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Abstract: We study three dimensional N = 2 supersymmetric abelian gauge theories

with various matter contents living on a squashed sphere. In particular we focus on two

problems: firstly we perform a Picard-Lefschetz decomposition of the localised path integral

but, due to the absence of a topological theta angle in three dimensions, we find that

steepest descent cycles do not permit us to distinguish between contributions to the path-

integral coming from (would-be) different topological sectors, for example a vortex from a

vortex/anti-vortex. The second problem we analyse is the truncation of all perturbative

expansions. Although the partition function can be written as a transseries expansion

of perturbative plus non-perturbative terms, due to the supersymmetric nature of the

observable studied we have that each perturbative expansion around trivial and non-trivial

saddles truncates suggesting that normal resurgence analysis cannot be directly applied.

The first problem is solved by complexifying the squashing parameter, which can be thought

of as introducing a chemical potential for the global U(1) rotation symmetry, or equivalently

an omega deformation. This effectively introduces a hidden “topological angle” into the

theory and the path integral can be now decomposed into a sum over different topological

sectors via Picard-Lefschetz theory. The second problem is solved by deforming the matter

content making manifest the Cheshire Cat resurgence structure of the supersymmetric

theory, allowing us to reconstruct non-perturbative information from perturbative data

even when these do truncate.
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1 Introduction

In recent years Ecalle’s resurgence theory [1] has been applied to an ever growing set of prob-

lems where the common denominator is the asymptotic nature of the perturbative expan-

sion and how we can exploit its lack of convergence to reconstruct non-perturbative results

out of perturbative data. For some recent introductions see [2, 3] and references therein.

A particularly fortuitous class of examples where we can try to apply resurgence theory

are supersymmetrically localisable field theories. Starting with Pestun’s seminal work [4] for

N = 4 and N = 2 theories on S4, many quantities like partition functions and Wilson loops

have been computed exactly using supersymmetric localisation; see [5] for a pedagogical

introduction and a more complete set of references.

This method is very general and can be applied to theories living on different manifolds,

in various numbers of dimensions, and with various amounts of supercharges. For example

one can consider N = 2 theories on a squashed S4 [6], or in three dimensional N = 2 on a

round [7] or squashed sphere [8], or similarly going to two dimensional N = (2, 2) theories

on a sphere [9, 10] or an ellipsoid [11].

Importantly in all these cases the exact localised partition functions and other ob-

servables can be written as a perturbative part plus non-perturbative sectors, i.e. what is
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usually referred to as a transseries [12]. Hence a very natural question is whether or not one

can apply resurgent methods to these quantities and reconstruct the complete answers from

the purely perturbative data. This question was analysed in [13–17] and it was realised

that in supersymmetric field theories the resurgence story is not as straightforward.

Although in some examples one can use the perturbative data to reconstruct the pres-

ence of new, complexified saddle points to the path-integral [18], in many others these

authors realised that perturbation theory seem to be oblivious to non-perturbative sectors

which we know must be present from the exact localised formulae, or even worse (or better

depending on the point of view) cases in which all the perturbative expansions have actu-

ally finite radius of convergence and for which the resurgence programme seems completely

doomed to fail.

One does not need to go to complicated theories to construct an example of this: just

in standard supersymmetric quantum mechanics [19] we know that the ground state energy

will vanish in perturbation theory because of bosonic/fermionic cancellations; however non-

perturbative effects can lift the vacuum energy. In [20, 21] the authors studied precisely

these supersymmetric quantum mechanical models and proved that this “lack” of resur-

gence is an extremely fine tuned phenomenon which they called Cheshire Cat resurgence.

Just like the eponymous cat, the full resurgence body is still there; one just need to intro-

duce a small deformation to the theory to immediately obtain an asymptotic, factorially

growing perturbative expansion. In this deformed theory we can use the full resurgence

machinery to extract the non-perturbative sectors out of perturbative data and once we

send the deformation to zero the perturbative series will truncate (or become convergent)

while the non-perturbative terms will still be there, thus the grin will linger on.

Following [20, 21], in [22] we applied a similar deformation to the N = (2, 2) super-

symmetric CPN−1 on S2. The reason why perturbation theory seems to be oblivious to

the non-perturbative sectors is precisely the same and a small deformation restores imme-

diately the full body of the Cheshire Cat resurgence. The supersymmetrically localised

partition function is sitting at a very special point in theory space thus hiding the full

resurgence structure. This is the reason why in some cases of [13–16] there seemed not to

be any resurgence at all.

When considering path-integrals, complementary to resurgence analysis [23] is the

Picard-Lefschetz theory or complexified Morse homological decomposition in steepest de-

scent contours [24], see also [25–27]. The key idea is that one has to deform the path-integral

contour of integration into a suitable complexification of field space. Associated to each

complex saddle point there is a privileged, steepest descent contour of integration, usually

called a Lefschetz thimble, and at a generic value of the coupling constant one can rewrite

the original contour as a linear combination of these thimbles with integer coefficients,1 i.e.

intersection numbers.

The link between resurgence and Picard-Lefschetz decompositions comes from Stokes

phenomenon. For special arguments of the complexified coupling constant, i.e. Stokes di-

1Note that although when dealing with finite dimensional integrals the intersection numbers will always

be integers, in infinite dimensions this is not necessarily guaranteed, see for example [28].
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Figure 1. The Resurgence triangle. The kth non-perturbative contribution part of the N th

topological sector is denoted schematically by Φ
(k)
N . Resurgence theory allows us to reconstruct

from any Φ
(k)
N all the other contributions in the same column, i.e. Φ

(k′)
N .

rections, we have that a thimble can connect different saddles. This is usually forbidden

given the fact that the imaginary part of the action is constant along a thimble, i.e. they

are stationary phase contours. Across a Stokes direction some of the thimbles will undergo

non-trivial monodromies and the aforementioned intersection numbers will jump. Simul-

taneously resurgence analysis tell us that the resummation of the asymptotic series around

the saddles involved will also jump and these two discontinuities, of intersection numbers

and resummations, are tightly related.

Whenever the theory in question contains a topological θ angle this will contribute to

the classical action of the various saddle points by an imaginary part weighted by θ times

the topological number. Thus even before complexifying the coupling constant (note that

one should not confuse the imaginary part of the complexified coupling constant with the

theta angle) we have that steepest descent paths can only connect saddles coming from

the same topological sector. Thus generally whenever a theta angle is present the path

integral will first split into a sum over topological sectors; then upon complexification of

the coupling constant, resurgence theory will allow us to relate the perturbative series in a

given topological sector to non-perturbative saddles in the same topological sector, e.g. from

the purely perturbative expansion around the trivial vacuum we are able to reconstruct

instanton-anti-instanton events. The resurgence structure of the theory arranges itself in

what is called the resurgence triangle [29] as in figure 1. From an asymptotic series around

a saddle point (perturbative and non-) in a given topological sector we can calculate all

the other saddles in the same sector.

For the present work we are interested in 3-d N = 2 gauge theories. As mentioned

above this class of theories is amenable to localisation on S3 [7] and, when a Chern-Simons

term is present, their partition functions can be directly written [16] in the form of a

resurgent transseries in terms of a small coupling g = 1/k � 1 given by the inverse of the

Chern-Simons level k.
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In [17]2 the authors performed the complete resurgent analysis and thimble decomposi-

tion for 3-d N = 2 Chern-Simons matter theories showing that, as one varies the argument

of the coupling g = 1/k, the thimble decomposition of the path-integral exhibits Stokes phe-

nomenon. As expected the ambiguities in resummation of the Borel transform are directly

related to the jump in thimbles attached to non-perturbative saddles. Furthermore the

analysis of these authors provided a nice interpretation of these non-perturbative effects as

contributions coming from new supersymmetric solutions [18] living in a complexification

of field space but not on the original path-integral contour.

In this work we continue the studies of [17] by considering abelian gauge theories

without a Chern-Simons term for which both asymptoticity and topological angle will

turn out to be absent. At first it looks like the resurgence structure found in [16, 17]

disappears completely, and although we have these complex non-perturbative saddles [18],

their classical actions will nonetheless be real, hence the Picard-Lefschetz decomposition

of [17] somehow becomes degenerate. The same holds even when considering a squashed

sphere [8] with squashing parameter b > 0. However, by complexifying the squashing

parameter b = eiθ we will be able to identify “would-be” different topological sectors, i.e.

we can distinguish from the thimble point of view the topologically trivial sector from a

vortex and an anti-vortex.

The complexification of the squashing parameter can be seen as the introduction of a

chemical potential for the U(1) rotation of the S2 where the vortices are living on when

we write the S3 as a Hopf fibration. It is also interesting to notice that since the building

blocks to compute the 3-d N = 2 partition functions are directly related [8, 30] to the

structure constants in 2-d Liouville with central charge c = 1+6(b+b−1)2 we have that the

complexification b = eiθ interpolates precisely between space-like and time-like Liouville.

However, regardless of the interpretation, the important point is that complexifying

the squashing parameter generates a topological angle which was hidden before, and this

is very reminiscent of the hidden topological angle studied in [20, 31–34]. We can thus

introduce a Cheshire Cat deformation very similar to [22] and restore the asymptotic nature

of the perturbative series around each saddle. This allows us to use the full resurgence

machinery to reconstruct from just one element in a column of the resurgence triangle all

other elements in the same column, i.e. in the same topological sector.

This topological decomposition combined with the known [35] vortex/anti-vortex fac-

torisation of the partition function introduces an extra structure on top of resurgence and

we can now calculate data from one column of the resurgence triangle and relate it to dif-

ferent columns. An example of this “horizontal” move on the resurgence triangle is given

by the Dune-Ünsal relation in quantum mechanics (see [36–38]).

The paper is organised as follows. Firstly in section 2 we will briefly give an overview

of N = 2 supersymmetric field theories on a squashed 3-sphere and present the localised

partition functions for different matter contents.

In section 3 we will perform a Picard-Lefschetz decomposition of the localised path-

integral and show how a complexification of the squashing parameter b will give rise to

2We thank Tatsuhiro Misumi for making us aware of this interesting and relevant work.

– 4 –



J
H
E
P
1
2
(
2
0
1
9
)
0
8
5

a hidden topological angle, allowing us to decompose the theory in a resurgence triangle

structure. We will also discuss the physical interpretation of this complexificiation and the

arising of Stokes phenomenon in the Picard-Lefschetz decomposition.

We continue in section 4 with the analysis of the localised path integral using Cheshire

Cat resurgence methods. Similarly to the 2-d case we will see that for the original theory

there is no asymptotic, factorially growing perturbative series. However after introducing

a suitable deformation the asymptotic nature of perturbation theory is reinstated and the

resurgence framework can finally be applied. We also discuss how to connect the non-

perturbative data to the perturbative data, and at the very end smoothly continue all of

our results back to the undeformed original theory while retaining the non-perturbative

information acquired from perturbation theory.

We will remark on additional structures going beyond resurgent theory in section 5.

These additional structures are very common in supersymmetrically localised partition

functions in various dimensions, and they are very reminiscent of the quantum mechanical

Dunne-Ünsal relations [36–38], which allow us to move “horizontally” in the resurgence

triangle, thus deriving data in different topological sectors just by analysing the perturba-

tive one. Finally we draw some conclusions and remarks on future works in section 6 and

present some useful identities for the double sine function in appendix A.

2 N = 2 theories on squashed S3

It will be useful to recall some facts about N = 2 gauge theories on S3 and how to calculate

their partition functions from localisation methods. For a nice review of 3D N = 2 theories

see [39], and for all the details of the localisation calculation see [8] and [40].

Three dimensional field theories with N = 2 supersymmetry have 4 real supercharges,

and can be seen as a reduction of 4-d N = 1 theories down to three dimensions. Vector

multiplets contain a vector field, two Weyl-fermions and a scalar, while chiral or anti-chiral

matter multiplets are made of two complex scalars, and two Weyl-fermions.

We will be interested in theories with an abelian vector multiplet and various chiral

and/or anti-chiral matter multiplets charged under the gauge symmetry; hence supersym-

metric Lagrangians will then contain a Yang-Mills part, a matter part, a Fayet-Iliopoulos

term (FI in what follows) with parameter ξ, and finally a Chern-Simons term (which we

will not be concerned with). In the rest of this paper we will express everything in terms

of the FI parameter, and thus the weak coupling expansion will correspond to large ξ � 1,

and the strong coupling expansion will have ξ ∼ 0.

We will be concerned with theories defined on a squashed 3-sphere which can be

embedded in 4-d via
b2

r2

(
x2

0 + x2
1

)
+

1

b2r2

(
x2

2 + x2
3

)
= 1 , (2.1)

and will be denoted as S3
b where b is our squashing parameter, and r is the radius of the

sphere that we will set to 1 in appropriate units. Note that in here b is thought of as a

positive real number and b = 1 corresponds to the round sphere case.
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The partition function can be computed following the procedure laid out in [4], and

performed in [8] and [40]. In the case where we do not turn on any mass parameters, the

squashed S3 partition function can be written as

ZS3
b

=

∫
dx̂ e2πiξTr(x̂)Zvec(x̂)Zmatter(x̂) , (2.2)

where the integral is over the Cartan subalgebra of the gauge group. The parameter ξ is

the usual FI term, and the one-loop determinants are for the vector multiplet

Zvec(x̂) =
∏
α∈∆+

sinh(πbα(x̂)) sinh(πb−1α(x̂)) , (2.3)

while for the chiral/anti-chiral multiplets

Zmatter(x̂) =
∏
w∈R

sb

(
iQ

2
(1−∆)− w(x̂)

)
. (2.4)

Note here we have used ∆+ to denote the positive roots, w to denote the weights in

representation R of the matter multiplet, b is once again the squashing parameter and

Q = b+ 1/b, and ∆ is the R-charge of the scalar in the chiral multiplet. For abelian gauge

theories the vector multiplet one-loop determinant will simply be one.

The matter one-loop determinants can be all written in terms of the double sine func-

tion sb(x) presented here in terms of an infinite product

sb (x) =
∏

m,n≥0

(mb+ n/b+Q/2− ix)

(mb+ n/b+Q/2 + ix)
. (2.5)

This function is closely related to the hyperbolic gamma function [41, 42] and the multiple

sine function [43], and we present some of its properties in appendix A. The only property

of sb(x) we want to stress here is that for generic b this function has simple zeroes on the

lattice Λ+ = −iQ/2 − ibZ≥0 − i/bZ≥0 and simple poles on the lattice Λ− = +iQ/2 +

ibZ≥0 + i/bZ≥0. In the physical squashing limit b ∈ R+ the poles and zeroes of the one-

loop determinant fall on the imaginary axis and correspond to the appearance of bosonic

and fermionic, respectively, massless states.

For the sake of simplicity in the present work we will only be concerned with U(1)

gauge theories, though all our conclusions should carry over to the non-abelian case quite

simply. For us therefore the vector multiplet one-loop determinant Zvec will always be

equal to 1, and the partition function will depend on the FI parameter ξ, the squashing b,

and the number of chiral, Nc, and anti-chiral, Na, multiplets.3 For this class of theories

we have

Z
(Nc,Na)

Sb3
(ξ) =

∫
Γ
dx e2πiξx

Nc∏
i=1

sb(x+ iQ/2)

Na∏
i=1

sb(x− iQ/2)

, (2.6)

3In the present paper we will also work with Nc −Na an even number as to avoid having to introduce

a bare Chern-Simons term to cancel the parity anomaly [44, 45].
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where the contour Γ runs along the real x axis and circles around the origin passing in the

lower complex x half-plane. Note that we chose the R-charge of the scalars to be ∆ = 0.

These integrals can be calculated by closing the contour in the upper half plane and

picking up contributions from all the poles thus leaving a sum over the residues of these

poles. General results with non-zero vector and axial masses can be found in [35].

We will shortly analyse the Picard-Lefschetz decomposition and the Cheshire Cat

deformation of these types of theories, and to this end it will be useful to better understand

the analytic properties of the integrands and their dependence on the matter content and

squashing parameter. For this reason we will now discuss some particular examples in

more detail.

2.1 Round sphere

We start off by considering the theory on the round S3, i.e. b = 1, with any matter content.

Using equations (2.5) and (2.6) we have that the partition function on the sphere is given by

Z
(Nc,Na)
S3 (ξ) =

∫
Γ
dx e2πiξx

∞∏
m,n≥0

(
m+ n+ 2− ix
m+ n+ ix

)Nc (m+ n+ 2 + ix

m+ n− ix

)Na
. (2.7)

We can now rearrange the product by defining L = m + n, and realising that for fixed

L ∈ N we have L+ 1 distinct pairs (m,n) such that L = m+ n, so we can write

Z
(Nc,Na)
S3 (ξ) =

∫
Γ
dx e2πiξx

∞∏
L=0

(
L+ 2− ix
L+ ix

)Nc(L+1)(L+ 2 + ix

L− ix

)Na(L+1)

. (2.8)

One can evaluate this infinite products using zeta-regularisation (see for example the

appendix of [22]) or alternatively for the non-chiral theory Nc = Na = N one can use

equation (A.6) to obtain

Z
(N,N)
S3 (ξ) =

∫
Γ
dx e2πiξx

(
1

2 sinh(πx)

)2N

=
(−1)N

Γ(2N)

∞∑
n=0

e−2πnξ ξ

N−1∏
k=1

(ξ2 + k2)

=
(−1)N

Γ(2N)

ξ

1− e−2πξ

N−1∏
k=1

(ξ2 + k2) , (2.9)

which can be obtained as the limit b → 1 and vanishing vector and axial masses of the

general expression obtained in [35].

Note that the partition function has simple poles at ξ = ik for k ∈ Z; however for

k ∈ {±1, . . . ,±(N − 1)} these are cancelled by the simple zeroes coming from the product.

This can be understood from the mirror theory [39, 46] as due to the presence of a single

bosonic zero mode for the monopole operators for ξ = ik with k ∈ Z. However when

k ∈ {±1, . . . ,±(N − 1)} the monopole operators acquire also a fermionic zero mode thus

giving a finite, non-zero, contribution.4

4We thank Stefano Cremonesi for clarifications on this point.
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A particular case that will shortly be useful is when Nc = Na = 1 and the above

expression simplifies to

Z
(1,1)
S3 (ξ) =

∫
Γ
dx e2πiξx 1

4 sinh(πx)2
= − ξ

1− e−2πξ
. (2.10)

It is manifest both in the above equation as well as in the general case (2.9) that the

S3 partition function takes the form of a transseries for which the perturbative expansion

in each non-perturbative sector truncates because of supersymmetry after 2N − 1 orders,

where again N = Nc = Na.

2.2 Non-chiral theory on squashed S3

In the case of the non-chiral theory, i.e. when Nc = Na, on the squashed 3-sphere we have

the identity given in equation (A.6), which enables us to write

sb (x+ iQ/2)

sb (x− iQ/2)
=

1

4 sinh(πxb) sinh(πx/b)
. (2.11)

Hence we can write the partition function for the non-chiral theory as

Z
(N,N)

S3
b

(ξ) =

∫
Γ
dx e2πixξ

(
1

4 sinh(πxb) sinh(πx/b)

)N
. (2.12)

For N = 1 it is fairly simple to compute the residues and obtain

Z
(1,1)

Sb3
(ξ) = −ξ +

1

2

∞∑
n=1

(−1)n
[
e−2πnξb csc(nπb2)b+ e−2πnξ/b csc(nπ/b2)

b

]
, (2.13)

which reproduces (2.10) when we take the b → 1 limit. As is well known the reason for

these two different types of exponentially suppressed corrections comes from the fact that

vortices are finite action solutions in 2-d and finite energy solutions in 3-d. However since

our 3-d manifold can be seen as an S1 fibration over S2 we can understand the 3-d vortex

action as its energy timed by the length of the S1 fibre, hence precisely either 2πξn × b
or 2πξn × b−1 depending on which S1 we are fibering. We note also that due to the

supersymmetric nature of the observable under consideration the perturbative expansion

in ξ � 1 around the vacuum, as well as all the non-perturbative sectors, does truncate

after finitely many orders.

2.3 Chiral theory on squashed S3

For Nc 6= Na on the squashed 3-sphere things are a bit harder and one has to introduce

the q-Pochhammer symbol, denoted by (a; q)∞, to obtain a regularised formula for sb(x)

given in equation (A.9). From this we can write the partition function as

Z
(Nc,Na)

S3
b

(ξ) =

∫
Γ
dx e2πixξ

e−iπ (x+iQ/2)2

2

(
e2πbx+2πib2 ; e2πib2

)
∞(

e2πx/b; e−2πi/b2
)
∞

Nc

(2.14)

e−iπ (x−iQ/2)2

2

(
e2πbx; e2πib2

)
∞(

e2πx/b−2πi/b2 ; e−2πi/b2
)
∞

−Na αNc−Na ,
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where again Q = b+ 1/b and we introduce the constant α = exp(−iπQ
2−2
24 ). Note that the

q-Pochhammer (a; q)∞ has a natural boundary of analyticity at |q| = 1. We will shortly

see that our complexification of the squashing parameter b → eiθ will bring us to work

within the unit disk for q-Pochhammers. This expression will be useful when analysing the

Picard-Lefschetz decompositions.

3 Picard-Lefschetz decomposition and hidden topological angle

We start our analysis of the Picard-Lefschetz decomposition of the localised path-integral

by considering first theories with a real squashing parameter b > 0, and subsequently

complexifying it. As it will become clear later on the combination Θ = −i(b − 1/b) will

play the role of hidden topological angle, and hence, by abuse of notation, in this section we

will say that a give saddle belong to the N th topological sector if the imaginary part of its

action goes like NΘ; for example the perturbative saddle and the vortex-anti-vortex saddle

both have N = 0 while the vortex and the anti-vortex have N = 1 and N = −1 respectively.

For concreteness let us consider a theory with 1 chiral and 1 anti-chiral multiplet on

a round S3, i.e. b = 1. The partition function is given by equation (2.10) and it is simple

to note that the integrand has double order poles at x = in for n ∈ Z. Let us now look at

this path integral from a Picard-Lefschetz point of view. To this end we exponentiate the

one-loop determinant and write the integrand in terms of an effective action

Z
(1,1)
S3 (ξ) =

∫
Γ
dx e2πixξ 1

4 sinh(πx)2
=

∫
Γ
dx e−S

(1,1)
eff (x) ,

S
(1,1)
eff (x) = −2πiξx+ 2 log(2 sinh(πx)) . (3.1)

The idea behind Picard-Lefschetz decomposition (we refer the reader to the nice expositions

in [25, 26] for a more detailed account) is to use the effective action Seff , or rather its real

part, as a Morse function to construct a set of privileged contours living in the complexified

field space x ∈ C, called Lefschetz thimbles or alternatively steepest descent contours, with

some crucial properties:

• the imaginary part of the action is constant along the thimble (stationary phase);

• at a generic point in parameter space there is a thimble attached to one and only one

critical point of the effective action;

• the real part of the action is monotonically increasing as we move away from the

critical point along its associated thimble;

• the original contour of integration Γ can be decomposed as a linear combination with

integer coefficients (intersection numbers) of thimbles.

These thimbles can be constructed as the solution to the Morse flow equation

dx(t)

dt
= ±∂Seff(x(t))

∂x(t)
,

lim
t→−∞

x(t) = xcr with
∂Seff(x)

∂x

∣∣∣∣
x=xcr

= 0 . (3.2)
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(a) The flow in the upper half plane.
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(b) Perturbative saddle and its nearest pole.

Figure 2. Morse flow for the theory with one chiral and one anti-chiral, b = 1, ξ = 1. The green

circles are saddle points while the red crosses are poles of the effective action. From each saddle the

downward flows (the J cycles) go off to ∞ while the upward flows (K cycles) flow vertically until

they hit a pole.

The solution with the plus sign is usually called the J thimble associated to the critical point

xcr, or J cycle (also called unstable or downward manifold) for which as we just stressed

we have that the real part of the effective action is monotonically increasing. The solution

with the minus sign defines the dual thimble, which we will call the K thimble associated

to the critical point xcr (stable or upward manifold) and along which the real part of the

effective action is monotonically decreasing. At a generic point in parameter space we have

that the intersection number of a J cycle and a K cycle is non-zero if and only if they are

both associated with the same critical point. This will allow us to decompose the original

contour of integration Γ as Γ =
∑

σ nσJσ where the sum runs over all the complex critical

points of Seff and the coefficient nσ = (Kσ,Γ) is just the intersection number of the contour

Γ with the K thimble attached to the critical point σ.

Following the idea outlined above we now try and perform the Picard-Lefschetz de-

composition of the integration contour Γ using the Morse flow induced by S
(1,1)
eff (x) for the

example above (3.1). Since the effective action is basically the logarithm of the one-loop

determinant we have that both zeroes and poles of the one-loop determinant will produce

singularities of the effective action. Since we are interested in the ξ � 1 expansion of the

path integral we have that each one of the saddle points will live close to each one of the

singularities of the effective action (i.e. zeroes and poles of the one-loop determinant) and

steepest descent and ascent cycles can now terminate at singular points of the effective

action. This is shown in figure 2.

A very similar analysis was already carried out for 3-d N = 2 Chern-Simons matter

theories in [17], see in particular equation (II.21) and our (3.1). Notice however some key

differences with our results. In particular that when a Chern-Simons term is present the J

thimble attached to the perturbative vacuum, noted with Jpt in [17], passes through the
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lattice of saddles and poles, see for example their figure 3, while in our figure 2-(a) the

perturbative thimble envelopes all the singularities and saddles.

In the extremely thorough analysis of [17] the authors noted that as the real mass

parameter is increased, or equivalently the argument of the coupling g = 1/k is varied, more

and more non-perturbative thimbles cross the perturbative one and Stokes phenomenon

take place, presented in their figure 7 and 9. These jumps are directly correlated with the

jumps in the resummation of the asymptotic expansion for small g � 1.

At a first glance in our case none of these phenomena happen, the key difference being

the absence of a Chern-Simons term. As we have already shown in section 2 the original

contour of integration, which can be straightforwardly deformed to the perturbative thimble

of figure 2-(a), simply reduces the integral to a sum over residues hence not giving rise to

any asymptotic perturbative expansion.

The presence of a Chern-Simons term changes completely the asymptotic form of the

effective action for large Coulomb branch parameter |x| � 1 from the case at hand where

Seff(x) ∼ −2πiξeffx to Seff(x) ∼ −ix2/(4pig) with g = 1/k being the inverse Chern-Simons

level. As the level goes to zero, i.e. g →∞, we have a discontinuous jump in the asymptotic

regions ReSeff(x) > 0, usually referred to as good regions [25]. As explained in details

in [25] the J thimbles are non-compact and their tails must lie in the good regions. It is

then the asymptotic behaviour of ReSeff(x) for |x| → ∞ that dictates the topology of the

thimbles. When a Chern-Simons level is present the good regions asymptote two quadrants

Re [−ix2/(4pig)] > 0 in the complex x-plane while in our case they asymptote a half plane

Re [2πiξeffx] > 0. This is the reason why the perturbative thimble found in [17] passes

through the singular points and the perturbative expansion in small g = 1/k � 1 becomes

asymptotic, as already found in [16], while for us the perturbative thimble circles around

the singularities and the perturbative expansion in ξ � 1, being just a residue calculation,

is truncating after finitely many orders.5

We will shortly see that Stokes phenomenon and an asymptotic perturbative expansion

are present also in our case although both very different in nature from the analysis of [17].

We first focus on the thimble decomposition.

As just discussed, in the present case the following puzzle emerges. It is clear from

figure 2-(b) that the only non-zero intersection number between the original contour of

integration Γ (which was running along the real line and circling around the origin in the

lower complex x half-plane) and the K thimbles is when we consider the upward manifold

associated to the perturbative saddle, i.e. xcr = −i/(πξ) +O(ξ−3). So in order to compute

the path integral from the Picard-Lefschetz decomposition we only need to include the

integral over the J cycle that is attached to the perturbative saddle and this contour

picks up contributions from all the poles in the upper half plane. Contrary to what usually

happens in 2-d and 4-d, this includes not only contributions from non-perturbative parts in

the same topological sector (vortex-anti-vortex, 2-vortex-2-anti-vortex etc.), but also the

contributions from all the other non-perturbative sectors (vortex, anti-vortex, 2-vortex,

etc.). For example the second order pole at x = i contains the contributions from the

5We thank Masazumi Honda and Tatsuhiro Misumi for useful discussions on these points.
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vortex and anti-vortex parts; likewise the pole at x = 2i contains the contributions from

the 2-vortex, and the 2-antivortex parts, together with the vortex-anti-vortex, and so on.

We would like to have a decomposition that allows us to discern one topological sector

from another. One might try to move away from the round sphere case, i.e. b 6= 1, and

indeed if we consider the squashed sphere case we do see the poles splitting. This is

easiest seen by looking at the definition of sb(x) in equation (2.5). The poles are at

x = imb+ in/b for n,m ∈ Z so for b 6= 1 we find first order poles in general, each encoding

the contribution coming from a single non-perturbative background. However the Picard-

Lefschetz decomposition still has the same problem: we only need to keep the one thimble

attached to the saddle corresponding to the perturbative background. Integrating over this

J cycle we will pick up all the poles for all the different non-perturbative backgrounds, in

every topological sector.

How do we get a decomposition of the localised path integral in terms of different

thimbles, each one associated to a would-be different topological sector hence giving us a

manifest resurgence triangle structure? The solution to this puzzle comes from considering

a complexified squashing parameter b ∈ C and |b| = 1, i.e. b = eiθ. We will provide a

physical interpretation for this complexification in section 3.2 but for the moment let us

see what happens to the Picard-Lefschetz decomposition when we consider b = eiθ.

The first effect is that although the poles are still located at x = imb + in/b they no

longer are confined to the positive imaginary axis but form a lattice and the only poles

found on the positive imaginary axis are those coming from what will form the trivial

topological sector.

To be concrete let us re-examine the case with one chiral and one anti-chiral multiplet.

The partition function (2.12) and effective action, now with general b, are given by

Z
(1,1)

S3
b

(ξ) =

∫
Γ
dxe2πixξ 1

4 sinh(πxb) sinh(πx/b)
,

S
(1,1)
eff (x) = −2πixξ + log (2 sinh(πxb)) + log (2 sinh(πx/b)) . (3.3)

The singularities are obviously at mb and n/b for m,n ∈ Z, and while in (3.1) these

were second order poles for the partition function we see that now the poles split up and

separately carry information about the vortices and the anti-vortices. We notice that in

this example there are no contributions from poles with both vortices and anti-vortices,

e.g. for example a pole at b + 1/b. This is very likely because fermion zero modes for

these saddles conspire to cancel all their contributions from the path integral. It would be

interesting to understand this from the mirror theory.

If we perform a Picard-Lefschetz decomposition as before we obtain figure 3, where

we have chosen b = ei/2 and ξ = 1. For this choice of parameters we can easily see the

splitting of the poles into contributions from different topological sectors, and as we will

shortly discuss in section 3.1, complexifying b will effectively introduce a hidden topological

angle so we can distinguish between all the sectors with different topological number; for

example the vortex sector from the anti-vortex sector. However it is clear from figure 3

that with this choice of parameters we still only need to integrate over the J cycle from

the perturbative saddle as its K cycle is the only one having non-zero intersection number
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(a) The flow in the upper half plane.
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(b) Perturbative and 1-vortex saddles.

Figure 3. Morse flow for the theory with one chiral and one anti-chiral, b = ei/2, ξ = 1. The

green circles are saddles and the red crosses are poles. From each saddle the downward flows (the

J cycles) go off to the sides and eventually off to ∞. The upward flows (K cycles) flow up or down

to the nearest pole. Only the K cycle from the perturbative saddle hits the real axis.
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(a) The flow in the upper half plane.
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(b) Perturbative saddle and 1-vortex saddles.

Figure 4. Morse flow for the theory with one chiral and one anti-chiral, b = ei, ξ = 1. The

green circles are saddles and the red crosses are poles. From each saddle the downward flows (the

J cycles) go off to the sides and eventually off to ∞. The upward flows (K cycles) flow up to the

nearest pole and they all intersect the real axis.

with the original integration contour Γ, i.e. we still have not achieved a complete splitting

of the path-integral in thimbles for each topological sectors.

The reason for this lies in our choice of parameters b and ξ. Let us repeat the Picard-

Lefschetz decomposition but this time with b = ei, without changing ξ = 1, shown in

figure 4. All the K cycles intersect the original contour of integration Γ, hence following

our discussion at the beginning of this section we must include the contributions from the

J cycles coming from all the saddles. We moved from the decomposition in figure 3 to the
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one in figure 4 by making the argument of b larger. However we could have obtained the

same result by cranking up the FI parameter ξ.

As we increase the FI parameter, or alternatively the argument of b, more and more K

cycles will eventually intersect the original contour Γ, and hence we have to include in the

path-integral more and more J cycles coming from new saddles. This discontinuous tran-

sition is called Stokes phenomenon and its presence is tightly connected with the physical

interpretation of the complexification of the squashing parameter. We will expand on this

in section 3.2. Note however that since we are interested in a weak coupling, semi-classical

expansion for the path-integral we are actually interested in the limit ξ → ∞. For this

reason, in this limit it is sufficient to include any non-zero complexification of b = eiθ in

order to split the path-integral into the sum of integrals over all of the J cycles in each

topological sector as in figure 4.

Let us look at yet another more interesting example given by the theory with two

chiral multiplets. The partition function is now

Z
(2,0)

S3
b

(ξ) =

∫
Γ
dx e2πiξx (sb (x+ iQ/2))2

=

∫
Γ
dx e2πiξx−iπ(x+iQ/2)2−iπQ

2−2
12


(
e2π(bx+ib2), e2πib2

)
∞(

e2πx/b, e−2πi/b2
)
∞

2

, (3.4)

giving us the effective action

S
(2,0)
eff (x) = −2πixξ + iπ

(
x+

iQ

2

)2

+ iπ
Q2 − 2

12
− 2 log

[(
e2π(bx+ib2), e2πib2

)
∞

]
+ 2 log

[(
e2πx/b, e−2πi/b2

)
∞

]
. (3.5)

Note that the q-Pochhammer (a; q)∞ is only defined when the modulus of the second

argument is less than one. Thus for the above expression for Seff to make sense we must

have e2πib2 and e−2πi/b2 both with modulus less than one. Thus we will only consider the

case where b = eiθ for 0 < θ < π/2 (or alternatively −π < θ < −π/2). We will be easily

able to relate this to the case −π/2 < θ < 0 (respectively π/2 < θ < π) by the vortex ↔
anti-vortex symmetry, i.e. b→ b−1.

We now perform the Picard-Lefschetz decomposition as above, which is shown in fig-

ure 5. As it is manifest from figure 5 when we decompose the path-integral we need to

include all of the J cycles coming from the lowest saddle point in each topological sector.

The main novelty in this example is that now we do have contributions coming for all the

non-perturbative solutions, i.e. we get contributions from m-vortex-n-anti-vortex saddles

for m,n ∈ N. We do not need to include all of their J cycles, we just need the J thimble

coming from the lowest (real part of the) action solution in each topological sector. For

example integrating over the J cycle from the perturbative saddle will pick up the contribu-

tions from all the saddles in the trivial topological sector, i.e. all the k-vortex-k-anti-vortex

saddles. We have just recovered the full resurgence triangle structure.
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(a) The flow in the upper half plane.
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(b) Perturbative saddle and its nearest pole.

Figure 5. Morse flow for the theory with two chirals, b = ei/2, ξ = 12. The green circles are

saddles and the red crosses are poles. From each saddle the downward flows (the J cycles) go off

to the sides and eventually off to ∞. The upward flows (K cycles) flow up to the nearest pole, and

down to either the nearest pole, or past the real axis if they are the lowest saddle in their given

topological sector.

3.1 Recovering the resurgence triangle

In this section we kept on referring to the critical points of the effective action as different

topological sectors despite our 3-dimensional theory not having a topological theta angle

characterising the usual 4-d decomposition of the path-integral into different instantonic

sectors. The reason for our “abuse” of terminology lies in the complexification of the

squashing parameter and the subsequent appearance of what seems to be very similar to

a topological angle.

Let us go back to the general partition function (2.6) and look more closely at the

poles of the one-loop determinant. Here the poles lie at x = imb + in/b for m,n ∈ N and

the classical action term in the integrand, e2πiξx = e−Sc , evaluated at these locations is

e2πiξ(imb+in/b). When b = eiθ we can define

Q = b+
1

b
= 2 cos θ , Θ = −i

(
b− 1

b

)
= 2 sin θ . (3.6)

Now we see that the classical action evaluated at each of the poles can suggestively be

rewritten as

Sc(m,n) = 2πiξ(imb+ in/b) = πξ[(m+ n)Q+ i(m− n)Θ]

= πξ (|N |Q+ iΘN) + 2πξQk , (3.7)

where N = m − n and k = min(m,n). In terms of these new variables (N, k) it is now

clear that Sc(m,n) corresponds to the k vortex-anti-vortex solution on top of the N -vortex

topological sector (anti-vortex sector if N < 0). The case N = 0, i.e. m = n, is then related

to the topologically trivial sector, directly connected to the usual perturbative vacuum.
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Importantly we notice that the classical actions of these solutions are now complex: the

imaginary part of the action is related to a hidden topological angle (HTA) Θ. When b is

real Θ vanishes and we cannot decompose the path-integral into different topological sectors

but as soon as we complexify b, Θ becomes non-zero and the HTA allows us to identify a

column of non-perturbative contributions topological sector by topological sector. This is

reminiscent of the theories studied in [20, 31–34].

Note however a key difference: for theories with a genuine topological angle the action

of non-perturbative objects, being that for example instantons in 4-d or vortices in 2-d,

takes the schematic form S = |N |/g + iΘN for some coupling constant g and topological

number N . In particular the real and imaginary part of the on-shell actions are not

correlated, i.e. the θ angle has nothing to do with the coupling constant. In the present case

however we have that both the real and imaginary part of the saddles action (3.7) depend

from the coupling ξ, this will have important repercussions on the resurgent structure of

the theory.

Forgetting this issue for the moment we can thus split the partition function into a

sum over topological sectors in a transseries:

Z
(Nc,Na)

S3
b

(ξ) =

∞∑
N=−∞

e−πξQ|N |+iπξΘNζN (ξ) , (3.8)

where ζN (ξ) contains the contributions from all the k vortex-anti-vortex saddles in the N th

topological sector.

The function ζN (ξ) precisely corresponds to the N th column of the resurgence triangle

presented in figure 1

ζN (ξ) =
∞∑
k=0

e−2πξQkΦ
(k)
N (ξ) , (3.9)

a sum of perturbative expansions, Φ
(k)
N (ξ), on top of a k vortex-anti-vortex background in

the N th topological sector. In section 4 we will show how one can use resurgent theory to

extract from just one of the Φ
(k)
N (ξ) all the other Φ

(k′)
N (ξ) belonging to the same topological

sector.

3.2 Complexified squashing and Stokes phenomenon

We would like to understand now the physical interpretation of this complexified squashing

parameter. In [47] (see also [48]) the authors studied the rigid limit of 3-d new minimal

supergravity to find all possible backgrounds (metric and auxiliary fields) admitting rigid

supercharges. In particular for theories with four supercharges and for which the three

dimensional manifold is an S1 fibration over S2 the metric takes the form

ds2 = h2

(
dψ + 2 sin2 θ

2
dφ

)2

+ (dθ2 + sin2 θdφ2) , (3.10)

where (θ, φ) are the usual coordinates on S2, ψ is the angular coordinate parametrising the

S1 Hopf fibre over S2 and h ∈ R\{0} that we can parametrise as h = (b+1/b)/2. However
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to have rigid supersymmetry we must also turn on some background fields, in particular a

vector field V µ must be present and it takes the form

V µ∂µ =
b− b−1

b+ b−1
∂ψ , (3.11)

hence a never vanishing Killing vector associated to the U(1) isometry of the S1 fibre.

Note that this supersymmetric background has actually two branches. When b > 0 both

h and Vµ are real and this corresponds precisely to the squashed S3
b case discussed so far.

However we can also pick b = eiθ for some θ ∈ [0, 2π] (not to be confused with one of the

coordinates of the S2). The metric is still completely real however the Killing vector has

now become purely imaginary.

We can understand this complex squashing as turning on a chemical potential for the

U(1) rotation or equivalently, thanks to the non-trivial fibering (3.10), for the Jz rotation

of S2. The branch b > 0 corresponding to real squashing is continuously connected to

the branch b = eiθ corresponding to the introduction of an omega-deformation, effectively

rotating the S2 along its axis. When this chemical potential is turned on we have that

vortices will become weighted by (b − 1/b)/(b + 1/b) = iΘ/Q while anti-vortices will be

weighted by −(b− 1/b)/(b+ 1/b) = −iΘ/Q exactly has shown in equation (3.7). For real

b we cannot distinguish between different topological sectors via Picard-Lefschetz decom-

position, but the moment we include a phase in b the topological sectors split and we can

distinguish between them in our Picard-Lefschetz decomposition.

Furthermore we can also understand the reason for the appearance of Stokes phe-

nomenon as we vary the argument of b at fixed FI ξ, or similarly modifying the value of

the FI parameter for fixed, non-zero argument of b. The reason is that the FI parameter

is regulating the size of the vortices; for infinite FI parameter the vortices are point-like

objects perfectly localised at the north and south poles of the S2. On the other hand for

finite FI parameter vortices have a size and they are not perfectly localised at the poles,

and have some overlap at the equator.

There is now some play off between the FI parameter and the phase of b. If the value

of ξ is not large enough we cannot immediately distinguish between topological sectors via

Picard-Lefschetz decomposition the moment we switch on a phase for b. For a given phase

of b, the FI parameter needs to be sufficiently large, i.e. the vortices need to be sufficiently

localised at the north and south poles, before we can distinguish between sectors. For

small argument of b the imaginary part of the action at the perturbative saddle of the

effective action (the saddle just below the pole at the origin) is small but non-zero, and it

will generically be different from the imaginary part of the action at the non-perturbative

saddles of the effective action. As the argument of b (or the FI) increases, so does the

imaginary part of the action of the saddles in the non-perturbative sectors. At some point

the imaginary part of the classical action of the perturbative saddle will equal the vortex

and the anti-vortex one and it will be possible to construct a thimble joining these different

saddles, i.e. we will be at a Stokes line, see figure 6(b). At this point the J cycle from the

perturbative saddle hits the vortex and anti-vortex saddles. Increasing b even more and we

will cross this Stokes line, the J cycle jumps over the saddle from the vortex saddle, and in
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(c) b = ei.

Figure 6. Morse flow for the theory with one chiral and one anti-chiral for b = ei/2, b = e0.87i and

b = ei all with ξ = 1. The green circles are saddles and the red crosses are poles. As θ increases the

position of the saddles and the J and K cycles change. Figure (b) shows when the Stokes crossing

happens. At this point the J cycle from the perturbative saddle connects with the K cycle from

the vortex and anti-vortex. As θ increases beyond this value, figure (c), the K cycles from vortex/

anti-vortex no longer flow to the perturbative pole, but crosses through the real axis.

our decomposition we now have to include the J cycles from the vortex and the anti-vortex

as well, 6(c).

It should be in principle possible to derive our analysis as the limit of vanishing Chern-

Simons level, i.e. strong coupling g = 1/k → ∞, and vanishing real masses of the thimble

decomposition carried out in [17]. However it is very likely that this is a singular limit since

the tails of the thimbles, i.e. the relative homology of good regions (Re Seff(x) > 0) in the

complex x-plane, change discontinuously for g > 0 and g = 0. It would also be interesting

to analyse more in details the monodromy structure of these thimbles for intermediate

values of ξ and understand the connection between these Stokes jumps and the analysis

carried out in [49].

Furthermore it was observed in [30] that the building blocks (2.5) to compute the 3-d

N = 2 partition functions on a round sphere, i.e. b = 1, are directly related to the structure

constants in 2-d Liouville with central charge c = 25. Roughly speaking our 3-d theory

is realised on the domain wall of two S-dual N = 4, 4-d gauge theories which are in turn

related to 2-d Liouville via AGT correspondence. Subsequently in [8] this correspondence

was generalised to the 3-d squashed sphere case, i.e. b > 1, and the structure constants of

Liouville with central charge c = 1 + 6Q2 = 1 + 6(b+ b−1)2.

Our complexification of the squashing parameter would now allow us to interpolate

continuously between “standard” space-like Liouville, for which b ∈ R and c = 1 + 6(b +

b−1)2 ≥ 25, and time-like Liouville, for which b = ib̂ with b̂ ∈ R c = 1 − 6(b̂ − b̂−1)2 ≤ 1.

We just need to use b = eiθ with θ ∈ [0, π/2] to connect b = 1 to b̂ = 1. It would

be extremely interesting to follow the analytic continuation of the integration contours

of the path-integral for Liouville along this path in the complex b plane following the

works [27, 50].
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Figure 7. Picard-Lefschetz decomposition of the original contour of integration Γ. Each thimble

identifies a different topological sector.

4 Resurgence analysis

Now that we have understood how to decompose the localised path-integral as a sum

over thimbles each one of them associated to a different topological sector we want to

analyse whether or not in each topological sector one can retrieve higher non-perturbative

corrections from the purely perturbative data by means of resurgent analysis. We will

shortly see that it will be necessary to introduce a Cheshire Cat deformation to make this

resurgent structure manifest. However we will first start our discussion with the undeformed

theory to clarify the necessity of this deformation.

4.1 Undeformed theory

Let us analyse more in detail, and thimble by thimble, the analytic structure of the localised

path-integral and for concreteness we will focus to the case of two chirals although it is

easy to repeat the analysis in theories with any other matter content. As argued in the

previous section we can decompose the path integral into contours as shown in figure 7.

Thus we can write the path integral as

Z
(2,0)

S3
b

(ξ) =

∫
Γ
dx e2πiξx (sb(x+ iQ/2))2

=
∑
n∈Z

∫
Γn

dx e2πiξx (sb(x+ iQ/2))2 , (4.1)

where ΓN is the contour associated to the N th topological sector, N ≤ 0 being the −N
vortex sector, while N > 0 being the N anti-vortex sector, as schematically depicted in

figure 7.

The contour Γ−N , for N ≥ 0, runs vertically starting from +i∞+ Re(iNb)− ε circles

around the point iNb and goes back to +i∞+Re(iNb)+ε. Similarly the contour ΓN , with

N > 0, runs vertically starting from +i∞+Re(iN/b)− ε circles around the point iN/b and

goes back to +i∞+Re(iN/b)+ε. The first pole in each topological sector is to be found at

iNb or iN/b for the contour Γ−N or ΓN respectively. For each one of these integrals we can

shift the integration variable to move the first pole in its topological sector to the origin,
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namely we rewrite the contours as Γ−N = iNb + Γ0 or ΓN = iN/b + Γ0, for N ≥ 0. This

shift in integration variable will bring out an explicit exponential of the classical action

factor as the weight of each topological sector. The partition function is then

Z
(2,0)

S3
b

(ξ) =

∫
Γ0

dx e2πiξx (sb(x+ iQ/2))2

+
∑
N>0

e−2πξNb

∫
Γ0

dx e2πiξx (sb(x+ iNb+ iQ/2))2

+
∑
N>0

e−2πξN/b

∫
Γ0

dx e2πiξx (sb(x+ iN/b+ iQ/2))2

= ζ0(ξ, b) +
∑
N>0

e−2πξNbζN (ξ, b) +
∑
N<0

e2πξN/bζN (ξ, b)

=

∞∑
N=−∞

e−πξQ|N |+iπξΘNζN (ξ, b) , (4.2)

where again Q = b + 1/b while Θ = −i(b − 1/b). Upon complexification of the squash-

ing parameter we have that the Picard-Lesfchetz decomposition of the path-integral can

be directly seen as a manifestation of the resurgence triangle precisely as presented in

equation (3.8) and the related discussion.

Now let us zoom in on the topologically trivial sector, i.e. N = 0, and analyse its

corresponding contour integral. We have

ζ0(ξ, b) =

∫
Γ0

dx e2πixξsb (x+ iQ/2)2

=

∫
Γ0

dx e2πixξ
∞∏

n,m≥0

((m+ 1)b+ (n+ 1)/b− ix)2

(mb+ n/b+ ix)2

=

∫
Γ0

dx e2πixξ
∞∏
m=0

((m+ 1)(b+ 1/b)− ix)2

(m(b+ 1/b) + ix)2
H0(x) , (4.3)

where we define H0(x) by

H0(x) =
∏
m 6=n

((m+ 1)b+ (n+ 1)/b− ix)2

(mb+ n/b+ ix)2
. (4.4)

H0(x) can be regularised using q-Pochhammers, but the important property is that it

is entire along the contour Γ0 as well as in the region define by its interior. On the other

hand, the remaining infinite product in the integral can be regularised (see for example the

appendix of [22]) to give

ζ0(ξ, b) =

∫
Γ0

dx e2πixξ
Γ
(
ix
Q

)2

Γ
(

1− ix
Q

)2H0(x) . (4.5)

Note that if we were to replace H0(x)→ 1 we would obtain precisely the contribution from

the topologically trivial sector to the partition function of the N = (2, 2) CP1 model on
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S2 discussed in [22] where the chiral fields have effective charge q = 1/Q. Perhaps not

surprisingly this function H0(x) is storing all the information regarding the additional S1

and all the different topological sectors.

This integral can be performed by summing over the residues of the poles on the

positive imaginary axis and the answer we get is of the form

ζ0(ξ, b) =
∞∑
k=0

e−2πξkQζ0,k(ξ, b) . (4.6)

We have denoted by ζN,k(ξ, b) the contribution from the k vortex-anti-vortex saddle on top

of the N th topological sector. For example we have

ζ0,0(ξ, b) = (2πQ)2ξH0(0)

(
1 +

iH ′0(0)

H0(0)
(2πξ)−1 − 4γ

Q
(2πξ)−1

)
,

ζ0,1(ξ, b) = (2πQ)2ξH0(iQ)

(
1− iH ′0(iQ)

H0(iQ)
(2πξ)−1 +

4(1− γ)

Q
(2πξ)−1

)
. (4.7)

The values of the function H0 and its derivatives at these special points can be computed

making use of the functional relations (A.6) and the known residues for sb, for example

from (A.3) one can easily see that H0(0) = 1/(2πQ)2. The actual values will not play any

role in what follows so we will keep them in this implicit form.

Note importantly that these are the perturbative expansions around each of the clas-

sical non-perturbative backgrounds, and they are not asymptotic series in ξ, but in fact

they truncate after finitely many orders. Thus at first sight it looks like we cannot apply

resurgence analysis to this theory.

We can of course repeat this analysis in all of the topological sectors. For the N th

topological sector we find

ζN (ξ, b) =

∫
Γ0

dx e2πixξ
Γ
(
ix
Q

)2

Γ
(

1− ix
Q + |N |+ iN Θ

Q

)2HN (x+ i |N | Q
2
−NΘ

2
) . (4.8)

Here we have defined HN (x) by

HN (x) =
∏

m 6=n+N

((m+ 1)b+ (n+ 1)/b− ix)2

(mb+ n/b+ ix)2
. (4.9)

Note that the reason for this splitting into ratio of gamma functions and HN (x) arises

quite naturally by using equations (3.6)–(3.7) to rewrite the one-loop determinant (2.5)

sb(x+ iQ/2) =
∏
B∈Z

∞∏
k=0

|B|Q+ iBΘ + 2(k + 1)Q− 2ix

|B|Q+ iBΘ + 2kQ+ 2ix
(4.10)

=
∏
B∈Z

Γ
(
ix
Q + |B|

2 + iBΘ
2Q

)
Γ
(

1− ix
Q + |B|

2 + iBΘ
2Q

) , (4.11)
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where we defined B = m − n and k = min(m,n). In the given N th topological sector we

factorise out the ratio of gamma functions coming from the B = N term which will be

the only singular factor along the corresponding contour of integration; everything else is

collected in these auxiliary functions HN (x). Once more if we were to set HN (x) → 1 we

would obtain precisely the contribution coming from the topological sector with magnetic

flux B = N and θ angle directly related to our Θ for the two-dimensional supersymmetric

CP1 model discussed in [22].

Here as well we can regulate the function HN (x) using q-Pochhammers, but as it is

entire along the contour and in its interior we will not need its precise form. When we can

evaluate these integrals we get an expansion of the form

ζN (ξ, b) =
∞∑
k=0

e−2πξkQζN,k(ξ, b) , (4.12)

precisely as expected from our resurgence triangle discussion for equation (3.9). As seen

for the topologically trivial sector, when we write ζN,k(ξ, b) as a perturbative series in ξ and

we find that it truncates after finitely many orders. In the present case of two chirals the

truncation happens precisely after two orders, so we will need to deform the theory before

we are able to apply the resurgence framework to reconstruct non-perturbative information

from perturbative data.

4.2 Cheshire Cat deformation

To re-introduce the (general) asymptotic nature of every perturbative expansion we now

want to add a Cheshire cat deformation to the theory. Following [22] we have two options

to consider. One possibility is to analytically deform the integrand of the localised partition

function to mimic a non-supersymmetric unbalance between the number of bosonic and

fermionic degrees of freedom. To do this we note that the matter one-loop determinant for

the chiral theory (Nc, 0) can easily be written as

Zmatter =

(
detOψ
detOφ

)Nc
. (4.13)

Thus this supersymmetry breaking deformation would look something like

Z̃matter =
(detOψ)Nf

(detOφ)Nb
= Zmatter (detOφ)∆ , (4.14)

where we have set Nb = Nc − ∆ and Nf = Nc. To proceed we would need to keep

and regulate the full one-loop determinant written as an infinite product over eigenvalues

with degeneracies, which can be found in [8, 40], without all the cancellations between

pairing of bosonic and fermionic modes that take place when ∆ = 0 producing the simpler

expression (2.5).

The second option, which turns out to be nicer, is to deform the number of chiral

multiplets to be non-integer, Nc → Nc + ∆. Everything we will discus in this paper works
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perfectly fine in both cases, but the expressions are much shorter for this latter deformation,

and just as illuminating. In this case we have

Z̃matter =

(
detOψ
detOφ

)Nc+∆

. (4.15)

Because both the fermionic and bosonic determinants are raised to the same power we

still have the same cancellations between the determinants, and so we can stick with the

one-loop determinant expressions we already have.

In this section we will focus only on this second type of Cheshire Cat deformation

where we analytically continue in the number of chiral fields to non-integer values. In [22]

we have already shown in a 2-d context how the introduction of an unbalance between

bosons and fermions, effectively breaking supersymmetry, produces very similar results.

However a striking point we want to stress is how almost any conceivable deformation

of the theory will immediately make the perturbative expansions asymptotic, allowing us to

use the full machinery of resurgent analysis. In many cases, supersymmetrically localised

theories are effectively sitting at very special points in the space of “physical functions”

where miraculous cancellations hide the resurgence structure. Whenever a Cheshire Cat

deformation is re-instated we can instantly see reappearing the complete resurgent body,

and when taking the vanishing limit of this deformation only its grin will remain.

For simplicity we will now work in the topologically trivial sector, but everything

follows through in the other sectors in exactly the same manner, one has just to replace

H0(x) by HN (x+ iNb) or HN (x− iN/b) and the ratio of gamma according to (4.8). Now

applying the deformation instead of equation (4.3) we get

ζ̃0(ξ, b,∆) =

∫
Γ0

dx e2πixξ
Γ
(
ix
Q

)∆+2

Γ
(

1− ix
Q

)∆+2
H0(x) (4.16)

=

∫
Γ0

dx e2πixξH0(x)e
(∆+2)

[
log Γ

(
ix
Q

)
−log Γ

(
1− ix

Q

)]
.

Note that in principle the deformation would also alter the function H0(x)→ H0(x)1+∆/2.

However this turns out to be superfluous since the deformation of H0(x) will not add

anything new and to recover the resurgence structure it will be sufficient to just deform

the ratio of gamma functions. The only change we want to point out is that both the poles

and the zeroes of H0(x) will become branching points for H0(x)1+∆/2.

Now the contour Γ0 comes down from +i∞− ε, circles the origin and goes back up

to +i∞ + ε. We make the change of variables x → ix so the integral is now along the

positive real axis and we note that the function log Γ(− x
Q) has a branch cut precisely on

the contour of integration so we obtain the integral along the real axis of its discontinuity

ζ̃0(ξ, b,∆) = i

∞∫
0

dx e−2πξxH0(ix)e
−(∆+2) log Γ

(
1+ x

Q

)
(
e

(∆+2) log Γ
(
− x
Q

+iε
)
− e(∆+2) log Γ

(
− x
Q
−iε
))

.

(4.17)
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We can now use the discontinuity formula,

log Γ(−x+ iε)− log Γ(−x− iε) = −2πi (bxc+ 1) , (4.18)

where bxc denotes the floor of x, to write ζ̃0(ξ, b,∆) in the form

ζ̃0(ξ, b,∆) = i

∞∫
0

dx e−2πξxH0(ix)e
−(∆+2) log Γ

(
1+ x

Q

)
+(∆+2) log Γ

(
− x
Q
±iε
)

(4.19)

e
±πi(∆+2)

(
b x
Q
c+1

)(
e
−πi(∆+2)

(
b x
Q
c+1

)
− e+πi(∆+2)

(
b x
Q
c+1

))
.

Next to make manifest the transseries nature of this integral we rewrite the domain of

integration as
∞∫

0

dx f(x) =
∞∑
k=0

(k+1)Q∫
kQ

dx f(x) ,

evaluate the floor function on each interval and then use the identity

∞∑
k=0

(k+1)Q∫
kQ

dx f(x) =

∞∑
k=0

 ∞∫
kQ

dx f(x)−
∞∫

(k+1)Q

dx f(x)

 . (4.20)

Finally we change variables to make all the integrals start from the origin. In this way we

can write

ζ̃0(ξ, b,∆) =
∞∑
k=0

e−2πξkQζ̃0,k(ξ, b,∆) . (4.21)

For the moment we specialise to ζ̃0,0(ξ, b,∆) which takes the form

ζ̃0,0(ξ, b,∆) = 2 sin(π∆)e±iπ∆

∞∫
0

dx e−2πξxH0(ix)e
−(∆+2)

[
log Γ

(
1+ x

Q

)
−log Γ

(
− x
Q
±iε
)]
,

and by making use of the shift formula

log Γ(−x± iε) = log Γ(1− x± iε)− log(x)∓ iπ , (4.22)

we obtain

ζ̃0,0(ξ, b,∆) = 2 sin(π∆)

∞∫
0

dx e−2πξxH0(ix)

(
x

Q

)−(∆+2)

e
−(∆+2)

[
log Γ

(
1+ x

Q

)
−log Γ

(
1− x

Q
±iε
)]

=

∞∫
0

dx e−2πξxx−(∆+2)Φ
(0)
0 (x∓ iε) = S̃∓

[
Φ

(0)
0

]
(ξ, b,∆) . (4.23)

– 24 –



J
H
E
P
1
2
(
2
0
1
9
)
0
8
5

In the last line we introduced the modified lateral Laplace transform whose explicit defini-

tion is given by

S̃∓ [Φ] (ξ) = lim
ε→0+

∞∓iε∫
0

dx e−2πξxx−(∆+2)Φ(x)

= lim
ε→0+

∞∫
0

dx e−2πξxx−(∆+2)Φ(x∓ iε) . (4.24)

The Borel transform of the purely perturbative part in the topologically trivial sector

Φ
(0)
0 (x) can be read off from (4.23)

Φ
(0)
0 (x) = 2 sin(π∆)H0(ix)Q∆+2 e

−(∆+2)
[
log Γ

(
1+ x

Q

)
−log Γ

(
1− x

Q

)]
. (4.25)

Importantly this has finite radius of convergence around the origin and can be expanded

as a power series in x

Φ
(0)
0 (x) = sin(π∆)

∞∑
m=0

c0,0,m(b,∆)xm . (4.26)

After commuting this series with the Laplace integral we finally obtain

ζ̃0,0(ξ, b,∆) = sin(π∆)(2πξ)∆+2
∞∑
m=0

c0,0,m(b,∆)

(2πξ)m+1
Γ(m− 1−∆) . (4.27)

It is simple to note that for generic, i.e. non-integer ∆ this series is asymptotic. Precisely

as anticipated after having performed this Cheshire Cat deformation the perturbative ex-

pansion is not truncating any longer and we are left with a factorially growing asymptotic

series. Furthermore when we take the limit ∆ → 0 we have sin(π∆) → 0 but simultane-

ously the Γ(m−1−∆) develops poles for m = 0, 1, hence in this limit we reproduce exactly

the undeformed result ζ̃0,0(ξ, b,∆)
∆→0−→ ζ0,0(ξ, b) of equation (4.7).

We can also find the general expression for all ζ̃0,k(ξ, b,∆). Starting from equa-

tion (4.19), rewriting the integral as we did before, and using the shift formula (4.22)

we find

ζ̃0,k(ξ, b,∆) = 2 sin(π∆)e±iπk∆

∞∫
0

dx e−2πξxH0(ix+ ikQ)
k∏

n=0

(
x

Q
+ n

)−(∆+2)

e
−(∆+2)

[
log Γ

(
1+k+ x

Q

)
−log Γ

(
1− x

Q
±iε
)]

= e±iπk∆

∞∫
0

dx e−2πξxx−(2+∆)Φ
(k)
0 (x∓ iε)

= e±iπk∆S̃∓
[
Φ

(k)
0

]
(ξ, b,∆) , (4.28)
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where once more we used the modified lateral Laplace transform (4.24) to integrate the

Borel transform Φ
(k)
0 (x) of the kth vortex-anti-vortex non-perturbative sector that reads

Φ
(k)
0 (x) = 2 sin(π∆)H0(ix+ ikQ)Q∆+2

k∏
n=1

(
x

Q
+ n

)−(∆+2)

e
−(∆+2)

[
log Γ

(
1+k+ x

Q

)
−log Γ

(
1− x

Q

)]
, (4.29)

reducing to (4.25) for k = 0.

Similarly to the purely perturbative series also in the non-perturbative sectors one can

expand the Borel transform as a convergent power series at the origin x = 0 and commute

the sum with the integral to obtain an asymptotic, factorially growing power series for

generic ∆. Taking the limit ∆ → 0 reproduces precisely the truncating perturbative

series (4.7) of the undeformed case.

Putting everything together we arrive at the complete transseries expression for (4.21)

ζ̃0(ξ, b,∆) =

∞∑
k=0

e−2πξkQe±iπk∆S̃∓
[
Φ

(k)
0

]
(ξ, b,∆) , (4.30)

where the factor e±iπk∆ is called the transseries parameter. Note that a similar analysis

can be carried out in each topological sector.

The expression (4.30) for the full, perturbative and non-perturbative, set of contribu-

tions to the topologically trivial sector tells us that we are working with what is called a

one parameter transseries. One might think that according to our choice of sign eiπk∆S̃−
or e−iπk∆S̃+ we would find two different results for real and positive ξ; however as was

shown in full details in [51] for the most general one parameter the jump in this transseries

parameter is precisely needed to cancel the ambiguity in the resummation (S̃+−S̃−)[Φ
(k)
0 ],

also called Stokes automorphism.

Our transseries (4.30) is completely real and unambiguous for real and positive ξ: one

can use the analysis6 of section 6 of [22] or the more general expressions in [51] to show

that the would-be ambiguity cancels order by order in the vortex-anti-vortex counting

parameter e−2πξkQ.

The imaginary part of the transseries parameter Ime±iπk∆ = ± sin(πk∆) is exactly

(anti-)correlated with the discontinuity (S̃+ − S̃−)[Φ
(k)
0 ]. Hence (4.30) is the real solution

corresponding to what is called median resummation (see [52] and the general discussion

in [51]). Using the results of section 6 of [22] we can also rewrite (4.30) in the manifestly

real and unambiguous form

ζ̃0(ξ, b,∆) =

∞∑
k=0

e−2πξkQ cosk(π∆) S̃0

[
Re
(

Φ
(k)
0

)]
(ξ, b,∆)

= S̃0

[
Re
(

Φ
(0)
0

)]
(ξ, b,∆) + e−2πξQ cos(π∆) S̃0

[
Re
(

Φ
(1)
0

)]
(ξ, b,∆)

+ e−4πξQ cos2(π∆) S̃0

[
Re
(

Φ
(2)
0

)]
(ξ, b,∆) +O

(
e−6πξQ

)
, (4.31)

6Note that in the present case the function H0 does not really play any role and it is just carried

along the way. The one-parameter nature of the transseries under consideration comes from the particular

combination of log Γ functions.
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where S̃0 denotes the modified Laplace transform (4.24) where the integration contour is

the positive real axis which we can do now given the fact that Re
(

Φ
(k)
0

)
(x) is completely

regular for x > 0.

As already stressed if we were to expand each Laplace integral as a power series we

would obtain a factorially divergent perturbative expansion in 1/ξ in each non-perturbative

sector, however when we take the limit ∆ → 0 all of these will truncate to finitely many

perturbative coefficients thus reproducing (4.7). We will now show that having made the

body of the Cheshire Cat visible by considering generic ∆ will allow us to reconstruct the

non-perturbative sectors from the asymptotic perturbative one and vice-versa.

4.3 Non-perturbative data from perturbation theory

What we would like to do now is using the resurgence machinery to reconstruct the de-

formed non-perturbative sectors (4.28) and eventually the undeformed contributions (4.7)

from the deformed resummed perturbative data (4.23) or equivalently from the deformed

asymptotic perturbative series (4.27).

A standard method is to start from the perturbative asymptotic power series (4.27)

and resum it by performing a directional Laplace integral of its Borel transform (4.25)

(2πξ)−(∆+2)ζ̃0,0(ξ, b,∆) =

∞∫
0

dy

2πξ
e−yy−(∆+2)Φ

(0)
0

(
y

2πξ

)
(4.32)

=

∞e−iθ∫
0

dx e−2πξx(2πξx)−(∆+2)Φ
(0)
0 (x) = Sθ[Φ

(0)
0 ](ξ, b,∆) ,

where θ = arg ξ and Sθ denotes the modified directional Laplace transform, similar to

equation (4.24) (in here we added an additional factor (2πx)−(∆+2) for convenience).

The above equation does define a function on the complex variable ξ by anti-correlating

its argument with the direction of the Laplace transform. This function is defined every-

where on the complex ξ plane save some cuts where there is a discontinuity in the directed

Laplace transform because of singularities of the integrand, i.e. the Stokes directions of the

Borel transform.

A well known dispersion like argument [53, 54] applied to the function just constructed

from the purely perturbative data, i.e. ζ̃0,0(ξ, b,∆), would generically allow us to relate

the asymptotic form of the perturbative coefficient (4.27) to the discontinuities of this

function, which in turn directly relates to all the non-perturbative contributions (4.28)

(and their associated perturbative expansions) coming from the tower of k vortex-anti-

vortex configurations in the same topological sector.

In the present case however we cannot straightforwardly use this standard method

because of presence of the function H0(ix) within the Borel transform (4.25). This function

has poles, or alternatively its Cheshire Cat deformation, H0(ix)1+∆/2, has branch cuts

going out horizontally to infinity in the positive real direction starting at x = mb and

x = m/b for m ∈ N∗ as one can read from the denominator of (4.4). For this reason in
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Figure 8. Contours of integration for the directed Laplace transformations.

equation (4.32) there are no straight rays emanating from the origin x = 0 in a direction

θ with − arg b ≤ θ ≤ arg b without intersecting any of the singular directions.

This suggests that we just need to find a different way from (4.32) to define a function

of the complex ξ variable with countably many branch cuts. One such way is as follows. We

define this function by gluing analytic functions defined in different wedges of the complex ξ

plane. First we consider the directional Laplace contour along the first integration contour

shown in figure 8. This defines a function of ξ analytic for −π/2 < arg ξ < π/2. Likewise we

use the second path shown in figure 8 to define a function of ξ in the wedge π/2 < arg ξ < π

union with −π < arg ξ < −π/2. The function thus obtained will have branch cuts along

the directions arg ξ = ±π/2 and its discontinuities will be related to the discontinuity

of the Borel transform along the directions arg x = 0 and arg x = π which in turn are

related to all the k vortex-anti-vortex non-perturbative sectors, but also infinitely many

other discontinuities associated with H0(ix)1+∆/2 with starting points either the poles or

the zeroes of (4.4).

This is somewhat unexpected from the resurgence point of view since these additional

branch cuts are associated with different topological sectors from the one we were focusing

on! In resurgence theory when we work in a given topological sector, say for example

the trivial one, we complexify the coupling constant to understand the analytic proper-

ties of the resummed perturbative series and from this reconstruct the non-perturbative

contributions in the same topological sector. Said in other words the imaginary part of

the complexified coupling constant has nothing to do with the topological angle. Hence

on resurgent ground we generically expect the Borel transform of the purely perturbative

data to know “everything” about non-perturbative saddles in the same topological sector

and “nothing” about different topological sectors. This is of course if no other structure is

present as we will discuss in the next Session.
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The present case is entirely different and the reason behind it lies in the unusual ap-

pearance of the hidden topological angle and the path-integral decomposition in topological

sectors (3.8). The imaginary part of the action in the N th topological sector is given by

ImS ∝ ξΘN ∝ (b − 1/b)ξ. Now it is clear that what we just said is not true anymore; if

we keep fixed Θ = −i(b− 1/b), complexify the coupling constant ξ and vary its imaginary

part we will inevitably vary the theta angle, i.e. the imaginary part of the action of each

topological sector. Hence in the case at hand we have some additional structure (see more

in the next section), making so that the Borel transform of the purely perturbative data

knows also of different topological sectors.

We found however two different methods that can be applied to these standard dis-

persion arguments to disentangle from the Borel transform the branches coming from the

same topological sector and the ones coming from other sectors. As a proof of principle we

will now present both but will not dwell too much on the consequences.

A first possibility is to impose that, as a genuine theta angle would do, indeed ImS =

πξΘN ∼ (b− 1/b)ξ is independent from the complexification of ξ. If we assume the double

scaling limit ξ → ∞ and simultaneously b = eiϑ/ξ we have that ImS ∝ ϑ is independent

from ξ. In this regime when we complexify ξ we have that b is not of unit modulus anymore;

however the background geometry discussed in section 3.2 still makes sense. The price to

pay is that now the weak coupling expansion ξ →∞ of (4.23) will not be as straightforward

as when we computed the factorially growing perturbative series (4.27) since in this double

scaling limit b is no longer an independent parameter and the Borel transform does depend

from the coupling through b.

An alternative method is to define something similar to (4.32) but not holomorphic:

(2πξ)−(∆+2)ζ̃0,0(ξ, b,∆) = 2 sin(π∆)

∞∫
0

dy

2πξ
e−y

(
y

Q

)−(∆+2)

H0

(
iy

|ξ|

)

e
−(∆+2)

(
log Γ

(
1+ y

2πξQ

)
−log Γ

(
1− y

2πξQ

))

= 2 sin(π∆)

∞e−iθ∫
0

dx e−2πξx

(
2πξx

Q

)−(∆+2)

H0(ixe+iθ)

e
−(∆+2)

(
log Γ

(
1+ x

Q

)
−log Γ

(
1− x

Q

))
, (4.33)

where again θ = arg ξ and we anti-correlate the direction of the Laplace transform with

the argument of the complexified coupling constant. The difference is that as we rotate the

argument of ξ we simultaneously rotate the branches of the function H0(ix) so that they

never cross our contour of integration, or equivalently in the y variable as we rotate the

argument of ξ the only branches crossing the contour of integration are the ones coming

from the log Γ functions and not from H0(iy). Hence as a function of ξ we only have two

discontinuities now, one across the arg ξ = 0 direction which will persist the ∆ → 0 limit

and one across the arg ξ = π direction which will disappear in the ∆→ 0 limit.
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With this definition we still have exactly the same perturbative asymptotic series (4.27)

since for ξ > 0 we trivially have that ξ = |ξ|. However when performing the Borel transform

we treat differently terms coming belonging to the same topological sector from terms

belonging to others in what effectively seems like an extremely ad-hoc prescription.

As mentioned before these discontinuities will be related to non-perturbative contri-

butions and with this, once again very a posteriori, prescription we can isolate only the

non-perturbative saddles in the same topological sector. It would be nice to provide some

numerical examples of large order relations similar to [53, 54], but unfortunately this turns

out to be quite non-trivial. The main issue we have with running some numerics lies in

evaluating the function H0(ix), at x = 0, Q, 2Q, . . . and so on. Using the results outlined

in appendix A this should be a doable task but we have decided to be content with the

analytic results derived and defer the numerics to future works.

5 Relation between different topological sectors

So far we have understood that the localised partition function can be written as a

transseries (4.2) over different topological sectors for which the imaginary part of the

squashing parameter plays the role of a hidden topological angle. Each topological sector

can be furthermore written as a transseries (4.6) capturing the perturbative series in the

given topological sector, plus the infinitely many non-perturbative contributions coming

from vortex-anti-vortex configurations on top of it. Upon Cheshire Cat deformation (4.21)

from a given perturbative series we can reconstruct every element in the same topological

sector, i.e. from one element of the resurgent triangle of figure 9 we can reconstruct all the

other elements in the same column. In this section we wish to discuss the relation between

the topological sectors and additional structures allowing us to move “horizontally” in the

resurgence triangle.

As stressed in the previous section the theta angle can be seen as introducing a grading

in the partition function (4.2), a sort of Fourier modes decomposition. Once we work topo-

logical sector by topological sector we complexify the coupling constant and use resurgence

theory to understand its analytic properties, but the theta angle and the imaginary part of

the coupling must not be confused with one another. To be able to move between different

topological sectors we need some additional structure that somehow links the theta angle

to the complexified coupling constant.

In many supersymmetric QFTs we indeed have this type of additional structure which

allows us to use the data contained in the transseries in the trivial topological sector, e.g.

for the present case (4.6), to calculate the data in different topological sectors.

For example in 2-dimensional N = (2, 2) supersymmetric field theories we have

shown [22] how the tt? structure of Cecotti and Vafa [55] is modified but still imposes

that the partition function must satisfy a differential equation in the holomorphic cou-

pling τ ∼ ξ + iθ. This is precisely the extra structure needed. With resurgence theory

we complexify ξ to reconstruct for example the topologically trivial sector from perturba-

tion theory and then use the tt? differential equation to obtain the data for sectors with

non-trivial θ dependence; i.e. the data for the instanton and anti-instanton sectors are
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Figure 9. Resurgence theory allows us to move vertically along each rectangle. From just one of

the contributions in a topological sector, i.e. Φ
(k)
B we can get all the Φ

(k′)
B with k′ 6= k.

intimately tied up with the instanton-anti-instanton contributions, and so on. From the

n-instanton-n-anti-instanton contribution we can use this additional structure to calculate

the contributions from different sectors in the resurgence triangle moving “horizontally”

across the resurgence triangle as shown in figure 9.

Schematically, if we were to reconstruct from the perturbative data Φ
(0)
0 say the first

instanton-anti-instanton contribution Φ
(1)
0 we would then be able to retrieve all the data in

the red square of figure 9. Similarly once we reconstruct the 2-instanton-2-anti-instanton

sector Φ
(2)
0 out of perturbation theory we would have access to the entire blue square of

figure 9.

This is very reminiscent of the Dunne-Ünsal relation in quantum mechanics [36–38].

There the same could be achieved; the data in the instanton-anti-instanton, or even just in

the purely perturbative series, can be related to the data in the instanton sector. In that

case the relationship was derived using boundary conditions on the non-perturbative effects.

In the present 3-d N = 2 case we have a very similar story. Here we have what is

usually called vortex-anti-vortex factorisation discussed in [35]. Reminiscent of the 2-d

case [9, 10], these three dimensional theories, say for example with 2N chirals, have a

partition function that factorises schematically as

Z
(2N,0)

S3
b

(ξ) =
N∑
i=1

Z
(i)
cl ×

(
Z

(i)
1−loopZ

(i)
V

)
×
(
Z̄

(i)
1−loopZ̄

(i)
V

)
. (5.1)

Here Z
(i)
cl = exp(−iπξeff µi) is the classical part of the action, with µi axial mass for the

ith chiral and ξeff the effective FI parameter, while Z
(i)
V and its complex conjugate are the

abelian vortex and anti-vortex partition functions with 2N chirals, dressed by Z
(i)
1−loop and

its conjugate.

As discussed in [35] the vortex partition function ZV can be better understood in the

degenerate b→ 0 limit where the background geometry becomes R2×S1 and the partition
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function counts finite-energy configurations on R2, i.e. vortices. Similarly in the 1/b → 0

limit the squashed sphere degenerates to a different R2×S1 and the partition function Z̄V
counts anti-vortices.

From this factorised form it is now not surprising that the transseries in different

topological sectors are related to one another. Hence we have the following method to

obtain all the non-perturbative data in all the topological sectors from the perturbative

data alone. First we deform the theory with some Cheshire Cat deformation as to re-

introduce all the asymptotic tails in the various perturbative expansions. Next we use usual

resurgence methods on the deformed theory to calculate all the non-perturbative vortex-

anti-vortex contributions in the trivial topological sector. Then we send the deformation

back to zero, retrieving all the non-perturbative data in this sector for the undeformed

theory. Finally we use the factorisation formula (5.1) to compute the data for all the other

topological sectors from the non-perturbative data in the trivial topological sector.

It is interesting to push this idea to higher dimensions. In fact it was already noted

in [35] that this factorised form for the partition function (5.1) is very reminiscent of the

Nekrasov structure in 4-d. If we focus for example to 4-d N = 2 theories on S4 we have

Pestun’s celebrated partition function [4]

ZS4(g, θ) =

∫
dµα e

−Scl(α)

g2 |Z1−loop(α)|2 |Zinst(α, τ)|2 , (5.2)

where g is the gauge coupling and θ the topological angle, while dµα is the measure over the

Cartan subalgebra of the gauge group and Zinst(α, τ) denotes Nekrasov [56, 57] instanton

partition function with τ = i
g2 + θ

2π .

The vortex partition function is now replaced by Nekrasov partition function, the 3-d

FI parameter translates into the 4-d coupling 1/g2, and the discrete sum of (5.1) becomes

an integral over the Cartan subalgebra of the gauge group.

As a concrete example let us consider pure N = 2 with gauge group SU(2) so that

the integral over the Cartan subalgebra reduces to an integral over α ∈ R. In this case

following [14] we can rewrite the path-integral in the topological sector form

Z
SU(2)
S4 (g, θ) =

∑
B∈Z

e
− 2π
g2 |B|+

iθ
2π
B
ζB(g) , (5.3)

where for B ≥ 0 we have

ζB(g) =
∑
N≥0

e
− 4π
g2N

∫ ∞
−∞

dα e
−Scl(α)

g2 |Z1−loop(α)|2 Z(B+N)
inst (iα)Z

(N)
inst(−iα) , (5.4)

while for B < 0 we just need to take the complex conjugate of this. These two equa-

tions should be compared with their 3-d counterparts (4.2) and (4.12). Note the function

Z
(k)
inst(iα) corresponds to the k-instanton Nekrasov partition function, e.g. Z

(0)
inst(iα) = 1,

and can be explicitly found in [14] for k ≤ 8.

As for the three dimensional case, in this S4 example we have some extra structure. It

is clear from the argument outlined above that if we were able to compute with resurgence
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methods from the purely perturbative expansion, i.e. B = 0, N = 0 above, all the contribu-

tions from the instanton-anti-instanton sectors, i.e. B = 0, N > 0, we would then be able to

calculate all the perturbative and non-perturbative data in all the other topological sectors.

The resurgence analysis for this class of N = 2 with different matter content has been

discussed in details in [14] (see also the earlier [13]) and the authors showed that it is

not however possible to reconstruct in this way the instanton-anti-instanton sectors from

perturbation theory. The singularities of the Borel transform for the purely perturbative

sector are not directly related to instanton-anti-instanton configurations. It was subse-

quently realised [18] (at least for the three dimensional case) that these singularities come

from new finite action complexified supersymmetric solutions.

The reason for this is subtle: although the Borel transform of the perturbative series

has poles, these are coming from the one-loop determinant of matter multiplets, i.e. hyper-

multiplets of N = 2, and the fields involved in these complexified supersymmetric solutions

come precisely from the matter sector. However we know that instantons are present even

in absence of hypermultiples. This suggests that the instanton-anti-instanton poles are

hidden by a Cheshire Cat structure inside the one-loop determinant of the N = 2 vector

multiplet. We have analysed the localised one-loop determinant for the vector multiplet

but failed so far to find a suitable Cheshire Cat deformation that would allow us to carry

on the programme outlined above.

It would be extremely interesting to see if these kind of holomorphic/anti-holomorphic

structures, intertwining the complexified coupling constant with the theta angle, can be

extended to less supersymmetric theories as for example just pure Yang-Mills, thus allowing

us to extend resurgence to the whole triangle of figure 9.

6 Conclusion

In this paper we have considered the partition function for abelian N = 2 supersymmetric

theories with different matter content living on a squashed S3. This problem was first

analysed in [17] for N = 2 Chern-Simons matter theories where the authors showed that

the presence of Stokes phenomenon in the thimble decomposition was directly related to

the ambiguities in resummation of the asymptotic perturbative expansion in the small

coupling g = 1/k, with k the Chern-Simons level.

In our work we have set to zero the Chern-Simons level and considered the perturbative

expansion in large FI parameter. Firstly we have analysed the Picard-Lefschetz decom-

position of the localised path-integral into steepest descent contours and we have shown

that if a suitable complexification of the squashing parameter b is introduced, a hidden

topological angle seems to appear and a steepest descent contour can be associated to each

topological sector.

Physically this complexified squashing parameter can be seen as adding a chemical

potential for rotation of the S2 so that vortices and anti-vortices rotate oppositely. The

FI term on the other hand regulates the size of the vortices localised at north and south

poles, thus we have a play off between these two parameters.
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As we vary the complexified squashing b and the Fayet-Iliopoulos we observe the split-

ting of saddle points into different topological sectors as well as Stokes phenomenon when-

ever a saddle crosses the steepest descent cycle coming from another saddle. For large

enough FI parameter these saddles can be associated to point-like vortex (or anti-vortex)

solutions and the path-integral can be decomposed into a sum of contour integrals, one for

each topological sector.

Having split the path integral into a sum over topological sector we first perform a semi-

classical expansion ξ � 1 showing that, due to the supersymmetric nature of the observable

under consideration, every perturbative series truncates after finitely many orders. These

N = 2 theories provide another interesting example of a field theory that lies at a very

special point in theory space where lots of miraculous cancellations hide the resurgence

structure rendering the perturbative expansions in each of the non-perturbative sectors as

truncating series.

To use the resurgence machinery we then introduce a Cheshire Cat deformation by

analytically continuing the number of chiral fields. As soon as the deformation parameter

is generic we immediately re-introduce the asymptotic nature of perturbation theory. Thus

we work at a generic point and using resurgent analysis reconstruct the vortex-anti-vortex

contributions from the deformed, factorially growing and purely perturbative data. Once

the deformation parameter is set back to its physical value we have that the asymptotic

tail of the perturbative series vanishes but the non-perturbative contributions still stand.

We also comment on the strange nature of the other topological sectors which should

be in principle completely disconnected from perturbation theory and the trivial topologi-

cal sector but in practice they are not. This suggests the existence of additional structures,

beyond the standard resurgence framework, namely what is called vortex/anti-vortex fac-

torisation. Similar structures are present also in 2-d and 4-d supersymmetric theories and

allow us to use non-perturbative data in the topologically trivial sector to obtain non-

perturbative data in other topological sectors.

In particular we pose the question on how to extend this Cheshire Cat deformation

combined with Nekrasov partition function to the case of say the pure SU(2)N = 2 super-

symmetric theory on S4 where on the one hand we do expect infinitely many instanton-

anti-instanton contributions but on the other hand these are somehow completely hidden

from perturbation theory.
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A Double sine function identities

We here state a number of useful formulae for the double sine function. The appendices

of [35, 58] contain comprehensive lists of properties for this function; otherwise we refer

to [41–43].

We define the double sine function as

sb (x) =
∏

m,n≥0

(mb+ n/b+Q/2− ix)

(mb+ n/b+Q/2 + ix)
. (A.1)

Following [42] we can introduce the double gamma function Γ2 defined by the analytic

continuation

Γ2(z;ω1, ω2) = exp

∂s
 ∑
m,n≥0

(mω1 + nω2 + z)−s

∣∣∣∣∣∣
s=0

 , (A.2)

so that the formal infinite product (A.1) can be rewritten as

sb(x+iQ/2) =
Γ2(ix;b,b−1)

Γ2(Q−ix;b,b−1)
= Γh(ix;b,b−1) =S2(ix|b,b−1)−1 =G(−ib,−ib−1; ix−Q/2) ,

where Γh is van de Bult [42] hyperbolic gamma function, S2 is the double Sine function of

Kurokawa and Koyama [43] and G is Ruijsenaars hyperbolic gamma [41].

Obviously sb(0) = 1 and furthermore sb(x) has zeroes on the lattice Λ+ = −iQ/2 −
ibZ≥0 − i/bZ≥0 and poles on the lattice Λ− = +iQ/2 + ibZ≥0 + i/bZ≥0. Both the zeroes

and poles are simple provided that b2 is not rational. In particular the pole at x = iQ/2 is

always simple and we have

sb(x) =
i

2π(x− iQ/2)
+O(1) , x→ iQ/2 . (A.3)

From the known functional equations

sb(x+ ib/2)sb(−x+ ib/2) =
1

2 cosh(πbx)
, (A.4)

sb(x+ iQ/2) =
sb(x+ iQ/2− ib)

2i sinh(πbx)
, (A.5)

one can derive the general expressions

sb(x+ iQ/2 + imb+ in/b)

sb(x+ iQ/2)
=

(−1)mn

n∏
k=1

2i sinh[πb(x+ ikb)]
m∏
l=1

2i sinh[π/b(x+ il/b)]

, (A.6)

sb(x− iQ/2 + imb+ in/b)

sb(x− iQ/2)
=

(−1)mn

n∏
k=1

2i sinh[πb(x− iQ+ ikb)]
m∏
l=1

2i sinh[π/b(x− iQ+ il/b)]

,

allowing us to obtain the residue at different poles from the residue at zero (A.3).
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A useful infinite product identity for sb(x) is given by

sb(x) = e−iπ
x2

2
−iπ b

2+b−2

24

∞∏
k=0

(
1 + e2πbxe2πib2(k+1/2)

)
∞∏
k=0

(
1 + e2πx/be−2πi(k+1/2)/b2

) , (A.7)

which can be regularised using q-Pochhammers symbols. Recall that the q-Pochhammer

(a; q)∞ is defined as

(a; q)∞ =

∞∏
k=0

(
1− aqk

)
. (A.8)

Using this we can thus write

sb(x) = e−iπ
x2

2
−iπ b

2+b−2

24

(
−e2πbx+πib2 ; e2πib2

)
∞(

−e2πx/b−πi/b2 ; e−2πi/b2
)
∞
, (A.9)

valid for Im(b2) > 0 so that |e2πib2 | < 1 as well as |e−2πi/b2 | < 1.
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