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1 Introduction

In [1], we initiated a study of conformal field theories at finite (i.e. nonzero) temperature in

d > 2 dimensions, using techniques from the conformal bootstrap. At finite temperature,

the operator product expansion (OPE) can still be used to reduce n-point correlators to

sums of n−1-point correlators. However, an important new ingredient at temperature T =

1/β is that non-unit operators can have nonzero one-point functions 〈O〉β . For example,

the thermal one-point function of the stress tensor 〈Tµν〉β encodes the free-energy density.
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Thermal one-point functions are constrained by a type of “crossing-equation” first

written down by El-Showk and Papadodimas [2]. They noted that the Kubo-Martin-

Schwinger (KMS) condition for thermal two-point functions is not manifestly consistent

with the OPE, and this leads to constraints on CFT data. An efficient way to study these

constraints is to use the thermal Lorentzian inversion formula developed in [1], which is

an analog of Caron-Huot’s Lorentzian inversion formula for zero-temperature four-point

functions [3–5].

In this work, we apply these ideas to estimate thermal one- and two-point functions

in a strongly-coupled conformal field theory in d = 3 dimensions: the 3d Ising CFT.

Physically, this theory describes the 2+1-dimensional quantum transverse field Ising model

at nonzero temperature, and the 3-dimensional statistical Ising model with a periodic

direction of length β (both at criticality).1 Besides its physical interest, an advantage

of studying the 3d Ising CFT is that we can leverage a wealth of information about its

zero-temperature OPE data from the conformal bootstrap [6–10]. The 3d Ising CFT is a

case where Monte-Carlo (MC) techniques are also very efficient for computing some finite-

temperature observables [11]. However, we believe it is worthwhile to develop bootstrap-

based approaches. One might hope to eventually apply these approaches to theories that

are more difficult to study with MC, like fermionic theories, or non-Lagrangian CFTs.

The thermal crossing equation of El-Showk and Papadodimas is difficult to study

for two reasons. Firstly, it does not enjoy the positivity conditions that are important

for rigorous numerical bootstrap techniques to work [12–17]. Thus, we will not be able to

compute rigorous bounds on thermal data and will have to content ourselves with estimates.

Our rough strategy is to truncate the thermal crossing equation and approximate it by a

finite set of linear equations for a finite set of variables. In spirit, this is similar to the

“severe truncation” method initiated by Gliozzi [18, 19] and applied with some success in

the boundary/defect bootstrap [20–27].

However, a second difficulty is that the thermal crossing equation converges more

slowly than the crossing equation for flat-space four-point functions. Thus, näıve “severe

truncation” is doomed to fail, and we need a more sophisticated approach. We will use

the thermal Lorentzian inversion formula and large-spin perturbation theory to estimate

the behavior of a few families of operators (specifically, the first few Regge trajectories) in

terms of a small number of unknown parameters. This reduces the number of unknowns in

the crossing equations and allows them to be solved approximately by a least-squares fit.

In section 2, we review the conformal bootstrap at finite temperature, following [1],

together with some features of the spectrum of the 3d Ising CFT [10] that play an impor-

tant role in our calculation. In section 3, we outline our overall strategy and summarize

the results. As a check, we perform an MC simulation of the 3d critical Ising model

and find agreement with our determination of 〈σσ〉β to within statistical error, inside the

regime of convergence of the OPE. Section 4 presents the details of our bootstrap-based

calculation. The most complicated step is the estimation of thermal one-point coefficients

for subleading Regge trajectories, which we perform by adapting the “twist-Hamiltonian”

procedure of [10].

1Note that the temperature we discuss in this work is not related to the “temperature” of the statistical

Ising model that determines the spin-spin coupling. The latter quantity is set to its critical value.
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2 Review

2.1 The thermal bootstrap

A CFT at nonzero temperature T can equivalently be thought of as living on the space

S1
β × Rd−1, where β = 1/T is the length of the thermal circle. This space is confor-

mally flat, so one can compute finite-temperature correlators using the OPE, just as in

flat space. However, an important difference compared to flat-space is that the thermal

circle introduces a scale, and as a result operators can have nonzero one-point functions.

Symmetries imply that the only operators with nonzero one-point functions are primary

even-spin traceless symmetric tensors Oµ1···µJ . For such operators, we have

〈Oµ1···µJ (x)〉S1
β×Rd−1 =

bO
β∆

(eµ1 · · · eµJ − traces), (2.1)

where ∆ is the dimension of O, eµ is a unit vector in the S1 direction, and bO is a dynamical

constant.

Consider a two-point function of a real scalar primary φ at finite temperature:

g(τ,x) = 〈φ(τ,x)φ(0)〉S1
β×Rd−1 . (2.2)

Here, we introduced coordinates x = (τ,x), where τ ∈ [0, β) and x ∈ Rd−1. Assuming

|x| = (τ2 + x2)1/2 < β, this two-point function can be evaluated using the OPE:

g(τ,x) =
∑
O∈φ×φ

a
〈φφ〉
O
β∆

C
(ν)
J

(
x · e
|x|

)
|x|∆−2∆φ ,

a
〈φφ〉
O ≡ fφφObO

J !

2J(ν)J
. (2.3)

Here, O runs over primary operators appearing in the φ × φ OPE, with OPE coefficients

fφφO. ∆ is the scaling dimension of O, J is its spin, and ν = (d− 2)/2. We call each term

in (2.3) a “thermal block.” The thermal one-point coefficient bO is defined in (2.1), and we

have defined the thermal coefficients a
〈φφ〉
O for later convenience.

For simplicity, we set β = 1 in what follows. Let us use d − 1-dimensional rotational

invariance to set x = (x, 0, . . . , 0) ∈ Rd−1 and introduce the coordinates

z = τ + ix, z = τ − ix. (2.4)

Note that z, z are complex conjugates in Euclidean signature.

The two-point function g(τ,x) is invariant under τ → 1−τ . In the language of thermal

physics, this is the KMS condition, and it is furthermore obvious from the geometry of

S1
β×Rd−1. However, the OPE expansion (2.3) is not manifestly invariant under τ → 1− τ .

This leads to a nontrivial crossing equation that constrains thermal one-point functions bO
in terms of scaling dimensions and OPE coefficients [2]. In terms of z and z, the crossing

equation/KMS condition is

g(z, z) = g(1− z, 1− z). (2.5)

Here, we have also used that g is invariant under x→ −x.
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The coefficients a
〈φφ〉
O can be encoded in a function a〈φφ〉(∆, J) that is meromorphic

for ∆ in the right-half-plane, with residues of the form

a〈φφ〉(∆, J) ∼ −
a
〈φφ〉
O

∆−∆O
. (2.6)

In [1], we showed that such a function can be obtained from a “thermal Lorentzian inver-

sion formula”

a〈φφ〉(∆, J) = (1 + (−1)J)KJ

∫ 1

0

dz

z

∫ 1/z

1

dz

z
(zz)∆φ−∆

2
−ν(z − z)2νFJ

(√
z

z

)
Disc[g(z, z)]

+ θ(J0 − J)a〈φφ〉arcs (∆, J) . (2.7)

Here z, z are treated as independent real variables, which means that the integral is over a

Lorentzian regime x→ −ixL. The first term contains the discontinuity

Disc[g(z, z)] ≡ 1

i
(g(z + iε, z)− g(z − iε, z)) , (2.8)

and the functions KJ and FJ(w) are given by

KJ ≡
Γ(J + 1)Γ(ν)

4πΓ(J + ν)
, (2.9)

FJ(w) = wJ+d−2
2F1

(
J + d− 2,

d

2
− 1, J +

d

2
, w2

)
. (2.10)

The second line in (2.7) represents additional contributions that are present when J < J0,

where J0 controls the behavior of the two-point function in a Regge-like regime. We argued

in [1] that J0 < 0 for the 3d Ising CFT. In this work, we assume this is true and ignore

these contributions.

2.1.1 Large-spin perturbation theory

The thermal inversion formula (2.7) becomes particularly powerful in conjunction with the

KMS condition (2.5).

Let us call (2.3) the s-channel OPE, which in our new coordinates is an expansion

around z = z = 0 and has the region of convergence

s-channel OPE: |z|, |z| < 1 . (2.11)

By the KMS condition, the two-point function admits another expansion around z = z = 1,

which we call the t-channel:

g(z, z) =
∑
O∈φ×φ

a
〈φφ〉
O ((1− z)(1− z))

∆O
2
−∆φC

(ν)
`O

(
1

2

(√
1− z
1− z

+

√
1− z
1− z

))
. (2.12)

Its region of convergence is given by:

t-channel OPE: |1− z|, |1− z| < 1 . (2.13)
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We can insert the t-channel OPE into the inversion formula (2.7) to find expressions for

thermal coefficients in the s-channel. In this way, we uncover non-trivial relations between

the thermal coefficients of different operators in the theory.

The integral in the inversion formula (2.7) is within the region of convergence of the

t-channel OPE for 1 ≤ z < 2, but for z ≥ 2 it exits this region. Corrections to the

residues of a(∆, J) coming from the region z ≥ 2 are exponentially suppressed in J . Thus,

the t-channel OPE encodes the all-orders expansion in powers of 1/J for thermal one-

point coefficients.

Let us review how poles and residues of a(∆, J) arise from the thermal inversion

formula. As an example, we study the poles and residues contributed by a single t-

channel block. Individual t-channel blocks contribute poles at double-twist locations ∆ =

2∆φ+2n+J [1]. A similar phenomenon occurs in the flat-space lightcone bootstrap, where

individual t-channel blocks again contribute to OPE data of double-twist operators. To

obtain poles at other locations, one must sum infinite families of t-channel blocks before

plugging them into the inversion formula. (We will see several examples below.) Never-

theless, individual t-channel blocks provide an important example that will be a building

block for later calculations.

Poles in ∆ come from the region z ∼ 0. Therefore, when computing residues one

can simply replace the upper bound of the z integral with 1/z ∼ ∞. However, the range

of the z integral must then be artificially restricted to zmax = 2 when plugging in the

t-channel expansion, in order for the z integral to fully be within the region of OPE

convergence. This restriction is essentially an approximation that discards corrections that

die exponentially in J .

The residues are determined by a one-dimensional integral over z. To see this, we first

expand the function FJ

(√
z/z
)

in z in the inversion formula,

a〈φφ〉(∆, J) = (1 + (−1)J)KJ

∫ 1

0

dz

z

∫ 1/z

1

dz

z

∞∑
r=0

qr(J)z∆φ−h−rz∆φ−h+rDisc[g(z, z)] ,

(2.14)

where the coefficients qr(J) are

qr(J) ≡ (−1)r
(J + 2r)

J

(J)r(−r + ν + 1)r
r!(J + ν + 1)r

, (2.15)

and we have rewritten the inversion formula in terms of the quantum numbers

h =
∆− J

2
, h =

∆ + J

2
. (2.16)

The t-channel OPE can also be expanded in a power series in (1 − z) and (1− z),

g(z, z) =
∑
O∈φ×φ

a
〈φφ〉
O

`O∑
s=0

ps(`O)(1− z)hO−∆φ+s(1− z)hO−∆φ−s, (2.17)
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where

ps(`) ≡
Γ(`− s+ ν)Γ(s+ ν)

Γ(`− s+ 1)Γ(s+ 1)

1

Γ(ν)2
=

1

4πK`

(`+ ν)−s
(`+ 1)−s

(
ν + s− 1

s

)
. (2.18)

The hO and hO are the quantum numbers defined by (2.16) for each O appearing in the

OPE. Plugging in the term corresponding to an individual O from the t-channel OPE into

the inversion formula (2.7), we find2

a〈φφ〉, (O)(∆, J) ≈ (1 + (−1)J)KJ

∫ 1

0

dz

z

∫ zmax

1

dz

z

∞∑
r=0

qr(J)z∆φ−h−rz∆φ−h+r

×Disc

[
a
〈φφ〉
O

`O∑
s=0

ps(`O)(1− z)hO−∆φ+s(1− z)hO−∆φ−s

]

= a
〈φφ〉
O (1 + (−1)J)KJ

∞∑
r=0

`O∑
s=0

qr(J)ps(`O)
Γ(1+hO−∆φ−s)Γ(∆φ+r−h)

Γ(hO − h+ 1− s+ r)

× 2πShO−∆φ+s,∆φ−r(h) , (2.19)

Here, the superscripts a〈φφ〉, (O) indicate that we are studying thermal coefficients for 〈φφ〉,
focusing on the contribution of the t-channel operator O. To go from the first equation

to the second equation above we have performed the z integral and defined the function

ShO−∆φ+s,∆φ−r(h) as

Sc,∆(h) =
sin(−πc)

π

∫ zmax

1

dz

z
z∆−h(z − 1)c

=
1

Γ(−c)
Γ(h−∆− c)
Γ(h−∆ + 1)

− 1

Γ(−c)Γ(1 + c)
B1/zmax

(h−∆− c, 1 + c) . (2.20)

Here B1/zmax
(h−∆−c, 1+c) is the incomplete beta function, which decays as z−hmax ∼ z−Jmax

at large h.

Note that in (2.19) the z-integral has generated poles at double-twist locations ∆ =

2∆φ + 2n+ J , coming from the factors Γ(∆φ + r−h). Taking the residue of (2.19), we get

the contribution of the operator O to the [φφ]n families

a
〈φφ〉, (O)
[φφ]n

(J) = − Res
∆=2∆φ+2n+J

a〈φφ〉, (O)(∆, J)

= a
〈φφ〉
O (1 + (−1)J)4πKJ

dh

dJ

×
n∑
r=0

`O∑
s=0

qr(J)ps(`O)(−1)n−r
(
hO −∆φ − s

n− r

)
ShO−∆φ+s,∆φ−r(h). (2.21)

For double-twist operators [φφ]n, we have h = ∆φ + n+ J . The Jacobian factor dh
dJ takes

into account the leading correction to (2.21) when we additionally allow [φφ]n to have

anomalous dimensions.
2We assume that J is larger than J0, so that the arcs do not contribute. As mentioned above, we expect

J0 < 0 in the 3d Ising CFT, so the arcs don’t contribute to the pole of any local operator.
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O family Z2 ` ∆ τ = ∆− ` fσσO fεεO

ε ? + 0 1.412625(10) 1.412625(10) 1.0518537(41) 1.532435(19)

ε′ [σσ]1 + 0 3.82968(23) 3.82968(23) 0.053012(55) 1.5360(16)

Tµν [σσ]0 + 2 3 1 0.32613776(45) 0.8891471(40)

T ′
µν [σσ]1 + 2 5.50915(44) 3.50915(44) 0.0105745(42) 0.69023(49)

Cµνρσ [σσ]0 + 4 5.022665(28) 1.022665(28) 0.069076(43) 0.24792(20)

O family Z2 ` ∆ τ = ∆− ` fσεO —

σ ? − 0 0.5181489(10) 0.5181489(10) 1.0518537(41)

σ′ ? − 0 5.2906(11) 5.2906(11) 0.057235(20)

[σε]0 − 2 4.180305(18) 2.180305(18) 0.38915941(81)

Table 1: A few low-dimension operators in the 3d Ising CFT, from [10]. The “?” are

associated to scalars whose affiliation with a certain operator family is not fully established.

Errors in bold are rigorous. All other errors are non-rigorous.

The function ShO−∆φ+s,∆φ−r(h) can be expanded in large h (equivalently large J) as

ShO−∆φ+s,∆φ−r(h) =
1

Γ(−hO + ∆φ − s)
1

h
hO−∆φ+s+1

+O
(

1

h
hO−∆φ+s+2

)
. (2.22)

Thus, we see that the contribution of the t-channel operator O dies at large J at a rate

controlled by the half-twist hO = τO/2. The unit operator has the lowest twist in any

unitary theory, and thus gives the leading contribution at large J . A second important

contribution comes from the stress tensor O = Tµν , which gives a universal contribution

proportional to the free energy density. In general, by including successively higher-twist

contributions in the t-channel, we can build up a perturbative expansion for thermal coeffi-

cients in 1/J . We will review this large-spin perturbation theory of the thermal coefficients

and detail how we use it for the 3d Ising CFT in section 4.

2.2 The 3d Ising CFT

In this work, we apply the thermal crossing equation and inversion formula to compute

thermal one-point coefficients in the 3d Ising CFT. It will be crucial to incorporate as much

information as possible about the known flat-space data (i.e. operator dimensions and OPE

coefficients) of the theory. Indeed, our approach will be closely tailored to observed features

of this data. We leave the question of how our approach can be generalized to arbitrary

CFTs for future work. In this section, we review some features of the spectrum of the 3d

Ising CFT that play an important role in what follows.

The low-dimension spectrum of the 3d Ising CFT is summarized in table 1. The lowest-

dimension operator is a Z2-odd scalar σ with dimension ∆σ ≈ 0.518. The lowest-dimension

Z2-even scalar ε has dimension ∆ε ≈ 1.412.

Some of the operators in table 1 are (conjecturally) identifiable as members of large-

spin families — i.e. families of operators whose twists τ = ∆− ` accumulate at large spin.

– 7 –
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This identification works as follows. At asymptotically large spin, it is known that there

exist “multi-twist” operators [O1 · · · Ok]n,` whose twists approach τ1 + · · · + τk + 2n as

` → ∞, where τi = ∆Oi − `Oi [10]. By analyticity in spin, all operators O with spin

above the Regge intercept ` > `0 are expected to lie on curves τi(`) that are analytic in

` [3, 4]. Here, i labels the Regge trajectory of the operator. If the trajectory associated to

O approaches a multi-twist value τ1 + · · ·+τk+2n as `→∞, we say that O is in the family

[O1 · · · Ok]n. In practice, to identify a particular family in numerics, one computes Regge

trajectories using the lightcone bootstrap [10, 28–33] or Lorentzian inversion formula [3–5]

and observes which operators they pass through.3,4

Numerical bootstrap methods reveal large OPE coefficients in the σ × σ and ε × ε

OPEs for operators in the families [σσ]0, [εε]0, and [σσ]1. Certain other trajectories with

comparable twist are not described to high precision by numerics, including for example

[σσσσ]0. Instead, numerics indicate that these other families have relatively small OPE

coefficients in the σ×σ and ε× ε OPEs. In this work, we make the approximation that we

can ignore large-spin families other than [σσ]0, [εε]0, and [σσ]1. It is difficult to quantify

the error associated with this approximation, since other families could potentially possess

large thermal one-point coefficients that don’t play a role in flat-space correlators, but do

contribute to thermal correlators. Nevertheless, we will find a mostly-consistent picture.

However, we also see some indications that other families (in particular [σσε]0) could be

important for more precise calculations, see section 4.4.

Let us discuss the families [σσ]0, [εε]0, and [σσ]1 in more detail. The lowest-twist

family [σσ]0 has twists ranging from 1 at ` = 2 to 2∆σ = 1.036 as ` → ∞. They are

increasing and concave-down as a function of `, by Nachtmann’s theorem [29, 37, 38]. The

lowest-spin operator in the [σσ]0 family is the spin-2 stress-tensor Tµν . The next operator

Cµνρσ has spin-4 and controls the breaking of cubic symmetry when the Ising model is

implemented on a cubic lattice [39]. The family [σσ]0 is plotted up to spin 40 in figure 1.

There we show both the numerical bootstrap predictions (dots) and the results of large-spin

perturbation theory (curve), which agree to high precision [10, 32]. The curve τ[σσ]0(h) is

well-approximated by 2(2hσ + δ[σσ]0(h)) where hσ = ∆σ/2 and

δ[σσ]0(h) =

∑
O=ε,T −f2

σσO
Γ(2hO)

Γ(hO)2QhO−∆σ(h)

Q−∆σ(h)−
∑
O=ε,T 2f2

σσO
(
ψ(0)(hO) + γ

) Γ(2hO)

Γ(hO)2QhO−∆σ(h)

=
−0.000971264Γ(h−0.981851)

Γ(h+0.981851)
− 0.031588Γ(h−1.18816)

Γ(h+1.18816)

0.68256Γ(h−0.481851)

Γ(h+0.481851)
− 0.00248716Γ(h−0.981851)

Γ(h+0.981851)
+ 0.0394879Γ(h−1.18816)

Γ(h+1.18816)

,

(2.23)

3Operator mixing can make this procedure difficult in practice. Due to eigenvalue repulsion it may be

difficult to track a trajectory out to infinite spin if it passes near other trajectories. It is also not known

rigorously whether trajectories remain discrete in twist space when ` is not an integer. See [10] for further

discussion. None of these subtleties are visible in the first few orders of large-spin perturbation theory.
4The operators marked with “?” in table 1 are scalars. Whether scalar operators lie on Regge trajectories

depends on the behavior of four-point functions in the Regge regime. It has been conjectured that scalars

do lie on Regge trajectories in the 3d Ising CFT [34].
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10 20 30 40
h

1.00

1.01

1.02

1.03

1.04
τ

τ[σσ]0(h)

Figure 1. Twists of the double-twist family [σσ]0. Here, we plot τ = ∆ − ` versus h = ∆+`
2 .

The dots show estimates from [10] using the extremal functional method [7, 35, 36] and the nu-

merical bootstrap. The curve shows the prediction of large-spin perturbation theory with only

∆σ,∆ε, fσσε, cT taken from the numerical bootstrap. figure reproduced from [10].

with Qa(h) = 1
Γ(−a)2

Γ(h−a−1)

Γ(h+a+1)
. The OPE coefficients of [σσ]0 in the σ × σ and ε× ε OPEs

can also be approximated in large-spin perturbation theory and are given in [10].

The families [εε]0 and [σσ]1 are notable in that they experience large mixing with each

other at small spins. For example, the operators [σσ]1 have larger OPE coefficients than

[εε]0 in the ε × ε OPE for spins ` . 25. This mixing can be described by supplementing

large-spin perturbation theory with a procedure described in [10]. The resulting twists and

OPE coefficients match well with estimates using the extremal functional method which

is used in the numerical bootstrap to extract the spectrum of theories on the boundary of

the allowed region [7]. We show the twists of the [σσ]1 and [εε]0 families in figure 2.

3 Method and results

3.1 Summary of method

The thermal bootstrap for the 3d Ising CFT consists of two parts. In the first part,

we compute the thermal coefficients of a truncated (but infinite) subset of the spectrum

in terms of the thermal coefficients of a few operators — 1, ε, and T , where a
〈σσ〉
ε and

a
〈σσ〉
T are unknowns. Specifically, we use the thermal inversion formula to approximately

determine the thermal coefficients of all operators in the [σσ]0, [σσ]1, and [εε]0 families

described in section 2.2. In the second part, we approximate 〈σσ〉 as a sum over the

truncated spectrum with the thermal coefficients obtained in the first part. We determine

the remaining unknowns by demanding that the KMS condition is satisfied in a region of

the (z, z)-plane that is within the radius of converge of the s-channel OPE. The procedure

is summarized graphically in figure 3. The initial steps are as follows:
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h2.0

2.5

3.0

3.5

4.0
τ

τ[ϵϵ]0(h) and τ[σσ]1(h)

Figure 2. Twists of the double-twist families [εε]0 (orange) and [σσ]1 (blue). Again, we plot

τ = ∆− ` versus h = ∆+`
2 . The dots show estimates using the extremal functional method and the

numerical bootstrap. The curves are estimates using large-spin perturbation theory and the mixing

procedure described in [10] and reviewed in section 4.4. The dashed curves illustrate the effects of

modifying the mixing procedure. Figure reproduced from [10].

a
〈σσ〉
[σσ]0

1, a
〈σσ〉
ε , a

〈σσ〉
T

start

〈σσ〉

a
〈σσ〉
[εε]0

a
〈σσ〉
[σσ]1

. . .

a
〈εε〉
[εε]0

+ . . .

〈εε〉

a
〈εε〉
[σσ]1

a
〈εε〉
[σσ]0

Operator Mixing

KMS Condition

Figure 3. Diagram of the algorithm which is used to obtain the thermal coefficients in the 3d Ising

CFT. Here, “. . . ” represents contributions to the thermal coefficients of families other than [σσ]0,

[σσ]1, and [εε]0 that we account for when considering operator mixing.

– 10 –



J
H
E
P
1
2
(
2
0
1
9
)
0
7
2

1. Consider the thermal inversion formula for the 〈σσ〉 correlator.

2. Invert the low-twist operators 1, ε, and T in the t-channel OPE to compute a
〈σσ〉
[σσ]0

(J)

in terms of the unknowns a
〈σσ〉
ε,T .

3. Sum over the [σσ]0 family in the t-channel using the computed data. Invert the result

to obtain self-corrections of the [σσ]0 family.

4. Compute poles for higher-twist families up to twist 2 in the 〈σσ〉 and 〈εε〉 correlators

by summing the self-corrected thermal coefficients of the [σσ]0 family together with

1, ε, and T .

5. Estimate the thermal coefficients of the [σσ]1 and [εε]0 families at intermediate spin

by “mixing” the residues according to the large anomalous dimensions.

6. Assuming the smoothness of the thermal coefficients in the [σσ]1 family with h up

to J = 0, we interpolate the thermal coefficients of the [σσ]1 family to estimate the

thermal coefficients of ε′ and T ′.

7. After these steps, we are almost ready to determine the unknowns. As a penultimate

simplification, we use the fact that T is the spin-two member of the [σσ]0 family.

This requires that a
〈σσ〉
T is equal to a

〈σσ〉
[σσ]0

(J = 2), which we use to solve for a
〈σσ〉
T .

Thus, we are left with a single unknown, a
〈σσ〉
ε .

Finally, we approximate the 〈σσ〉 correlator by the truncated OPE including the scalars

1 and ε, and the low-twist families [σσ]0, [σσ]1, and [εε]0. We solve for the final remaining

unknown a
〈σσ〉
ε by imposing that the KMS condition is close to being satisfied for a sampling

of z and z points in the interior of the square 0 ≤ z, z ≤ 1.

3.2 Results

In this section, before diving into the details of our computation, we summarize our results

and compare to MC. To perform our computation, we must make some arbitrary choices

and approximations. We enumerate them in section 3.2.3 and estimate the resulting errors.

Overall, the results show robustness for a wide range of choices.

3.2.1 One-point functions

After using the thermal inversion formula together with the KMS condition we find that

a〈σσ〉ε = 0.672(74), a
〈σσ〉
T = 1.96(2) , bε = 0.63(7) , bT = −0.43(1). (3.1)

The values and errors quoted capture the deviations seen over several runs of our algorithm

with different parameter choices. For comparison the results obtained from MC are

bMC
ε = 0.667(3) [40] , bMC

T = −0.459(3) [41–43] . (3.2)

Note that the errors for the above two observables in MC are much smaller than for the

bootstrap. This is due in part to the difficulty of using the thermal crossing equation,

– 11 –



J
H
E
P
1
2
(
2
0
1
9
)
0
7
2

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

★

★

●●

KMS & Inversion Formula
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Figure 4. Thermal coefficients for the three families [σσ]0, [σσ]1, and [εε]0. The orange horizontal

lines are obtained by using the KMS condition in combination with the thermal inversion formula

and by averaging over several parameter choices. The spread given by the orange error bars is

obtained by computing the operator mixing using different sets of z values as explained in section 4.4

and by imposing the KMS conditions in different regions on the thermal cylinder (see figure 13 for

an example). The blue stars are MC estimates for a
〈σσ〉, MC
ε = 0.711(3) [40] and a

〈σσ〉, MC
T =

2.092(13) [41–43]. The blue lines are the estimates for the thermal coefficients of all other operators

in [σσ]0, [σσ]1 and [εε]0 families using these MC results together with the inversion formula. Note

that the spread of the thermal coefficients of higher-spin operators estimated by the bootstrap are

too small to be visible on this scale.

and also to the favorable behavior of finite-size effects when computing thermal correlators

with MC, see appendix A. Improving the precision of thermal bootstrap results is clearly

an important challenge for the future.

Our determinations for thermal coefficients in the three low-twist families, [σσ]0, [σσ]1
and [εε]0 are presented in figure 4.5 Unfortunately, to our knowledge, there are no available

MC results for the thermal one-point functions of such higher-spin operators. However, we

can use the MC results for ε and T in (3.2) together with the thermal inversion formula

to compare to the results obtained in our computation. Note that due to the strong

contribution of the unit operator in the inversion formula, the standard deviations in the

thermal coefficient of all higher-spin operators in all three families is much smaller than

that for a
〈σσ〉
ε and a

〈σσ〉
T .

3.2.2 Two-point function of σ

In figure 5, we show the thermal two-point function 〈σσ〉β computed using our algorithm

and compare it to a MC simulation that we performed. The details of our simulation are

described in appendix A.

5We choose to present the thermal coefficients a
〈σσ〉
O instead of the thermal one-point function due to

the exponential increase of bO with the spin J (see definition (2.3)).
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Figure 5. Left: the thermal two-point function obtained by applying the inversion formula and

then solving the KMS condition (yellow) compared to that obtained from a MC simulation (red).

Note that we restrict the plot to the region of OPE convergence around x = 0 and τ = 0. Right:

percentage difference between the two correlators, showing good agreement (within 5%) between

the bootstrap and MC predictions. At small values of
√
|x|2 + τ2 we expect the MC results to be

inaccurate due to lattice-size effects. As
√
|x|2 + τ2 → β, we exit the region of OPE convergence,

and we expect inaccuracies in the bootstrap calculation.

Overall, we find good agreement between the bootstrap prediction and MC inside the

regime of convergence of the OPE. In part, this is due to the fact that the unit operator

gives a large contribution in this region, and its contribution is known very precisely from

the four-point function bootstrap. However, the thermal OPE also correctly recovers other

features of the two-point function. For example, large-spin families sum up to correctly

reproduce the t-channel singularity as τ → ±1.

We also observe decay of the two-point function in the spatial direction x. Exponential

decay of thermal two-point functions in x can established rigorously by expanding the

correlator in states on R× S1, as explained in [1, 44]. However, decay in x is not obvious

from the OPE, where each term grows in magnitude in the x direction. The fact that we

observe decay in x serves as a check on our calculation. At long distances, the correlator

behaves as e−mthx, where mth is the thermal mass. It would be interesting to understand

how to determine or bound mth using information in the OPE region.6

Finally, in figure 6 we test how close we are to satisfying the KMS condition within

the region of OPE convergence. As emphasized in the figure, within an 0.9β radius from

the center of the OPE convergence region the deviation from satisfying KMS is < 2%.

3.2.3 Systematic errors

Our algorithm above involves a few choices of parameters. To check for robustness under

different choices, we show the spread of results for the thermal coefficients in figure 4.

Specifically, variations in our results are mainly due to the following choices:

• As we explain in section 4.4, the mixing of families requires a set of z points. Figure 4

shows the results obtained when choosing different sets of z values which span a full

order of magnitude. When considering our results for a
〈σσ〉
ε , the variation between

6We thank Tom Hartman for discussions on this point.
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Figure 6. Evidence of how well the KMS condition is satisfied in the (τ, x) plane in the region

of OPE convergence. We plot the difference of the two-point function and it’s periodic image,

δgKMS(τ, x) = g(1 + τ, x) − g(τ, x), using the average thermal coefficients presented in figure 4.

Note that towards the boundary of the region of OPE convergence, our estimates for the two-point

function become worse and the KMS condition is further from being satisfied. For the range (τ, x)

shown above the deviation from satisfying KMS is < 2%.

the set with the lowest values of z and those with the largest is at most ∼ 10%. As

we will describe in section 4.4 and is already clear from figure 4, the error for higher

spin thermal coefficients is significantly lower.

• In the final step of our algorithm, we choose a set of point in the (z, z)-plane, in

the s-channel region of convergence, for which we require that the thermal two-point

function satisfies the KMS condition approximately. When considering significantly

different regions in the (z, z)-plane as exemplified in figure 13, the variation in a
〈σσ〉
ε

is only ∼ 5%. Once again, the error associated to this effect for operators with higher

spins is significantly lower.

Besides the choices of parameters presented above, there are several other systematic errors:

• When requiring that the KMS condition is close to being satisfied at a wide variety

of point in the (z, z)-plane, we truncate the OPE of the two-point function 〈σσ〉 to

the three low-twist families 〈σσ〉. For the ranges of points at which we attempt to

impose the KMS condition, corrections to the two-point function are dominated by

the contribution of the next Z2-even operator ε′′.7 Considering that the flat-space

numerical bootstrap estimates the scaling dimension of this operator to be ∆ε′′ ∼ 6.9,

we can compare the contribution of the thermal conformal block for this operator to

the total contribution of all other operators in [σσ]0, [σσ]1, and [εε]0 to 〈σσ〉. This

helps us estimate the error associated with neglecting this operator and higher twist

operators to be ∼ 4%.

7We remind the reader that this operator is not part of any of the three double-twist families [σσ]0,

[σσ]1 and [εε]0.
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• The second largest systematic error which we expect comes from the fact that when

using the inversion formula we truncate the range of integration to the t-channel re-

gion of convergence, z ≤ 2. As discussed in section 2.1 we expect that the correction

from the region z ≥ 2 to the thermal coefficient of an operator with spin J is expo-

nentially suppressed in J . However, since we use the inversion formula for J ≥ 4, one

might worry that at small J this correction becomes large. To probe this we note

that in the O(N)-model with N → ∞ the difference between the exact result and

that extracted by inverting the OPE for an operator with J = 4 is only ∼ 2.8%.8

• There are several systematic errors associated to the operator mixing procedure. The

first is due to the truncation of the spectrum to operators of twist below a cut-off

value. Since the contribution of operators with higher twist is visibly suppressed,

such a truncation should only introduce a small error. The second is due to the

fact that while multiple operator families serve as mixing inputs, we solely focus

on [σσ]0, [σσ]1, and [εε]0 as outputs. This assumes that, just like in the flat-space

bootstrap, the thermal coefficients of these three double-twist families dominate over

all other families with twists below the cut-off. While we have found this to be true

for the thermal coefficients in the 〈σσ〉 correlator, there is one family — the multi-

twist family [σσε]0 — which has a contribution comparable to that of [εε]0 in the

〈εε〉 correlator. While we will discuss the contribution of this family extensively in

section 4.3, here we note that neglecting its contribution in the mixing procedure

leads to an overall difference of ∼ 4% in the mixing results. Finally, we note that

after mixing we assume that the [σσ]1 family is smooth in h and we use a fit to

estimate the thermal coefficients of the ε′ and T ′ operators. We find that by varying

this fit we introduce an overall error of ∼ 3% in the final results.

4 Details of the computation

In this section, we describe the details of the algorithm outlined in section 3.1. We will

methodically iterate large-spin perturbation theory — working our way up in twist — to

compute the thermal coefficients for the [σσ]0, [σσ]1, and [εε]0 families.

In general, we will invert operators with h < 1 from the t-channel, meaning we will

work to order

S1−2hσ ,2hσ(h) ∼ 1

h
2−2hσ

(4.1)

for the thermal coefficients in the 〈σσ〉 correlator, dropping terms Sc,∆(h) with c > 1−2hσ,

and analogously for 〈εε〉 with hσ replaced with hε.

4.1 [σσ]0

We begin by solving for the lowest-twist family of operators in the theory, [σσ]0. The

most direct way to study this family is through the 〈σσ〉β two-point function. Large-spin

8Specifically, the exact result found in [1] predicts that as N → ∞, a
exact, 〈σσ〉
[σσ]0,`=4

= 0.964, while by

restricting the inversion formula to the interval 1 ≤ z ≤ 2, we find a
OPE 〈σσ〉
[σσ]0,`=4

= 0.936.
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(a) t-channel

σ

σ

O

(b) s-channel

Figure 7. An illustration of how the inversion formula relates between s- and t-channels in the

〈σσ〉β correlator. A single term in the t-channel OPE O ∈ σ×σ represented in (a), inverts to a part

of the sum over the [σσ]n families in the s-channel, which are represented in (b). Alternatively, the

sum in (b) over a
〈σσ〉,(O)
[σσ]n

reproduces the O term in (a).

perturbation theory instructs us to start by inverting the lowest-twist operators in the

t-channel. The first few low-twist primary operators in the σ × σ OPE are

σ × σ = 1 + T +
∑

`=4,6,...

[σσ]0,` + ε+ . . . . (4.2)

Note that [σσ]0 operators are nearly killed by Disc and thus give smaller contributions than

1, T, ε. Thus, we will initially neglect them, but we will add them in later. We have singled

out T from the rest of the [σσ]0 family because it has the largest anomalous dimension of

the family and gives the least suppressed contribution. Inverting the operators 1, ε, and

T , we obtain a first approximation for a
〈σσ〉
[σσ]0

(J) [1]

a
〈σσ〉
[σσ]0

(J) ⊃
∑
O=1,ε,T

a
〈σσ〉
O (1 + (−1)J)

KJ

K`O

∂h

∂J
ShO−∆σ ,∆σ(h). (4.3)

These contributions can be represented by the large-spin diagrams in figure 7.

The next most significant contribution comes from the [σσ]0 family itself. To compute

their contributions, one needs to sum over the family in the t-channel before inverting, as

discussed in [1]. The sum we need to do is9

∞∑
s=0

∞∑
`=min(`0,s)

ps(`)a
〈σσ〉
[σσ]0

(h)(1− z)h(h)−2hσ+s(1− z)h−2hσ−s , (4.4)

where h(h) = 2hσ+δ[σσ]0(h) and h = h(h)+`. The sum is evaluated by expanding in small

δ(h) log(1 − z), and then regulating the asymptotic parts of the h sum, as was explained

in [1]. For the convenience of the interested reader, we review the method in appendix B.

The result is as follows,
∞∑
`=`0

ps(`) a
〈σσ〉
[σσ]0

(h)(1− z)2hσ+δ[σσ]0
(h)−2hσ+s(1− z)h−2hσ−s

=

∞∑
m=0

( ∑
a∈Am

ca

[
δm[σσ]0

m!
psa
〈σσ〉
[σσ]0

]
za +

∞∑
k=0

αk

[
δm[σσ]0

m!
psa
〈σσ〉
[σσ]0

, δ[σσ]0 , 2hσ + s

]
(h0) zk

)

× (1− z)s logm(1− z), (4.5)

9Note that terms with s > ` are absent from the t-channel sum, so for sufficiently large s, we need to

start the sum at higher `. We ensure this by letting the sum start at ` = min(`0, s).
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where h0 = 2hσ + `0. Here, the set Am ⊂ R\Z≥0 and the coefficients ca[f ] are deter-

mined by the large-h expansion of the summand f(h), via (B.5).10 The coefficients ca[f ]

do not depend on the finite part of the sum. The coefficients αk are computed via the

formula (B.7), and depend on the details of the sum. We call the terms za (and za logm z)

‘singular’ terms, and the zk ‘regular’ terms. The singular terms have are characterized by

having nonzero s-channel discontinuity (near z ∼ 0), while the regular terms have vanishing

discontinuity.

The self-corrections of the [σσ]0 family are determined by the k = 0 term on the right

hand side. We are only interested in the leading large-h contribution; recalling that the

power of h is controlled by the power of (1−z), we need only consider the term with s = 0.

Taking the leading thermal coefficients in (4.3) and summing over the [σσ]0 family starting

at spin 4, and inverting, we obtain the first iteration of their self-correction;

a
〈σσ〉
[σσ]0

(J) ⊃
∑
O=1,ε,T

a
〈σσ〉
O (1 + (−1)J)

KJ

K`O

dh

dJ

(
ShO−∆σ ,∆σ(h)

+

∞∑
m=0

αeven
0

[
δm[σσ]0

m!
ShO−∆σ ,∆σ , δ[σσ]0 ,∆σ

]
(2hσ + 4)S

(m)
0,∆σ

(h)

)
. (4.6)

Note that S
(0)
0,∆(h) = 0, so self-corrections start at order δ[σσ]0 and are suppressed by powers

of the small anomalous dimensions. To evaluate the α-sum above, we need the large-spin

expansion of the [σσ]0 anomalous dimensions reproduced in (2.23). Concretely, the first

few terms in the large-h expansion are

δ[σσ]0(h) ∼ −0.001423
1

h
− 0.04628

1

h
∆ε

+ . . . . (4.7)

In principle, we can iterate the self-correction indefinitely. The solution to this iter-

ation is the fixed-point of the self-correction map. How to solve for this fixed-point was

also explained in [1]. In practice, one needs to truncate to some order in the anomalous

dimension expansion. Truncating to order δ2, the self-corrected thermal coefficients are

a
〈σσ〉
[σσ]0

(J) = (1 + (−1)J)4πKJ
dh

dJ

×
(
a
〈σσ〉
1

(
S−∆σ ,∆σ(h)− 0.0119S

(1)
0,∆σ

(h) + 2.14× 10−5S
(2)
0,∆σ

(h)
)

+ a〈σσ〉ε

(
Shε−∆σ ,∆σ(h) + 0.0007999S

(1)
0,∆σ

(h)− 1.95× 10−6S
(2)
0,∆σ

(h)
)

+ a
〈σσ〉
T

3

8

(
ShT−∆σ ,∆σ(h)− 0.0001312S

(1)
0,∆σ

(h) + 3.01× 10−7S
(2)
0,∆σ

(h)
))

+ . . . , (4.8)

where the dots denote terms suppressed in large-h or in small δ[σσ]0 . For convenience, plots

of the three terms are given by the dashed curves in figure 12.

10We note that the terms za can also include terms of the form za logm z for m ∈ Z≥0.
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4.2 [σσ]1 and [εε]0

The next families that we solve for require more care. First, we compute the leading

contributions to their thermal coefficients in the large-spin limit. Afterwards, we discuss

subtleties that arise when considering finite spin members of the two families.

4.2.1 Tree level contributions

We start by computing the asymptotic contributions. Inverting the low-twist operators

1, ε, T , and the [σσ]0 family in the 〈σσ〉 correlator gives ‘tree-level’ contributions to the

thermal coefficients of the [σσ]1 family. We can compute the contributions of 1, ε, and T

via (2.21) as

a
〈σσ〉,(O)
[σσ]1

(J) = a
〈σσ〉
O (1 + (−1)J)4πKJ

dh

dJ

×
1∑
r=0

`O∑
s=0

qr(J)ps(`O)(−1)n−r
(
hO −∆σ − s

n− r

)
ShO−∆σ+s,∆σ−r(h)

= a
〈σσ〉
O (1 + (−1)J)

KJ

K`O

dh

dJ

×
(
−(hO −∆σ)ShO−∆σ ,∆σ(h)− 2 + J

3 + 2J
ShO−∆σ ,∆σ−1(h)

)
+ . . . (4.9)

where the dots denote higher order terms in 1/h that we will drop. We can also sum over

the rest of the [σσ]0 family and compute it’s contribution to the [σσ]1 pole, similarly to

how we computed the [σσ]0 self-correction in (4.6). Their leading contribution is given by

a
〈σσ〉,([σσ]0)
[σσ]1

(J) = (1 + (−1)J)4πKJ
dh

dJ

×
1∑
r=0

∞∑
m=0

qr(J)αn−r

[
δm[σσ]0

m!
p0a
〈σσ〉
[σσ]0

, δ[σσ]0 ,∆σ

]
(2hσ + 4)S

(m)
0,∆σ−r(h).

(4.10)

Thus, by adding terms from (4.9) with those from (4.10), we find that at large spin

a
〈σσ〉
[σσ]1

(J) =
∑

O=1,ε,T,[σσ]0

a
〈σσ〉,(O)
[σσ]1

(J) + . . . . (4.11)

What about the [εε]0 family? The sum over the [σσ]0 family inside the 〈σσ〉 correlator

also contribute to the [εε]0 family. Concretely, the sum over the [σσ]0 family contains

asymptotics that sum to a ‘singular term’ that corresponds to a pole for the [εε]0 family.

We can see this by the large spin diagrams in figure 8. This gives a contribution

a
〈σσ〉
[εε]0

(J) ⊃ (1 + (−1)J)4πKJ a
〈σσ〉
1 δ

(ε)
[σσ]0

Γ(∆σ −∆ε)

Γ(∆σ)
S

(1)
0,∆σ

(h). (4.12)

Here, we have used the coefficient δ
(ε)
[σσ]0

in the large-h expansion of the anomalous

dimension,

δ[σσ]0(h) =
∑
O
δ

(O)
[σσ]0

1

h
2hO

, (4.13)
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(a) t-channel

σ

σ

ε

(b) s-channel

Figure 8. The asymptotic parts of the t-channel sum over [σσ]n represented by the diagram on

the left inverts to the s-channel process on the right. Accordingly, their inversion should produce

poles for the [εε]m families. The diagram on the left is deciphered by reading it from left to right;

first the external σ operators fuse into [σσ]n states, which exchange an ε to correct their self-energy

(anomalous dimension), then they receive expectation values proportional to b1. The diagram on

the right can also be deciphered by reading it from right to left; first the external σ operators form

[εε]m via exchange of a σ, then the [εε]m receive expectation values proportional to b1.

with the first few coefficients given in (2.23) and (4.7). Of course, this is only a naive

approximation of the [εε]0 thermal coefficients which should only work for very large J .

The [εε]0 family is more directly accessed in the 〈εε〉 correlator, where inverting any single

operator gives direct contribution to this family. For example, inverting the low-twist

operators 1, ε, and T in the 〈εε〉 correlator gives

a
〈εε〉
[εε]0

(J) ⊃
∑
O=1,ε,T

a
〈εε〉
O (1 + (−1)J)

KJ

K`O

∂h

∂J
ShO−∆ε,∆ε(h). (4.14)

Here, we labeled the thermal coefficients to indicate that they are the coefficients in the

〈εε〉 correlator. The relation between the thermal coefficients in the two correlators is given

by the ratio of the OPE coefficients,

a
〈σσ〉
O =

fσσO
fεεO

a
〈εε〉
O . (4.15)

Combining our result (4.8) for a
〈σσ〉
[σσ]0

from 〈σσ〉 with the ratio of OPE coefficients

fσσ[σσ]0/fεε[σσ]0 obtained from the analytic four-point function bootstrap, we can consider

the contributions of the [σσ]0 family in the 〈εε〉 correlator. For example, their contribution

to the [εε]0 thermal coefficients can be computed, correcting (4.14) as

a
〈εε〉
[εε]0

(J) ⊃
∑
O=1,ε,T

a
〈εε〉
O (1 + (−1)J)

KJ

K`O

dh

dJ
ShO−∆ε,∆ε(h)

+ (1 + (−1)J)KJ
dh

dJ

∞∑
m=0

α0

[
δm[σσ]0

m!

fεε[σσ]0

fσσ[σσ]0

p0a
〈σσ〉
[σσ]0

, δ[σσ]0 ,∆σ

]
× (2hσ + 4)S

(m)
∆σ−∆ε,∆σ

(h). (4.16)

While at large h, (4.11) and (4.16) provide good approximations for the thermal co-

efficients this will not be the case at small h. In this regime, the two families [σσ]1 and
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[εε]0 are very close together in twist, and have very large anomalous dimensions due to

the operator mixing described in section 2.2. Näıvely, since the families are so close in

twist, and strongly mix, we simply can’t be sure how the residues are distributed between

the families. More systematically, the presence of large anomalous dimensions means that

the poles for the families are actually quite far from the näıve locations at h = 2hσ + 1

and 2hε that were used to obtain (4.11) and (4.16). The effects that produce anomalous

dimensions also produce corrections to the residues on a similar scale; since the anomalous

dimensions are large at these intermediate h values, the contributions to the residue must

also be similarly large. Finally, there are altogether other poles for multi-twist families

near the twists of these families, which the residues could further mix with.

We need to develop an approach to estimate the correct, mixed thermal coefficients. In

order to estimate the correct, mixed thermal coefficients, we thus need to take into account

all the corrections mentioned above. Towards that end, we now turn to developing some

required technology.

4.3 The half-inverted correlator

Each individual t-channel block contributes only double-twist poles in the s-channel. How-

ever, the physical correlator has poles at non-double-twist locations. Consequently, the

sum over t-channel blocks cannot commute with the inversion integral when ∆ is near the

physical poles. To see why, consider a contour integral around the location of a physical

pole in ∆. This integral gives zero for every t-channel block, but is certainly nonzero for

the full a(∆, J). By contrast, the sum over t-channel blocks does commute with the inver-

sion integral when ∆ is imaginary. However, we would like to determine numerically what

happens at real ∆.

To get a better numerical handle on how poles can shift, we will work with a more

convenient object than a(∆, J). Let’s imagine applying the inversion formula ‘halfway’,

where we do the z integral to compute the residues, but leave the z integral — which

produces the poles — undone. We want to define a generating function of the form

(1 + (−1)J)KJ

∫ 2

1

dz

z

∞∑
r=0

qr(J)z∆φ−h−rz∆φ+rDisc[g(z, z)]. (4.17)

(Once again, we assume no contributions from the arcs of the inversion formula.) Now,

instead of poles in h, we have powers zh. Furthermore, the anomalous dimension corrections

to pole locations are of the form

δ(h)m

m!
zh logm z. (4.18)

The idea is that (4.17) is almost the inverse Laplace transform in h of

a(h, h) = a(∆ = h+ h, J = h− h) (4.19)

— almost due to the pesky factor of KJ . The generating function we want should relate

to a(h, h) along the lines of

ã(z, h) = −
∮

dh

2πi
zha(h, h), (4.20)
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which is the inverse to

a(h, h) =

∫ 1

0

dz

z
z−hã(z, h). (4.21)

The inverse Laplace transform (4.20) can be performed in a region of h where the inversion

integral commutes with the sum over t-channel blocks, and thus we expect it to have a

convergent expansion in t-channel blocks. The idea of defining a “half-inverted” correlator

was discussed in the four-point function case in [3, 10].

The definitions (4.17) and (4.20) will agree if we make a few small modifications.

Firstly, we should of absorb the factor of KJ inside a(h, h), so the contour integral in (4.20)

does not pick up unwanted poles. (At small enough twist h such that we are away from

poles in KJ , we can skip this step.) Secondly, we should reinterpret J in ã(z, h) as an

appropriate differential operator, Ĵ , as we will explain below. Thus, we define

ã(z, h) =
1

4π

∫ 2

1

dz

z

∞∑
r=0

qr(Ĵ)z∆φ−h−rz∆φ+rDisc[g(z, z)], (4.22)

which satisfies

a(h, h) = (1 + (−1)J)4πKJ

∫ 1

0

dz

z
z−hã(z, h). (4.23)

We call ã(z, h) the half-inverted correlator.

Inside half-inverted correlators, J should be thought of as the linear operator

Ĵ = h− h = h− z ∂z (4.24)

acting on the space of functions of the form zh logm z. Note that Ĵ appears in ã(z, h) inside

qr(Ĵ), which are rational functions of Ĵ for each integer r. Therefore, we will need to invert

Ĵ when acting on this space of functions. For brevity, let’s denote

|h,m〉 ≡ zh logm z. (4.25)

For our purposes, h > 0 and m is a non-negative integer. For example, we have

z ∂z|h,m〉 = h|h,m〉+m|h,m− 1〉. (4.26)

Then, expressions such as

1

c+ d Ĵ
=

1

c+ d(h− z ∂z)
(4.27)

can be interpreted as the inverse of the appropriate linear operator acting on this space of

functions. Inverting the operator z ∂z, we have

(z ∂z)
−1|h,m〉 =

1

h

m∑
k=0

(−1)k
m!

(m− k)!

1

hk
|h,m− k〉. (4.28)

Similarly,

1

c+ d Ĵ
|h,m〉 =

1

c+ d (h− h)

m∑
k=0

(−1)k
m!

(m− k)!

1

(c+ d (h− h))k
|h,m− k〉. (4.29)

With this interpretation, we can substitute Ĵ for J as we did in (4.22), and define the

half-inverted correlator as an honest function of z and h satisfying (4.23).
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4.3.1 Contributions to the half-inverted correlators 〈σ̃σ〉 and 〈ε̃ε〉

Returning to the Ising model, by half-inverting our low-twist operators 1, ε, T , and the [σσ]0
family in the 〈σσ〉 and 〈εε〉 correlators, we obtain leading-order-in-large-h approximations

to the respective half-inverted correlators 〈σ̃σ〉(z, h) and 〈ε̃ε〉(z, h). The terms we compute

include those that give the näıve [σσ]1 and [εε]0 thermal coefficients (4.11) and (4.16), but

also include many other terms coming from the sum over the [σσ]0 family.

We are not just limited to inverting the operators 1, ε, T , and the [σσ]0 family. While

we do not know enough about any of the other families in the theory to compute all

of their contributions, there are a special set of contributions that we can compute. In

particular, while the regular terms αk depend on such particulars of the family as anomalous

dimensions and an exact sum over the thermal coefficients, the singular terms do not.

The singular terms only depend on the asymptotic expansions. Furthermore, the leading

contributions to the singular terms are to constant order in the anomalous dimensions, thus

we can compute them without any knowledge of the anomalous dimensions. Therefore, we

can essentially take a half-inverted correlator, and attempt to partially solve it in the

large-h regime. Let’s say that the sum over [σσ]0 produced a term

p(h)zhf ⊂ 〈σ̃σ〉 (4.30)

where hf is the asymptotic half-twist of a multitwist family f . We can safely say that p(h)

is a part of the large-h asymptotics of the thermal coefficient of the family f . Now, the

sum over the family f in the t-channel includes a term∑
O∈f

(1 + (−1)`)p(h)(1− z)h−2hσ(1− z)hf+δf (h)−2hσ

⊃
∑
a∈A

ca[p]z
a(1− z)hf−2hσ +O(δf ) + regular. (4.31)

Note that we can determine the singular term ca[p(h)] without having to know about the

small-h behavior of the thermal coefficients of the family f , or the anomalous dimensions

δf ! This is unlike the regular terms, which depend on knowing the small-h behavior of

the thermal coefficients as well as the anomalous dimensions. Inverting the singular term

in (4.31), we obtain a contribution to the half inverted correlator

〈σ̃σ〉 ⊃ ca[p]Shf−2hσ ,2hσ(h)z2hσ+a. (4.32)

So, we take the half-inverted correlators 〈σ̃σ〉 and 〈ε̃ε〉 computed from the contributions of

1, ε, T , and [σσ]0, and augment them with the singular terms (4.32) coming from all the

asymptotics of thermal coefficients of other families that appear in them.

In fact, these singular terms are crucial, and augmenting by them is a natural thing

to do. For example, in order to reproduce known anomalous dimensions from the thermal

inversion formula — such as those of the [σσ]0 family — one needs to sum over multi-

twist families in the t-channel [1]. The prototypical example of this process is illustrated

in the thermal large-spin diagram in figure 9. Also, recovering the thermal coefficients of

[σσ]0 in 〈εε〉 requires summing over generically multitwist families that are generated in

〈εε〉 by the sum over [σσ]0, as illustrated in figure 10. We will now briefly review these

relevant processes.
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O′

(a) t-channel

σ

σ

O
O′

(b) s-channel

Figure 9. The t-channel diagram denotes a sum over the asymptotics δ
(O)
[σσ]n

(h) × a〈σσ〉(O
′)

[σσ]n
(h).

This inverts to poles for the [OOO′]m families in the s-channel. Conversely, swapping the s- and

t−channels, and summing over the [OOO′]m family in the t-channel reproduces the anomalous

dimensions of the [σσ]n family in the terms proportional to aO′ .

4.3.2 Generating anomalous dimensions in 〈σσ〉

Let’s illustrate how anomalous dimensions are generated for the half-inverted correlator

〈σ̃σ〉 by an example. We saw in (4.12) that the sum over [σσ]0 in 〈σσ〉 produced a pole for

the [εε]0 family. In particular, this means that the sum over [σσ]0 contributes a term

〈σ̃σ〉(z, h) ⊃ z2hεa
〈σσ〉
1 δ

(ε)
[σσ]0

Γ(∆σ −∆ε)

Γ(∆σ)
S

(1)
0,∆σ

(h) (4.33)

to the half-inverted correlator 〈σ̃σ〉(z, h). This implies that there is a term, given in (4.12),

in the large-h expansion of a
〈σσ〉
[εε]0

(h). Now, we would be wrong to say that this is a good

approximation to the thermal coefficients at small h, but at large h, we know such a term

is there. By crossing symmetry of figure 8, this term is responsible for generating the δ
(ε)
[σσ]0

correction to the anomalous dimensions of [σσ]0 in 〈σ̃σ〉.
Let’s consider the contributions of [εε]0 to the thermal coefficients in 〈σσ〉. To evaluate

them, we need to analyze the t-channel sum over the family. This sum has the same form

as the sum (4.5) over the [σσ]0 family,

∞∑
`=`0

p0(`)a
〈σσ〉
[εε]0

(h)(1− z)2hε+δ[εε]0 (h)−2hσ(1− z)h−2hε

=

∞∑
m=0

( ∑
a∈Am

ca

[
δm[εε]0
m!

p0a
〈σσ〉
[εε]0

]
za +

∞∑
k=0

αk

[
δm[εε]0
m!

p0a
〈σσ〉
[εε]0

, δ[εε]0 , 2hσ

]
(h0)zk

)

× (1− z)2hε−2hσ logm(1− z), (4.34)

where h = 2hε + ` + δ[εε]0(h) and h0 = 2hε + `0. One important difference is that since

2hε − 2hσ /∈ Z≥0, the terms with m = 0 have nonzero discontinuity and contribute to the

inversion formula. So, we can consider the leading term m = 0 in the anomalous dimension

expansion. Now, without knowledge of small-h values of a
〈σσ〉
[εε]0

(h), we can’t reliably evaluate

the αk coefficients. However, the coefficients ca[p] only depend on the asymptotic expansion

of p(h), and are insensitive to small-h behavior. So, using the term of a
〈σσ〉
[εε]0

in (4.33), we
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can compute the leading singular term ca

[
p0a
〈σσ〉
[εε]0

]
za,

∑
a∈A0

ca

[
p0a
〈σσ〉
[εε]0

]
za ⊃ a〈σσ〉1 δ

(ε)
[σσ]0

Γ(∆σ −∆ε)

Γ(∆σ)
log z. (4.35)

Half-inverting this term, we obtain the corresponding contribution

〈σ̃σ〉(z, h) ⊃ a〈σσ〉1 δ
(ε)
[σσ]0

Γ(∆σ −∆ε)

Γ(∆σ)
z2hσ log z S2hε−2hσ ,2hσ(h) + . . . . (4.36)

This is a correction to the anomalous dimension (pole location) δ[σσ]0 of the [σσ]0 family.

As expected, this is exactly the term in large-spin perturbation theory that produces the

contribution of ε to the anomalous dimension through the crossing-symmetric process il-

lustrated in figure 8. Other contributions arise from similar sums over other, potentially

multi-twist families, as illustrated in figure 9.

One important point to highlight is that the contribution (4.36) above does not only

produce the expected anomalous dimension, it also contributes to higher poles. The half-

inversion of the term in (4.35) produces another term, contributing to the anomalous

dimensions at the näıve location of the [σσ]1 family,

〈σ̃σ〉(z, h) ⊃ a〈σσ〉1 δ
(ε)
[σσ]0

Γ(∆σ −∆ε)

Γ(∆σ)
z2hσ+1 log z q1(Ĵ)S2hε−2hσ ,2hσ−1(h). (4.37)

In principle, this is an important contribution when considering the [σσ]1 family, and

through mixing, the [εε]0 family. The moral is that we should systematically generate

these terms by iterating t-channel sums and subsequent half-inversions, rather than by

putting the anomalous dimensions in by hand whenever they are known, as we will also

generate other contributions. In summary, we put in the anomalous dimensions of [σσ]0
and recover them, but also generate some additional terms for [σσ]n.

4.3.3 Generating [σσ]0 in 〈ε̃ε〉

Another important phenomenon is the generation of the [σσ]0 thermal coefficients in 〈ε̃ε〉.
Using 〈σσ〉, we already computed an expression for the [σσ]0 thermal coefficients, which

we believe to be accurate. One might be tempted to input them into 〈ε̃ε〉 by hand. As with

the anomalous dimensions above, it’s worthwhile to generate the [σσ]0 thermal coefficients

in 〈ε̃ε〉 systematically; similarly, contributions to the [σσ]1 thermal coefficients in 〈ε̃ε〉 are

also generated.

The process with which the [σσ]0 thermal coefficients are generated in 〈ε̃ε〉 is depicted

in figure 10. Our task boils down to looking at the singular terms arising from the sum

over [σσ]0 in 〈εε〉,

∑
`

p0(`)
fεε[σσ]0(h)

fσσ[σσ]0(h)
a
〈σσ〉
[σσ]0

(h)(1− z)2hσ+δ[σσ]0
(h)−2hε(1− z)h−2hσ

⊃ (1− z)2hσ−2hε

∞∑
m=0

logm(1− z)
∑
a∈Am

ca

[
δm[σσ]0

m!
p0

fεε[σσ]0

fσσ[σσ]0

a
〈σσ〉
[σσ]0

]
za, (4.38)
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(a) t-channel

O′

ε

ε

σ
O

(b) s-channel

Figure 10. To obtain the [σσ] thermal coefficients proportional to a
〈εε〉
O in the s-channel of 〈εε〉, one

must invert sums over [OO′O′] in the t-channel. Of course, the diagrams are crossing symmetric,

so the required t-channel terms are obtained from inverting the sum over [σσ] in the first place.

and then considering the sum over the families appearing there. The singular terms of

the sums over those families (to constant order in their anomalous dimensions) reproduce

the [σσ]0 thermal coefficients we seek. As before, inverting anything that contributes to

a pole for [σσ]0 at h = 2hσ also contributes to higher poles at h = 2hσ + n, and in

particular to [σσ]1.

4.4 Mixing between families

The combination of our effort so far allows us to compute good approximations for the

half-inverted correlators 〈σ̃σ〉(z, h) and 〈ε̃ε〉(z, h). To summarize our steps so far, our

approximations are obtained first by half-inverting 1, ε, T , and the [σσ]0 family, and then

further refined by augmenting by the singular terms coming from sums over other families

(that appear in 〈σ̃σ〉(z, h) and 〈ε̃ε〉(z, h) from the asymptotics of the sum over the [σσ]0
family). Let g̃c(z, h) denote the vector of half-inverted correlators

g̃(z, h) =
(
〈σ̃σ〉(z, h), 〈ε̃ε〉(z, h)

)
, (4.39)

where c labels the correlator. Our computations for the half-inverted correlators produce

approximations of the form

g̃cnäıve(z, h) =
∑
f

(acf )näıve(h) zh
näıve
f

(
1 + δf (h) log z +O(log2 z)

)
(4.40)

for each of the two correlators, c. Here, the sum is over several of the low-twist families

f , such as [σσ]0, [σσ]1, [εε]0, and a few others appearing as singular terms from the sum

over [σσ]0. At sufficiently high h, the log z terms, like those found in (4.36), correctly

approximates the anomalous dimensions for some of these families.11 However, at small h,

the thermal coefficients of families that are close in twist — and thus have similar powers

of z in the expansion (4.40) — prove difficult to disentangle. As reviewed in 2.2, in the

case of the 3D Ising CFT, the contributions of [σσ]1 and [εε]0 are difficult to disentangle

as hnaive
[σσ]1

= ∆σ + 1 = 1.518, while hnaive
[εε]0

= ∆ε = 1.412. For this reason, we cannot

simply identify the one point functions and anomalous dimensions of each family from the

11Note that our approach does not lead to the expected log z terms for every family f . This is one reason

for which considering mixing proves important.
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Figure 11. The effect of operator mixing for the thermal coefficients in the [σσ]0, [σσ]1, and [εε]0
families. As an example we show the coefficient of a

〈σσ〉
1 in the thermal coefficients of each family.

The dashed curves represent the predictions made by the inversion formula before implementing

operator mixing, while the solid curves represent the post-mixing predictions, with the mixing

region Pmix = {0.05, 0.1, . . . , 0.3}.

expansion (4.40). We will instead use the augmented half-inverted correlators from g̃naive

to implement a mixing procedure that disentangles the contributions of the three most

important double-twist families in the 3D Ising CFT: [σσ]0, [σσ]1, and [εε]0.

Using the ingredients in section 4.3 we can now explain the mixing procedure. We

expect a given half-inverted correlator to have the exact form

g̃c(z, h) =
∑
f

acf (h)zhf (h), (4.41)

where the sum is over families f once again, with the thermal coefficients in each family

given by acf (h) and the exact half-twist given by hf (h). In the 3d Ising CFT we would like

to truncate the sum of families to f ∈ F = {[σσ]0, [σσ]1, [εε]0}, which, due to their low

twist, have the greatest contribution to the two correlators 〈σσ〉 and 〈εε〉 in the light-cone

limit. We will denote these truncations gcF (z, h). At small z, gc(z, h) is dominated by the

families f ∈ F , and therefore well approximated by gcF (z, h).

We do not include multi-twist families such as [σσε] and [σσσσ] in the sum over f for

two reasons. The first is that they give a small numerical contribution to the flat-space four-

point functions 〈σσσσ〉, 〈σσεε〉, 〈εεεε〉, so it is reasonable to guess that their contribution

to thermal two-point functions is also small. The other reason is that we know much less

about their anomalous dimensions and OPE coefficients, and thus wouldn’t be able to write

a suitable ansatz anyway. It will be important to better understand multi-twist operators

to improve our techniques in the future.

The thermal coefficients appearing in different correlators are related by ratios of OPE

coefficients. For each family, let’s pick a thermal coefficient au(h) from a certain correlator

that we’d like to parametrize the thermal data of that family by. Given our choice of
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au(h), we can form the matrix λcu(z, h) comprised of appropriate ratios of OPE coefficients

such that

g̃cF (z, h) = λcu(z, h)au(h). (4.42)

Specifically, the exact contribution of the families [σσ]0, [σσ]1, and [εε]0 to the half-inverted

correlator can be written using,

au(h) =


a
〈σσ〉
[σσ]0

(h)

a
〈σσ〉
[σσ]1

(h)

a
〈εε〉
[εε]0

(h)

 . (4.43)

Accordingly, we have

λcu =

 zh[σσ]0
(h) zh[σσ]1

(h) fσσ[εε]0
(h)

fεε[εε]0 (h)
zh[εε]0

(h)

fεε[σσ]0
(h)

fσσ[σσ]0
(h)

zh[σσ]0
(h) fεε[σσ]1

(h)

fσσ[σσ]1
(h)

zh[σσ]1
(h) zh[εε]0

(h)

 . (4.44)

We can now understand eq. (4.40) as an approximation to the contribution of the families

correlator,

g̃cnaive(z, h) ≈ g̃cF (z, h). (4.45)

Note that at large h, due to the decrease in the anomalous dimensions for all three families

in F , the terms (acf )naive(h) appearing in (4.40) are close to the correct thermal coefficients

appearing in (4.42). However, at small values of h, as has been described in section 2.2,

the anomalous dimensions of operators in the [σσ]1 and [εε]0 become large and thus there

is a large z-power mismatch between the terms which (acf )naive(h) in (4.40) and those that

include acf (h) in (4.41). Thus, all the terms in the naive expansion (4.40) will mix and

contribute to the accurate thermal coefficients for all three families in F . As previously

mentioned, this effect is especially noticeable on families such as [σσ]1 and [εε]0 whose

twists are close and whose naive contribution in (4.40) are difficult to distinguish at small

h. For this reason, we will refer to (4.45) as the mixing equation.

In solving for the mixed coefficients au(h) we have conveniently written (4.45) in matrix

form. Thus, for each value of h that we are interested in, we can treat the mixing equation

as an over-determined linear system. Concretely, we can impose that (4.45) be satisfied

for several values of z from some set of values Pmix. Of course, due to the truncation of

the expansion (4.40), we get an overdetermined system of equations and it is impossible

to satisfy the mixing equation for all values of z. However, as one can see from figure 4,

when choosing,

Pmix = {0.05, 0.1, . . . , zmax}, with zmax ∈ {0.15, 0.2, . . . , 0.6}. (4.46)

our results are robust under different choices of Pmix (see figure 4).12 Thus, we solve for

each term proportional to each unknown ac1, ε, T in au(h) using the method of least squares

12This remains true as long as z � O(1)e−1/δO , where δO is the average anomalous dimension at a certain

value of h for the three operator families that we are considering.
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Figure 12. Estimates for the terms multiplying a
〈σσ〉
1 , a

〈σσ〉
ε , and a

〈σσ〉
T in the thermal coefficients

a
〈σσ〉
[σσ]0

(J). The dashed blue curves are the predictions from the inversion formula before performing

operator mixing while the solid curves are the predictions after accounting for operator mixing.

The blue dots represent the post-mixing predictions for each local operator with J ≥ 4 in the [σσ]0
family. The purple dots are the extrapolation of the thermal coefficient to the stress-energy tensor.

for each value of h.13 To exemplify our procedure, in figure 11, we show how the coefficients

multiplying a
〈σσ〉
1 are affected by mixing.

We now use the estimates obtained from mixing to understand the thermal coefficients

of operators with small spin. Since T is a member of the [σσ]0 family, we can use our

calculation of a
〈σσ〉
[σσ]0

to constrain a
〈σσ〉
T . We thus extrapolate our results for the thermal

coefficients of the [σσ]0 family down to J = 2 (see figure 12). After mixing, the thermal

coefficient of T is computed in terms of the unknowns as

a
〈σσ〉
[σσ]0

(h = 2.5) =

(
dh

dJ

) ∣∣∣∣
h=2.5

(
2.07a

〈σσ〉
1 + 0.0163a

〈σσ〉
T − 0.257a〈σσ〉ε

)
. (4.47)

Using the known anomalous dimensions for the [σσ]0 family, we can compute dh/dJ .14 Of

course, (4.47) should be equal to a
〈σσ〉
T itself! Solving for a

〈σσ〉
T , we have

a
〈σσ〉
T = 2.136a

〈σσ〉
1 − 0.265a〈σσ〉ε . (4.48)

Recall that we can normalize all the thermal coefficients by that of the unit operator,

thus setting a
〈σσ〉
1 = 1. Therefore, we have only a single unknown left: a

〈σσ〉
ε . We have

successfully approximated the thermal coefficients of all operators in the three low-twist

families of interest in terms of a single unknown!

A similar issue presents itself when one considers low-spin operators in the higher-

twist families [σσ]1 and [εε]0. At spin 0 and 2, there are only the two operators ε′ and

13We give an equal weight to each value of z in the least square fit.
14Since [10] provides accurate values for the anomalous dimensions of all operators in [σσ]0, [σσ]1, and

[εε]0, we can use a fit to the numerical results to accurately obtain dh/dJ . At the h values of local operators,

the fit strongly agrees with the analytical predictions for the anomalous dimensions.
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Figure 13. Example of the smallest (black) and largest (red) regions in (z, z) where we minimize

the square of the difference of the two-point function and it’s periodic image, as in (4.49).

T ′; both belong to the [σσ]1 family, whereas the [εε]0 family has no such operators [10].

Therefore, our mixing procedure does not work for these operators. However, it’s crucial

to estimate the thermal coefficients of ε′ and T ′ for solving the KMS condition. We have

found it best to extract the thermal coefficients of the low-spin members of the [σσ]1 family

by extrapolating the mixed thermal coefficients down to small h by a simple fit. This is

motivated by results from the flat-space data where the OPE coefficients and anomalous

dimensions of these two operators appear to lie on smooth curves with all other members

of the [σσ]1 family. The estimates for a
〈σσ〉
ε′ and a

〈σσ〉
T ′ obtained by performing such a fit

can be extrapolated using figure 11.

4.5 Solving for bO

Finally, we will input the thermal coefficients we’ve obtained for the three families [σσ]0,

[σσ]1, and [εε]0 into the 〈σσ〉 correlator, and impose the KMS condition to determine

the last unknown a
〈σσ〉
ε . We do this as follows. We evaluate the correlator minus its image

under crossing in various regions of the (z, z) plane, PKMS. To determine a
〈σσ〉
ε , we attempt

to minimize:

ΛKMS(a〈σσ〉ε ) =
∑

(z,z)∈PKMS

(g(z, z)− g(1− z, 1− z))2. (4.49)

By setting ∂ΛKMS(a
〈σσ〉
ε )/∂a

〈σσ〉
ε = 0 we can finally determine the results obtained in (3.1).

The thermal inversion formula guarantees that the KMS condition is satisfied in the

proximity of the point (z, z) = (0, 1). Thus, if one tries to approximately impose KMS solely

in that region, there would be an almost flat direction associated to the unknown a
〈σσ〉
ε
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and, consequently, our numerical estimates would be inaccurate. However, if one imposes

KMS in a region where the OPE does not converge well the results would once again be

inaccurate. Thus, we try to impose that KMS is approximately satisfied in an intermediate

region and check for robustness under changes of PKMS within this intermediate regime.

We find that our results are indeed robust for various choices of the (z, z) region PKMS

and, as mentioned before, for the choice of z values Pmix which are used to perform the

mixing of the three families. To emphasize this, in figure 4, we show a spread of the

thermal coefficients obtained by minimizing (4.49) for the values of Pmix in (4.46) and

for values of PKMS raging between the two regions showed in (13). While the value of

a
〈σσ〉
ε varies by at most ∼ 10% between any two choices of Pmix and PKMS, the thermal

coefficients for all other operators exhibit a much lower variance.15 For instance, the stress

energy tensor thermal coefficient varies by ∼ 5%, while the thermal coefficient of the spin-4

operator [σσ]0,`=4 varies by ∼ 1%. To test how well the crossing equation is satisfied on

the Euclidean thermal cylinder we plot the difference

δgKMS(τ, x) = g(x, 1 + τ)− g(x, τ) , (4.50)

in figure 6. The KMS condition is very close to being satisfied in the regime in which both

the points (x, τ) and (x, 1 + τ) are close to the origin of the s-channel OPE, (0, 0). For in-

stance, we find that δgKMS(−1/4, 1/4)/g(−1/4, 1/4) = 0.0037. This shows the great extent

through which one could use the thermal inversion formula to systematically solve the KMS

condition or, equivalently, solve the “crossing-equation” of El-Showk and Papadodimas [2].
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A Details of the Monte-Carlo simulation

To compute the thermal two-point function 〈σσ〉β using Monte-Carlo integration, we im-

plemented Wolff’s cluster algorithm on a periodic square lattice of size 40 × 500 × 500.

We used the spin-spin coupling βcritical = 0.22165463(8) from [11]. The periodic direc-

tion of size 40 represents the thermal circle, while the directions of size 500 approximate

noncompact R2. The MC integration was performed over 4 × 108 iteration steps.

15This is partly due to the fact that the contribution of the unit operator dominates the thermal coeffi-

cients of higher spin operators.

– 30 –



J
H
E
P
1
2
(
2
0
1
9
)
0
7
2

As usual, there are three main sources of error: statistical error, finite-size effects (IR),

and lattice-size effects (UV). One of the nice properties of thermal correlators is that finite-

size effects are much easier to control than for flat-space correlators. The reason is that

we can imagine dimensionally reducing our system along the thermal circle. The result is

a theory with thermal mass mth ∼ 1/β, and consequently fluctuations in the noncompact

directions die off like e−x/β . Thus, on a torus with lengths β×L×L, we expect corrections

from the finiteness of L to be suppressed by e−L/β ∼ 4 × 10−6. By contrast, to compute

flat-space two-point functions, one must consider torii with size L × L × L. In that case,

finite-size effects go like (L/x)−∆O , where O is the leading operator appearing in the OPE.

Thus, we expect that finite-size effects are negligible. Our main sources of error are

statistical (visible as jitteriness in figure 5) and lattice effects which cause the simulation

to become inaccurate near the coincident point singularity.

B Sums over families of operators — α sums

Let’s recall how to evaluate sums over a family of operators in the OPE of the thermal

two-point function. The t-channel sum over a family f consists of sums like

∑
`

dh

d`
Sc,∆(h)(1− z)hf+δ(h)−he(1− z)h−he , (B.1)

where h = hf + ` + δ(h), hf is half the twist of a family f , and he is the total h of the

external operators. Expanding in small δ(h) log(1− z),

∑
`

dh

d`
Sc,∆(h)(1− z)h−he

∞∑
m=0

δ(h)m

m!
logm(1− z)(1− z)hf−he , (B.2)

the sums we need to evaluate are of the form

∑
`

dh

d`
p(h)(1− z)h−he (B.3)

for a class of functions p(h). The sum should be of the form

∑
`

dh

d`
p(h)(1− z)h−he =

∑
a∈A

caz
a +

∞∑
k=0

αkz
k, (B.4)

with A ⊂ R\Z≥0. The task is to compute the coefficient ca and αk. First, using the

analytic expressions for δ(h), we determine the large-h asymptotics of p(h) in terms of the

known functions Sa,∆(h),

p(h) ∼
∑
a∈A

ca,∆[p]Sa,∆(h). (B.5)
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The main idea is to use the integer-spaced sum16

∑
h=h0+`
`=0,1,...

Sa,∆(h)(1− z)h = (1− z)h0Sa,∆(h0)2F1

(
1, h0 −∆− a
h0 −∆ + 1

; 1− z
)

= za(1− z)∆ − Sa−1,∆+1(h0)(1− z)h0
2F1

(
1, h0 −∆− a
−a+ 1

; z

)
(B.6)

to determine the coefficients ca in (B.4) in terms of the asymptotics ca,∆[p]. Then, to

compute the remaining terms that are regular in z, we regulate the sum (B.4) by subtracting

the sum in (B.6) for each asymptotic of p(h) in (B.5). With the asymptotics controlled,

expanding the summand in small z gives convergent sums in h for the αk coefficients. The

α sum can be evaluated by the formula

αk[p, δ, he](h0) = −
∮ hc+i∞

hc−i∞

dh

2πi

(
h− he
k

)
(−1)k

×

(
π cot(π(h− h0 − δ(h))) p(h)− π cot(π(h− h0))

∑
a∈A
a<K

ca,∆Sa,∆(h)

)

+
∑
a∈A
a<K

ca,∆
(
rk(a,∆, he, h0) + sk(a,∆, he, h0)

)
. (B.7)

Here, K should be at least k, but larger K gives a faster converging integral. The contour

is at hc = h0 + δ(h0)− ε. In the last line, we have added back terms with rk, which is the

coefficient of zk for the integer spaced sum in (B.6),

rk(a,∆, he, h0) = −Sa−1,∆+1(h0)(1− z)h0−he
2F1

(
1, h0 −∆− a
−a+ 1

; z

)∣∣∣∣
zk

= −Sa−1,∆+1(h0)

k∑
m=0

(−1)m
(
h0 − he
m

)
(h0 −∆− a)k−m

(−a+ 1)k−m
(B.8)

and sk, which is the contribution of spurious poles (coming from the asymptotics Sa,∆(h)

we subtracted) that are picked up by the contour when hc −∆− a ≤ 0,

sk(a,∆, he, h0)

=

ba+∆−hcc∑
n=0

Res
h=a+∆−n

(
h− he
k

)
(−1)kπ cot(π(h− h0))Sa,∆(h)

=

ba+∆−hcc∑
n=0

(
a+ ∆− n− he

k

)
(−1)kπ cot(π(a+ ∆− n− h0))

(−1)n

n!Γ(−a)Γ(a− n+ 1)
.

(B.9)

The contour integral can be integrated numerically to high precision.

16In this section we will write Sc,∆(h) to denote the function with zmax = ∞. The difference with the

finite zmax is exponentially decaying at large h, and therefore does not contribute to the asymptotics and

can be treated separately from the zmax =∞ piece.
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