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1 Introduction

Parton distribution functions (PDF) [1] describe the structure of hadrons in terms of the

momentum and spins of the quarks and gluons. Deep inelastic scattering (DIS) experiments

have allowed for a phenomenological determination of the PDFs, but a direct calculation

using Quantum Chromodynamics (QCD) remains out of reach. The theoretical definition

of PDFs requires calculation of hadronic matrix elements with separations on the light

cone. A calculation on a Euclidean lattice is therefore not possible. Previously, the Mellin

moments of PDFs and Distribution Amplitudes (DA) of baryons and mesons have been

calculated with Lattice QCD [2–7], but the reduced rotational symmetry of the lattice only

allowed access to the lowest few moments. Unfortunately more moments than are available

are required for an accurate reconstruction of the x dependence of the nucleon PDF [8].

The signal-to-noise ratio and the power divergent mixings are two pressing bottlenecks in

this approach.
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To avoid the difficulties stemming from the light cone coordinates, it has been proposed

to calculate the nucleon matrix elements with purely space-like separations. A momentum

space formulation, proposed by X. Ji [9], calculates the parton quasi-distribution function

(quasi-PDF), q̃(y, p2
3), which describes the parton distribution of the third component of

the hadron momentum p3 rather than that of the “plus” light-cone component p+. In

the limit p3 → ∞, the quasi-PDF can be factorized into the light-cone PDF, f(x, µ2).

This technique has been explored extensively in numerical lattice calculations, for several

different quasi-PDFs, as well as for the pion quasi-distribution amplitude (DA) [10–24].

Other approaches to obtaining PDFs and meson Distribution Amplitudes from the lattice

include those of references [25–28].

Some of the main difficulties with the quasi-PDF method arise from the high momenta

necessary for the calculation. One issue is that the signal-to-noise ratio of correlation func-

tions decreases exponentially with the momentum which requires increasing computational

costs to achieve a precise matrix element extraction. Another issue is that the momenta

must be large enough for the perturbative matching formulae to apply and still must be

small enough to be free of lattice artifacts. Recent work suggests that non-perturbative

effects may dominate the evolution of the quasi-PDF up to rather large momenta.

A series of papers by one of the authors (AR) discusses the nonperturbative p2
3-

evolution of quasi-PDFs and quasi-DAs [29, 30] based on the formalism of virtuality dis-

tribution functions. Using the approach in [29, 30], a connection was established between

the quasi-PDF and “straight-link” transverse momentum dependent distributions (TMDs)

F(x, k2
T ), whose Fourier transform has been calculated on the lattice in [31]. Using sim-

ple assumptions about TMDs, models were built for the non-perturbative evolution of

quasi-PDFs. It was made clear that the convolution nature of the quasi-PDFs leads to a

complicated pattern of p2
3-evolution, which consequently enforces the use of large values

of momenta, namely, p3 & 3 GeV to ensure a controlled approach to the PDF limit. The

derived curves agree qualitatively with the patterns of p3-evolution produced by lattice

calculations.

The structure of quasi-PDFs was further studied in ref. [32]. It was shown that, when

a hadron is moving, the parton k3 momentum may be treated as coming from two sources.

The hadron’s motion as a whole yields the xp3 part, which is governed by the dependence

of the TMD F(x, κ2) on its first argument, x. The residual part k3 − xp3 is controlled by

the way that the TMD depends on its second argument, κ2, which dictates the shape of

the primordial rest-frame momentum distribution.

A position space formulation was proposed by one of the authors in [32]. The suggestion

was to perform the calculation of the Ioffe time pseudo-distribution function (pseudo-ITD),

M(ν, z2), where the Ioffe time, ν, is dimensionless and describes the amount of time the DIS

probe interacts with the nucleon, in units of the inverse hadron mass. The related pseudo-

PDF (or parton pseudo-distribution function) P(x, z2) can be determined from its Fourier

transform. The pseudo-PDF and the pseudo-ITD are Lorentz invariant generalizations of

the PDF and of the Ioffe time distribution function (ITD) to space-like field separations.

Unlike the quasi-PDF, the pseudo-PDF has canonical support in −1 ≤ x ≤ 1 for all values

of z2 even when the PDF limit has not yet been reached. In a super renormalizable theory,
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the pseudo-PDF will approach the PDF in the z2 → 0 limit. In renormalizable theories,

the pseudo-PDF will have a logarithmic divergence at small z2 which corresponds to the

DGLAP evolution of the PDF. The pseudo-PDF and the pseudo-ITD can be factorized into

the PDF and perturbatively calculable kernels, similar to experimental cross sections. This

fact means that the pseudo-PDF and pseudo-ITD fall into the category of “Good Lattice

Cross Sections” as described in [33]. The first lattice implementation of this technique

was performed in [34, 35] to compute the iso-vector quark pseudo-PDF in the quenched

approximation. Other Good Lattice Cross Sections have been calculated to extract the

pion DA [36, 37] and the pion PDF [38]. We refer the reader to [39–42] for detailed reviews

of these topics.

Possible difficulties with these approaches were raised in [43, 44]. In [43], the authors

observed that the power divergent mixing of moments of the PDF calculated in Euclidean

space would cause a divergence of the moments of the quasi-PDF. Due to this issue, they

argued the PDF could not be extracted from the quasi-PDF. This claim was refuted in [45],

where the authors showed that the non-local operator can be matched to the PDF without

the presence of power divergent mixings. In [43, 44], the authors noted that the Fourier

transformation of the logarithmic z2 dependence, generated by the DGLAP evolution of the

PDF, will create contributions to the qPDF in the region of |y| > 1 which do not vanish in

the limit p3 →∞. This effect is unavoidable in the quasi-PDF formalism since the Fourier

transform must be performed before matching to the MS PDF. It is this contribution which

generates the divergent moments of the quasi-PDF. In [46], the origin of this contribution

was described in terms of the “primordial transverse momentum distribution”. It was

argued that the non-perturbative part of the |y| > 1 contributions vanishes in the p3 →∞
limit, while the non-vanishing perturbatively calculable contributions are canceled after

implementation of the matching procedure. As a result, the moments of extracted PDFs

are finite.

It should be noted that in the pseudo-PDF formalism the z2-dependence of M(ν, z2)

is not subject to a Fourier transform, and the issue is completely avoided. As was shown

in [32], pseudo-PDFs P(x, z2) have the canonical support [−1, 1] for the momentum fraction

x. The unphysical region of |x| > 1 is avoided and the moments of the pseudo-PDF are

finite. Finally in [47], it was demonstrated using lattice data that the finite moments

of the PDF can be extracted from the non-local matrix element for the reduced pseudo-

ITD, refuting the claim in [44] that the pseudo-PDF moments would be power divergent.

In the OPE, the power divergent mixings of the moments are explicitly canceled by the

corresponding Wilson coefficients. This feature of the OPE has been known for some

time [48], and this method of extracting moments from non-local operators is referred

to as “OPE without OPE” [49]. This cancellation of divergences is unsurprising. The

reduced pseudo-ITD is by design a renormalization group invariant quantity. There can

be no difference between this object calculated with lattice regularization or dimensional

regularization in the continuum. Since all of the moments are finite, a matching relationship

between the pseudo-ITD and the MS ITD can be derived from these Wilson coefficients.

In this paper, we show the first calculation of the Ioffe time pseudo-distribution function

with dynamical fermion ensembles. The other aspect new to pseudo-ITD analysis is that we
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have applied the method of momentum smearing [50] to the pertinent matrix element which

substantially improves our results at high momenta when compared to Gaussian smearing.

The remainder of the paper is as follows. In section 2, the Ioffe time distribution is outlined,

and in section 3 the details of its lattice implementation are described. In section 4, the

results of the calculation are presented, and finally in section 5 we summarize our findings

and propose future research directions.

2 Ioffe time pseudo distributions

The unpolarized ITD is described in terms of a special case of the helicity-averaged, forward,

non-local matrix element,

Mα(p, z) = 〈p|ψ̄(z)γαU(z; 0)ψ(0)|p〉 , (2.1)

for p =
(
p+, m

2

2p+
, 0T

)
, z = (0, z−, 0T ), and α = +, where we use light-cone coordinates, i.e.

aµ = (a+, a−, aT ) with a± = (at ± az)/
√

2 and aT = (ax, ay). Given arbitrary choices of p,

z, and α, the Lorentz decomposition of the matrix element in eq. (2.1) is

Mα(z, p) = 2pαM(ν, z2) + 2zαN (ν, z2) , (2.2)

where the Lorentz invariant ν = p · z is called the Ioffe time. For the choice of parameters

which corresponds to the ITD, only M contributes to the matrix element. For arbitrary

z2, theM function, called the Ioffe time pseudo-distribution function, can be thought as a

generalization of the ITD to separations other than light-like. The pseudo-ITD contains the

leading twist contributions, but also contains higher twist contributions at O(z2Λ2
QCD). The

removal of these contributions, through cancellation or small z2, is necessary for accurately

determining the ITD from the pseudo-ITD.

From the relevant handbag diagrams, it has been shown [32] that the Fourier conjugate

of ν, denoted by x, has a restricted range of −1 ≤ x ≤ 1. The Fourier transform of the

pseudo-ITD, called the pseudo-PDF P(x, z2) is given by

M(ν, z2) =

∫ 1

−1
dxeiνxP(x, z2) . (2.3)

This definition of x is completely Lorentz covariant and there is no need to restrict dis-

placements onto the light cone or to require infinite momenta. This feature is promising for

a lattice calculation where only space-like displacements are possible and large momenta

are plagued by both large statistical and systematic errors. An extended discussion of this

approach is provided in [32, 34, 35, 47, 51–53].

2.1 PDFs, TMDs, and pseudo-PDFs

Specific choices of z, p, and α can connect the Lorentz-invariant pseudo-PDF to the stan-

dard light cone PDF. Using light-cone coordinates, and assuming a light-like displacement

zµ = (0, z−, 0T ), longitudinal hadron momenta pµ = (p+, p−, 0T ), and the Dirac matrix
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for α = +, the standard light-cone PDF can be determined as the Fourier transform of

the ITD

f(x) = P(x, 0) =
1

2π

∫ ∞
−∞

d(p+z−)e−i(p+z−)xM(p+z−, 0) . (2.4)

One can now introduce transverse degrees of freedom through the displacement z =

(0, z−, zT ) in order to define a TMD, F(x, k2
T ), as

P(x,−z2
T ) =

∫
d2kT e

−ikT ·zTF(x, k2
T ) . (2.5)

This definition of the TMD uses a straight link operator for U(z, 0) of eq. (2.1) and describes

the undisturbed or “primordial” distribution of the nucleon. Standard definitions of the

TMD rely on staple links. These staple links account for interactions with either the initial

or final state colored particles which exist in scattering processes. The primordial TMD may

not be capable of being determined in a scattering experiment, but it can still be treated

properly within the realm of Quantum Field Theory. Unfortunately, light cone coordinates

are not suitable for lattice field theory applications. Instead by choosing the displacement

and momenta along a particular lattice axis, z = (0, 0, z3, 0) and p = (0, 0, p3, E) and the

Dirac matrix for α = 4, the pseudo-PDF can be determined by

P(x,−z2
3) =

1

2π

∫ ∞
−∞

dν e−iνxM(ν,−z2
3) , (2.6)

where ν = p · z. Ignoring the logarithmic divergences in a renormalizable theory, the

pseudo-PDF will converge to the PDF in the limit of z2
3 → 0. Due to Lorentz invariance,

the pseudo-PDF calculated in either light cone or Cartesian coordinates will produce the

same function. The difference between the pseudo-PDF and the PDF can then be described

by using the kT dependence of the primordial TMD, F(x, k2
T ).

This limit can be shown to be the same convergence limit of the quasi-PDF after one

recognizes z2
3 = ν2

p23
. The complicated evolution of the quasi-PDF can be explained by the

fact that, in the space of the Lorentz invariants ν and z2, it is an integral with respect to

ν of M(ν, ν2/p2) along the curve z2 = ν2

p2
. This feature makes the quasi-PDF at a given

value of the momentum p a mixture of the Ioffe time distribution at different scales some

of which may not be in the perturbative regime. In order to ensure the applicability of

perturbative matching formulae, the momenta used in the quasi-PDF determination need

to be very large in order to neglect the ν dependence in the second argument. In contrast,

the pseudo-PDF is the integral along the line z2 = const. The single scale makes the

validity of perturbation theory, or lack there of, more transparent. A verification of the

validity of the perturbative formula will be necessary for any lattice-calculated PDF to be

believable.

2.2 Reduced distribution

In order to improve the calculation of the ITD from the pseudo-ITD, it has been sug-

gested [54] to remove the O(z2Λ2
QCD) contributions by considering the reduced pseudo-ITD

M(ν, z2) =
M(ν, z2)

D(z2)
. (2.7)

– 5 –



J
H
E
P
1
2
(
2
0
1
9
)
0
8
1

Ideally, D(z2) will contain all the non-trivial z2 dependence from higher twist effects. The

chief requirement is that in the z2 → 0 limit, D(z2) approaches a non-zero finite constant.

This feature ensures that the OPE for this reduced pseudo-ITD will be the same as the

original pseudo-ITD, and factorization will lead to the same PDF moments. For future

purposes in a lattice calculation, the choice of D(z2) = M(0, z2) is particularly useful

and in the following this choice will be assumed. An alternative choice has been proposed

in [55]. The authors claim that if one used a vacuum matrix element of the same operator,

instead of the rest frame hadron matrix element, then the pseudo-PDF would have smaller

higher twist corrections in the limit of x→ 1.

In order to take a continuum limit, the operator OWL = ψ̄(z)γαU(z; 0)ψ(0) must first

be renormalized. In QCD, the renormalization constant of a Wilson line is proportional to

e−gm
z
a

+c(z) which when expanded in g gives a power divergence in perturbation theory and

c(z) is a term which depends on the number of cusps in the Wilson line and the specific

angles formed at the cusps [56, 57]. The full Wilson line operator OWL is multiplicatively

renormalizable [58]. This convenient feature allows the ratio in eq. (2.7), with the choice

D(z2) =M(0, z2), to have a finite continuum limit. The renormalization constants in the

numerator and denominator, which only depend on the length and shape of the Wilson

line, not the external momentum, cancel exactly. Even more importantly, this ratio is

Renormalization Group Invariant (RGI). Therefore, it can be factorized using the MS

scheme into the PDF and an appropriate Wilson coefficient contrary to what was claimed

by [43, 44].

2.3 z2 evolution and MS matching

All phenomenological PDF fits are performed in the MS scheme either with NLO or NNLO

truncation in the perturbative series of the Wilson coefficients. Since the reduced pseudo-

ITD is RGI, its z2 dependence is independent of any particular scheme, but its dependence

on this scale must match the µ dependence of the MS ITD. The O(αs) perturbative z2

evolution equation is given by [32]

z2dM

dz2
(ν, z2) = −αs

2π
CF

∫ 1

0
duB(u)M(uν, z2) , (2.8)

where B(u) =
[

1+u2

1−u

]
+

is the Altarelli-Parisi kernel. This equation is the pseudo-ITD’s

analog of the ITD’s DGLAP evolution equation. Solving eq. (2.8) in the leading log ap-

proximation, as in [34], the reduced pseudo-ITD at various scales z2 can be evolved to the

common scale z2
0 by applying

M(ν, z2
0) = M(ν, z2) + ln

(
z2

z2
0

)
αsCF

2π
B ⊗M(ν, z2), (2.9)

where

B ⊗M(ν, z2) =

∫ 1

0
du

[
1 + u2

1− u

]
+

M(uν, z2). (2.10)

As was done in [34], one can estimate the effects of evolution and matching by performing

the convolution on a model reduced pseudo-ITD. Consider the pseudo-ITD for the model

– 6 –
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Figure 1. The upper and lower figures show the convolutions for the evolution of eq. (2.8), and

for the matching to MS using the kernel of eq. (2.14), respectively.

pseudo-PDF P(x, z2) = xa(1− x)b/B(a+ 1, b+ 1), where B(x, y) is the Beta function, for

a = 0.5 and b = 3. The convolutions for the DGLAP kernel are shown in figure 1.

Due to this logarithmic divergence in z2, the determination of the PDF from the

pseudo-ITD is not as straightforward as a simple limit of z2 → 0. At the leading-twist

level, there exists a factorization relationship

M(ν, z2) =

∫ 1

0
du K(u, z2µ2, αs)Q(uν, µ2) (2.11)

between the reduced pseudo-ITD M(ν, z2) and the MS ITD Q(ν, µ2) defined as

Q(ν, µ2) =

∫ 1

−1
dxeiνxf(x, µ2) . (2.12)

The kernel K for matching the pseudo-ITD to the MS ITD has been calculated at

NLO [59–61]

K(u, z2µ2, αs) = δ(1− u) +
αsCF

2π

[
ln

(
z2µ2 e

2γE+1

4

)
B(u) + L(u)

]
, (2.13)
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where

L(u) =

[
4

ln(1− u)

1− u − 2(1− u)

]
+

(2.14)

is a scale independent piece related to the specific choice of the MS scheme. This gives the

full NLO matching relationship

M(ν, z2) = Q(ν, µ2) +
αsCF

2π

∫ 1

0
du

[
ln

(
z2µ2 e

2γE+1

4

)
B(u) + L(u)

]
Q(uν, µ2) . (2.15)

The convolution of L(u) for the pseudo-PDF model is shown in figure 1. The scale de-

pendent part of the kernel can be identified as the previously mentioned evolution process

to a scale z2
0 = 4e−2γE−1µ−2. The reduced pseudo-ITD at many scales could be directly

matched to the MS ITD in a single step. The separation of the evolution and matching

procedure can allow for the two steps to take into account the higher twist contamination

in different ways.

2.4 Moments of pseudo-PDF

Taylor expanding the right-hand-side of eq. (2.3) about ν = 0 provides access to the

moments of the pseudo-PDF

M(ν, z2) =

∞∑
n=0

in
ν2

n!
bn(z2) , (2.16)

where

bn(z2) =

∫ 1

0
dxxnP(x, z2) . (2.17)

These moments can be related to the Mellin moments of the PDF through the OPE of the

reduced pseudo-ITD in the limit z2Λ2
QCD � 1 [47]. The leading contribution in the OPE

of the reduced pseudo-ITD is given in terms of Mellin moments of the PDF, an(µ2),

M(ν, z2) =
∞∑
n=0

in
νn

n!
an(µ2)Kn(µ2z2) +O(z2) , (2.18)

where O(z2) schematically represents terms at sub-leading power in the twist expansion

and Kn(µ2z2) are the Wilson coefficients of the moments. These Wilson coefficients are the

Mellin moments of the matching kernel in eq. (2.13). By comparing the ν dependencies of

eq. (2.16) and eq. (2.18), one can find the matching relationship between the pseudo-PDF’s

moments and the PDF’s moments,

bn(z2) = Kn(µ2z2)an(µ2) . (2.19)

This matching relationship is multiplicative unlike the convolution for matching the pseudo-

ITD to the ITD. These advantages of the representation in Mellin space have been exploited

to calculate high-order evolution of the PDF [62, 63].
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As given in [47], the NLO Wilson Coefficients in eq. (2.18) are given by

Kn(z2µ2, αs) = 1− αs
2π
CF

[
γn ln

(
z2µ2 e

2γE+1

4

)
+ ln

]
, (2.20)

where

γn =

∫ 1

0
duB(u)un =

1

(n+ 1)(n+ 2)
− 1

2
− 2

n+1∑
k=2

1

k
, (2.21)

which are the well known moments of the Altarelli-Parisi kernel, and

ln =

∫ 1

0
duL(u)un = 2

( n∑
k=1

1

k

)2

+
n∑
k=1

1

k2
+

1

2
− 1

(n+ 1)(n+ 2)

 . (2.22)

With the Wilson coefficients computed, we can now obtain the MS moments up to O(α2
s, z

2)

directly from the reduced function M(ν, z2) as

an(µ2) = (−i)n 1

Kn(z2µ2, αs)

∂nM(ν, z2)

∂νn

∣∣∣∣
ν=0

+O(z2Λ2
QCD, α

2
s) . (2.23)

There are other analogous proposals for the calculation of moments of parton distri-

butions from Lattice QCD, which do not use local twist-2 matrix elements. Using two

spatially separated current operators, [25, 27], one can extract the moments of the DA or

of the PDF. These ideas, as well as the above technique for determining moments, go under

the name of “OPE without OPE”, where one calculates a non-local operator in order to

estimate the moments defined by local operators [49]. This procedure is particularly useful

when the local operators are subject to some systematic difficulty such as the power diver-

gent mixing of the twist-2 operators for PDF moments. In principle, one could calculate

all PDF moments from the pseudo-ITD, though this fact is not necessarily true in practice

due to the discretized values of z and p which are available to lattice calculations.

3 Details of the Lattice calculation

The numerical calculation is performed on three different ensembles of lattice QCD config-

urations. The ensembles that are used in this article were generated by the JLab/W&M

collaboration [64] employing 2+1 flavors of stout-smeared clover Wilson fermions and a

tree-level tadpole-improved Symanzik gauge action.

In the fermionic action, one iteration of stout smearing was used with the weight

ρ = 0.125 for the staples. A direct consequence of this smearing is that the tadpole corrected

tree-level clover coefficient cSW used is very close to the non-perturbative value determined,

a posteriori, employing the Schrödinger functional method [64]. The parameters used for

the three ensembles are listed in table 1. The lattice spacings, a, are estimated using the

Wilson flow scale w0 described in ref. [65].
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ID a(fm) Mπ(MeV) β cSW aml ams L3 × T Ncfg

a127m415 0.127(2) 415(23) 6.1 1.24930971 −0.2800 −0.2450 243 × 64 2147

a127m415L 0.127(2) 415(23) 6.1 1.24930971 −0.2800 −0.2450 323 × 96 2560

a094m390 0.094(1) 390(71) 6.3 1.20536588 −0.2350 −0.2050 323 × 64 417

Table 1. Parameters for the lattices generated by the JLab/W&M collaboration [64] using 2+1

flavors of stout-smeared clover Wilson fermions and a tree-level tadpole-improved Symanzik gauge

action. The lattice spacings, a, are estimated using the Wilson flow scale w0. Stout smearing

implemented in the fermion action makes the tadpole corrected tree-level clover coefficient cSW
used to be very close to the value determined non-pertubatively with the Schrödinger functional

method. The a127m415L contains 10 independent streams of 256 configurations each. The other

ensembles only contain a single stream.

3.1 Momentum smearing

In order to improve the overlap of the interpolating fields on the nucleon ground state,

smearing procedures are performed on the quark fields. Standard Gaussian smearing,

which was used in the previous study of pseudo-ITDs, can help improve the overlap with the

state at rest, but deteriorates the overlap with states of higher momenta. The momentum

smearing procedure [50] changes the smearing operation to improve the overlap of the

interpolating field to nucleon ground states with arbitrary momenta. The quark fields are

transformed by

q̃(x) = q(x) + ρ
∑
k

(
2q(x)− ei( 2π

L )~ζ·k̂Uk(x)q(x+ k)− ei( 2π
L )~ζ·k̂Uk(x− k)q(x− k)

)
, (3.1)

where ρ and ζ are tunable parameters. This transformation has the same form as used in

standard Gaussian smearing with an extra phase, eiζ·k̂ multiplying the gauge links. Here,

ρ plays the same role as in Gaussian smearing and ζ determines which momentum states

the quark field will predominantly overlap with.

As suggested in previous works, this procedure was implemented using the existing iter-

ative Gaussian smearing routines, but using a set of rotated gauge links Ũk(x) = eiζ·k̂Uk(x)

in order to account for the phase. Unlike previous works with the momentum smearing

technique, the momentum smearing parameter, ζ, was not chosen to be dependent on the

nucleon momentum. Also, unlike the sequential source technique, the matrix element ex-

traction based upon the Feynman-Hellmann theorem allows for calculating several nucleon

momentum states without additional propagator inversions. Fixing the smearing param-

eter as a fraction of the momentum would greatly increase the cost of this calculation by

requiring different propagator calculations for each momentum used. The parameters were

chosen to overlap with the higher momenta states which had a poor signal using standard

Gaussian smearing. The choice of ζ was made by maximizing the signal-to-noise ratio of

the 2-point correlation function for the desired range of momenta.

In order to demonstrate the efficacy of the momentum smearing procedure, the effec-

tive masses of the pion and nucleon were calculated on the a127m415L ensemble, plotted

in figure 2. Each of these momentum smearings was set to improve the signal-to-noise ratio
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Figure 2. The effective mass for a nucleon (left) and pion (right) two point functions at various

momenta from the ensemble a127m415L. The signal-to-noise ratio for the effective mass, particu-

larly for the pion, decays without momentum smearing. Even without tuning ζ for each momentum,

the momentum smearing procedure significantly improves the signal and allows for precision deter-

mination of high momentum effective masses which were not attainable with Gaussian smearing

alone.

for a different range of nucleon momentum states. As can be seen the smearing without

the momentum phase performs poorly for the highest momentum states, the intermediate

ζ improves the signal for the middle range of momenta, and the largest ζ performs sig-

nificantly better at the highest momentum states than the other two. It should be noted

that momentum smearing only alleviates one of the sources of decaying signal-to-noise

ratio. Momentum smearing improves the overlap of the ground state with the operator

at non-zero momentum which allows for more time sources to be available before machine

precision issues arise. The other source is the variance inherent in the correlation functions,

which decays exponentially in T with a rate determined by the hadron’s energy

RS/N =
C2(T )

std [C2(T )]
∼ e−(E−nq2 mπ)T , (3.2)

where nq is the number of quarks and anti-quarks in the interpolating operator. This

variance will not be affected by the momentum smearing procedures, because it is an

inherent property of the theory.

3.2 Feynman-Hellmann matrix element extraction

The extraction of the matrix element is performed with a method based on the Feynman-

Hellmann theorem. Hadron matrix elements can be calculated by studying the time de-

pendence of the ratio of 3-point and 2-point correlation functions. We refer the reader

to [34, 66] for more details on the implementation of this method. For completeness, the

key points are highlighted below.

The Feynman-Hellmann theorem relates matrix elements of energy eigenstates to

derivatives of the corresponding energy eigenvalue with respect to a parameter of the
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theory,

dEn
dλ

= 〈n|dHλ

dλ
|n〉 . (3.3)

In order to calculate matrix elements of arbitrary operators, following the procedure de-

scribed in [66], we consider a change of the action by adding the following term,

Sλ = λ

∫
d4xj(x) , (3.4)

where j(x) is some operator of interest. The vacuum state is labeled by |λ〉. The 2-point

correlation functions are defined as

Cλ(T ) = 〈λ|O(T )O†(0)|λ〉 =
1

Zλ

∫
DΦe−(S+Sλ)O(T )O†(0) , (3.5)

where Φ represents collectively the gauge and fermion fields of the theory, O(t) is an

interpolating field for a desired hadron, and Zλ is the partition function defined by

Zλ =

∫
DΦe−(S+Sλ). (3.6)

These three objects, |λ〉, Cλ, and Zλ, become the true QCD vacuum, correlation

function, and partition function respectively in the λ → 0 limit. In this formulation,

the hadron matrix element of the operator j(x) can be computed through the Feynman-

Hellmann theorem as

∂mhn
λ

∂λ

∣∣
λ=0

=

∫
dt′〈hn|J(t′)|hn〉 , (3.7)

where J(t) =
∫
d3xj(~x, t) and |hn〉 is the nth hadron state with the quantum numbers

of O(t) and mass mhn . In the large Euclidean-time limit, the ground state mass can be

approximated by the effective mass

meff
λ (T, τ) =

1

τ
ln

(
Cλ(T )

Cλ(T + τ)

)
−−−−→
T→∞

1

τ
ln(em

0
λτ ) . (3.8)

The derivative of the effective mass can be shown to be

∂meff
λ (T, τ)

∂λ

∣∣∣∣
λ=0

=
1

τ
(R(T + τ)−R(T )) , (3.9)

where

R(t) =

∫
dt′〈Ω|T{O(T )J(t′)O†(0)}|Ω〉

C(T )
. (3.10)

The contributions to the time ordered matrix element in the numerator of R(t) from the

regions where the current is not inserted between the hadron states were shown in [66] to

be suppressed for lattices with large time extent Nt in the difference of the two terms which
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appear in the r.h.s. of eq. (3.9). At large Euclidean time t, eq. (3.9) isolates the matrix

element of interest up to exponentially small corrections,

∂meff
λ (T, τ)

∂λ

∣∣∣∣
λ=0

=
〈h0|J |h0〉

2Eh0

(
1 +Ae−∆T +BTe−∆T +O(e−∆′T )

)
. (3.11)

where A and B are fit parameters related to the matrix elements of the lowest excited

state with mass gap ∆. The last term, O(e−∆′T ) represents the neglected higher state

corrections. It should be noted that the higher state effects of this method are significantly

smaller than the typical ratio method where excited state effects are of order O(e−∆T/2).

This method of matrix element extraction has a number of advantages over the more

common techniques. First, the summation over the operator insertion time eliminates one

of the independent variables of the correlation function. This reduction allows for a clear

identification of excited state contamination.

Without the summation over operator insertion time, points with several insertion

times are required to visually identify a plateau. Furthermore, several source/sink separa-

tions are needed to unambiguously determine the ground-state matrix element. A second

advantage, demonstrated in [67], is that the matrix element extraction can begin at much

earlier times in contrast to what is possible from other calculations, whose excited state

effects are much larger. This advantage is particularly important for physical mass calcu-

lations where the excited state effects require long time extents in order to be controlled.

3.3 Desired lattice correlation functions

All correlation functions were calculated with randomly determined source points. The

correlation functions with smeared source operators and both point and smeared sink

operators are constructed and each of these smearings will be performed for 3 different

values of the momentum smearing parameter ζ. All of these correlation functions will be

simultaneously analyzed to extract the matrix element. The nucleon states were boosted up

to a maximum momenta of pmax = π/2a, except for the ensemble a127m415L in which the

maximum momentum was pmax = 3π/8a. Within these ranges of momenta, the continuum

energy dispersion relation is still reasonably satisfied by the lattice calculation within errors

as can be seen in figure 2. The momentum smearing technique is used to allow for more

precise access to the high momenta correlation functions.

To calculate the matrix element for the nucleon Ioffe time distribution, the relevant

2-point correlation function is defined by

C2(p, T ) = 〈Np(T )Np(0)〉, (3.12)

where Np is a helicity averaged interpolating field of a nucleon with momentum p and T is

the Euclidean time separation between the interpolating operators for the nucleon creation

and annihilation operators. The quark fields in Np have all been smeared using Gaussian

momentum smearing in order to improve the overlap with the boosted ground state. The

relevant 3-point correlation function is defined by

C3(p, z, T ) = 〈Np(T )Oγ4(z)Np(0)〉, (3.13)
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where OΓ(z) = ψ̄(0)ΓW (0; z)τ3ψ(z). In this extraction method, the time of this operator

insertion is summed over. The flavor isospin Pauli matrix τ3 is used in order to create

the iso-vector quark combination, u − d. This step is performed to avoid the potentially

costly additional calculation of disconnected diagrams. The effective bare matrix element,

M(z · p, z2, T ), is defined by

M eff(p, z, T ) = (2EN )
(
R(p, z, T + 1)−R(p, z, T )

)
, (3.14)

where EN is the nucleon energy and

R(p, z, T ) = C3(p, z, T )/C2(p, T ). (3.15)

The factor of 2EN in the definition of the bare matrix element will be used to cancel the

factor of 2p4 in the pseudo-ITD definition from eq. (2.2), such that the difference of ratios

will be an effective bare pseudo-ITD

Meff(ν, z2, T ) =
(
R(p, z, T + 1)−R(p, z, T )

)
. (3.16)

The separation of the quark fields and the nucleon momentum are both chosen along the

ẑ axis, z = z3 and p = p3. The bare matrix element is determined through the large time

asymptotics of the effective matrix element,

M0(ν, z2) = lim
T→∞

Meff(ν, z2, T ). (3.17)

As found in [66], the bare matrix element extracted with this method has different excited

state effects than in a typical calculation of a three point correlation function. The bare

matrix element will have contamination from higher state effects proportional to e−∆T and

Te−∆T where ∆ is the energy gap between nucleon’s the ground state and the first excited

state. These terms will be included in the matrix element fit to control these effects in the

low T region.

3.4 Fits and excited states effects

The simplest method to extract the reduced pseudo-ITD from the effective matrix element

is to analyze the large time limit with a mean value in a region where the effective reduced

matrix element has a plateau. These data have plateau regions, especially at low momenta,

where this procedure could be performed. A more sophisticated method can be used to

take into account the effects from the lowest excited states which would provide a more

justified account of the systematic errors. The effective bare matrix element has excited-

state contamination of the form

Meff(ν, z2, T ) =M0(ν, z2)(1 +Ap(z
2)e−∆pT +Bp(z

2)Te−∆pT ) , (3.18)

where Ap(z
2) and Bp(z

2) are the contributions from the matrix elements containing the

first excited state and ∆p is the effective energy gap between the ground state and the first

excited state. The coefficients of the excited state term are, in general, correlation function

dependent, i.e. different for each set of smearing parameters.
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Figure 3. Typical fits of the reduced Ioffe time pseudo-distribution from the ensemble a127m415.

The left plot corresponds to the imaginary component with z3 = 5a and p3 = 6(2π/L). The right

plot corresponds to the imaginary component with z3 = 6a and p3 = 2(2π/L). The color points

and bands correspond to the different correlation functions used in the fit and the resulting fit

respectively. The grey band corresponds to the extracted matrix element.

Further simplifications of this functional form are possible to reduce the number of

fit parameters. One could adopt the lattice energy dispersion relation to fix ∆p to ∆0

removing another parameter. The rest frame energy could be extracted from two point

functions prior to the study of the matrix element or left as a fit parameter common to all

matrix elements. The latter option, requiring a simultaneous fit of many matrix elements

for the sake of fixing a single parameter, may not be too practical. Another choice is to

perform the spectroscopy fits on the 2-point functions to find the energy gaps and hold

those values fixed in a fit for the coefficients of the exponentials.

In this work, a fit of the data to eq. (3.18) is used simultaneously for each corre-

lation function, holding the ground state matrix element and effective energy gap fixed.

Specifically, a fit is performed on N different effective bare matrix elements with different

smearing setups, Meff
j , to the form

Meff
j (ν, z2, T ) =M0(ν, z2)

(
1 + e−∆pT

[
A(j)
p (z2) +B(j)

p (z2)T
])
, (3.19)

with 2N + 2 fit parameters where j = 1 . . . N labels the different smearings. The fit

parameters will be chosen with a weighted χ2 minimization which employs a block diag-

onal covariance matrix, where the covariances between different correlation functions are

neglected. Each momentum smearing parameters are only helpful for a certain range of

momentum states. The choice of correlation functions used in the fit, as well as the T range

of the fit, are varied to minimize the χ2 per degree of freedom. All statistical errors and

covariances are estimated using the jackknife resampling technique. An example of these

fits are plotted in figures 3–5. Tables 2–6 contain the results of the bare matrix elements

and their standard deviations.

3.5 Cancellation of renormalization constants

With a lattice regulator (unlike in dimensional regularization), the operator OWL(z) has

a power divergence in z
a . The handling of this power divergence in lattice QCD renor-
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Figure 4. Typical fits of the reduced Ioffe time pseudo-distribution from the ensemble a127m415L.

The left plot corresponds to the imaginary component with z3 = 5a and p3 = 5(2π/L). The right

plot corresponds to the imaginary component with z3 = 6a and p3 = 1(2π/L). The color points

and bands correspond to the different correlation functions used in the fit and the resulting fit

respectively. The grey band corresponds to the extracted matrix element.
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Figure 5. Typical fits of the reduced Ioffe time pseudo-distribution from the ensemble a094m390.

The left plot corresponds to the real component with z3 = 5a and p3 = 1(2π/L). The right

plot corresponds to the imaginary component with z3 = 2a and p3 = 6(2π/L). The color points

and bands correspond to the different correlation functions used in the fit and the resulting fit

respectively. The grey band corresponds to the extracted matrix element.

malization schemes, such as the popular RI-MOM scheme, and the associated matching

relationships have generated a large amount of discussion, see [23] for a comparison of

methods. In a lattice QCD calculation, renormalization constants require a separate calcu-

lation. Alternatively, when possible one can form ratios of matrix elements where the UV

divergences cancel. In this spirit, a ratio, which has the same leading order in the OPE as

the pseudo-ITD, will be constructed where all renormalization constants cancel.

The local vector current, M0(z · p, z2)|z=0, where M0 is the bare matrix element can

be used to ensure quark number conservation. In the continuum limit, where the vector

current is conserved, this matrix element should be equal to 1. Due to lattice artifacts, the
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Figure 6. The rest frame distribution M0
V (z · p, z2)|p=0. The left plot is from the ensemble

a127m415, the middle plot is from the ensemble a094m390, and the right plot is from the ensemble

a127m415L. The cusp as z → 0 is the signal for the power divergences which occur in perturbation

theory. The large z limit reveals the exponential nature of the Wilson line renormalization constant.

local vector current is not conserved and it possesses an ap dependence, but has a finite

renormalization constant. This renormalization constant does have the property ZV → 1

in the continuum limit a→ 0. Again the leading order behavior of the OPE for the ratio

M0
V (ν, z2) =

M0(ν, z2)

M0(ν, z2)|z=0
, (3.20)

will match the original pseudo-ITD. This ratio still contains the logarithmic and power

divergences associated with the Wilson line operator.

The UV divergences of the Wilson line operator will be canceled by forming ratios

which have in the denominator the rest frame matrix element M0
V (z · p, z2)|p=0. The

imaginary component is consistent with zero for all z. The real component results, which

are plotted in figure 6, have the exponential behavior expected from the non-perturbative

effects generated by the Wilson line operator. The low z/a region exhibits a cusp as z → 0,

which is a signal for the power divergence. For the pseudo-ITD, the matching kernel is

unity at ν = 0, meaning the rest frame matrix element will be the integral of the PDF,

which for the iso-vector flavor quark combination is 1, up to potential higher twist and

discretization errors. The leading order behavior of the OPE for this ratio will be the same

as for the pseudo-ITD, so that this matrix element satisfies the properties required for the

reduced pseudo-ITD.

Finally the reduced matrix element is defined by the double ratio

M(ν, z2) =

( M0(ν, z2)

M0(ν, 0)|z=0

)/( M0(0, z2)|p=0

M0(0, 0)|p=0,z=0

)
. (3.21)

This double ratio not only takes care of cancelling the multiplicative renormalization con-

stants. It also has the desired goal of cancelling some O(z2) higher twist contaminations.

This feature was demonstrated in the quenched approximation [54], where at fixed Ioffe

time and large z2, the reduced pseudo-ITD was independent of z2 instead of showing a

polynomial behavior. The reduced pseudo-ITD is a renormalization scheme independent

quantity which can be matched directly to the MS light cone PDF through the OPE-

based eq. (2.15).
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z(a) p(2π/L) ν Re M0 ±∆ Re M0 Im M0 ±∆ Im M0

0 0 0 1.251(6) 0(0)

1 0 0 1.030(5) 0(0)

2 0 0 0.716(4) 0(0)

3 0 0 0.4600(26) 0(0)

4 0 0 0.2808(24) 0(0)

5 0 0 0.1644(15) 0(0)

6 0 0 0.0935(10) 0(0)

0 1 0 1.245(7) 0(0)

1 1 0.261799 1.023(5) 0.0482(21)

2 1 0.523599 0.706(4) 0.067(5)

3 1 0.785398 0.4468(26) 0.067(4)

4 1 1.047198 0.2671(18) 0.056(3)

5 1 1.308997 0.1522(14) 0.0417(27)

6 1 1.570796 0.0835(11) 0.0284(22)

0 2 0 1.228(7) 0(0)

1 2 0.523599 1.001(6) 0.094(7)

2 2 1.047198 0.673(5) 0.133(10)

3 2 1.570796 0.408(4) 0.129(10)

4 2 2.094395 0.2293(26) 0.108(6)

5 2 2.617994 0.1209(20) 0.076(5)

6 2 3.141593 0.0600(16) 0.0511(6)

0 3 0 1.196(9) 0(0)

1 3 0.785398 0.960(8) 0.144(15)

2 3 1.570796 0.616(7) 0.190(29)

3 3 2.356194 0.347(6) 0.185(16)

4 3 3.141593 0.175(6) 0.142(10)

5 3 3.926991 0.080(6) 0.0893(15)

6 3 4.712389 0.031(7) 0.0496(13)

0 4 0 1.149(12) 0(0)

1 4 1.047198 0.902(11) 0.193(23)

2 4 2.094395 0.539(11) 0.258(19)

3 4 3.141593 0.269(11) 0.221(8)

4 4 4.188790 0.115(12) 0.143(3)

5 4 5.235988 0.034(5) 0.0779(22)

6 4 6.283185 0.0089(14) 0.0376(20)

0 5 0 1.123(5) 0(0)

1 5 1.308997 0.848(5) 0.244(16)

2 5 2.617994 0.440(7) 0.290(14)

3 5 3.926991 0.187(19) 0.229(5)

4 5 5.235988 0.066(10) 0.130(6)

5 5 6.544985 0.021(4) 0.055(4)

6 5 7.853982 0.0079(23) 0.0251(17)

0 6 0 1.01(5) 0(0)

1 6 1.570796 0.742(4) 0.281(13)

2 6 3.141593 0.357(21) 0.323(8)

3 6 4.712389 0.126(15) 0.227(16)

4 6 6.283185 0.054(11) 0.090(11)

5 6 7.853982 0.024(6) 0.039(4)

6 6 9.424778 0.0103(24) 0.0190(9)

Table 2. The bare matrix elements and their standard deviations from the ensemble a127m415.

The imaginary component is assumed to be 0 for ν = 0.
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z(a) p(2π/L) ν Re M0 ±∆ Re M0 Im M0 ±∆ Im M0

0 0 0 1.272(15) 0(0)

1 0 0 1.050(12) 0(0)

2 0 0 0.730(8) 0(0)

3 0 0 0.468(9) 0(0)

4 0 0 0.284(3) 0(0)

5 0 0 0.1663(21) 0(0)

6 0 0 0.0941(15) 0(0)

7 0 0 0.0519(19) 0(0)

8 0 0 0.0281(16) 0(0)

0 1 0 1.270(13) 0(0)

1 1 0.196350 1.044(11) 0.033(5)

2 1 0.392699 0.722(8) 0.049(5)

3 1 0.589049 0.459(5) 0.049(5)

4 1 0.785398 0.276(3) 0.042(6)

5 1 0.981748 0.1589(21) 0.032(5)

6 1 1.178097 0.0882(14) 0.0218(23)

7 1 1.374447 0.048(10) 0.0146(15)

8 1 1.570796 0.0250(7) 0.0093(10)

0 2 0 1.263(14) 0(0)

1 2 0.392699 1.034(12) 0.0710(18)

2 2 0.785398 0.706(8) 0.102(22)

3 2 1.178097 0.439(6) 0.101(17)

4 2 1.570796 0.255(4) 0.082(14)

5 2 1.963495 0.1405(26) 0.056(10)

6 2 2.356194 0.0736(17) 0.039(6)

7 2 2.748894 0.0369(12) 0.025(3)

8 2 3.141593 0.0176(8) 0.015(3)

0 3 0 1.250(16) 0(0)

1 3 0.589049 1.016(13) 0.114(10)

2 3 1.178097 0.676(10) 0.161(14)

3 3 1.767146 0.404(7) 0.154(16)

4 3 2.356194 0.221(5) 0.121(15)

5 3 2.945243 0.113(4) 0.085(11)

6 3 3.534292 0.054(4) 0.0535(8)

7 3 4.123340 0.0236(27) 0.0302(9)

8 3 4.712389 0.0087(15) 0.0160(19)

Table 3. The bare matrix elements and their standard deviations from the ensemble a127m415L.

The imaginary component is assumed to be 0 for ν = 0.
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z(a) p(2π/L) ν Re M0 ±∆ Re M0 Im M0 ±∆ Im M0

0 4 0 1.222(20) 0(0)

1 4 0.785398 0.981(17) 0.160(9)

2 4 1.570796 0.630(12) 0.220(13)

3 4 2.356194 0.352(9) 0.202(11)

4 4 3.141593 0.174(6) 0.147(19)

5 4 3.926991 0.076(5) 0.0913(25)

6 4 4.712389 0.029(4) 0.0513(16)

7 4 5.497787 0.0087(25) 0.0264(12)

8 4 6.283185 0.0014(8) 0.0124(8)

0 5 0 1.185(20) 0(0)

1 5 0.981748 0.936(17) 0.204(15)

2 5 1.963495 0.567(15) 0.267(18)

3 5 2.945243 0.278(9) 0.225(25)

4 5 3.926991 0.121(11) 0.148(6)

5 5 4.908739 0.040(5) 0.084(4)

6 5 5.890486 0.009(10) 0.0422(21)

7 5 6.872234 −0.002(6) 0.0185(8)

8 5 7.853982 −0.014(25) 0.0082(6)

0 6 0 1.16(3) 0(0)

1 6 1.178097 0.90(3) 0.249(19)

2 6 2.356194 0.512(28) 0.300(12)

3 6 3.534292 0.225(22) 0.231(15)

4 6 4.712389 0.078(13) 0.138(18)

5 6 5.890486 0.021(5) 0.068(12)

6 6 7.068583 0.001(9) 0.029(6)

7 6 8.246681 −0.003(5) 0.0131(17)

8 6 9.424778 −0.004(6) 0.0055(7)

Table 4. The bare matrix elements and their standard deviations from the ensemble a127m415L.

The imaginary component is assumed to be 0 for ν = 0.

The form of this double ratio has an additional advantage of being exactly equal to

unity at ν = 0 with no possible higher twist effects and lattice spacing errors. This feature

explicitly sets the iso-vector quark PDF sum rule,
∫ 1

0 dx (u(x)− d(x)) = 1. Any error in

the sum rule for a PDF determined from this reduced pseudo-ITD must be an artifact of

the procedure for calculating the PDF.
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z(a) p(2π/L) ν Re M0 ±∆ Re M0 Im M0 ±∆ Im M0

0 0 0 1.187(18) 0(0)

1 0 0 0.994(15) 0(0)

2 0 0 0.713(11) 0(0)

3 0 0 0.477(8) 0(0)

4 0 0 0.306(5) 0(0)

5 0 0 0.191(3) 0(0)

6 0 0 0.1164(23) 0(0)

7 0 0 0.0700(17) 0(0)

8 0 0 0.0414(13) 0(0)

0 1 0 1.187(21) 0(0)

1 1 0.196350 0.993(17) 0.0317(17)

2 1 0.392699 0.711(12) 0.0475(26)

3 1 0.589049 0.474(8) 0.0498(28)

4 1 0.785398 0.301(5) 0.0443(25)

5 1 0.981748 0.185(3) 0.0356(21)

6 1 1.178097 0.1112(23) 0.0267(17)

7 1 1.374447 0.0654(17) 0.0189(14)

8 1 1.570796 0.0380(13) 0.0126(13)

0 2 0 1.14(7) 0(0)

1 2 0.392699 0.95(6) 0.056(9)

2 2 0.785398 0.691(28) 0.084(13)

3 2 1.178097 0.450(16) 0.088(12)

4 2 1.570796 0.280(8) 0.077(10)

5 2 1.963495 0.165(4) 0.060(8)

6 2 2.356194 0.093(4) 0.045(7)

7 2 2.748894 0.050(6) 0.032(5)

8 2 3.141593 0.0268(13) 0.020(4)

0 3 0 1.14(6) 0(0)

1 3 0.589049 0.95(5) 0.092(22)

2 3 1.178097 0.658(22) 0.14(3)

3 3 1.767146 0.411(10) 0.148(16)

4 3 2.356194 0.240(26) 0.124(14)

5 3 2.945243 0.131(12) 0.092(11)

6 3 3.534292 0.065(3) 0.060(8)

7 3 4.123340 0.027(4) 0.0441(8)

8 3 4.712389 0.011(3) 0.0256(7)

Table 5. The bare matrix elements and their standard deviations from the ensemble a094m390.

The imaginary component is assumed to be 0 for ν = 0.
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z(a) p(2π/L) ν Re M0 ±∆ Re M0 Im M0 ±∆ Im M0

0 4 0 1.164(9) 0(0)

1 4 0.785398 0.944(8) 0.173(6)

2 4 1.570796 0.616(7) 0.249(9)

3 4 2.356194 0.350(6) 0.2310(11)

4 4 3.141593 0.175(6) 0.1723(13)

5 4 3.926991 0.074(5) 0.1134(11)

6 4 4.712389 0.022(5) 0.0670(10)

7 4 5.497787 0.002(5) 0.0369(12)

8 4 6.283185 −0.001(10) 0.0185(10)

0 5 0 1.129(9) 0(0)

1 5 0.981748 0.895(12) 0.207(13)

2 5 1.963495 0.542(9) 0.299(10)

3 5 2.945243 0.262(14) 0.2488(23)

4 5 3.926991 0.101(14) 0.1678(27)

5 5 4.908739 0.028(17) 0.0937(29)

6 5 5.890486 0.0086(5) 0.0445(26)

7 5 6.872234 −0.011(27) 0.0183(23)

8 5 7.853982 −0.006(9) 0.0066(23)

0 6 0 1.112(10) 0(0)

1 6 1.178097 0.855(14) 0.25(3)

2 6 2.356194 0.516(3) 0.312(14)

3 6 3.534292 0.17(3) 0.242(6)

4 6 4.712389 0.06(3) 0.158(12)

5 6 5.890486 0.0197(14) 0.078(14)

6 6 7.068583 0.001(6) 0.026(12)

7 6 8.246681 0.004(6) 0.0127(20)

8 6 9.424778 0.002(3) 0.005(5)

Table 6. The bare matrix elements and their standard deviations from the ensemble a094m390.

The imaginary component is assumed to be 0 for ν = 0.

3.6 Reduced pseudo-ITD results

In this section we discuss the results that we have obtained for the reduced Ioffe time

pseudo-distribution. The real and imaginary components of the ITD, and therefore the
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continuum reduced pseudo-ITD, can be analyzed separately yielding additional insight to

the structure of the hadron. The real (CP even) component describes the valence quark

distribution

Re Q(ν, µ2) =

∫ 1

0
dx cos(νx)

(
q(x, µ2)− q̄(x, µ2)

)
=

∫ 1

0
dx cos(νx)qv(x, µ

2) . (3.22)

The imaginary (CP odd) component describes the sum of the quark and anti-quark distri-

butions

Im Q(ν, µ2) =

∫ 1

0
dx sin(νx)

(
q(x, µ2) + q̄(x, µ2)

)
=

∫ 1

0
dx sin(νx)

(
qv(x, µ

2) + 2q̄(x, µ2)
)
. (3.23)

A combined analysis of these two components will allow for isolating the valence quark and

sea/anti-quark contributions to the reduced pseudo-ITD.

In figures 7 and 8 we show the reduced pseudo-ITD as a function of p3 and z3 re-

spectively. The real-component curves all have a Gaussian shape which suggests that the

renormalization of the Wilson line was indeed canceled. The curves look similar, but their

width decreases with increasing momentum. If, instead, the real-component Ioffe time

pseudo-distribution is plotted as a function of the Ioffe time (see figures 9–11), then the

data appear on a more universal curve which is nearly independent of z2
3 . In the absence of

higher twist effects, this feature was to be expected since the perturbative z2 dependence

of M(ν, z2) only begins at O(αs).

3.7 Perturbative evolution and matching to MS

Even though the data follow a nearly z3 independent curve, the DGLAP evolution of the

PDF dictates a perturbatively calculable dependence on the scale z2. Understanding this

z2 dependence is particularly necessary for comparing the data to phenomenological fits

which are renormalized and given at a single scale. The MS matching procedures could

be performed in a single step by applying the kernel in eq. (2.13) to each set of data with

different z3 independently. It is also possible to separate the z2 evolution from the MS

matching steps. As long as the steps are of the same order in αs, the one step and two step

matching relationships should result in the exact same final MS ITD, though they may

have different systematic errors.

Above a certain length scale, the perturbative evolution of the data ceases and a

separation of the ν and z2 variables appears, up to the neglected higher twist effects which

are partly canceled by the ratio. This separation of variables results in a z2 independence

for the reduced pseudo-ITD for large z2. For the evolution of the data points in this

regime, the initial scale could be treated as the scale when evolution first appeared to stop.

In the quenched approximation, this scale was found to be z−1 . 400 MeV [54]. This scale

is particularly low for using a perturbative evolution, and a non-perturbative evolution
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Figure 7. The reduced pseudo-ITD as a function of p. Here the momenta and displacements are

labeled in lattice units, p3 = 2πp/L and z3 = za. The left plots are the real component and the

right are the imaginary component. The top plots are from the ensemble a127m415, the middle

plots are from the ensemble a127m415L, and the bottom plots are from the ensemble a094m390.

method would be preferable. Failing to account for this cessation of perturbative evolution

would cause the longest distance points to be evolved away from the universal curve.

In order to perform the convolutions in eq. (2.13), the reduced pseudo-ITD for constant

z2 are fit to a sixth degree polynomial and subsequently integrated over. The real and
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Figure 8. The reduced pseudo-ITD as a function of z. Here the momenta and displacements are

labeled in lattice units, p3 = 2πp/L and z3 = za. The left plots are the real component and the

right are the imaginary component. The top plots are from the ensemble a127m415, the middle

plots are from the ensemble a127m415L, and the bottom plots are from the ensemble a094m390.

imaginary components are fit to the even and odd powers in the polynomial respectively,

with three free parameters each

Re M(ν) ∼ 1 + c2ν
2 + c4ν

4 + c6ν
6 ,

Im M(ν) ∼ c1ν + c3ν
3 + c5ν

5 . (3.24)
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Figure 9. The real and imaginary components of the reduced pseudo-ITD on the ensemble

a127m415 as a function of ν.
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Figure 10. The real and imaginary components of the reduced pseudo-ITD on the ensemble

a127m415L as a function of ν.
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Figure 11. The real and imaginary components of the reduced pseudo-ITD on the ensemble

a094m390 as a function of ν.
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Figure 12. The convolutions required for the evolution and matching of the reduced pseudo-ITD

to the MS ITD on the ensemble a127m415. The reduced pseudo-ITD was interpolated by fitting a

polynomial.

In order to test the systematic effects of this choice, the real and imaginary components

are also interpolated with a cubic spline. The results of these two integrations are consistent

with each other. The convolutions calculated for the different ensembles are shown in

figures 12–14. These convolutions follow the same trends as the model predictions shown

in figure 1. Figure 15 shows the reduced pseudo-ITD evolved to z−2 = 4e2γE+1 GeV2. This

particular scale was chosen, so that the reduced pseudo-ITD can be easily matched to the

MS ITD at µ = 2 GeV. The value of αs(2 GeV) = 0.303 was taken from the evolution used

by LHAPDF [68] for the dataset cj15nlo from the CTEQ-Jefferson Lab collaboration [69].

There are two ways in which these convolutions can be used to evolve and match

the reduced pseudo-ITD to the MS ITD. The most straightforward is a direct inversion of

eq. (2.15) for data with different z2 independently. An alternative, but equivalent, approach

is to perform the z2 evolution of the reduced pseudo-ITD, for each z2 independently, using

eq. (2.9) to the scale z2
0 = e−2γE−1µ−2. With all the data evolved to this common scale, the

inverse of eq. (2.15) can be applied to match the pseudo-ITD to the MS ITD for the data

originating with all z2 simultaneously. The convolutions with L are performed by fitting

the evolved reduced pseudo-ITD to the same polynomials as before in eq. (3.24). The

common scale was chosen such that the scale dependent logarithm in eq. (2.15) vanishes

when matching to the MS ITD for a particular µ.
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Figure 13. The convolutions required for the evolution and matching of the reduced pseudo-ITD

to the MS ITD on the ensemble a127m415L. The reduced pseudo-ITD was interpolated by fitting

a polynomial.

In this work, the scale µ = 2 GeV was chosen. The evolved reduced pseudo-ITD and

the matched MS ITD are shown in figure 15. It has been tested that the evolution and

matching procedure performed in a single step or being performed in two steps result in

a consistent MS ITD. For the remainder of this work, only the one step matching results

will be used.

4 PDF extraction

Due to the restrictions in allowed quark-field separations and momentum states on the

lattice, the data lay discretized on an interval of ν different than the full Brillouin zone.

These issues make the extraction of the PDF from eqs. (3.22) and (3.23) given lattice data

an ill-posed inverse problem. In order to reliably extract a PDF from the lattice data,

one will have to provide additional information. What information and how it is applied

constitute different solutions to the inverse problem, a few of which were studied for use in

PDF calculations in [28, 53, 70].

4.1 Moments of PDF and pseudo-PDF

Information about the PDF can still be determined from the reduced pseudo-ITD without

directly performing the Fourier transform. The moments of the pseudo-PDF can be used
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Figure 14. The convolutions required for the evolution and matching of the reduced pseudo-ITD

to the MS ITD on the ensemble a094m390. The reduced pseudo-ITD was interpolated by fitting a

polynomial.

to calculate PDF moments while avoiding entirely the inverse problem [47]. A discretized

version of the relationship in eq. (2.16) between the moments of the pseudo-PDF and the

reduced pseudo-ITD data can be written in the matrix form

M = Cb , (4.1)

where M is a vector of N data points, C is known as the Vandermonde matrix in ν, and

b is a vector of M moments weighted by the factor of in/n! mentioned in eq. (2.16). The

Vandermonde matrix is an N ×M matrix of the form Cin = νni where νi is the Ioffe time

for the i-th data point in M. This relationship can also be split into real and imaginary

components which only contain even and odd powers of ν and result in even and odd

moments of the pseudo-PDF respectively. This equation is inverted for points with a fixed

z2. The results of the first and second moments of the pseudo-PDF as well as the matched

PDF moments are shown in figure 16. As described in section 2.4, the moments of the

pseudo-PDF can then be matched to the MS moments.

At small separations, the moments of the pseudo-PDF have small dependence on z2.

After the application of the DGLAP evolution and matching relationships from eq. (2.20),
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Figure 15. The evolution and matching of the pseudo-ITD to the MS ITD. The left and right plots

show the real and imaginary components respectively. The top plots are from ensemble a127m415,

the middle plots are from ensemble a127m415L, and the lower plots are from ensemble a094m390.

any residual z2 dependence of the moments of the PDF, which would be caused by higher

twist contaminations, appears negligible. Figure 16 has a comparison of this calculation of

the pseudo-PDF and MS PDF moments and those calculated from various global fits. As

is the case in the direct calculation of the local matrix element [71], the PDF moments at

heavy pion mass are systematically higher than the phenomenologically determined result.

In principle, one can also use this technique to extract the higher moments. This

procedure has been tested on the next two higher moments. Only the results with the
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Figure 16. The moments of the pseudo-PDF compared to phenomenologically determined PDF

moments from the NLO global fit CJ15nlo [69], and the NNLO global fits MSTW2008nnlo68cl

nf4 [72] and NNPDF31 nnlo pch as 0118 mc 164 [73] all evolved to 2 GeV. The top, middle, and

bottom plots are from the ensembles a127m415, a127m415L and a094m390 respectively. The left

and right columns show the first and second moments respectively. Only the lowest two moments

have signal for most z. The higher moments only have signal for the largest z where the maximum

Ioffe time used allows for identifying more than the leading behavior in the Taylor expansion.
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largest few z2 had statistical errors comparable to the lower moments. The range of Ioffe

time for those large z data points had been sufficiently large to determine the second

variable in the Taylor expansion in eq. (3.24) with reasonable statistical precision. Since

these data potentially have significant higher twist corrections, these results should be

considered questionable. The small z data points appear almost entirely described by

including only the terms proportional to c1 and c2. Further studies on finer lattice spacings

will be required to extend the range of Ioffe time for low z data in order to constrain the

higher moments and confirm the lack of higher twist contamination which was observed in

the lower moments.

Reconstructing the PDF from its moments in itself is an inverse problem. Instead of

inverting a Fourier transform, like most of the procedures discussed in this section, this

problem is the inversion of a Mellin transform. The PDF can be parameterized by some

function such as the PDF Ansatz in eq. (4.2) or the moments can be parameterized by

some function with a known inverse Mellin transform as was suggested in [27]. In this

work, with at best two moments being constrained, there is not much hope for actually

performing a reliable fit to any of these functional forms.

The determination of moments of the pseudo-PDF is a useful calculation while studying

these Ioffe time distributions. The inversion of the Fourier transform is an ill-defined

problem which comes along with many complications and the moments of the pseudo-PDF

allow for a quick sanity check that the data contain reasonable information. The residual

z2 dependence of the MS moments, derived from moments of the pseudo-PDF, is a non-

trivial check of the size of higher twist effects. The lack of any statistically meaningful z2

dependence in the MS moments calculated on these ensembles can be used to justify the

validity of using the data with all z2 in the following PDF extractions.

4.2 PDF fits

All solutions to the ill posed inverse problem require adding additional information to

constrain a unique solution for the unknown function. In the global PDF fitting community,

the most common choice for solving the inverse problem is to choose a physically motivated

functional form for the PDF. By choosing a PDF parameterization with fewer parameters

than existing data points, the inverse problem is regulated. This model Ansatz can be

designed to explicitly show some limiting behaviors, physically motivated features, and

satisfy some possible constraints. The better motivated the information used to create the

Ansatz the more successful this technique will be, but any particular choice will introduce

a model-dependent bias into the final result. The ill-posed inverse problem does not have a

unique solution, and ultimately some bias must be introduced into the PDF determination.

Ideally, several different parameterizations would be checked and compared, and in effect

this cross checking has occurred amongst the several phenomenological PDF fits employed,

each with different choices of models.

It is known that the PDF can be reasonably well described simply by the following

expression that parameterizes its limiting behaviors,

f(x) =
xa(1− x)b

B(a+ 1, b+ 1)
. (4.2)
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To add more generality, the phenomenological PDFs are fit to a more flexible function-

al form,

f(x) = xa(1− x)bP (x) , (4.3)

where P (x) is a yet to be specified interpolating function with more model parameters.

There exist well known features of PDFs, such as vanishing as x→ 1, diverging as x→ 0,

and the constraints of the PDF sum rules. The limiting behaviors can be seen through the

signs of the model parameters a and b in eq. (4.3) and the normalization can be fixed to

satisfy the sum rules. By separating these features, P (x) is allowed to be a smoother and

slower varying function which is easier to determine. One choice of P (x) for the valence

quark PDF employed by the CJ [69] and the MSTW collaborations [72] is given by

P (x) =
1 + c

√
x+ d x

B(a+ 1, b+ 1) + cB(a+ 1.5, b+ 1) + dB(a+ 2, b+ 1)
. (4.4)

This functional form explicitly sets the PDF’s sum rule and allows all moments to be

directly calculated as a ratio of sums of Beta functions.

The statistical errors will be obtained with the jackknife resampling technique. In

the dynamical quark ITDs, there does not appear to be a strong dependence on the initial

separation z with which the data point had been calculated. This z2 independence indicates

that large polynomial z2 corrections do not appear to exist. Therefore we can fit all z2

separations simultaneously.

Figure 17–19 shows the results of fitting the ITD to the functional formed used by the

CJ and MSTW collaborations. If the variance of the fit result at large values of the Ioffe

time, where there is lack of data, the more the PDF result tends to have large oscillatory

errors. It will be seen in other functional forms when the variance grows significantly at

large Ioffe times, the PDF will contain oscillatory solutions which generate large errors. In

these functional forms, the large Ioffe time behavior of the PDF is largely governed by the

low x parameter a. The large Ioffe time behavior of the ITD from the model in eq. (4.2) is

given by

Q(ν) ∼ − sin
(π

2
a
) Γ(a+ 1)

νa+1
+ b cos

(π
2
a
) Γ(a+ 2)

νa+2
. (4.5)

The PDF must have a finite integral for the sum rules to be enforced. This feature restricts

the power of the x→ 0 divergence to a > −1 and this ITD must vanish in the limit ν →∞.

All of the polynomials tried above, will only add terms which force the ITD to converge to

0 more rapidly. Any of these fit solutions which does not eventually converge to 0 should

be rejected, because it cannot have a finite integral and violates the sum rule.

4.3 Continuum extrapolation

Previous publications of quasi-PDFs and pseudo-PDFs from lattice QCD have only been

performed with one lattice spacing at a time. With results from these two lattice spacings,

we can get an estimate of the continuum extrapolation systematic. Though the action

is O(a) improved, the quark bilinear operator ψ̄(0)γαW (0; z)ψ(z) is not; therefore, O(a)

effects are still possible. With two lattice spacings, it is not actually possible to extrapolate

a quadratic form in a. If one is cavalier, it could be supposed that O(a) effects may have
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Figure 17. The nucleon valence distribution obtained from the ensemble a127m415 fit to the form

used by the JAM collaboration in eq. (4.4). The χ2/d.o.f. for the fit with all the data is 2.5(1.5). The

uncertainty band is obtained from the fits to the jackknife samples of the data. The resulting fits are

compared to phenomenologically determined PDF moments from the NLO global fit CJ15nlo [69],

and the NNLO global fits MSTW2008nnlo68cl nf4 [72] and NNPDF31 nnlo pch as 0118 mc 164 [73]

all evolved to 2 GeV.
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Figure 18. The nucleon valence distribution obtained from the ensemble a127m415L fit to the form

used by the JAM collaboration in eq. (4.4). The χ2/d.o.f. for the fit with all the data is 2.1(6). The

uncertainty band is obtained from the fits to the jackknife samples of the data. The resulting fits are

compared to phenomenologically determined PDF moments from the NLO global fit CJ15nlo [69],

and the NNLO global fits MSTW2008nnlo68cl nf4 [72] and NNPDF31 nnlo pch as 0118 mc 164 [73]

all evolved to 2 GeV.

been significantly reduced or even canceled in the ratios for the reduced matrix elements.

This feature is almost certainly true for the low ν region where the normalization explicitly

fixes the value to 1. This hope if is further supported by the fact that the results from

both lattice spacings are statistically consistent with each other in this region. With the

two available lattice spacings an extrapolation may not be reliable, however, the primary

goal of this exercise is not the extrapolation in itself but to understand the regions of p and

z which show signs of larger discretization errors. As will be argued, the large momentum
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Figure 19. The nucleon valence distribution obtained from the ensemble a094m390 fit to the form

used by the JAM collaboration in eq. (4.4). The χ2/d.o.f. for the fit with all the data is 2.0(5). The

uncertainty band is obtained from the fits to the jackknife samples of the data. The resulting fits are

compared to phenomenologically determined PDF moments from the NLO global fit CJ15nlo [69],

and the NNLO global fits MSTW2008nnlo68cl nf4 [72] and NNPDF31 nnlo pch as 0118 mc 164 [73]

all evolved to 2 GeV.

discretization errors, proportional to O(ap), are more significant than the low separation

discretization errors, proportional to O(a/z).

In order to study the discretization effects, the real component of the reduced pseudo-

ITD calculated on ensembles a094m400 and a127m440, which are of approximately the

same spatial extent, are fit to a polynomial expansion

M(ν) = 1 + aν2 + bν4 + cν6 + dν8 . (4.6)

For this fit, data with the same Ioffe time are averaged and the z2 dependence is neglected.

Due to the discretization of the allowed nucleon momentum p, the evolved reduced pseudo-

ITD M(ν) is calculated for a different set of ν on configurations with different lattice

lengths L, and therefore some ν are in common between both ensembles but far from all

of them. The results of these fits as well as the extrapolation to the continuum limit are

shown in figure 20. The discretization effects are assumed to have the form

M(ν, a)Latt = M(ν)Cont + cn(ν)an , (4.7)

where n = 1, 2. Without more lattice spacings, particularly finer lattice spacings, these

extrapolations should be considered with reservations. They are more of an attempt to

quantify how significant the discretization effects can be especially for large values of the

Ioffe time ν (originating from the region of large momenta). Consequently, no attempt to

determine a continuum limit extrapolated PDF from these data will be made.

The discrepancy between the two lattice spacings is small at low ν, but becomes

significant at large values of ν. The low ν source of discretization errors would come from

effects proportional to powers of a/z, but their size are restricted by the normalization of

the reduced pseudo-ITD. On the other hand, large ν discretization errors are proportional
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Figure 20. On the left is the reduced pseudo-ITD calculated from two lattice spacings and ex-

trapolated to the continuum assuming either O(a) or O(a2) errors. On the right is the coefficient

of the discretization errors from eq. (4.7) shown for either O(a) or O(a2) errors. The size of the

discretization errors is small at low ν due to the normalization of the ITD.

to powers of ap which are not constrained in any way. The size of the coefficient ca(ν) is

shown in figure 20 for errors proportional to O(a) and O(a2).

The discretization errors appear to raise the lattice results at these fairly coarse lattice

spacing. For obtaining results in the critical large Ioffe time region, finer lattice spacings

are required, in order to both reduce discretization effects and also to produce more data

in this region due to finer resolution in momentum. It should be noted that lattice spacing

errors at large Ioffe time would be dominated by O(ap) effects rather than short distance

effects that scale as O
(
a
z

)
. Therefore, careful study of the continuum extrapolation of this

large Ioffe time region should be performed.

4.4 Finite volume effects

Another potential pitfall in the study of PDFs in numerical Lattice QCD arises from the

non local operators used in these studies. Numerical Lattice QCD requires a finite volume

to be used, whose effect on local matrix elements typically is exponentially suppressed as

MInf = MLatt + CLe
−mL , (4.8)

where L is the length of the lattice and m is the mass of the lightest particle of the

theory with the appropriate quantum numbers. This effect can be thought of as coming

from a particle traveling from the operator across the boundary and back to the operator.

Generally, the lightest such particle, in QCD simulations with dynamical quarks, is a pion

and lattices are designed to make mπL to be sufficiently large so that these effects are

small. This picture for local matrix elements is modified by the finite size of the operator.

In the case of a non local operator of size z, the lightest particle does not have to travel

the full distance L to return to the operator, but instead it must travel a distance L− z,

MInf = MLatt + CL(ν)e−m(L−z) . (4.9)
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Figure 21. The real components of the reduced pseudo-ITD from the ensembles a127m415 and

a127m415L with volumes of approximately 3 fm and 4.5 fm respectively. There appear to be slight

finite volume effects whose difference is plotted on the right.

The case of a two current operator has been studied for a model of scalar “pions” and

“nucleons” in [74]. This operator, O(z) = J(z)J(0) has a periodic behavior under shifts of

the lattice size

O(z) = O(z + L) . (4.10)

This periodicity drives the significant finite volume effects observed in [74], particularly for

distances such as z & L/2. It is also possible that CL should be augmented by powers of

(L− z) as was found in [74]. For simplicity, in the following, these unknown powers will be

neglected. In a proper study of the finite volume effects, the functional form would need

to be determined for the Wilson line matrix element.

The Wilson line operator defining the pseudo-ITD does not have this same periodic

feature, but finite volume effects can still be significant. The two ensembles with lattice

spacing a = 0.127 fm, a127m415 and a127m415L have volumes of approximately 3 fm and

4.5 fm respectively. Just as was done when studying lattice spacing effects, the reduced

pseudo-ITD is fit to the form in eq. (4.6). In figure 21, the reduced pseudo-ITDs calculated

on both ensembles are compared. There appears only a slight sign of deviation for the

results on these two volumes from the data, but the fits to the polynomial expression show

clear deviations. The finite volume effects do appear to be small particularly at small Ioffe

time and the difference between the fit results are shown in figure 21. These differences

are largest in the large Ioffe time region, ν & 5, where the data originated from large z

and the matrix elements are the least precise. The largest z used on either of these lattices

was L/4. With these heavy pion masses, the product mπL is fairly large for a lattice

calculation. One needs to keep in mind when performing a lighter pion mass calculation

that the significance of finite volume effects should be checked.

5 Conclusions

In this work we presented a detailed and systematic analysis of the extraction of nucleon

PDFs based on the formalism of pseudo-PDFs. We have employed lattice ensembles with

Nf = 2 + 1 Wilson-clover fermions with stout smearing and tree-level tadpole improved
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Symanzik gauge action with two values of the lattice spacing namely a=0.127 fm and

a=0.094 fm. While two values of the lattice spacing are not sufficient for a stringent control

of the continuum extrapolation, they do provide us with a lot of information regarding the

size and source of discretization errors for our formalism. In future studies, more lattice

spacings should be used for a more robust extrapolation to the continuum limit as well

as studying the functional forms used to interpolate the ν dependence. Moreover, since

toy model calculations of PDFs employing formalisms that are based on spatially nonlocal

operators could potentially suffer from enhanced finite volume effects [74] we have also

addressed two different physical volumes for the case of the coarser lattice spacings. Our

studies did reveal the presence of slight finite volume effects for the values of the parameters

that we investigated. The volume dependence does appear to be larger for matrix elements

that come from large separations as expected from the toy model calculation. For a proper

study of the finite volume effects, the functional form for the Wilson line matrix element will

need to be determined. However, we believe that the functional form used in our studies is

well motivated if one assumes that finite volume effects arise from pion exchanges that wrap

around the periodic volume. Also just as with the lattice spacing analysis, the dependence

of this discrepancy on the functional form used in the interpolation of ν should be studied

in future work as well as including more volumes.

The authors of [23] stressed the necessity of controlling the contamination from ex-

cited states which becomes an increasing concern as one approaches the limit of the physical

pion mass. In this respect we discussed in detail how our method for the extraction of the

matrix element possesses a number of advantages compared to the commonly utilized se-

quential source technique. As was shown in [67], the matrix element extraction based on

the Feynman-Hellman theorem can begin at much earlier times and this is very advanta-

geous for simulations with physical pion mass. Additionally, we have also employed the

method of momentum smearing which has proven to substantially improve the overlap of

the interpolating fields with the boosted hadron ground state.

Beyond the extraction of the x-dependence of the PDF we also perform the extraction

of the lowest two moments of the PDF and we compare to the pertinent phenomenological

determinations from CJ 15, NNPDF and MSTW collaborations. Our results, lie above the

results of CJ 15 and MSTW, as expected, due to the relatively heavy masses of our pions

but agree within errors with NNPDF due to the larger error bars of the latter. As was

analyzed in detail in [39] the complementary synergies between the communities of global

fits and Lattice QCD would be very fruitful in the forthcoming years. In the latter article

different scenarios of lattice data included in the global fits analyses were presented. In all

cases, the conclusion was that a close collaboration of the two communities is necessary in

order to achieve the best possible PDF extraction.

In this work despite the relatively heavy pions we have addressed many of the pertinent

systematics of the extraction of light cone PDFs with the method of pseudo-PDFs. Our

studies have shown that the lattice community as the time goes by can have under better

control all systematics of these calculations and steady progress is being made. In our

forthcoming studies we plan to employ lattice ensembles which have pion masses at the

physical pion mass and consider also the pion PDF besides that of the nucleon.
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