string theories, it is important to move to the grand canonical ensemble, where we regard

a rank of the group as the particle number and introduce a fugacity z dual to it. Although

there are multiple ranks, as we have mentioned around (2.1) and (2.2) for the corresponding

brane configuration, the overall number of D3-branes decouples from the other relative

numbers in the Hanany-Witten transition and we naturally identify this overall rank as

the particle number to be dualized. Also, as noted in [20], for the correspondence to the

topological string theory, we need to fix the power of the fugacity to be one of the ranks,

which we identify as the reference frame. Namely, we define the grand canonical partition

function of the super Chern-Simons matrix model with the n-th rank being the reference as4

Ξ
(n)
k,M (z) '

∞∑
N

zN+N ′nZk(N +N ′1, N +N ′2, N +N ′3, · · · ). (2.14)

Here the summation is taken over the overall rank N with relative ranks (N ′1, N
′
2, N

′
3, · · · )

fixed. We allow ambiguities in (2.14) where ' stands for a possible correction by an overall

normalization factor independent of the fugacity z and we do not specify explicitly the lower

3The phase factor is a natural generalization from those of the ABJM matrix model. The sign function

is defined by sign(ka) = (+1, 0,−1) for ka = (+k, 0,−k) respectively.
4The overall phase was not investigated in [20]. Hence, strictly speaking, to discuss the correspondence

to topological strings, we need to take the absolute value for the partition function here and later for

example in (5.21) and (5.22).
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bound of summation. From the discussions on the correspondence to the Fredholm deter-

minant Det(1+zĤ−1) of a spectral operator Ĥ−1 [5, 16, 27], we vaguely believe that by ad-

justing these ambiguities we can define the grand canonical partition function5 so that it has

the expansion Ξ
(n)
k,M (z) = 1+O(z). Since we have moved to the grand canonical ensemble by

dualizing the overall rank N , the grand canonical partition function is labeled by the Chern-

Simons level k and the relative ranks which we have collectively denoted as M in (2.14).

When there are no rank deformations with all the relative ranks vanishing M = 0,

the reference is irrelevant

Ξk,0(z) =

∞∑
N=0

zNZk(N,N, · · · , N), (2.15)

and it is especially simple to see that the grand canonical partition function reduces to the

Fredholm determinant of a spectral operator. Namely in [5, 18] it was shown that when

the digit sequence {sa}Ra=1 is given by

{sa}Ra=1 = {+1, · · · ,+1︸ ︷︷ ︸
p1

,−1, · · · ,−1︸ ︷︷ ︸
q1

,+1, · · · ,+1︸ ︷︷ ︸
p2

,−1, · · · ,−1︸ ︷︷ ︸
q2

, · · · }, (2.16)

the grand canonical partition function is given by the Fredholm determinant

Ξk,0(z) = Det
(
1 + zĤ−1

)
, (2.17)

of a spectral operator

Ĥ = · · · Q̂q2P̂p2Q̂q1P̂p1 , Q̂ = 2 cosh
q̂

2
, P̂ = 2 cosh

p̂

2
. (2.18)

Here q̂ and p̂ are the canonical coordinate and momentum operators satisfying the com-

mutation relation

[q̂, p̂] = i~, (2.19)

with the identification ~ = 2πk. The derivation of (2.18) was given in [18] by a direct

change of integration variables following previous computations in [5]. Here we sketch

the derivation slightly differently in the operator formalism in appendix A.1. Note that

in (2.18) the sequence of the canonical operators Q̂ and P̂ appears in the reverse order

from the sequence of 5-branes {sa}Ra=1.

For certain rank deformations, the spectral theory was generalized [28] by correcting

the Fredholm determinant (2.17) with expectation values of the spectral operator while

keeping the spectral operator (2.18) fixed. This was named the open string formalism in [29]

since the spectral operator seems to reflect the closed string background after expanding the

Fredholm determinant with traces and the correction by expectation values is reminiscent

of the idea of taking care of the deformations by adding open string fluctuations to a fixed

closed string background. Another generalization by correcting the spectral operator (2.18)

5As noted in [20] the overall normalization can be divergent and require a regularization.
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while keeping the expression of the Fredholm determinant (2.17) fixed was also proposed

in [30–35]. This was named the closed string formalism since now we try to take care of

the deformations by changing the spectral operator for the closed string background. The

expression keeping the Fredholm determinant (2.17) seems more elegant which leads [16]

to remove the role of the matrix models and propose a conjecture between spectral theories

and topological strings. We stress however that, from the viewpoint of matrix models, the

open string formalism is more efficient and allows us to compute various rank deformations

(and reveal some integrable structures [36–40]).

For the brane configurations with two NS5-branes and two (1, k)5-branes without rank

deformations, the spectral operators for the cases with (p1, q1) = (2, 2) and (p1, q1, p2, q2) =

(1, 1, 1, 1) are respectively

Ĥ(2,2) = Q̂2P̂2, Ĥ(1,1,1,1) = Q̂P̂Q̂P̂. (2.20)

Note that, from the invariance of determinants (2.17) under similarity transformations,

the expression of the spectral operator Ĥ is subject to ambiguities. Namely, by similarity

transformations, we can alternatively present the operator for (p1, q1) = (2, 2) as Q̂P̂2Q̂,

P̂2Q̂2 or P̂Q̂2P̂ and the operator for (p1, q1, p2, q2) = (1, 1, 1, 1) as P̂Q̂P̂Q̂. Clearly, to fix

the ambiguities in the expression of the spectral operator, we need to avoid the uncritical use

of similarity transformations. More importantly, since we have emphasized in the previous

subsection that the Hanany-Witten transition for the sequence of 5-branes in the brane

configuration on a circle is discussed unambiguously from the charge conservation (2.3)

only after we cut the circle open and that the sequence of 5-branes is translated into the

sequence of the canonical operators Q̂ and P̂ reversely (2.18), it is natural to expect that

the reference frame should also be taken into account for the spectral operators.

By applying this formalism for the (2, 2) model and the (1, 1, 1, 1) model with the

Fredholm determinant (2.17) and the spectral operator (2.20), the exact values of the

partition function were studied carefully in [19, 21] and it was found that the result is

given in terms of the free energy of the topological string theory as in the ABJM case [15].

The background for topological strings was found to be local del Pezzo D5 geometry.

The analysis was further generalized to rank deformations. Let us parameterize the

three relative ranks of U(N1)×U(N2)×U(N3)×U(N4) by M = (M1,M2,M3) with the

identification

(N1,N2,N3,N4) = (N+M2+M3,N+M1+2M3,N+2M1+M2+M3,N+M1), (2.21)

or inversely

M1 =
−N1 +N3

2
, M2 =

N1 −N2 +N3 −N4

2
, M3 =

N2 −N4

2
. (2.22)

In other words, we consider the brane configuration

〈N +M2 +M3 •N +M1 + 2M3 •N + 2M1 +M2 +M3 ◦N +M1 ◦〉, (2.23)

and parametrize the brane configuration by the relative ranks as

CB = {(M1,M2,M3)}. (2.24)
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For the special case of the M1 and M2 rank deformations, the correction was identified

in [20] following the open string formalism [28]. Using this formalism and the same formal-

ism applied to the brane configurations obtained from the Hanany-Witten transition (2.5),

it was possible to see that the description by the free energy of topological strings on local

del Pezzo D5 geometry is still valid in the rank deformations. It was found [20] that the total

integral BPS indices [47] are split to various combinations in different rank deformations.

In [23] the integral BPS indices were further identified as representations of the D5 algebra

and the split was identified as the decomposition of the representations into a subgroup.

Before closing this subsection, we comment on the symmetries of the partition func-

tion (2.11) for R = 4. It is clear that the partition function is invariant under reversing

the order of integrations in the partition function

Zk(N1, N2, N3, N4) = Zk(N1, N4, N3, N2), (2.25)

which corresponds to the symmetry in the brane configurations (2.8) discussed at the end

of the previous subsection if we identify the brane configuration 〈N1 •N2 •N3 ◦N4 ◦〉 with

the partition function Zk(N1, N2, N3, N4). Furthermore, in moving to the grand canonical

ensemble in (2.14), we can translate the symmetries (2.8), (2.9) and (2.10) found for the

brane configurations into

Ξk,(M1,M2,M3)(z) = Ξk,(M1,−M3,−M2)(z),

Ξk,(M1,M2,M3)(z) = Ξk,(M1,M2,−M3)(z),

Ξk,(M1,M2,M3)(z) = Ξk,(M1,M3,M2)(z),

Ξk,(M1,M2,M3)(z) = Ξk,(2k−M1,M2,M3)(z), (2.26)

in terms of the relative ranks M defined in (2.21) when fixing the reference to be the first

rank.

2.3 Quantum curves

In the previous two subsections, we have reviewed the brane configurations and the ma-

trix models derived from the brane configurations. In this subsection we recapitulate the

analysis of the matrix models for our brane configuration with two NS5-branes and two

(1, k)5-branes from a more general viewpoint of spectral theories.

In the previous subsection we have explained that the matrix model obtained from the

brane configuration with two NS5-branes and two (1, k)5-branes is described by the free

energy of topological strings on local del Pezzo D5 geometry. The appearance of local del

Pezzo D5 is natural from the fact that the spectral operators (2.20) falls into the family of

the D5 quantum curve consisting of nine terms,

Q̂αP̂ β , α, β = −1, 0,+1, (2.27)

if we introduce

Q̂ = Q̂
1
2 + Q̂−

1
2 , P̂ = P̂

1
2 + P̂−

1
2 , Q̂ = eq̂, P̂ = ep̂, (2.28)
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and use the canonical commutation relation

P̂ βQ̂α = e−i~αβQ̂αP̂ β . (2.29)

Since the matrix model, on one hand, corresponds to the Fredholm determinant of

the D5 spectral operator and, on the other hand, corresponds to the free energy of topo-

logical strings on local del Pezzo D5 geometry, the correspondence was advertised as the

ST/TS (Spectral-Theory/Topological-String) correspondence [16, 27] after removing the

consideration of the matrix model. After seeing that the spectral operators without rank

deformations (2.20) fall into the D5 curve and some rank deformations still correspond to

the topological string theory on local del Pezzo D5, it is natural to consider that the expres-

sion of the Fredholm determinant (2.17) is still valid when we introduce rank deformations

for the matrix model.

Following the progress [41–43] and many others, in [24] the framework to study the

spectral operator was provided. Namely, the D5 quantum curve is defined as a linear

combination of nine terms (2.27). More explicitly, we parameterize the curve as

Ĥ/α = Q̂P̂ + (e3 + e4)P̂ + e3e4Q̂
−1P̂

+ (e−1
1 + e−1

2 )Q̂+ E/α+ h−1
2 e3e4(e5 + e6)Q̂−1

+ (e1e2)−1Q̂P̂−1 + h1(e1e2)−1(e−1
7 + e−1

8 )P̂−1 + h2
1(e1e2e7e8)−1Q̂−1P̂−1, (2.30)

with the constraint

(h1h2)2 =
8∏
i=1

ei. (2.31)

Since the operators in different orders have to be distinguished, we adopt the normal

ordering by taking Q̂ to the left and P̂ to the right. The coefficients of the curve are

parameterized so that the asymptotic values of its classical cousin in Q→∞, P →∞, Q→
0 and P → 0 can be expressed as {e−1

1 , e−1
2 }, {e3, e4}, {h−1

2 e5, h
−1
2 e6} and {h1e

−1
7 , h1e

−1
8 }

respectively (see figure 4). We omit the minus signs in displaying the asymptotic values for

simplicity. These asymptotic values are called the point configuration in [44] and determine

the quantum curve (along with the two parameters α and E). Since the spectral operator

in the Fredholm determinant is invariant under similarity transformations, quantum curves

were defined up to similarity transformations in [24]. Namely, an adjoint transformation

of quantum curves by any operator Ĝ is considered to be equivalent

ĜĤĜ−1 ∼ Ĥ. (2.32)

Totally the quantum curve Ĥ is parametrized by twelve parameters (h1, h2, e1, · · · ,
e8, α, E) with the constraint (2.31). Since we have only nine terms in (2.30), two degrees

of freedom are redundant. Furthermore, if we choose Ĝ = A
i
~ p̂ or Ĝ = B−

i
~ q̂ in (2.32), we

find that quantum curves with (Q̂, P̂ ) and (AQ̂,BP̂ ) should be identified, which reduce

two more parameters. By using these four degrees of freedom, we can adopt the gauge

fixing condition

e2 = e4 = e6 = e8 = 1, (2.33)
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
















 













Figure 4. Asymptotic values of the D5 curve (2.30). After applying the normal ordering, the

asymptotic values are {e−1
1 , e−1

2 }, {e3, e4}, {h
−1
2 e5, h

−1
2 e6} and {h1e−1

7 , h1e
−1
8 }. We omit the minus

signs in displaying the asymptotic values for simplicity.

with the constraint (h1h2)2 = e1e3e5e7 (2.31) fixing the value of e7. Also, the parameter

E is irrelevant since similarity transformations (2.32) do not affect the value of it and we

ignore α since this value does not affect the structure of symmetry [24]. After removing

these parameters, quantum curves are characterized by five parameters forming a five-

dimensional space of point configurations

CP = {(h1, h2, e1, e3, e5)}. (2.34)

The equivalence (2.32) further generates discrete symmetries in the point configura-

tion [24]. As in the classical case [44], the discrete symmetries consist of

s1 : (h1, h2, e1, e3, e5) 7→
(
e1e3e5

h1h
2
2

, h2, e1, e3, e5

)
,

s2 : (h1, h2, e1, e3, e5) 7→
(
h1

e3
, h2, e1,

1

e3
, e5

)
,

s3 : (h1, h2, e1, e3, e5) 7→
(
h1,

e1e5

h1h2

, e1,
e1e3e5

h1h
2
2

, e5

)
,

s4 : (h1, h2, e1, e3, e5) 7→
(
h1h2

e1e5
, h2,

h2

e5
, e3,

h2

e1

)
,

s5 : (h1, h2, e1, e3, e5) 7→
(
h1,

h2

e1
,

1

e1
, e3, e5

)
, (2.35)

and generate the Weyl group of D5, which is denoted as W (D5) (see figure 5 for labels of

the simple roots). Here we have introduced the shifted parameters

(h1, h2, e1, e3, e5) = (qh1, q
−1h2, e1, e3, e5), (2.36)

with q = ei~. It is also convenient to introduce the lowest element (corresponding to the

affine element)

s0 = s4s3s2s5s4s3s1s3s4s5s2s3s4 : (h1, h2, e1, e3, e5) 7→
(
h1,

h2

e5
, e1, e3,

1

e5

)
. (2.37)
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



 





Figure 5. Dynkin diagram of the D5 algebra. The number in circles corresponds to the subscript

of the generators of the Weyl symmetry (2.35). Solid circles and lines denote the Dynkin diagram

of the ordinary D5 algebra, while the dashed one is for the lowest element s0 which is generated by

the other generators (2.37).

The generators of the Weyl symmetry s1, s2, s5, s0 originate respectively from trivial

exchanges of the asymptotic values h1e
−1
7 ↔ h1e

−1
8 , e3 ↔ e4, e−1

1 ↔ e−1
2 , h−1

2 e5 ↔ h−1
2 e6,

while the generators s3 and s4 are more non-trivial.

In [24], it was further found that the spectral operators for the (2, 2) model and the

(1, 1, 1, 1) model without rank deformations (2.20) are identified as

(h1, h2, e1, e3, e5)(2,2) = (q, q−1, 1, 1, 1), (h1, h2, e1, e3, e5)(1,1,1,1) =
(
q, q−1, q−

1
2 , q

1
2 , q−

1
2

)
,

(2.38)

respectively in the parameter space of point configurations CP (2.34) and respect the re-

maining symmetry W (D4) and W (A2×(A1)2) (which is consistent with the split of the BPS

indices in topological strings). This immediately implies that cosets of broken symmetries

map the parameters into those with the same unbroken symmetry where there are 10 point

configurations for the (2, 2) model while 80 for the (1, 1, 1, 1) model. It is bewildering that

we have many equivalent point configurations if we try to identify the parameter space of

brane configurations CB (2.24) in physics with that of point configurations CP (2.34) in ge-

ometry. As we have stressed below (2.20), the expression of spectral operators is obtained

only after fixing a reference frame, while in quantum curves the D5 Weyl symmetry is ob-

tained from all of the similarity transformations (2.32) including those changing reference

frames. This suggests that, for the identification between brane configurations and point

configurations to work, we are not supposed to apply similarity transformations uncriti-

cally and the concept of fixing a reference frame should also be taken into consideration in

quantum curves as well.

3 Brane configurations and quantum curves

In the previous section, we have reviewed various aspects of the M2-brane physics, includ-

ing brane configurations, matrix models and quantum curves. In each aspect we find that

we have often unconsciously taken the concept of fixing a reference frame for granted. In

this section, we explain that by fixing a reference in each aspect we can identify the three-

dimensional parameter space of brane configurations CB = {(M1,M2,M3)} (2.24) in the

five-dimensional parameter space of point configurations CP = {(h1, h2, e1, e3, e5)} (2.34)
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clearly. After the identification we investigate the symmetry structure of the three-

dimensional subspace, where we specify some as novel symmetries not known previously

after identifying the known symmetries from brane configurations.

3.1 From brane configurations to point configurations

The main purpose of this section is to identify the three-dimensional parameter space of

brane configurations CB = {(M1,M2,M3)} in the five-dimensional parameter space of point

configurations CP = {(h1, h2, e1, e3, e5)}. The concept of fixing a reference frame plays an

important role in the identification.

In section 2.1 it has been emphasized that the Hanany-Witten transition for the brane

configuration with a sequence of 5-branes is discussed unambiguously from the charge

conservation (2.3) only after we fix a reference interval where 5-branes do not move across.

In section 2.2, it was found that the sequence of the canonical operators Q̂, P̂ in the

spectral operator is determined from the sequence of 5-branes reversely (2.18). From these

observations we are naturally led to introducing a reference frame for spectral operators as

well. After it, we can distinguish the (2, 2) model and the (1, 1, 1, 1) model without rank

deformations from those obtained by transformations of the cosets in the parameter space

of point configurations CP.

Since the sequence of 5-branes in brane configurations is directly translated to the

sequence of the canonical operators in spectral operators, besides fixing a reference frame,

we also distinguish all of the 5-branes in brane configurations and all of the canonical

operators in spectral operators. Concretely, on the side of brane configurations, we consider

the sequence of two NS5-branes and two (1, k)5-branes from left to right as the standard

order and label them by 2, 1, 3, 4 respectively as6

〈
N1

2• N2
1• N3

3◦ N4
4◦
〉

=
〈
N +M2 +M3

2• N +M1 + 2M3
1• N + 2M1 +M2 +M3

3◦ N +M1
4◦
〉
, (3.1)

by adding the information of labels to our notation of the brane configuration (2.4).

Correspondingly, on the side of spectral operators, we also label the canonical opera-

tors. Namely, we do not only distinguish the spectral operators with different references as

discussed below (2.20), but also label the canonical operators by 4, 3, 1, 2 (reversely from

brane configurations (3.1)) and consider

Ĥ = Q̂4Q̂3P̂1P̂2, (3.2)

as the standard order. For example, we consider two spectral operators P̂2Q̂4Q̂3P̂1 and

P̂1Q̂4Q̂3P̂2 for the (2, 2) model to be different.

In this setup we can already find an interesting correspondence from the spectral

operators without rank deformations as follows. We pick up a spectral operator of the

(2, 2) model or the (1, 1, 1, 1) model without rank deformations with the reference and

the labels fixed. If we find out the corresponding point configuration, we can plot the

6The order of 2, 1, 3, 4 is related to the gauge fixing condition (2.33), as will be clear later.
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type {e−1
1 , e−1

2 } {e3, e4} {h−1
2 e5, h

−1
2 e6} {h1e

−1
7 , h1e

−1
8 }

Q̂Q̂P̂P̂ {1, 1} {1, 1} {1, 1} {1, 1}

Q̂P̂Q̂P̂ {q
1
2 , 1} {q

1
2 , 1} {q−

1
2 , 1} {q−

1
2 , 1}

Q̂P̂P̂Q̂ {q
1
2 , q

1
2 } {q, 1} {q−

1
2 , q−

1
2 } {q−1, 1}

P̂Q̂Q̂P̂ {q, 1} {q
1
2 , q

1
2 } {q−1, 1} {q−

1
2 , q−

1
2 }

P̂Q̂P̂Q̂ {q, q
1
2 } {q, q

1
2 } {q−1, q−

1
2 } {q−1, q−

1
2 }

P̂P̂Q̂Q̂ {q, q} {q, q} {q−1, q−1} {q−1, q−1}

Table 1. Asymptotic values of the spectral operators after taking the normal ordering.

spectral operator in the five-dimensional parameter space CP. On one hand, for point

configurations of spectral operators, we can perform the normal ordering by moving Q̂ to

the left while moving P̂ to the right using the commutation relations in (2.29) and read off

the parameters in CP. On the other hand, for the brane configurations without relative rank

deformations, we can change the order of 5-branes into the standard one 2, 1, 3, 4 (3.1) using

the Hanany-Witten transition and find out the relative rank deformations (M1,M2,M3)

in the brane configuration CB. By comparing these two computations, we can identify

rank deformations (M1,M2,M3) in CP. For this purpose, let us first regard each spectral

operator with the reference fixed as the quantum curve (2.30) and compute four pairs of

the asymptotic values. The result is given in table 1. For example, asymptotic values of

the spectral operator P̂Q̂Q̂P̂ are read off from the expansion

P̂Q̂Q̂P̂/q−
1
2 =

[
Q̂+2q

1
2 +qQ̂−1

]
P̂+(q+1)Q̂+4q

1
2 +(q+1)Q̂−1+

[
qQ̂+2q

1
2 +Q̂−1

]
P̂−1.

(3.3)

To identify the parameter space of brane configurations CB = {(M1,M2,M3)} in that

of point configurations CP = {(h1, h2, e1, e3, e5)} from this setup, however, we need to

clarify a few points. Although in fixing a reference frame in spectral operators we avoid

uncritical similarity transformations, to adopt the gauge-fixing condition (2.33) we still

need to identify the quantum curve with (Q̂, P̂ ) and that with (AQ̂,BP̂ ). Hence we

distinguish the exponential linear operators Ĝ = A
i
~ p̂ and Ĝ = B−

i
~ q̂ as small similarity

transformations from general similarity transformations with general Ĝ and only allow the

small similarity transformations.

Besides, although in table 1 we have identified four pairs of asymptotic values, it is

unclear how to distinguish between the pairs of {e−1
1 , e−1

2 }, {e3, e4}, {h−1
2 e5, h

−1
2 e6} and

{h1e
−1
7 , h1e

−1
8 }. Putting it more directly, although in the previous paragraph we allow

the small similarity transformations for the gauge fixing (2.33), when we fix the gauge

e2 = e4 = 1 by rescaling (Q̂, P̂ )→ (AQ̂,BP̂ ), a priori we do not know which in the pair of

{e−1
1 , e−1

2 } or {e3, e4} should be set to 1.

Before directly answering this question, we first reduce the question by relating the

asymptotic values. In the normal ordering for the spectral operator, the asymptotic values
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{e−1
1 , e−1

2 }, {e3, e4}, {h−1
2 e5, h

−1
2 e6} and {h1e

−1
7 , h1e

−1
8 } comes respectively by commuting

P̂ with all of Q̂
1
2 in the right, by commuting Q̂ with all of P̂

1
2 in the left, by commuting P̂

with all of Q̂−
1
2 in the right and by commuting Q̂ with all of P̂−

1
2 in the left. Since all of

the operators Q̂±
1
2 and P̂±

1
2 come from Q̂ and P̂ (2.28), due to the commutation relation

P̂Q̂
n
2 = Q̂

n
2

(
q−

n
4 P̂

1
2 + q

n
4 P̂−

1
2

)
, P̂

n
2 Q̂ =

(
q−

n
4 Q̂

1
2 + q

n
4 Q̂−

1
2

)
P̂
n
2 ,

P̂Q̂−
n
2 = Q̂−

n
2

(
q
n
4 P̂

1
2 + q−

n
4 P̂−

1
2

)
, P̂−

n
2 Q̂ =

(
q
n
4 Q̂

1
2 + q−

n
4 Q̂−

1
2

)
P̂−

n
2 , (3.4)

it is clear that when one of the asymptotic values in {e−1
1 , e−1

2 } is q
n
2 , one of the asymptotic

values in {h−1
2 e5, h

−1
2 e6} has to be q−

n
2 and when one of the asymptotic values in {e3, e4} is

q
n
2 , one of the asymptotic values in {h1e

−1
7 , h1e

−1
8 } has to be q−

n
2 . In this sense the asymp-

totic values of {e−1
1 , e−1

2 } and {h−1
2 e5, h

−1
2 e6} are correlated and the asymptotic values of

{e3, e4} and {h1e
−1
7 , h1e

−1
8 } are correlated as well.

Then, the above argument of correlating the asymptotic values indicates that we do

not have 24 = 16 choices in identifying each choice in {e−1
1 , e−1

2 }, {e3, e4}, {h−1
2 e5, h

−1
2 e6},

{h1e
−1
7 , h1e

−1
8 } separately. Instead, we can combine the pairs of the reciprocal numbers

q±
n
2 as (e4, h1e

−1
8 ), (e3, h1e

−1
7 ), (e−1

1 , h−1
2 e5), (e−1

2 , h−1
2 e6) so that there are only 22 = 4

choices and two operators Q̂(4,8), Q̂(3,7) are responsible for the asymptotic values (e4, h1e
−1
8 ),

(e3, h1e
−1
7 ) while two operators P̂(1,5), P̂(2,6) are responsible for (e−1

1 , h−1
2 e5), (e−1

2 , h−1
2 e6).

Since our gauge fixing condition (2.33) indicates that e2 = e4 = 1, it is convenient to

identify

Q̂(4,8) = Q̂4, Q̂(3,7) = Q̂3, P̂(1,5) = P̂1, P̂(2,6) = P̂2, (3.5)

since the standard ordering 4, 3, 1, 2, where Q̂4 is already located to the left of Q̂3 and P̂2

is to the right of P̂1, matches the gauge fixing condition which simplifies the values of e4

and e2. This is why we have adopted 4, 3, 1, 2 as the standard order for spectral operators.

By now it is not difficult to identify the spectral operators with labels in the parameter

space of point configurations CP. For various orders, we can bring them to the standard

order and identify the point configuration. We list quantum curves and the corresponding

point configurations in table 2. For example, for the quantum curve P̂2Q̂4Q̂3P̂1, from

table 1 the identification of the asymptotic values is unambiguous for e3 = e4 = q
1
2 and

h1e
−1
7 = h1e

−1
8 = q−

1
2 , while the rest should be identified as e−1

1 = h−1
2 e5 = 1, e−1

2 = q

and h−1
2 e6 = q−1 since we need to bring the leftmost P̂2 = P̂(2,6) responsible for e−1

2

and h−1
2 e6 to the rightmost. After applying the small similarity transformation, we find

(h1, h2, e1, e3, e5) = (q−1, q2, q, 1, q).

The first thing to note is that all of these 14 points live in a three-dimensional subspace

of the original five-dimensional parameter space CP. This is an important sign indicating

that we are performing the correct analysis by fixing a reference frame and labeling the

canonical operators. Let us parameterize the three-dimensional subspace by

(h1, h2, e1, e3, e5) =

(
ef

h
,
hf

e
,
f

e
, ef,

f

e

)
, (3.6)
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Type Quantum curve (h1, h2, e1, e3, e5) (h, e, f)

Q̂Q̂P̂P̂ Q̂4Q̂3P̂1P̂2 (q, q−1, 1, 1, 1) (q−1, 1, 1)

Q̂P̂Q̂P̂ Q̂4P̂1Q̂3P̂2 (q, q−1, q−
1
2 , q

1
2 , q−

1
2 ) (q−

1
2 , q

1
2 , 1)

Q̂3P̂1Q̂4P̂2 (1, q−1, q−
1
2 , q−

1
2 , q−

1
2 ) (q−

1
2 , 1, q−

1
2 )

Q̂4P̂2Q̂3P̂1 (q, 1, q
1
2 , q

1
2 , q

1
2 ) (q−

1
2 , 1, q

1
2 )

Q̂3P̂2Q̂4P̂1 (1, 1, q
1
2 , q−

1
2 , q

1
2 ) (q−

1
2 , q−

1
2 , 1)

Q̂P̂P̂Q̂ Q̂4P̂1P̂2Q̂3 (q, 1, 1, q, 1) (1, q
1
2 , q

1
2 )

Q̂3P̂1P̂2Q̂4 (q−1, 1, 1, q−1, 1) (1, q−
1
2 , q−

1
2 )

P̂Q̂Q̂P̂ P̂1Q̂4Q̂3P̂2 (1, q−1, q−1, 1, q−1) (1, q
1
2 , q−

1
2 )

P̂2Q̂4Q̂3P̂1 (1, q, q, 1, q) (1, q−
1
2 , q

1
2 )

P̂Q̂P̂Q̂ P̂1Q̂4P̂2Q̂3 (1, 1, q−
1
2 , q

1
2 , q−

1
2 ) (q

1
2 , q

1
2 , 1)

P̂1Q̂3P̂2Q̂4 (q−1, 1, q−
1
2 , q−

1
2 , q−

1
2 ) (q

1
2 , 1, q−

1
2 )

P̂2Q̂4P̂1Q̂3 (1, q, q
1
2 , q

1
2 , q

1
2 ) (q

1
2 , 1, q

1
2 )

P̂2Q̂3P̂1Q̂4 (q−1, q, q
1
2 , q−

1
2 , q

1
2 ) (q

1
2 , q−

1
2 , 1)

P̂P̂Q̂Q̂ P̂1P̂2Q̂4Q̂3 (q−1, q, 1, 1, 1) (q, 1, 1)

Table 2. Quantum curves with a reference frame and labels specified and the corresponding point

configurations.













 



  



 

 

 









Figure 6. Asymptotic values for parameters (h, e, f) in the three-dimensional space of brane

configurations CB.

and identify the 14 points also by the parameters (h, e, f) (see table 2). To summarize for

now, we have successfully identified the three-dimensional parameter space of brane con-

figurations CB in the five-dimensional space of point configurations CP by correctly taking

the idea of fixing a reference frame and labels into consideration. For later convenience,

we depict again the asymptotic values for parameters in the three-dimensional subspace

CB in figure 6.
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Our remaining task is to identify each brane configuration corresponding to the spectral

operator without relative rank deformations as a brane configuration in the standard order

with rank deformations (3.2) by applying the Hanany-Witten transition explicitly. For

example, by use of the Hanany-Witten transition, we can bring the brane configuration

1342 into that in the standard order 2134. Since we are only interested in the relative

rank difference, let us express the brane configuration
〈
N

1• N 3◦ N 4◦ N 2•
〉

simply as〈
0

1• 0
3◦ 0

4◦ 0
2•
〉
. Then, by using (2.1) and (2.2) iteratively we find

〈
0

1• 0
3◦ 0

4◦ 0
2•
〉
∼
〈
0

1• 0
3◦ 0

2• k 4◦
〉
∼
〈
0

1• 0
2• 2k

3◦ k 4◦
〉
∼
〈
0

2• 2k
1• 2k

3◦ k 4◦
〉
. (3.7)

By comparing with (2.22), it is clear that the corresponding relative rank deformation is

(M1,M2,M3) = (k,−k
2 ,

k
2 ). Since the rank deformations are considered relatively from our

standard order, correspondingly on the spectral operator side, we also define the relative

parameter ∆(h, e, f) compared with that for the standard order (h, e, f)|(4312) = (q−1, 1, 1),

∆(h, e, f) =

(
h

h(4312)
,

e

e(4312)
,

f

f(4312)

)
= (qh, e, f). (3.8)

In table 3 we list the relative parameters of spectral operators ∆(h, e, f) and the parameters

of rank deformations (M1,M2,M3) for all of the spectral operators considered in table 2.

Then, it is not difficult to observe a clear identification

∆(h, e, f) =
(
e2πiM1 , e2πiM2 , e2πiM3

)
, (3.9)

which shows that the three-dimensional subspace is nothing but that of the three relative

rank deformations in the (2, 2) model.

To summarize, in this subsection, using the idea of fixing a reference frame and labeling

the 5-branes, we have identified the three-dimensional subspace of the three relative rank

deformations of brane configurations CB in the five-dimensional parameter space of point

configurations CP. The parameter of the D5 quantum curve (h, e, f) is given by

(h, e, f) = (e2πi(M1−k), e2πiM2 , e2πiM3), (3.10)

in terms of the relative rank deformation M = (M1,M2,M3) for the standard order of

5-branes 2134 (3.1). However, so far we have not discussed the matrix model itself. In

the following sections, by explicitly analyzing the matrix models, we have more checks and

more discussions on the relation (3.10) from various viewpoints such as the correspondence

between matrix models and spectral theories or between matrix models and topological

strings. Before going there, in the remaining part of this section, we discuss the effects of

changing frames and the symmetry structure.

– 20 –



J
H
E
P
1
2
(
2
0
1
9
)
1
0
1

Spectral operator ∆(h, e, f) Brane configuration (M1,M2,M3)

Q̂4Q̂3P̂1P̂2 (1, 1, 1) 〈0 2• 0
1• 0

3◦ 0
4◦〉 (0, 0, 0)

Q̂4P̂1Q̂3P̂2 (q
1
2 , q

1
2 , 1) 〈0 2• 0

3◦ 0
1• 0

4◦〉 (k2 ,
k
2 , 0)

Q̂3P̂1Q̂4P̂2 (q
1
2 , 1, q−

1
2 ) 〈0 2• 0

4◦ 0
1• 0

3◦〉 (k2 , 0,−
k
2 )

Q̂4P̂2Q̂3P̂1 (q
1
2 , 1, q

1
2 ) 〈0 1• 0

3◦ 0
2• 0

4◦〉 (k2 , 0,
k
2 )

Q̂3P̂2Q̂4P̂1 (q
1
2 , q−

1
2 , 1) 〈0 1• 0

4◦ 0
2• 0

3◦〉 (k2 ,−
k
2 , 0)

Q̂4P̂1P̂2Q̂3 (q, q
1
2 , q

1
2 ) 〈0 3◦ 0

2• 0
1• 0

4◦〉 (k, k2 ,
k
2 )

Q̂3P̂1P̂2Q̂4 (q, q−
1
2 , q−

1
2 ) 〈0 4◦ 0

2• 0
1• 0

3◦〉 (k,−k
2 ,−

k
2 )

P̂1Q̂4Q̂3P̂2 (q, q
1
2 , q−

1
2 ) 〈0 2• 0

3◦ 0
4◦ 0

1•〉 (k, k2 ,−
k
2 )

P̂2Q̂4Q̂3P̂1 (q, q−
1
2 , q

1
2 ) 〈0 1• 0

3◦ 0
4◦ 0

2•〉 (k,−k
2 ,

k
2 )

P̂1Q̂4P̂2Q̂3 (q
3
2 , q

1
2 , 1) 〈0 3◦ 0

2• 0
4◦ 0

1•〉 (3k
2 ,

k
2 , 0)

P̂1Q̂3P̂2Q̂4 (q
3
2 , 1, q−

1
2 ) 〈0 4◦ 0

2• 0
3◦ 0

1•〉 (3k
2 , 0,−

k
2 )

P̂2Q̂4P̂1Q̂3 (q
3
2 , 1, q

1
2 ) 〈0 3◦ 0

1• 0
4◦ 0

2•〉 (3k
2 , 0,

k
2 )

P̂2Q̂3P̂1Q̂4 (q
3
2 , q−

1
2 , 1) 〈0 4◦ 0

1• 0
3◦ 0

2•〉 (3k
2 ,−

k
2 , 0)

P̂1P̂2Q̂4Q̂3 (q2, 1, 1) 〈0 3◦ 0
4◦ 0

2• 0
1•〉 (2k, 0, 0)

Table 3. List of the quantum curves with a reference frame and labels specified in a general order

and the corresponding brane configurations. After changing into the standard order by commutation

relation (2.29) for the quantum curves and by the Hanany-Witten transition (2.1) and (2.2), we

find a clear correspondence (3.9) between (M1,M2,M3) and ∆(h, e, f).

3.2 Change of frames

So far we have stressed the importance of fixing a reference frame. It is interesting to

investigate the situation when frames are changed. For this purpose we consider our labels

of rank deformations
〈
N +M2 +M3

2• N +M1 + 2M3
1• N + 2M1 +M2 +M3

3◦ N +M1
4◦
〉

in (3.1) and change the reference frame to the second one. Namely we cyclically move to the

brane configuration into
〈
N+M1 +2M3

1• N+2M1 +M2 +M3
3◦ N+M1

4◦ N+M2 +M3
2•
〉

and rearrange the 5-branes into our standard order 2134 with the reference frame fixed. As

in (3.7) since we are only interested in the relative rank difference we can simply consider〈
M1 + 2M3

1• 2M1 +M2 +M3
3◦M1

4◦M2 +M3
2•
〉

and change the 5-brane with number 2

into the first one by using the Hanany-Witten transition as in (3.7). Then, we find〈
M1 + 2M3

1• 2M1 +M2 +M3
3◦M1

4◦M2 +M3
2•
〉

∼
〈
M1 + 2M3

2• 2M1 −M2 + 3M3 + 2k
1• 3M1 + 2M3 + 2k

3◦ 2M1 −M2 +M3 + k
4◦
〉
.

(3.11)

– 21 –



J
H
E
P
1
2
(
2
0
1
9
)
1
0
1

 











 







Figure 7. The three-dimensional subspace of brane configurations CB in the five-dimensional space

of point configurations CP. Red dots and blue dots denote the (2, 2) model and the (1, 1, 1, 1) model

without rank deformations respectively. Although the origins of the (2, 2) model without rank

deformations are shifted in changing the frames, the directions of rank deformations (M1,M2,M3)

are unchanged.

With the parameterization we find that the relative rank difference given by (2.22) changes

into

(M ′1,M
′
2,M

′
3) =

(
M1 + k,M2 −

k

2
,M3 +

k

2

)
. (3.12)

Our result is consistent with the case without deformations (3.7) by setting M1 = M2 =

M3 = 0. Surprisingly, the shift by (k,−k
2 ,

k
2 ) is the only change for (M1,M2,M3) and the

direction of (M1,M2,M3) is exactly the same as the original one. In other words, after

fixing a reference and labeling the 5-branes in brane configurations as fixing a reference

frame in mechanics or taking a local coordinate in geometry, we are also able to change

frames or change local charts. In our case the transition map is rather trivial and we

have only to shift the origins. See figure 7 for locating various brane configurations and

identifying directions of rank deformations.

Note however that, although the direction is the same, since the origin is different, the

unbroken symmetry is in general different. This is why it is important to fix a reference

frame in our analysis. In the next subsection we study the symmetry in this space carefully.

It is interesting to point out that the parameter space of point configurations for

the Painlevé system enjoys the affine Weyl group which contains a shift generator [44].

Although it was observed that the matrix models are related to the q-Painlevé system [45],

quantum curves defined by identifying those obtained by similarity transformations only

enjoys the Weyl group without the affine element. We unexpectedly encounter a shift

generator in the change of frames. It would be interesting to clarify the relation to the

affine Weyl group.
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













   

 

 

Figure 8. Unbroken symmetries at each point in the three-dimensional space of brane configu-

rations CB. Every point enjoys the Weyl symmetry of W ((A1)2) generated by s1s3s4s5s4s3s1 and

s2s3s4s5s4s3s2. Along the axes or the dotted lines, an additional generator appears where the

symmetry can be enhanced trivially to W ((A1)3) or drastically to W (A3). At the points where

only two dotted lines cross, the symmetry is enhanced trivially to W (A3 × A1), which we do not

depict explicitly, though the symmetry is enhanced drastically to W (D4) or W (A2× (A1)2) if more

than two lines cross.

3.3 Weyl symmetries

In the previous subsection we have identified the three-dimensional parameter space of

brane configurations CB in the five-dimensional parameter space of point configurations

CP. After the identification, let us proceed to the study of the symmetry of the subspace

(h, e, f) (3.6).

First, we can ask what subgroup of symmetries in W (D5) generated by (2.35) leaves

each point invariant. It is not difficult to find that a general point in this subspace satisfies

the symmetry of W ((A1)2) generated by s1s3s4s5s4s3s1 and s2s3s4s5s4s3s2, while the

symmetry is enhanced for special points. In [24] the symmetry in the two-dimensional

subspace without the M3 deformation or the f deformation was already studied. Here we

present the study for f 6= 1 in figure 8. It is interesting to find that, although the same

(2, 2) models or the same (1, 1, 1, 1) models without rank deformations enjoy the same

symmetries in different points in the three-dimensional subspace, after deforming with

relative ranks, the symmetry is not the same any more. This indicates the importance in

fixing a reference frame.

Second, alternatively we can ask which subgroup in W (D5) preserves the three-

dimensional subspace (h, e, f) as a whole. We find that the subgroup is W (B3), which

is generated by s1s2, s3 and s4 and has 48 elements. See figure 9 for the Dynkin diagram

of this group. The reason why this group preserve the subspace is by now quite appar-
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  

Figure 9. Dynkin diagram of the B3 = so(7) algebra. The number in circles corresponds to the

generator of the Weyl symmetry or its product. If we restrict ourselves to CB, s5s0 can be generated

by s1s2, s3 and s4 as in (3.15).

ent from the correlations between (e−1
1 , h−1

2 e5), (e−1
2 , h−1

2 e6), (e3, h1e
−1
7 ) and (e4, h1e

−1
8 ) as

above (3.5). Namely the switch between h1e
−1
7 and h1e

−1
8 generated by s1 should be ac-

companied by the switch between e3 and e4 generated by s2, while the switch between e−1
1

and e−1
2 generated by s5 should be accompanied by the switch between h−1

2 e5 and h−1
2 e6

generated by s0. The concrete form of these maps on the three-dimensional subspace is

given by

s1s2 : (h, e, f) 7→
(
h,

1

f
,
1

e

)
,

s3 : (h, e, f) 7→
(

1

ef
,

√
e

hf
,

√
f

he

)
,

s4 : (h, e, f) 7→
(
f

e
,

√
ef

h
,
√
hef

)
,

s5s0 : (h, e, f) 7→ (h, f, e). (3.13)

3.4 Hanany-Witten transition

After identifying the three-dimensional space of brane configurations CB in the five-

dimensional space of point configurations CP as in (3.6) and (3.9) and studying its symme-

try structure, we can compare the B3 Weyl group (3.13) with the symmetries of the (2, 2)

model (2.26) generated by the Hanany-Witten transition and a few discrete symmetries.

We find that, corresponding to all of the dualities from (2.26)

(M1,M2,M3) ∼ (M1,−M3,−M2),

(M1,M2,M3) ∼ (M1,M2,−M3),

(M1,M2,M3) ∼ (M1,M3,M2),

(M1,M2,M3) ∼ (2k −M1,M2,M3), (3.14)

there are elements of W (B3)

s1s2 : ∆(h, e, f) 7→ ∆

(
h,

1

f
,

1

e

)
,

s3s4s3 : ∆(h, e, f) 7→ ∆

(
h, e,

1

f

)
,

s5s0 = s3s4s3s1s2s3s4s3 : ∆(h, e, f) 7→ ∆(h, f, e),

s3s1s2s3 = s4s5s0s4 : ∆(h, e, f) 7→ ∆

(
q2

h
, e, f

)
. (3.15)
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Figure 10. Group-theoretical structure of the symmetries generated by the Hanany-Witten tran-

sition and a few trivial symmetries such as the charge conjugation and the parity.

Note that the equalities s5s0 = s3s4s3s1s2s3s4s3 and s3s1s2s3 = s4s5s0s4 hold only in this

three-dimensional subspace CB. We find that these elements generate a group isomorphic

to W (B2 ×A1) of order 16 whose Dynkin diagram is depicted in figure 10.

So far we have identified the well-known symmetries of the (2, 2) model, such as the

Hanany-Witten transition and the discrete symmetries, as W (B2 × A1) in W (B3). This

indicates that there are novel symmetries or dualities for the brane configurations unknown

from them. A representative of these elements is s3 or s4. To make contact with future

studies from brane physics, let us express them in terms of brane configurations as

s3 : 〈N1
2• N2

1• N3
3◦ N4

4◦〉 7→ 〈N1
2• N2 −N3 +N4 + k

1• −N3 + 2N4 + 2k
3◦ N4

4◦〉,

s4 : 〈N1
2• N2

1• N3
3◦ N4

4◦〉 7→ 〈N1
2• N2

1• 2N2 −N3 + 2k
3◦ N2 −N3 +N4 + k

4◦〉. (3.16)

Here we have rewritten the transformations s3 and s4 in (3.13) in terms of the relative rank

difference (M1,M2,M3) using the identification (3.10) and expressed the results by fixing

the reference rank N1. We can further rewrite them into a significant form by exchanging

the NS5-brane
1• and the (1, k)5-brane

3◦ with the Hanany-Witten transition. Namely, by

introducing N ′3 = N2 −N3 +N4 + k, the transformations are given by

s3 : 〈N1
2• N2

3◦ N ′3
1• N4

4◦〉 7→ 〈N1
2• N ′3

3◦ N2
1• N4

4◦〉,

s4 : 〈N1
2• N2

3◦ N ′3
1• N4

4◦〉 7→ 〈N1
2• N2

3◦ N4
1• N ′3

4◦〉. (3.17)

We have not been aware of any simple explanations for these transformations.

4 Matrix models and spectral theories

In the previous section, with the idea of fixing a reference frame and labeling the 5-branes,

we have proposed to identify the three-dimensional space of brane configurations CB in the

five-dimensional space of point configurations CP. However, so far we have only observed

the similarity in the algebraic structure between the Hanany-Witten transition in brane

configurations (2.1) and the canonical commutation relation in point configurations (2.29)

for several cases without rank deformations. It is desirable to present a more qualitative

comparison of matrix models to spectral theories or topological strings. In this section

and the next section, we establish the relation to spectral theories and topological strings

respectively and present some non-trivial checks for our proposals.

4.1 Correspondence

As explained in section 2.2, for the case without relative rank deformations, the relation

between matrix models and spectral theories was given in (2.17) and (2.18) where the
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5-branes and the spectral operators are aligned in the reverse order. Generalizations in

the open string formalism enabled us to compute the (M1,M2) rank deformations in the

(2, 2) model efficiently [20] and find that the results are described by the free energy of

topological strings following the discovery in the ABJM matrix model [15]. However, the

corresponding expression of spectral operators is not clear in this analysis.

Prior to the analysis, by removing the role of matrix models, in [16] the relation be-

tween spectral theories and topological strings (the ST/TS correspondence) was proposed.

Without referring to matrix models, the proposal states that the Fredholm determinant of

spectral operators is described by the free energy of topological strings on a background

associated to the spectral operators. Since the spectral operator varies in the ST/TS corre-

spondence while keeping the expression of the Fredholm determinant fixed, the idea of the

ST/TS correspondence is related more directly to the closed string formalism instead of

the open string formalism. In this section we shall relate the matrix models to the spectral

theories via the closed string formalism. Again we find that the idea of fixing a reference

frame plays an important role.

As we have explained in section 2.2, the effect of fractional branes is regarded as

the change of the closed string background in the closed string formalism. Due to this

reason it is natural to consider the lowest rank as the reference in the spectral theories

by integrating out the effect of fractional branes. Namely on the matrix model side we

consider the grand canonical partition function Ξ
(n)
k,M (z) where the reference n-th rank is

the lowest. For example, the condition that the first rank is the lowest is given by 0 ≤M1

and M2 −M1 ≤ |M3|.
Then, from the analysis in the previous section, our interpretation of the ST/TS cor-

respondence is

Ξ
(n)
k,M (z) = Det

(
1 + zĤ−1

(h,e,f)

)
. (4.1)

The expression itself may seem familiar to most of the readers, though we stress that

the identification of the parameters (h, e, f) on the right-hand side was not clear in pre-

vious works before we introduce the idea of reference frames. Namely, the subscript

(h, e, f) of the spectral operator is the parameter for the three-dimensional subspace of

point configurations CP given as follows. After fixing the n-th rank to be the reference,

we bring the order of 5-branes into the standard one 〈• • ◦ ◦ 〉 with two NS5-branes and

two (1, k)5-branes by the Hanany-Witten transition with the relative ranks labeled by

〈N +M2 +M3 •N +M1 + 2M3 •N + 2M1 +M2 +M3 ◦N +M1 ◦〉 (2.23) and apply the

identification (3.10)

(h, e, f) = (q−1e2πiM1 , e2πiM2 , e2πiM3). (4.2)

Our presentation indicates that we can describe the matrix models completely in terms of

the group-theoretical language on the spectral theory side by specifying the relative rank

difference (M1,M2,M3) in the parameter space of point configurations CP.

We note that, although fixing a reference frame is important in the identification (4.1),

labeling the 5-branes as 2134 or the canonical operators as Q4Q3P1P2 is not relevant. In
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fact, on the matrix model side, the labels do not appear in the definition of the partition

function (2.11) or the grand canonical partition function (2.14). Also, on the spectral theory

side, although different labels lead to different parameters (h, e, f) of the spectral operator,

the change (2.10) is generated by similarity transformations s1s2 and s5s0 as explained in

section 3.4, which does not affect the value of the Fredholm determinant (4.1).

Nevertheless, as we find in a few examples in the next subsection, if we keep track

of the labels of 5-branes carefully both on the matrix model side and the spectral theory

side, we can still identify the asymptotic values of the spectral operator clearly without

ambiguities of similarity transformations.

4.2 Rank deformed spectral operators

In this subsection we present a non-trivial check of our proposal in (4.1) combined with

our identification of brane configurations CB in point configurations CP. For the check to

work we need to consider a special case of rank deformations where the spectral operator

for the matrix model is available. We present our studies by two examples.

The first example is the same rank deformation M = (M1,M2, 0) as in [20] with the

second rank being the reference. As studied in (3.7) and (3.12) using the Hanany-Witten

transition, this is equivalent to the rank deformation

M ′ =

(
k +M1,−

k

2
+M2,

k

2

)
, (4.3)

with the original reference frame on the matrix model side. On the other hand, on the

spectral theory side, by rearranging the second rank to be the reference cyclically for

〈M2
2• M1

1• 2M1 + M2
3◦ M1

4◦〉 and shifting the overall rank, the brane configuration of

our interest is

〈M1
1• 2M1 +M2

3◦M1
4◦M2

2•〉 ' 〈0 1•M2 +M1
3◦ 0

4◦M2 −M1
2•〉, (4.4)

with 0 being the lowest rank, M2 ±M1 ≥ 0. As sketched in [20, 46] and further clarified

in appendices A.2 and A.3, the spectral operator for the current case is given by(
Ĥ

(2)
(2,2)

)−1
=
(
Ĥ3◦1•

(M2 +M1)
)−1(

Ĥ2•4◦
(M2 −M1)

)−1
, (4.5)

with

Ĥ◦•(M) = e−
πiM

2 Q̂
1
2 P̂

1
2 + e

πiM
2 Q̂−

1
2 P̂

1
2 + e

πiM
2 Q̂

1
2 P̂−

1
2 + e−

πiM
2 Q̂−

1
2 P̂−

1
2 ,

Ĥ•◦(M) = e
πiM

2 P̂
1
2 Q̂

1
2 + e−

πiM
2 P̂

1
2 Q̂−

1
2 + e−

πiM
2 P̂−

1
2 Q̂

1
2 + e

πiM
2 P̂−

1
2 Q̂−

1
2 . (4.6)

Here Ĥ
(2)
(2,2) stands for the spectral operator for the (2, 2) model with the second rank being

the reference. In obtaining the expression (4.5) by applying the computation in appendix A,

we have split the brane configuration (4.4) into the former
1•3◦ part and the latter

4◦2• part.

Then, we find

Ĥ
(2)
(2,2) = Ĥ2•4◦

(M2 −M1)Ĥ3◦1•
(M2 +M1). (4.7)
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Schematically as in (A.31) we express the operator multiplication as

eπi(M2−M1)

e−πi(M2−M1)

24

eπi(M2−M1)

e−πi(M2−M1) × e−πi(M2+M1)

eπi(M2+M1)

31

e−πi(M2+M1)

eπi(M2+M1)

=
e−πi(M2+M1)

q−1eπi(M2−M1)

q
1
2 e−πi(M2−M1) q

1
2 eπi(M2+M1)

2431

q−
1
2 e−πi(M2+M1) q−

1
2 eπi(M2−M1)

qe−πi(M2−M1)

eπi(M2+M1)

=
q−1e−2πiM1

q−2e2πi(M2−M1)

1 e2πiM2

2431

q−1e−2πiM1 q−1e2πi(M2−M1)

1

q−1e2πiM2

, (4.8)

where we have also fixed the gauge e2 = e4 = e6 = e8 = 1 by using the small similarity

transformations. By comparing with figure 6 we can identify the parameters as

(h, e, f) =
(
e2πiM1 , q−

1
2 e2πiM2 , q

1
2

)
, (4.9)

which is consistent with our expectation if we apply our identification of CB in CP (4.2)

to (4.3) as in

(h, e, f) =
(
q−1e2πiM ′1 , e2πiM ′2 , e2πiM ′3

)
=
(
e2πiM1 , q−

1
2 e2πiM2 , q

1
2

)
. (4.10)

In our second example we consider the rank deformation M ′′ = (k2 +M1,
k
2 ,M3) in the

original reference and labels. Then we find after applying the Hanany-Witten transition

and shifting the overall rank〈k
2

+M3
2• k

2
+M1 + 2M3

1• 3k

2
+ 2M1 +M3

3◦ k
2

+M1
4◦
〉

'
〈k

2
+M3

2• k
2

+M1 + 2M3
3◦ k

2
+M3

1• k
2

+M1
4◦
〉

'
〈
0

2•M1 +M3
3◦ 0

1•M1 −M3
4◦
〉
. (4.11)

Hence we find that in this case the spectral operator is

Ĥ(2,2) = Ĥ4◦1•
(M1 −M3)Ĥ3◦2•

(M1 +M3). (4.12)

As the previous example, after multiplying two spectral operators and fixing the gauge,

e−πi(M1−M3)

eπi(M1−M3)

41

e−πi(M1−M3)

eπi(M1−M3) × e−πi(M1+M3)

eπi(M1+M3)

32

e−πi(M1+M3)

eπi(M1+M3)

=
q−

1
2 e−πi(M1−M3)

e−πi(M1+M3)

eπi(M1−M3) q
1
2 eπi(M1+M3)

4132

q−
1
2 e−πi(M1+M3) e−πi(M1−M3)

eπi(M1+M3)

q
1
2 eπi(M1−M3)

=
q−

1
2 e−2πiM1

e−2πi(M1+M3)

1 q
1
2 e2πiM3

4132

q−
1
2 e−2πiM1 e−2πi(M1−M3)

1

q
1
2 e−2πiM3

, (4.13)
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we find

(h, e, f) = (q−
1
2 e2πiM1 , q

1
2 , e2πiM3), (4.14)

by comparing with figure 6, which again is exactly our expectation,

(h, e, f) =
(
q−1e2πiM ′′1 , e2πiM ′′2 , e2πiM ′′3

)
=
(
q−

1
2 e2πiM1 , q

1
2 , e2πiM3

)
. (4.15)

The computations in this subsection serve as non-trivial consistency checks for all of

our proposals. In section 3 we have identified the three-dimensional space of brane configu-

rations CB in the five-dimensional space of point configurations CP from the configurations

without rank deformations. Here in this section we further relate the matrix models with

general rank deformations to spectral theories in (4.2). Our computations show that all of

these proposals are consistent with each other.

5 Matrix models and topological strings

In section 2 we have stressed the importance of fixing a reference frame and in section 3

using the idea of fixing a reference frame we are able to identify the three-dimensional space

of brane configurations CB in the five-dimensional space of point configurations CP. In the

previous section we have established the relation between matrix models and spectral

theories using the identification of CB in CP and provided non-trivial checks for it. In

this section we turn to the relation to the topological string theory. Here the symmetry

structure of CP and the identification of CB in CP are critical to establish the explicit relation

of parameters between matrix models and topological strings.

For the symmetry structure, following the proposal of the relation between matrix

models and topological strings [5, 6, 15], in [19, 20] the large z expansion of the grand

canonical partition functions of the (2,2) model and the (1,1,1,1) model was studied and

it was found that the grand potential is given by the free energy of topological strings

on local del Pezzo D5 where the BPS indices are split. In [23] the BPS indices were

further identified as representations of D5 and the split was explained by assuming an

unbroken subgroup of D5 and decomposing the D5 representations into this subgroup,

which indicates that the free energy can be expressed by the characters of D5. To explain

the unbroken subgroup in [24] the spectral operators of the (2, 2) model and the (1, 1, 1, 1)

model without rank deformations were studied. After realizing the Weyl symmetries in the

five-dimensional space of point configurations CP and identifying the models in it, we can

study the unbroken subgroup for each point. From these studies we clearly observe that

the symmetry structure of spectral operators and that of topological strings match with

each other.

On the other hand, after we have identified rank deformations CB in CP in section 3,

in this section we can turn to the relation between matrix models and topological strings

with rank deformations. As we have noted in sections 3.2 and 3.3, the unbroken symmetry

depends on the reference. Due to this reason, it is important to fix a reference also in the

description by topological strings.
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5.1 Topological strings from characters

Although the relation between matrix models and topological strings was originally pre-

sented using Kähler parameters in [15], it was found in [23] that the expression using

characters is more efficient after understanding that the BPS indices are split as represen-

tations are decomposed in the unbroken subgroup of D5. It was simply claimed in [23] that

the charges under the u(1) actions in the characters are chosen suitably so that they respect

the unbroken subgroup. However, after identifying the three-dimensional space of brane

configurations CB in the five-dimensional space of point configurations CP in sections 3.1

and 3.2 and understanding the Weyl action in section 3.3, in this section we can present

a universal recipe for determining the u(1) charges in the characters. Thus we are able to

present a completely group-theoretical description for the matrix models on the topolog-

ical string theory side. For readers unfamiliar with the progress of the relation between

matrix models and topological strings in terms of Kähler parameters, we first summarize

the results.

To present the relation, we define the reduced grand potential for the chemical potential

µ = log z from the grand canonical partition function as

Ξ
(n)
k,M (eµ) =

∞∑
n=−∞

eJ
(n)
k,M (µ+2πin), (5.1)

by removing a trivial periodicity in the shift µ→ µ+2πi. Here as we have stressed in (4.1)

the grand canonical partition function Ξ
(n)
k,M (z) depends on the reference rank (n). If we

further redefine the chemical potential into an effective one, we can simplify the expression

for J
(n)
k,M (µ). Namely, the reduced grand potential is decomposed into three parts for large µ

J
(n)
k,M (µ) = J

(n),pert
k,M (µeff) + J

(n),WS
k,M (µeff) + J

(n),MB
k,M (µeff), (5.2)

where each part is called the perturbative part, the worldsheet instanton part and the

membrane instanton part. Then the perturbative part is given by

J
(n),pert
k,M (µeff) =

Ck
3
µ3

eff +Bk,Mµeff +Ak,M , (5.3)

while the non-perturbative instanton parts are given in terms of the free energy of topo-

logical strings by

J
(n),WS
k,M (µeff) =

∑
jL,jR

∑
d

Nd
jL,jR

∑
n

(−1)(sL+sR−1)nsR sin(2πgsnsL)

4n sin2(πgsn) sin(2πgsn)
e−nd·T ,

J
(n),MB
k,M (µeff) = −

∑
jL,jR

∑
d

Nd
jL,jR

∑
n

∂

∂gs

[
gs sin

(
πn
gs
sL

)
sin
(
πn
gs
sR

)
4πn2 sin3

(
πn
gs

) e
−nd·T

gs

]
, (5.4)

with the quantities of topological strings being the coupling constant gs, Kähler parameters

T , the corresponding degrees d and the BPS indices Nd
jL,jR

.

For the example of the (2, 2) model with the rank deformation M = (M1,M2, 0) and

the first reference frame n = 1, various quantities are given explicitly in [20] including the
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effective chemical potential

µeff =


µ+ 4(−1)M1e−µ4F3

(
1, 1, 3

2 ,
3
2 ; 2, 2, 2;−16(−1)M1e−µ

)
,

for k : even or (M1 = 0 or M2 = 0),

µ+ 2e−2µ
4F3

(
1, 1, 3

2 ,
3
2 ; 2, 2, 2;−16e−2µ

)
,

for k : odd and (M1 = k
2 or M2 = k

2 ),

(5.5)

the perturbative coefficients

Ck =
1

2π2k
, Bk,M = − 1

6k
− k

3
+

1

2k

(
(M1 − k)2 + 2M2

2

)
, (5.6)

with Ak,M partially identified and the non-perturbative coefficients for the free energy of

topological strings

gs =
1

k
, T = (T+

1 , T
−
1 , T

+
2 , T

−
2 , T

+
3 , T

−
3 ), d = (d+

1 , d
−
1 , d

+
2 , d

−
2 , d

+
3 , d

−
3 ), (5.7)

with

T±1 =
µeff

k
± πi(b1 + 2b2), T±2 =

µeff

k
± πib1, T±3 =

µeff

k
± πi(b1 − 2b2), (5.8)

and

(b1, b2) =

(
M1

k
− 1,

M2

k

)
. (5.9)

Here the definition of the Kähler parameters is slightly changed from [20] for later conve-

nience. The total BPS indices N
|d|
jL,jR

are given by the tables of del Pezzo D5 in [47] and

split by various combinations of degrees d.

In [23] it was pointed out that the split of the BPS indices can be regarded as the de-

composition of the D5 representations into the unbroken subgroup, which directly indicates

that the non-perturbative part of the reduced grand potential is given by the characters.

Namely, the non-perturbative part can be expressed in terms of the D5 characters as

JWS
k,M (µeff) =

∞∑
m=1

dm(k, b)e−m
µeff
k , JMB

k,M (µeff) =

∞∑
`=1

(
b̃`(k, b)µeff + c̃`(k, b)

)
e−`µeff .

(5.10)

Here the instanton coefficients are given in their multi-covering components by

dm(k, b) = (−1)m
∑
n|m

1

n
δm
n

(
k

n
, nb

)
,

b̃`(k, b) =
∑
n|`

1

n
β `
n

(nk, b), c̃`(k, b) = −k2 ∂

∂k

[
b̃`(k, b)

`k

]
, (5.11)

and the multi-covering components are given by

δd(k, b) =
(−1)d−1

(2 sin π
k )2

∑
jL,jR

∑
R

nd,RjL,jRχR(q)χjL(e
2πi
k )χjR(1),

βd(k, b) =
(−1)dd

4π sinπk

∑
jL,jR

∑
R

nd,RjL,jRχR(qk)χjL(eπik)χjR(eπik), (5.12)
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with the su(2) character

χj(q) =
q2j+1 − q−(2j+1)

q − q−1
, (5.13)

and

q = (1, e2πib2 , e−2πib1 , e2πib2 , 1). (5.14)

The coefficient nd,RjL,jR is the multiplicity of a representation R in degree d and spins (jL, jR)

whose explicit values can be found in [23].

Now let us turn to our universal recipe for determining the u(1) charges in the char-

acters. In [23] it was claimed that the charges under the u(1) actions q in the characters

χR(q) can be identified from the unbroken subgroup. After identifying the space of rank

deformations CB and the Weyl actions on it in section 3, we can present the direct recipe.

First note that we do not denote the reference rank (n) for Jk,M (µ) in (5.10) deliberately

since the reference rank (n) and the rank difference M are translated to the parameter

(h, e, f) of quantum curves, as we have explained in the context of spectral theories in

section 4. Here we further relate the parameter (h, e, f) to the parameter of the characters.

For the identification of the u(1) charges q in the characters χR(q), we first rewrite

the parameters of CP in (3.6) as

(h1, h2, e1, e3, e5) =

(
ef

h
,
hf

e
,
f

e
, ef,

f

e

)
= h(−1,1,0,0,0)e(1,−1,−1,1,−1)f (1,1,1,1,1), (5.15)

where we have picked up the powers for h, e and f respectively. If we relate the funda-

mental weights of D5, ωi, identified from the Weyl actions on the five-dimensional space of

point configurations CP in [24] with the canonical fundamental weights ωi (respecting the

orthonormality of the Cartan matrix) used to construct characters in [23] as

ω1 = (1,−1, 0, 0,−1) ↔ ω5 = (1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2),

ω2 = (1,−1, 0, 1,−1) ↔ ω4 = (1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2),

ω3 = (1,−2, 0, 0,−2) ↔ ω3 = (1, 1, 1, 0, 0),

ω4 = (0,−1, 0, 0,−2) ↔ ω2 = (1, 1, 0, 0, 0),

ω5 = (0, 0, 1, 0,−1) ↔ ω1 = (1, 0, 0, 0, 0), (5.16)

we can identify

h(−1,1,0,0,0)e(1,−1,−1,1,−1)f (1,1,1,1,1) = h−ω3+ω4eω1+ω2−ω3+ω4−ω5fω1+ω2−ω3−ω4+ω5

↔ h−ω3+ω2eω5+ω4−ω3+ω2−ω1fω5+ω4−ω3−ω2+ω1 = h(0,0,−1,0,0)e(0,1,0,1,0)f (0,−1,0,1,0).

(5.17)

Since we have identified the rank deformations of brane configurations (M1,M2,M3) (in

the standard order 2134 of 5-branes) in the five-dimensional space of point configurations

CP in section 3 as in (3.10), we have(
1, ef−1, h−1, ef, 1

)
=
(

1, e2πi(M2−M3), e−2πi(M1−k), e2πi(M2+M3), 1
)
, (5.18)
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and obtain the arguments of the characters by rescaling correctly

q = (1, q2q
−1
3 , q−1

1 , q2q3, 1) =
(

1, e2πi
M2−M3

k , e−2πi(
M1
k
−1), e2πi

M2+M3
k , 1

)
. (5.19)

This is our main result for specifying the u(1) charges q in the characters χR(q) to describe

matrix models with topological strings.

Finally let us make a short conjecture on the perturbative part. After rewriting the

non-perturbative part in the group-theoretical language of D5, it is also natural to rewrite

the perturbative part. The coefficient Bk,M (5.6) has a nice dependence on M and it is

tantalizing to rewrite it as

Bk,M = − 1

6k
− k

3
+

1

2k

∥∥∥∥k log q

2πi

∥∥∥∥2

, (5.20)

where the norm ‖ · ‖ is defined by the Cartan matrix.

5.2 Second frame

After observing that changing references amounts to shifting the origin of the matrix models

in section 3.2, as a non-trivial check we can consider the grand potential of the same rank

deformations (M1,M2) with the reference frame being the second rank and see whether

the result can still be given by the characters with the u(1) charges identified in (5.19).

The rank deformation was restricted to the case M3 = 0 in [20] since the introduction of

non-vanishing M3 caused a severe divergence where the regularization was unclear.

In [20] it was pointed out that it is important to fix a reference frame for the corre-

spondence between matrix models and topological strings. The reference was fixed to the

first rank with the grand canonical partition function defined as

Ξ
(1)
k,M (z) =

∞∑
N

zN+M2Zk(N +M2, N +M1, N + 2M1 +M2, N +M1), (5.21)

(with the overall normalization, the lower bound of the summation and the absolute values

omitted) and the BPS indices used in describing the free energy of topological strings were

split accordingly. In [23] the split of the BPS indices was understood from the decompo-

sition of the D5 representations into various subgroups and it was proposed to describe

the reduced grand potential by characters, where the identification of the parameters is

consistent with our general proposal (5.19) with M3 = 0.

To fix the second rank as the reference, on the matrix model side we need to define

the grand canonical partition functions as

Ξ
(2)
k,M (z) =

∞∑
N

zN+M1Zk(N +M2, N +M1, N + 2M1 +M2, N +M1), (5.22)

instead of (5.21). Due to this change, only Bk,M in the perturbative part and terms with

powers of e−µeff in the non-perturbative part of the reduced grand potential change. On

the topological string side, the identification of the parameters (3.12)(
M ′1
k
− 1,

M ′2
k
,
M ′3
k

)
=

(
M1

k
,
M2

k
− 1

2
,
1

2

)
, (5.23)
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is translated to that of the u(1) charges in the characters as

q =

(
1,e2πi

M′2−M
′
3

k ,e−2πi(
M′1
k
−1),e2πi

M′2+M′3
k ,1

)
=
(

1,e2πi(
M2
k
−1),e−2πi

M1
k ,e2πi

M2
k ,1

)
, (5.24)

by using our general proposal (5.19). For the perturbative part, the change of q from (5.19)

to (5.24) is consistent with the change of the power of z from (5.21) to (5.22) through (5.20).

For the non-perturbative part, this change of q does not affect the worldsheet instantons

which is consistent with the above observation that only terms with powers of e−µeff change.

Especially for the membrane instantons we can perform a very non-trivial check. We have

listed the corresponding numerical expansions of the grand potential in appendix B.1 and

the characters in appendix B.2. By substituting the characters into the expression of the

free energy of topological strings (5.10), we find an exact match. Our computation in

this subsection serves as another non-trivial check for our proposal on the idea of fixing a

reference frame and the identification of the three-dimensional space of brane configurations

CB in the five-dimensional space of point configurations CP.

6 Conclusion

In this paper we have pointed out the importance in fixing a reference frame for the study

of the super Chern-Simons matrix model. After fixing references on all aspects of our

analysis including brane configurations, matrix models, spectral theories and topological

strings, we are able to construct a consistent correspondence among all of these aspects.

As several non-trivial checks, we find that the introduction of the idea of fixing a reference

frame successfully specifies the three-dimensional subspace of rank deformations in brane

configurations in the five-dimensional parameter space of point configurations of asymptotic

values of quantum curves. Also in section 4, we find that, by fixing the lowest rank to be

the reference, for a special class of rank deformations, the closed string formalism has

been established and the spectral operators have been identified, whose parameters match

exactly with those identified from the brane configurations. Finally in section 5, following

previous computations, we present a universal expression for the free energy of topological

strings corresponding to matrix models. We can change frames and find that the unbroken

subgroup also changes which is perfectly consistent with our identification of characters.

We shall list some further directions in the following.

First, by fixing a reference in brane configurations, we have identified the three-

dimensional subspace of rank deformations in brane configurations CB in the five-

dimensional space of point configurations CP. At the same time, since the five-dimensional

space enjoys the full D5 Weyl symmetry, it is perplexing what the role of the remaining

two dimensions is. We believe that this strongly suggests that our understanding of the

fractional M2-branes is insufficient. In this paper we only consider the situation where we

have a clear picture of the brane configurations in type IIB string theory. The existence

of the extra two dimensions suggests that, in general, the fractional branes can be more

subtle objects which change the geometrical backgrounds drastically so that the numbers

of D3-branes or the order of the NS5-branes and the (1, k)5-branes does not make sense

any more.
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Secondly, even in the three-dimensional space of brane configurations CB, we have

identified a new symmetry s3 or s4 (3.17) unknown from the Hanany-Witten transition or

a few discrete symmetries. We would like to give an interpretation to it from the study of

brane physics.

Thirdly, it is interesting to see the implication of our work to the relation to the q-

Painlevé system proposed in [45]. Especially, we would like to find out the relation between

our shift symmetry (3.12) with the shift generator in the affine Weyl group for the Painlevé

system [44].

Fourthly, our analysis is directly applicable to other genus one matrix models [23, 24],

higher genus matrix models [21, 48, 49] or even matrix models of D̂ type quiver [50, 51]. Es-

pecially, in [23, 24] the (2, 1, 2, 1) matrix model was studied and it was found to correspond

to the E7 spectral theory. By repeating our analysis for the E7 theory we may find more ex-

amples of the correspondence. The spectral operators studied in [52, 53] from the viewpoint

of the Painlevé-Calogero correspondence [54, 55] should be helpful in this direction.

Fifthly, the construction of the spectral operator by connecting canonical operators of

5-branes subsequently is reminiscent of the construction of the partition function in [56].

We believe that a larger framework of quantum curves will appear by clarifying the relation

between these two constructions.

A Fermi gas formalism

In this appendix we review the Fermi gas formalism for the super Chern-Simons matrix

models (2.11) without rank deformations, propose a generalization with some rank de-

formations and relate the result to spectral operators. The techniques are mostly taken

from many previous works including [5, 18, 20, 28, 33, 35, 46], though we stress that our

piecewise derivation is now much clearer.

A.1 No rank deformations

In this subsection we derive the Fermi gas formalism for the super Chern-Simons matrix

models (2.11) without rank deformations,

Z
{sa}
k ({N}) =

∫
DNλ1D

Nλ2 · · ·DNλR
(N !)R(2π)NR

Zk(N ;λ1, λ2)Zk(N ;λ2, λ3) · · ·Zk(N ;λR, λ1).

(A.1)

Here we have rescaled the integration variables by k−1(> 0) and, for our application to the

case of equal ranks, redefine Z(N,N ;µ, ν) and Dλa from (2.12) as

Zk(N ;µ, ν) =
1

kN
Zk

(
N,N ;

µ

k
,
ν

k

)
=

∏N
m<m′ 2 sinh

µm−µm′
2k

∏N
n<n′ 2 sinh

νn−νn′
2k

kN
∏N
m=1

∏N
n=1 2 cosh µm−νn

2k

,

Dλa = dλae
i

2~ sign(ka)λ2
a , (A.2)

with ~ = 2πk. The derivation can be simplified as in [5, 18] though we present in the current

manner as a preparation for the next subsection with rank deformations. It is convenient
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to proceed to the computation with the brane configuration in mind. As explained in

section 2.2, each integration variable λa corresponds to a stack of Na(= N) D3-branes and

each factor of the integrand Zk(N ;λa, λa+1) corresponds to a 5-brane connecting two stacks

of D3-branes with ranks Na and Na+1 where the 5-brane can be the NS5-brane (sa = +1)

or the (1, k)5-brane (sa = −1).

Let us first focus on the integrand Zk(N ;µ, ν) in (A.2). For later convenience we

introduce eigenstates for the coordinate operator q̂ normalized as

〈q1|q2〉 = 2πδ(q1 − q2),

∫
dq

2π
|q〉〈q| = 1. (A.3)

Using the Cauchy determinant∏N
m<m′(xm − xm′)

∏N
n<n′(yn − yn′)∏N

m=1

∏N
n=1(xm + yn)

= det
(

(xm + yn)−1
)

1≤m,n≤N
, (A.4)

and the Fourier transformation

〈µ| 1

2 cosh p̂
2

|ν〉 =
1

2k cosh µ−ν
2k

, (A.5)

we find that Zk(N ;µ, ν) defined in (A.2) is given by

Zk(N ;µ, ν) = det

(
〈µ| 1

2 cosh p̂
2

|ν〉
)
, (A.6)

where tacitly the determinant is for the N × N matrix labeled by the subscripts m,n of

µm, νn. Then using (A.6) we can rewrite the integrand of the partition function (A.1) into

a product of determinants.

Let us next turn to the integration Dλa (A.2) where dλa is combined by a Fresnel factor

e±
i

2~λ
2
a or an operator e±

i
2~ q̂

2
when acting on the ket states. Since each bra state and each

ket state always combine into an identity operator as in (A.3), we are free to perform a

similarity transformation. We perform different similarity transformations depending on

the types of 5-branes on the two sides of the integration variable. With the operator e±
i

2~ q̂
2

coming from the integration Dλa taken into account, each integration now become∫
dλ

2π
|λ〉〈λ| =

∫
dλ

2π
e
i

2~ p̂
2 |λ〉〈λ|e−

i
2~ p̂

2
, for (sa−1, sa) = (+1,+1),∫

dλ

2π
e
i

2~ q̂
2 |λ〉〈λ| =

∫
dλ

2π
e
i

2~ q̂
2
e
i

2~ p̂
2 |λ〉〈λ|e−

i
2~ p̂

2
, for (sa−1, sa) = (−1,+1),∫

dλ

2π
e−

i
2~ q̂

2 |λ〉〈λ| =
∫
dλ

2π
e
i

2~ p̂
2 |λ〉〈λ|e−

i
2~ p̂

2
e−

i
2~ q̂

2
, for (sa−1, sa) = (+1,−1),∫

dλ

2π
|λ〉〈λ| =

∫
dλ

2π
e
i

2~ q̂
2
e
i

2~ p̂
2 |λ〉〈λ|e−

i
2~ p̂

2
e−

i
2~ q̂

2
, for (sa−1, sa) = (−1,−1).

(A.7)
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Then we find that, after the similarity transformation, each operator
(
2 cosh p̂

2

)−1
in (A.6)

becomes

e−
i

2~ p̂
2 1

2 cosh p̂
2

e
i

2~ p̂
2

=
1

2 cosh p̂
2

, for sa = +1,

e−
i

2~ p̂
2
e−

i
2~ q̂

2 1

2 cosh p̂
2

e
i

2~ q̂
2
e
i

2~ p̂
2

=
1

2 cosh q̂
2

, for sa = −1. (A.8)

Note that for the (1, k)5-brane (sa = −1) the component in the determinant simplifies to

the delta function

〈λ| 1

2 cosh q̂
2

|λ′〉 =
1

2 cosh λ
2

× 2πδ(λ− λ′). (A.9)

In this sense we refer to our computation of the similarity transformation as trivializing the

(1, k)5-branes. It is of course a matter of convention whether to trivialize the (1, k)5-branes

or the NS5-branes.

Then, we can combine all of the determinants into one by iterative uses of the contin-

uous version of the Cauchy-Binet determinant in the operator formalism,∫
dNλ

N !(2π)N
det
(
〈µm|M̂ |λl〉

)
N×N det

(
〈λl|N̂ |νn〉

)
N×N = det

(
〈µm|M̂N̂ |νn〉

)
N×N . (A.10)

For the case of the (p1, q1, p2, q2, · · · ) model, we obtain

Z
{sa}
k ({N}) =

∫
dNλ1

2π
det(〈λ1|Ĥ−1|λ1〉), (A.11)

with

Ĥ−1 =
1

(2 cosh p̂
2)p1

1

(2 cosh q̂
2)q1

1

(2 cosh p̂
2)p2

1

(2 cosh q̂
2)q2
· · · , (A.12)

which directly implies (2.18). The above computation does not only present a derivation

for (2.18), but also explains clearly how the sequence of two types of 5-branes (NS5-branes

• and (1, k)5-branes ◦) is translated to the sequence of two hyperbolic canonical operators

(P̂ and Q̂) and how the computation for each 5-brane can be performed separately.

A.2 Pairwise closed string formalism

In this subsection we generalize the computation in the previous subsection and present

the closed string formalism for the super Chern-Simons matrix models (2.11) with rank

deformations. The closed string formation leads us to identifying the spectral operator in

the next subsection. As we have seen in the previous subsection without rank deformations,

the computation can be performed locally for each 5-brane without referring to other 5-

branes. Here we shall present the closed string formalism with rank deformations locally

as well.
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For this purpose we consider the situation where

• (without loss of generality) the rank N1 is not deformed, i.e., N1 = N is the lowest

rank,

• only ranks with non-vanishing Chern-Simons levels ka are deformed, and

• no simultaneous rank deformations happen for neighboring D3-branes.

Then the partition function we are considering is

Z
{sa}
k ({Na}) =

∫ R′∏
a′=1

DNλa′

N !(2π)N

R′∏
a′=1

Z
{s′
a′}

k,M (N ;λa′ , λa′+1), (A.13)

where Z
{s′
a′}

k,M (N,λa′ , λa′+1) can be either the previous case without rank deformations or

the case with a rank deformation between a pair of 5-branes

Z
{s′
a′}

k,M (N ;µ, ν) =


Zk(N ;µ, ν), for N •N or N ◦N,
Z

(◦,•)
k,M (N ;µ, ν), for N ◦N +M •N,

Z
(•,◦)
k,M (N ;µ, ν), for N •N +M ◦N.

(A.14)

Note that the primes in {s′a′} stand for a subset of original {sa} skipping those with

rank deformations. We introduce the notations Z
(◦,•)
k,M (N ;µ, ν) = Z

(−1,+1)
k,M (N ;µ, ν) and

Z
(•,◦)
k,M (N ;µ, ν) = Z

(+1,−1)
k,M (N ;µ, ν) since we believe that the visualization is helpful in the

computation. For each case we define

Zk(N ;µ, ν) =
1

kN
Zk

(
N,N ;

µ

k
,
ν

k

)
,

Z
(∓1,±1)
k,M (N ;µ, ν) =

i∓
1
2

((N+M)2−N2)

(N +M)!

∫
dN+Mλ

(2π)N+M
e±

i
2~

∑
l λ

2
l

× 1

kN+M
2

Zk

(
N,N +M ;

µ

k
,
λ

k

)
1

kN+M
2

Zk

(
N +M,N ;

λ

k
,
ν

k

)
.

(A.15)

Note that the phase factor is determined by the sign of the Chern-Simons level ±k with

a rank deformation M , which is normalized so that it is absent by removing the rank

deformation.

As in (A.6), we introduce a determinant formula

1

kN+M
2

Zk

(
N,N+M ;

µ

k
,
λ

k

)
= (−1)NM det


[
〈µm|e

M
2k
q̂ 1

2cosh p̂
2

e−
M
2k
q̂|λl〉

]
m,l[

〈〈2πiσa|λl〉
]
a,l

 ,
1

kN+M
2

Zk

(
N+M,N ;

λ

k
,
ν

k

)
= (−1)

1
2
M(M−1)

×det

([
〈λl|e

M
2k
q̂ 1

2cosh p̂
2

e−
M
2k
q̂|νn〉

]
l,n

[
〈λl|2πiσb〉〉

]
l,b

)
,

(A.16)
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(with σa = M+1
2 − a) where we have introduced eigenstates for the momentum operator p̂

normalized as

〈〈p1|p2〉〉 = 2πδ(p1 − p2), 〈q|p〉〉 =
e
i
~ qp

√
k
, 〈〈p|q〉 =

e−
i
~ qp

√
k
, (A.17)

and considered imaginary momenta by analytical continuations, which needs justifications

as explained in [33]. Then, by applying the similarity transformation (A.7) to all of the

states including 〈µm| and |νn〉, we find

Z
(◦,•)
k,M (N ;µ, ν) =

iMN+ 1
2
M(M−1)e

2πi
k

∑
σ σ

2

(N +M)!

∫
dN+Mλ

(2π)N+M

× det


[
〈µm|

1

2 cosh q̂+πiM
2

|λl〉
]

[
〈2πiσa|λl〉

]
 det

([
〈λl|e

M
2k
q̂ 1

2 cosh p̂
2

e−
M
2k
q̂|νn〉

] [
〈λl|2πiσb〉〉

])
,

Z
(•,◦)
k,M (N ;µ, ν) =

i−MN− 1
2
M(M−1)e−

2πi
k

∑
σ σ

2

(N +M)!

∫
dN+Mλ

(2π)N+M

× det


[
〈µm|e

M
2k
q̂ 1

2 cosh p̂
2

e−
M
2k
q̂|λl〉

]
[
〈〈2πiσa|λl〉

]
 det

([
〈λl|

1

2 cosh q̂+πiM
2

|νn〉
] [
〈λl|2πiσb〉

])
,

(A.18)

where we have used the formulas

〈〈p|e
i

2~ q̂
2
e
i

2~ p̂
2

=
√
ie−

i
2~p

2〈p|, e−
i

2~ p̂
2
e−

i
2~ q̂

2 |p〉〉 =
1√
i
e
i

2~p
2 |p〉, (A.19)

to transform momentum eigenstates into coordinate eigenstates.

Note that the operators in the first determinant in Z
(◦,•)
k,M (N ;µ, ν) and the second deter-

minant in Z
(•,◦)
k,M (N ;µ, ν) consist simply of the coordinate operator. Hence the components

in these determinants all fall into the delta functions and as in (A.8) we have trivialized

the (1, k)5-branes. Using the expansion∫
dN+Mλ

(N +M)!
det
(
fm(λl)

)
det
(
gn(λl)

)
=

∫
dN+Mλ

(∏
m

fm(λm)

)
det
(
gn(λl)

)
, (A.20)

and integrating out all of the delta functions we finally obtain

Z
(◦,•)
k,M (N ;µ, ν) = e−iθk,MZ

(CS)
k,M det

(
〈µ|
(
Ĥ•◦(M)

)−1|ν〉
)
,

Z
(•,◦)
k,M (N ;µ, ν) = eiθk,MZ

(CS)
k,M det

(
〈µ|
(
Ĥ◦•(M)

)−1|ν〉
)
, (A.21)

where the operators are given by

(
Ĥ•◦(M)

)−1
= iM

∏
σ 2 sinh q̂−2πiσ

2k

2 cosh q̂+πiM
2

1

2 cosh p̂
2

1∏
σ 2 cosh q̂−2πiσ

2k

,

(
Ĥ◦•(M)

)−1
= iM

1∏
σ 2 cosh q̂−2πiσ

2k

1

2 cosh p̂
2

∏
σ 2 sinh q̂−2πiσ

2k

2 cosh q̂+πiM
2

, (A.22)
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with the normalizations

θk,M = − π

6k
(M3 −M), Z

(CS)
k,M =

1

k
M
2

M∏
a<a′

2 sin
π(a′ − a)

k
. (A.23)

Here the two spectral operators in (A.22) are conjugate to each other,

Ĥ•◦(M) =
(
Ĥ◦•(M)

)†
, (A.24)

as can be seen from cosh q̂−πiM
2 = (−1)M cosh q̂+πiM

2 . Note that in (A.21) we have deliber-

ately reversed the order of • and ◦ from the partition function Zk,M (N ;µ, ν) to the spectral

operator Ĥ(M) since the spectral operator becomes in the reverse order from the partition

function after taking the inverse as in the previous subsection without rank deformations.

A.3 Spectral operators

In the previous subsection we have obtained the closed string formalism for special rank

deformations. Although the final result of the operators (A.22) is clean, it does not take

the form of the spectral operators similar to the quantum curves (2.30). Fortunately, a

remarkable relation was found in [46, 57, 58] and using it we can rewrite our results. In

general the derivation of the relation requires complicated computations of the quantum

dilogarithm functions [46], though for our present case we can utilize the result directly

instead of repeating by ourselves. Let us explain the rewriting in this subsection.

It was found in [46] that, for a positive integer M , the operator equation

m−
1
4

e
q̂
4∏

σ(1 + e
q̂+2πiσ

k )

1

2 cosh p̂
2

e
q̂
4
∏
σ(1− e

q̂+2πiσ
k )

1 + (−1)Meq̂
=

1

eû +me−û + ev̂ + e−v̂
, (A.25)

holds with

m = eπi(k−2M), û =
q̂

2
+
p̂

2
+

3

4
logm, v̂ = − q̂

2
+
p̂

2
+

1

4
logm. (A.26)

The relation is obtained by equating the inverse operator of (2.6) and (2.104) in [46] and

expressing the result in the (u, v) variables in that paper. Then, it is not difficult to find

1

Ĥ◦•(M)
= m−

i
4πk

q̂ 1

m−
1
4 (eû +me−û + ev̂ + e−v̂)

m
i

4πk
q̂, (A.27)

where we have used

e
q̂
4∏

σ e
q̂+2πiσ

2k

= e( 1
4
−M

2k
)q̂ = m

i
4πk

q̂. (A.28)

After applying the similarity transformation we find

Ĥ◦•(M) = m
1
4 e

q̂+p̂
2 +m−

1
4 e
−q̂+p̂

2 +m−
1
4 e

q̂−p̂
2 +m

1
4 e
−q̂−p̂

2 , (A.29)
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which directly gives (4.6)

Ĥ◦•(M) = e−
πiM

2 Q̂
1
2 P̂

1
2 + e

πiM
2 Q̂−

1
2 P̂

1
2 + e

πiM
2 Q̂

1
2 P̂−

1
2 + e−

πiM
2 Q̂−

1
2 P̂−

1
2 ,

Ĥ•◦(M) = e
πiM

2 P̂
1
2 Q̂

1
2 + e−

πiM
2 P̂

1
2 Q̂−

1
2 + e−

πiM
2 P̂−

1
2 Q̂

1
2 + e

πiM
2 P̂−

1
2 Q̂−

1
2 . (A.30)

Note that Ĥ•◦(M) is obtained from the conjugation (A.24) and the results are consistent

with the computation without rank deformations after setting M = 0. Schematically we

can characterize them by the asymptotic values of zero points when regarding them as the

defining equations of algebraic curves

Ĥ◦•(M) = e−πiM

eπiM

◦•
e−πiM

eπiM , Ĥ•◦(M) = eπiM

e−πiM

◦•
eπiM

e−πiM , (A.31)

where the axes of Q̂ and P̂ is the same as figures 4 and 6. The asymptotic values depend

of course on the order of the operators. We adopt the standard normal ordering as the D5

curve for Ĥ◦•(M) while the inverse normal ordering for Ĥ•◦(M). For a general sequence

of 5-branes all we have to do is to multiply these operators reversely as in (2.18), though

we need to take care of the normal ordering again.

B Instanton effects and topological strings

B.1 Grand potential from matrix models

In this section, we list the grand potential (5.1) defined from the grand canonical par-

tition function with the second reference frame (5.22) for various combinations of k and

(M1,M2). In the following expression we always omit displaying the reference frame (2)

in J
(2),np
k,(M1,M2)(µeff) = J

(2),WS
k,(M1,M2)(µeff) +J

(2),MB
k,(M1,M2)(µeff). In redefining the chemical potential

µ to µeff, we adopt (5.5), the same relation as that for the first reference. Although only

terms related to membrane instantons e−µeff are deformed compared with the expression

with the first reference we record the whole expressions to avoid confusions.

• k = 1

Jnp
1,(0,0) =

2(µ2
eff+2µeff+2)

π2
e−µeff +

[
−

9(2µ2
eff+2µeff+1)

2π2
+2

]
e−2µeff

+

[
164(9µ2

eff+6µeff+2)

27π2
−16

]
e−3µeff +

[
−

777(8µ2
eff+4µeff+1)

16π2
+138

]
e−4µeff

+O(e−5µeff),

Jnp

1,( 1
2
, 1
2

)
=

[
2µ2

eff+2µeff+1

2π2
− 7

4

]
e−2µeff +

[
−

9(8µ2
eff+4µeff+1)

16π2
+

79

8

]
e−4µeff +O(e−5µeff).

(B.1)
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• k = 2

Jnp
2,(0,0) = 4e−

1
2
µeff +

[
µ2

eff + 2µeff + 2

π2
− 7

]
e−µeff +

40

3
e−

3
2
µeff

+

[
−

9(2µ2
eff + 2µeff + 1)

4π2
− 75

2

]
e−2µeff +

724

5
e−

5
2
µeff

+

[
82(9µ2

eff + 6µeff + 2)

27π2
− 1318

3

]
e−3µeff +O(e−

7
2
µeff),

Jnp
2,(1,0) =

[
−
µ2

eff + 2µeff + 2

π2

]
e−µeff +

[
−

9(2µ2
eff + 2µeff + 1)

4π2
− 5

]
e−2µeff

+

[
−

82(9µ2
eff + 6µeff + 2)

27π2
− 32

]
e−3µeff +O(e−4µeff),

Jnp
2,(1,1) =

[
−
µ2

eff + 2µeff + 2

π2
+ 2

]
e−µeff +

[
−

9(2µ2
eff + 2µeff + 1)

4π2
+ 10

]
e−2µeff

+

[
−

82(9µ2
eff + 6µeff + 2)

27π2
+

212

3

]
e−3µeff +O(e−4µeff),

Jnp
2,(0,1) =

[
µ2

eff + 2µeff + 2

π2
− 1

]
e−µeff +

[
−

9(2µ2
eff + 2µeff + 1)

4π2
+

19

2

]
e−2µeff

+

[
82(9µ2

eff + 6µeff + 2)

27π2
− 202

3

]
e−3µeff +O(e−4µeff). (B.2)

• k = 3

Jnp
3,(0,0) =

16

3
e−

1
3
µeff−4e−

2
3
µeff +

[
2(µ2

eff+2µeff+2)

3π2
+

112

9

]
e−µeff−61e−

4
3
µeff +

3376

15
e−

5
3
µeff

+

[
−

3(2µ2
eff+2µeff+1)

2π2
− 2266

3

]
e−2µeff +

52880

21
e−

7
3
µeff +O(e−

8
3
µeff),

Jnp
3,(1,0) =

8

3
e−

1
3
µeff−6e−

2
3
µeff +

[
−

2(µ2
eff+2µeff+2)

3π2
+

110

9

]
e−µeff−30e−

4
3
µeff +

1088

15
e−

5
3
µeff

+

[
−

3(2µ2
eff+2µeff+1)

2π2
−209

]
e−2µeff +

12160

21
e−

7
3
µeff +O(e−

8
3
µeff),

Jnp

3,( 3
2
, 1
2

)
=−10

3
e−

2
3
µeff−8e−

4
3
µeff +

[
2µ2

eff+2µeff+1

6π2
− 1045

36

]
e−2µeff +O(e−

8
3
µeff),

Jnp

3,( 3
2
, 3
2

)
=−4

3
e−

2
3
µeff +3e−

4
3
µeff +

[
2µ2

eff+2µeff+1

6π2
+

275

36

]
e−2µeff +O(e−

8
3
µeff),

Jnp

3,( 1
2
, 3
2

)
=

2

3
e−

2
3
µeff +2e−

4
3
µeff +

[
2µ2

eff+2µeff+1

6π2
− 349

36

]
e−2µeff +O(e−

8
3
µeff),

Jnp
3,(0,1) =

4

3
e−

1
3
µeff−2e−

2
3
µeff +

[
2(µ2

eff+2µeff+2)

3π2
+

28

9

]
e−µeff−8e−

4
3
µeff +

244

15
e−

5
3
µeff

+

[
−

3(2µ2
eff+2µeff+1)

2π2
− 74

3

]
e−2µeff +

1712

21
e−

7
3
µeff +O(e−

8
3
µeff). (B.3)
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• k = 4

Jnp
4,(0,0) = 8e−

1
4
µeff − 8e−

1
2
µeff +

80

3
e−

3
4
µeff +

[
µ2

eff + 2µeff + 2

2π2
− 197

2

]
e−µeff +

1928

5
e−

5
4
µeff

− 4784

3
e−

3
2
µeff +

44976

7
e−

7
4
µeff +O(e−2µeff),

Jnp
4,(1,0) = 4

√
2e−

1
4
µeff − 8e−

1
2
µeff +

32
√

2

3
e−

3
4
µeff +

[
−
µ2

eff + 2µeff + 2

2π2
− 55

]
e−µeff

+
756
√

2

5
e−

5
4
µeff − 2384

3
e−

3
2
µeff +

13920
√

2

7
e−

7
4
µeff +O(e−2µeff),

Jnp
4,(2,0) = −8e−

1
2
µeff +

[
µ2

eff + 2µeff + 2

2π2
− 73

2

]
e−µeff − 560

3
e−

3
2
µeff +O(e−2µeff),

Jnp
4,(2,1) = −2e−

1
2
µeff +

[
µ2

eff + 2µeff + 2

2π2
− 15

2

]
e−µeff +

4

3
e−

3
2
µeff +O(e−2µeff),

Jnp
4,(2,2) =

[
µ2

eff + 2µeff + 2

2π2
− 1

2

]
e−µeff +O(e−2µeff),

Jnp
4,(1,2) =

[
−
µ2

eff + 2µeff + 2

2π2
+ 5

]
e−µeff +O(e−2µeff),

Jnp
4,(0,2) =

[
µ2

eff + 2µeff + 2

2π2
+

3

2

]
e−µeff +O(e−2µeff),

Jnp
4,(0,1) = 4e−

1
4
µeff − 6e−

1
2
µeff +

40

3
e−

3
4
µeff +

[
µ2

eff + 2µeff + 2

2π2
− 75

2

]
e−µeff

+
564

5
e−

5
4
µeff − 348e−

3
2
µeff +

7480

7
e−

7
4
µeff +O(e−2µeff). (B.4)

• k = 6

Jnp
6,(0,0) = 16e−

1
6
µeff − 52

3
e−

1
3
µeff +

148

3
e−

1
2
µeff − 189e−

2
3
µeff +

4336

5
e−

5
6
µeff

+

[
µ2

eff + 2µeff + 2

3π2
− 38137

9

]
e−µeff +

148752

7
e−

7
6
µeff +O(e−

4
3
µeff),

Jnp
6,(1,0) = 8

√
3e−

1
6
µeff − 50

3
e−

1
3
µeff + 24

√
3e−

1
2
µeff − 158e−

2
3
µeff +

1952
√

3

5
e−

5
6
µeff

+

[
−
µ2

eff + 2µeff + 2

3π2
− 28394

9

]
e−µeff +

60976
√

3

7
e−

7
6
µeff +O(e−

4
3
µeff),

Jnp
6,(2,0) = 8e−

1
6
µeff − 46

3
e−

1
3
µeff +

68

3
e−

1
2
µeff − 94e−

2
3
µeff +

1568

5
e−

5
6
µeff

+

[
µ2

eff + 2µeff + 2

3π2
− 11959

9

]
e−µeff +

36576

7
e−

7
6
µeff +O(e−

4
3
µeff),

Jnp
6,(3,0) = −44

3
e−

1
3
µeff − 61e−

2
3
µeff +

[
−
µ2

eff + 2µeff + 2

3π2
− 4772

9

]
e−µeff +O(e−

4
3
µeff),

Jnp
6,(3,1) = −26

3
e−

1
3
µeff − 32e−

2
3
µeff +

[
−
µ2

eff + 2µeff + 2

3π2
− 1658

9

]
e−µeff +O(e−

4
3
µeff),

Jnp
6,(3,2) = −2

3
e−

1
3
µeff +

[
−
µ2

eff + 2µeff + 2

3π2
+

40

9

]
e−µeff +O(e−

4
3
µeff),
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Jnp
6,(3,3) =

4

3
e−

1
3
µeff + 3e−

2
3
µeff +

[
−
µ2

eff + 2µeff + 2

3π2
− 62

9

]
e−µeff +O(e−

4
3
µeff),

Jnp
6,(2,3) =

2

3
e−

1
3
µeff + 2e−

2
3
µeff +

[
µ2

eff + 2µeff + 2

3π2
− 85

9

]
e−µeff +O(e−

4
3
µeff),

Jnp
6,(1,3) = −2

3
e−

1
3
µeff + 2e−

2
3
µeff +

[
−
µ2

eff + 2µeff + 2

3π2
+

76

9

]
e−µeff +O(e−

4
3
µeff),

Jnp
6,(0,3) = −4

3
e−

1
3
µeff + 3e−

2
3
µeff +

[
µ2

eff + 2µeff + 2

3π2
+

89

9

]
e−µeff +O(e−

4
3
µeff),

Jnp
6,(0,2) = 4e−

1
6
µeff − 22

3
e−

1
3
µeff +

40

3
e−

1
2
µeff − 32e−

2
3
µeff +

484

5
e−

5
6
µeff

+

[
µ2

eff + 2µeff + 2

3π2
− 2557

9

]
e−µeff +

6192

7
e−

7
6
µeff +O(e−

4
3
µeff),

Jnp
6,(0,1) = 12e−

1
6
µeff − 46

3
e−

1
3
µeff + 36e−

1
2
µeff − 128e−

2
3
µeff +

2652

5
e−

5
6
µeff

+

[
µ2

eff + 2µeff + 2

3π2
− 20995

9

]
e−µeff +

73680

7
e−

7
6
µeff +O(e−

4
3
µeff). (B.5)

B.2 Characters

In this subsection we list characters for various representations of D5 in order to study

the non-perturbative effects in the previous subsection. In the following we abbreviate the

arguments of the characters χR(1, q2q
−1
3 , q−1

1 , q2q3, 1) by χR(q1, q2, q3) for simplicity.

• conjugacy class 0

χ1(q1, q2, q3) = 1,

χ45(q1, q2, q3) = 9 + 4(q2 + q−1
2 )(q3 + q−1

3 ) + q2
2 + q−2

2 + q2
3 + q−2

3

+ (q1 + q−1
1 )
(
4 + (q2 + q−1

2 )(q3 + q−1
3 )
)
,

χ54(q1, q2, q3) = 12 + 4(q2 + q−1
2 )(q3 + q−1

3 ) + q2
2 + q−2

2 + q2
3 + q−2

3 + (q2
2 + q−2

2 )(q2
3 + q−2

3 )

+ (q1 + q−1
1 )
(
4 + (q2 + q−1

2 )(q3 + q−1
3 )
)

+ q2
1 + q−2

1 . (B.6)

• conjugacy class 2

χ10(q1, q2, q3) = 4+(q2+q−1
2 )(q3+q−1

3 )+q1+q−1
1 ,

χ120(q1, q2, q3) = 16+8(q2+q−1
2 )(q3+q−1

3 )+4(q2
2 +q−2

2 +q2
3 +q−2

3 )

+(q1+q−1
1 )(8+4(q2+q−1

2 )(q3+q−1
3 )+q2

2 +q−2
2 +q2

3 +q−2
3 ),

χ126(q1, q2, q3) = 12+7(q2+q−1
2 )(q3+q−1

3 )+4(q2
2 +q−2

2 +q2
3 +q−2

3 )

+(q1+q−1
1 )(7+4(q2+q−1

2 )(q3+q−1
3 )+3(q2

2 +q−2
2 +q2

3 +q−2
3 )),

χ320(q1, q2, q3) = 40+18(q2+q−1
2 )(q3+q−1

3 )+8(q2
2 +q−2

2 +q2
3 +q−2

3 )+4(q2
2 +q−2

2 )(q2
3 +q−2

3 )

+(q2+q−1
2 )(q3+q−1

3 )(q2q3+q−1
2 q−1

3 )(q2q
−1
3 +q−1

2 q3)

+(q1+q−1
1 )
(
20+8(q2+q−1

2 )(q3+q−1
3 )+2(q2

2 +q−2
2 +q2

3 +q−2
3 )+(q2

2 +q−2
2 )(q2

3 +q−2
3 )
)

+(q2
1 +q−2

1 )
(
4+(q2+q−1

2 )(q3+q−1
3 )
)
. (B.7)
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• conjugacy class 1 or 3

χ16(q1, q2, q3) = 2(q
1
2
1 + q

− 1
2

1 )(q
1
2
2 q

1
2
3 + q

− 1
2

2 q
− 1

2
3 )(q

1
2
2 q
− 1

2
3 + q

− 1
2

2 q
− 1

2
3 ),

χ144(q1, q2, q3)

χ16(q1, q2, q3)
= 3 + (q2 + q−1

2 )(q3 + q−1
3 ) + q1 + q−1

1 ,

χ560(q1, q2, q3)

χ16(q1, q2, q3)
= 5 + 3(q2 + q−1

2 )(q3 + q−1
3 ) + q2

2 + q−2
2 + q2

3 + q−2
3

+ (q1 + q−1
1 )
(
3 + (q2 + q−1

2 )(q3 + q−1
3 )
)
,

χ720(q1, q2, q3)

χ16(q1, q2, q3)
= 9 + 3(q2 + q−1

2 )(q3 + q−1
3 ) + q2

2 + q−2
2 + q2

3 + q−2
3 + (q2

2 + q−2
2 )(q2

3 + q−2
3 )

+ (q1 + q−1
1 )
(
3 + (q2 + q−1

2 )(q3 + q−1
3 )
)

+ q2
1 + q−2

1 . (B.8)
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Annales Henri Poincaré 17 (2016) 3177 [arXiv:1410.3382] [INSPIRE].

[17] Y. Imamura and K. Kimura, N = 4 Chern-Simons theories with auxiliary vector multiplets,

JHEP 10 (2008) 040 [arXiv:0807.2144] [INSPIRE].

[18] S. Moriyama and T. Nosaka, Partition Functions of Superconformal Chern-Simons Theories

from Fermi Gas Approach, JHEP 11 (2014) 164 [arXiv:1407.4268] [INSPIRE].

[19] S. Moriyama and T. Nosaka, Exact Instanton Expansion of Superconformal Chern-Simons

Theories from Topological Strings, JHEP 05 (2015) 022 [arXiv:1412.6243] [INSPIRE].

[20] S. Moriyama, S. Nakayama and T. Nosaka, Instanton Effects in Rank Deformed

Superconformal Chern-Simons Theories from Topological Strings, JHEP 08 (2017) 003

[arXiv:1704.04358] [INSPIRE].

[21] M. Honda and S. Moriyama, Instanton Effects in Orbifold ABJM Theory, JHEP 08 (2014)

091 [arXiv:1404.0676] [INSPIRE].

[22] A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional

gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].

[23] S. Moriyama, T. Nosaka and K. Yano, Superconformal Chern-Simons Theories from del

Pezzo Geometries, JHEP 11 (2017) 089 [arXiv:1707.02420] [INSPIRE].

[24] N. Kubo, S. Moriyama and T. Nosaka, Symmetry Breaking in Quantum Curves and Super

Chern-Simons Matrix Models, JHEP 01 (2019) 210 [arXiv:1811.06048] [INSPIRE].

[25] D. Gaiotto and E. Witten, Janus Configurations, Chern-Simons Couplings, And The

theta-Angle in N = 4 Super Yang-Mills Theory, JHEP 06 (2010) 097 [arXiv:0804.2907]

[INSPIRE].

[26] V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops,

Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].

[27] M. Mariño, Spectral Theory and Mirror Symmetry, Proc. Symp. Pure Math. 98 (2018) 259

[arXiv:1506.07757] [INSPIRE].

– 46 –

https://doi.org/10.1103/PhysRevD.83.046001
https://arxiv.org/abs/1011.5487
https://inspirehep.net/search?p=find+EPRINT+arXiv:1011.5487
https://doi.org/10.1007/JHEP08(2011)001
https://arxiv.org/abs/1106.4631
https://inspirehep.net/search?p=find+EPRINT+arXiv:1106.4631
https://doi.org/10.1007/JHEP11(2011)141
https://doi.org/10.1007/JHEP11(2011)141
https://arxiv.org/abs/1103.4844
https://inspirehep.net/search?p=find+EPRINT+arXiv:1103.4844
https://doi.org/10.1007/JHEP01(2013)158
https://arxiv.org/abs/1211.1251
https://inspirehep.net/search?p=find+EPRINT+arXiv:1211.1251
https://doi.org/10.1007/JHEP05(2013)006
https://doi.org/10.1007/JHEP05(2013)006
https://arxiv.org/abs/1212.5118
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.5118
https://doi.org/10.1007/JHEP05(2013)054
https://arxiv.org/abs/1301.5184
https://inspirehep.net/search?p=find+EPRINT+arXiv:1301.5184
https://doi.org/10.1007/JHEP09(2014)168
https://arxiv.org/abs/1306.1734
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.1734
https://doi.org/10.1007/s00023-016-0479-4
https://arxiv.org/abs/1410.3382
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.3382
https://doi.org/10.1088/1126-6708/2008/10/040
https://arxiv.org/abs/0807.2144
https://inspirehep.net/search?p=find+EPRINT+arXiv:0807.2144
https://doi.org/10.1007/JHEP11(2014)164
https://arxiv.org/abs/1407.4268
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.4268
https://doi.org/10.1007/JHEP05(2015)022
https://arxiv.org/abs/1412.6243
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.6243
https://doi.org/10.1007/JHEP08(2017)003
https://arxiv.org/abs/1704.04358
https://inspirehep.net/search?p=find+EPRINT+arXiv:1704.04358
https://doi.org/10.1007/JHEP08(2014)091
https://doi.org/10.1007/JHEP08(2014)091
https://arxiv.org/abs/1404.0676
https://inspirehep.net/search?p=find+EPRINT+arXiv:1404.0676
https://doi.org/10.1016/S0550-3213(97)00157-0
https://arxiv.org/abs/hep-th/9611230
https://inspirehep.net/search?p=find+EPRINT+hep-th/9611230
https://doi.org/10.1007/JHEP11(2017)089
https://arxiv.org/abs/1707.02420
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.02420
https://doi.org/10.1007/JHEP01(2019)210
https://arxiv.org/abs/1811.06048
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.06048
https://doi.org/10.1007/JHEP06(2010)097
https://arxiv.org/abs/0804.2907
https://inspirehep.net/search?p=find+EPRINT+arXiv:0804.2907
https://doi.org/10.1007/s00220-012-1485-0
https://arxiv.org/abs/0712.2824
https://inspirehep.net/search?p=find+EPRINT+arXiv:0712.2824
https://arxiv.org/abs/1506.07757
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.07757


J
H
E
P
1
2
(
2
0
1
9
)
1
0
1

[28] S. Matsumoto and S. Moriyama, ABJ Fractional Brane from ABJM Wilson Loop, JHEP 03

(2014) 079 [arXiv:1310.8051] [INSPIRE].

[29] Y. Hatsuda, S. Moriyama and K. Okuyama, Exact instanton expansion of the ABJM

partition function, PTEP 2015 (2015) 11B104 [arXiv:1507.01678] [INSPIRE].

[30] H. Awata, S. Hirano and M. Shigemori, The Partition Function of ABJ Theory, PTEP 2013

(2013) 053B04 [arXiv:1212.2966] [INSPIRE].

[31] M. Honda, Direct derivation of “mirror” ABJ partition function, JHEP 12 (2013) 046

[arXiv:1310.3126] [INSPIRE].

[32] M. Honda and K. Okuyama, Exact results on ABJ theory and the refined topological string,

JHEP 08 (2014) 148 [arXiv:1405.3653] [INSPIRE].

[33] S. Moriyama and T. Suyama, Orthosymplectic Chern-Simons Matrix Model and Chirality

Projection, JHEP 04 (2016) 132 [arXiv:1601.03846] [INSPIRE].

[34] S. Moriyama and T. Nosaka, Orientifold ABJM Matrix Model: Chiral Projections and

Worldsheet Instantons, JHEP 06 (2016) 068 [arXiv:1603.00615] [INSPIRE].

[35] K. Kiyoshige and S. Moriyama, Dualities in ABJM Matrix Model from Closed String

Viewpoint, JHEP 11 (2016) 096 [arXiv:1607.06414] [INSPIRE].

[36] Y. Hatsuda, M. Honda, S. Moriyama and K. Okuyama, ABJM Wilson Loops in Arbitrary

Representations, JHEP 10 (2013) 168 [arXiv:1306.4297] [INSPIRE].

[37] S. Matsuno and S. Moriyama, Giambelli Identity in Super Chern-Simons Matrix Model, J.

Math. Phys. 58 (2017) 032301 [arXiv:1603.04124] [INSPIRE].

[38] T. Furukawa and S. Moriyama, Jacobi-Trudi Identity in Super Chern-Simons Matrix Model,

SIGMA 14 (2018) 049 [arXiv:1711.04893] [INSPIRE].

[39] N. Kubo and S. Moriyama, Two-Point Functions in ABJM Matrix Model, JHEP 05 (2018)

181 [arXiv:1803.07161] [INSPIRE].

[40] T. Furukawa and S. Moriyama, ABJM Matrix Model and 2D Toda Lattice Hierarchy, JHEP

03 (2019) 197 [arXiv:1901.00541] [INSPIRE].

[41] N.A. Nekrasov and S.L. Shatashvili, Quantization of Integrable Systems and Four

Dimensional Gauge Theories, in Proceedings, 16th International Congress on Mathematical

Physics (ICMP09), Prague, Czech Republic, 3–8 August 2009, pp. 265–289 (2009)

[DOI:10.1142/9789814304634 0015] [arXiv:0908.4052] [INSPIRE].

[42] A. Mironov and A. Morozov, Nekrasov Functions and Exact Bohr-Zommerfeld Integrals,

JHEP 04 (2010) 040 [arXiv:0910.5670] [INSPIRE].

[43] M. Aganagic, M.C.N. Cheng, R. Dijkgraaf, D. Krefl and C. Vafa, Quantum Geometry of

Refined Topological Strings, JHEP 11 (2012) 019 [arXiv:1105.0630] [INSPIRE].

[44] K. Kajiwara, M. Noumi and Y. Yamada, Geometric aspects of Painlevé equations, J. Phys.
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