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associated with these two sets and show that they form an infinite dimensional Heisenberg
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of the background AdS, space and study how they act on our source and response charges.
We briefly discuss implication of our results for the AdS/CFT.
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1 Introduction

Asymptotic symmetries associated with large gauge transformations have recently been
under intense study. They may be used to label soft modes, which on their own turn, can
be used to reformulate soft photon or soft graviton theorems in terms of (spontaneously
broken) symmetries, providing a different view on the Ward identities, see e.g. [1, 2]. The
IR dynamics of gauge theories is relevant to the memory effect [3] and the soft modes may
also be relevant to resolving black hole microstate issue [4, 5].

Except for the 3d examples, most of the asymptotic symmetry and soft mode analyses
so far has been limited to asymptotic flat spacetimes, see however [6-13]. Field theories on
the AdS space are of great interest due to the AdS/CFT duality [14]. It is hence important
to extend the AdSs analysis to higher dimensions. Dynamics of fields on AdSy, d > 3
dimensions generically show features not seen at d = 3 case: Einstein gravity on AdSs
has no propagating degrees of freedom which makes possible some different choices for
the boundary conditions [15]. Maxwell theory on the AdSs while has propagating photon,
allows for electric charges but the corresponding Coulomb field blows up logarithmically at
the AdS boundary. The question we tackle in this work is studying asymptotic symmetries
of Maxwell theory on AdSy, d > 4.

Dynamics of fields on the AdS space is different from the flat space because of its
different causal structure and not being globally hyperbolic [16]. Nonetheless, one may
still formulate “initial+boundary” value problem [17]. Moreover, as the AdS/CFT has
taught us, one may focus more on the “radial evolution on AdS” by viewing the e.o.m of
fields on the AdS as evolution equations along the radial direction p of the AdS space.!
Values of the fields in the bulk, with a given consistent initial data set at a constant time
slice, are then uniquely specified through their values at the boundary B which in our
coordinates is sitting at p — oco. B is a timelike and non-compact surface. Depending on
the coordinates adopted on AdS;, B can be different manifolds; e.g. for Poincare patch
AdS it is d — 1 dimensional Minkowski space, for global AdS, it is R x S%2 and for the
coordinates we will be adopting it is a dS4_1.

In this “AdS radial evolution”, as the usual practice in the AdS holographic renormal-
ization and to set our initial4+boundary value problem, we view B a part of AdS spacetime
and impose boundary conditions on the fields at the AdS boundary. For this we need to
make sure that the flow of bulk energy momentum tensor of each field vanishes at the causal
boundary B. Thus, we are left with the usual normalizable modes in the bulk [14, 18].
Specifically, we usually (not necessarily) impose the completely reflective Dirichlet bound-
ary conditions for the fields at the boundary. Noting that massless fields/states can reach
the AdS boundary at finite coordinate time, this boundary condition hence prevents energy-
momentum leaking out through the boundary B.

Except for the scalars, masslessness of any other massless field is associated with/
protected by some symmetries. For fermions this is the chiral symmetry which is a global
symmetry. For p-forms (p > 1) this is usual local symmetry generated by a (p—1)-form and

!This AdS radial evolution is nothing but the holographic renormalization [18]; the Callan-Symanzik
and RG flow equations from the dual boundary CFT viewpoint.



for gravity (spin-2 field) this is the local Poincare symmetry. The usual metric formulation
of gravity makes only the diffeomorphism part of the local Poincare symmetry manifest. In
this work we will focus on the u(1) one-form theory, i.e. the Maxwell theory, on the AdS,
and study more closely this gauge symmetry within the “AdS radial dynamics” discussed
above. To study this radial evolution, we introduce boundary data, which involves a scalar
® and a vector A, on the boundary. The value of A, is fixed by the (reflective) boundary
conditions on the radiation fields in the bulk.

While the reflective boundary conditions on the AdS boundary are invariant under the
bulk and boundary gauge transformations, along with the boundary conditions, as in usual
AdS/CFT treatments, one can conveniently fix the “radial gauge”, setting the radial com-
ponent of the gauge field A, equal to zero. This gauge fixing leaves us with some boundary
gauge transformations. The boundary gauge transformations on AdS space, however, show
novel different features not shared by their counterparts on the flat space asymptotic region
of flat space (either on spatial infinity i°, or past or future null infinity Z%).

Our main result in this work is finding two sets of boundary gauge transformations
(BGT), which borrowing the usual AdS/CFT terminology, may be conveniently called
source and response transformations, respectively SBGT and RBGT. These two sets come
about in different ways as we explain below. The SBGT is residual part of the bulk
gauge transformations (usually called large gauge transformations) after fixing the radial
gauge. As such, the scalar field in the boundary data ® transforms under the SBGT while
the vector A,, determined by the boundary value of the radiation fields in the bulk, is
invariant under BGT. The RBGT, however, are not directly related to the bulk gauge
transformations, at least in the radial gauge, which is the most natural, convenient and
usual bulk gauge choice on the AdS. To see them, we note that A, may be naturally
decomposed into a “transverse” part Au and an exact part, given by a scalar field ¥. The
ambiguity /freedom in this decomposition is what gives rise to the response boundary gauge
transformation RBGT. Therefore, ¥ is an SBGT invariant while it transforms under the
RBGT. We study the theory on the boundary governing these two scalars ®, ¥, the charges
associated with the SBGT and RBGT, and the charge algebra. We find that while the set
of SBGT (and RGBT) charges commute among themselves, these two sets do not commute
and form an infinite dimensional Heisenberg algebra.

The decomposition of the boundary gauge field and introduction of the ¥ field discussed
above, naturally leads to a boundary action governing the boundary fields ®, V. To this
action, one may associate an energy momentum tensor which is indeed the boundary part
of the charges associated with the AdS isometry group (discussed in section 6).

The rest of this paper is organized as follows. In section 2, we setup the coordinate
system we use for the AdS; background. In section 3, we study equations of motion for
the Maxwell’s theory on AdS; and through analyzing some simple solutions we choose
our boundary falloff behavior. In section 4, we make a careful analysis of action principle
and symplectic structure of the Maxwell theory on AdSy; and extract a boundary action
governing dynamics of boundary fields ®,W. In section 5, we present the soft charges
associated with the SBGT and RBGT and their algebra. We also introduce and discuss
the “AdS antipodal map” and its connection to CPT symmetry of our boundary theory.



In section 6, we discuss the AdS; isometries and the associated conserved charges. We also
discuss how the AdS,; isometry charges act on our soft mode phase space. In section 7, we
show how our results on AdS; and those studied in the literature for Maxwell theory on
flat space [19-27] could be related to each other through an AdS (large radius) flat space
limit. In particular, we show that only the source boundary gauge transformations and
the associated soft charges survive the limit and the response charges become subdominant
and do not appear in the limit. The last section is devoted to discussion and outlook. In
four appendices we have gathered some technical details of our analysis.

Conventions and notation. We will use capital Latin indices A, B, C for denoting the
embedding coordinates of the AdS, space, X4, X5 and A,B = —1,0,--- ,d — 1. The
AdS, space coordinates will be denoted by z%, 2, with Latin indices of the beginning of
the alphabet, a,b = 0,--- ,d — 1. The radial coordinate will be denoted by p = 24! and
the rest of coordinates, which parametrize the AdS; boundary, will be denoted by Greek
indices, x*,x¥. We will also need to work with constant time slices. The time coordinate
on the AdS and its boundary will be denoted by 7 = 2°. The rest of directions on the
AdSy or its boundary will be denoted by z*,27, i, = 1,2,--- ,d — 2, with Latin indices of
the middle of the alphabet. That is, the AdS, coordinates are (p, 7, z%) and coordinates at
the boundary are (7,z?).

We adopt the coordinate system where AdS boundary is at p = oo and denote the AdS
boundary by B. The constant time slice at time 7 will be denoted by ¥, and its boundary,
which is its cross-section with AdS boundary B, will be denoted by 0%.. The latter (for
various 7) are hence the usual Cauchy surfaces for the spacetime at the boundary.

For the Maxwell gauge field on AdS; we use Ay, its radial component will be denoted
by A, and its projection at the boundary by A,,.

2 Anti de Sitter space

The d-dimensional anti-de Sitter space is defined as the hyperboloid
X2 4+ X X0=—-0* a=0,--,d—1 (2.1)

embedded in (d 4+ 1)-dimensional Minkowski space with signature (— — +---+). The
isometries are generated by

iLap = Xa0p — Xp0a A B=-1,0,---,d—1 (2.2)
which form a (d — 1)-dimensional conformal algebra SO(d — 1,2),
—i[Lap,Lep) =nacLep +nepLac —napLec —npcLap - (2.3)

A Lorentz subgroup SO(d — 1,1) can be identified with generators L., which preserves
X,X?, so that the algebra can be cast into the form

Z.[Lflaa L—lb] = Laba (24&)
_i[Laba L—lc] - nacL—lb - anL—la7 (24b)
_i[Laba Lce] = nacLbe + nbeLac - naeLbc - nbcLae- (24C)



We will call L_1, the “AdS-translation” generators since they reduce to translation vectors
near the origin (i.e. in the large ¢ flat space limit). They are

il =+ XX 0y — X00_,, X, >0 (2.5)

2.1 De Sitter slicing of AdS

We would like to set a coordinate system which makes the Lorentz SO(d — 1, 1) symmetry
generated by L., manifest and also allows for taking the flat space limit in a simple way.
That is achieved by the parametrization

XX, =—(X"2+ X'X; =p>>0, X2 =074)p% (2.6)
The AdS,; metric becomes?
dp? v
ds? = m + thde“dx , w,v=0,1,--- d—2, (2.9)

where hy, is the (d — 1)-dimensional Lorentzian metric on unit radius de Sitter space. A
convenient choice of coordinate system is [28]

hyydatdx” =

( _ a4 dQﬁ_Q), (2.10)

cos2 T

where

X% = ptan, VXix; =L (2.11)

COST

By the choice of radial coordinate p, the induced boundary metric will be dS4z_1, a
positively curved, Lorentzian maximally symmetric space. This property facilitates the
study of isometries on the AdS; boundary. Moreover, these coordinates are suitable for
taking the flat space £ — oo limit to be discussed in section 7. We should, however, point
out that while the dS slicing is a convenient choice, as mentioned above, a similar charge
analysis with the same general results may be carried out adopting any other coordinate
system on AdS.

As depicted in figure 1, there is an AdS PT (parity times time reversal) transformation,
X4 - — X4, which also acts at the AdS boundary as 7 — —7 and an antipodal map on
the S?2. Under this map the radial coordinate p does not change. This PT symmetry
may be combined with the AdS isometries to form an O(d — 1,2) symmetry group.

2The global AdS coordinates are related to embedding coordinates by
X% = /2 +r2sint X' = /€2 +r2cost P =X'X; (2.7)

so that the metric is
dr?

2 2 2\ 1.2
ds® = —(£" +r°)dt +71+r2/52

4+ r2dQ_, . (2.8)
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Figure 1. The patch of AdS; covered by hyperbolic coordinates. Blue curves are constant p
hypersurfaces, preserved by SO(d — 1,1) Lorentz transformations and the red lines represent codi-
mension one constant time 7 slices, in particular X, _, are two surfaces at 7 and —7. Note that
in our coordinate system all constant time slices for finite 7 pass through p = 0. The arrows on the
boundary and on blue curves show the flow of time 7. In this coordinate system, AdS conformal
boundary is a maximally symmetric manifold (dS4—1 at p — 00), and it is conformally invariant
under “AdS-translations”. In this figure the left and right vertical lines respectively denote the
North and South poles of the S~2 at the boundary. The points on the left and right vertical lines
together with 7 — —7 are mapped onto each other by the PT transformations, the antipodal map.

2.2 Isometries in the de Sitter slicing

To the Lorentz generators Ly, = X0, — X0, one can associate differential 1-forms on the

ambient Minkowski space
L% = x2dx® — xbdxe. (2.12)

In the hyperbolic coordinates adapted above they become

L% = (X°X? — X" X*)dp + p*(X*d X" — XPdX*) = 2p* X" M dz (2.13)
where 5%
B X _ X
X0 = Mj = ) (2.14)
p OxH

Similarly, for the “AdS-translation” generators L_,, = X_,0, — X,0_,, the corresponding
1-forms are

L% =X dX"+ X*dX_, (2.15)

In hyperbolic coordinates they become

o (Cx X xe P Napo X, pNrtdat
— —1 p X,l p 71[) w

- T Xdp — pX_, M;;dat (2.16)
-1



The associated vectors using the AdS inverse metric, are

Lorentz: ¢, L = 2)_([“]\7[3] h* 0, (2.17)

_ X .
AdS-Translation: &p L™ =-X,X%0,—- ! Mﬁh‘“’@,, (2.18)
P

From (2.15), if p < ¢, we have L™'* ~ ¢dX®. Hence, L_,, are translation generators
near the origin. On the other hand if p > /¢, i.e. near the boundary of AdS, the AdS-
translation generators are

L'~ Xpd, + MSh™0, . (2.19)

Infinitesimal AdS-translations act on p as p — p(1 + €X?). One can then observe that
these AdS-translations are conformal Killing vectors of the boundary metric in hyperbolic
slicing /...

The AdS PT transformations, which also act on the dS;_; boundary, may be combined
with the Lorentz transformation to form an O(d — 1,1) group. As we will discuss in
section 5.2, this PT transformation together with the charge conjugation symmetry gives
rise to antipodal map/matching of the boundary theory which acts as a symmetry on our
phase space and the corresponding charges.

3 Physical solutions and boundary conditions

Consider the Maxwell theory on AdSy, described by the action

1
S=—1 / A/ =g Fu F®, (3.1)

where Fup = 0 Ap — OpAg, g is determinant of AdSy metric g, and the indices are raised
and lowered by the same metric. To setup the “AdS radial evolution” and describe the
“boundary data” for the evolution in p direction, as discussed in the introduction, we note
that equations of motion V*F,; = 0 involve two classes of equations: those which are first
order in p and those which are second order. The former may be viewed as constraints
among the “initial” data set at p = oo. These initial data (together with the constraint
among them) then “propagate” in the radial direction p with the latter set of e.o.m. These
equations are

onstraints: = .

Constraints: D, F" = 0 3.2

Radial evolution equations: (p? + ¢2)4/2p1=49, (pd_l(,o2 + 22)_1/2fp”> +D,F"* =0
(3.3)

where D), is the covariant derivative with respect to h,, at constant p.

3.1 Charged solutions

Any physically relevant boundary condition is expected to allow for moving electric charges.
So, we analyze some simple solutions of the field equations before choosing and setting the
boundary conditions.



Boosted electric charge. The simplest family of solutions is found by assuming
A, =0,C for which F,,, = 0. By closedness of F, we have

OuFup — O Fup = 0. (3.4)

Then, F,, = 0,1 for a gauge-invariant scalar ),

v =A,—0,C. (3.5)
Equation (3.3) reduces to
VP2 A+ L2 d—1; 2 | p2\—1/2 pp
Wap (ﬂ (p"+07) /7 F > =0, (3.6)

and the solution is (see appendix A)
b= U+ ) V), DPD(a") = 0 (3.7)

This is the exact solution for an electric charge with an arbitrary boost, which crosses
the event at the origin of AdS (no dipole moment: see figure 2). To see this, consider a
static electric charge at the origin, which in hyperbolic coordinates is given by

Frp= = 0:Y(p, 7). (3:8)

N7

1 is a Lorentz scalar and under boosts, it acquires angle-dependence so that other compo-
nents of F,,, are also turned on. The phase space of all superpositions of boosted electric
charges consists of all functions 1 (p, x*) satisfying conditions (3.7). Finally, note that near
the origin, p < ¢, the behavior is ¢ o< p>~¢ which matches flat space solutions [22, 26].
Near the boundary, however, the behavior is weaker 9 o< p?>~¢.
Displaced electric charge. Let us now relax the condition A, = 0,C. Fixing the
A, = 0 gauge, the constraint equation (3.2) implies that A, is a divergenceless de Sitter
vector D* A, = 0. Spectrum of the Laplace operator on 4, is given by representation
theory of SO(d — 1,1) (see appendix A for a derivation using differential equations):

D'Ffl = —B(B+d—4)AP. (3.9)

Eq. (3.3) then becomes an equation for the eigen-vector .ALB}:

2402 -
LR, (7 4 P AR) <o AP <0 o

Exact expressions can be expressed in terms of hypergeometric functions. We are only
interested in two asymptotic limits p < £ and p > /.



s

Figure 2. Displaced and boosted charges. Blue curves show geodesics that cross the origin at
t = 0. The paths correspond to different Lorentz boosts applied on a static electric charge at the
origin. The red curves show two displaced charges, which never cross the origin, or cross it at a
later time.

Flat region p < €. The two solutions for eigen-vector fields (3.9) are
B B B 4—d—p
AL]ocp , AL]ocp . (3.11)

For integer 3, the solutions with p*~@=# falloff are of course recognized as the multipole mo-
ments of the electromagnetic field [26, 29, 30]. Note that (3.9) is Lorentz covariant. There-

fore, the eigen-vector field .ALﬁ I describes a system of 28-poles moving freely in flat space.?

(8]
m

Boundary region p > £. For each eigen-vector field A}," one employs a near boundary

expansion

AP =" pr Al (3.12)
Equation (3.10) leads to a recursive relation
s(d+s—3)AP®) = (8 +d — 4) A2 (3.13)

Although the recursive relation depends on the moment 5 (and the exact solution is a
hypergeometric function depending on 5 and d), the leading term is universal in /3

A~ 0(1), A~ o) B (3.14)

$While non-integer in general, for static flat space configurations (i.e. electric multipoles discussed in

appendix D) 8 becomes a non-negative integer, and by Lorentz covariance of (3.9), this remains true for
freely moving multipoles. To see this, recall that an electric 2°-pole configuration in flat space is described by

_ Vg,m;

T pBHd-37

At

where Vg m, are harmonics on S?~2, cf. appendix A for conventions. In hyperbolic coordinates (which is
related to global coordinates by (2.7)), and in radial gauge A, = 0 this potential is given by

_3-pB-d tan 7 cos T 4 podgy
T 4-B—d 4-3—d p 0 Vs.m; -

Explicitly, looking for solutions to £:4 = 0 in the A, = 0 gauge, we find the above expressions for the

d+p—-3

A cos™ TP ppt=i=byy, . A = —

fields in which f is quantized. Straightforward algebra shows that
D'F,, = —B(B+d—4)A,.

This equality holds also in a boosted frame by Lorentz covariance. Thus, Af] eigen-vectors with integral
values for A correspond to electric 2°-poles.



In other words, the leading term in the asymptotic series is either s = 0 or s = d — 3
for all moments 3. This result reveals the drastic difference between asymptotic behavior
of multipole moments in flat and Anti de Sitter spaces. In flat space, higher-poles fall
successively faster at far regions. In Anti de Sitter space, however, all multipoles have
the same order of magnitude near the boundary. In other words, all the data inside are
“accessible” to a boundary observer.

Summary of the analysis of charged solutions at large p.

1. We will work in radial gauge
A,=0, d> 3. (3.15)

As we show in the appendix C, this is an unnecessary but convenient choice which
makes the formulae simpler and nicer. Similar results may also be obtained in other
bulk choices.

2. To have multipole configurations, we need to allow

A, ~ O(p>9). (3.16)

3. For d > 3, the boundary conditions must be relaxed to allow large gauge trans-
formations which have nontrivial charges. The radial gauge leaves boundary gauge
transformations with no subleading terms:

MA, =0\ ~ O(1), OpA = 0. (3.17)
As a result, the asymptotic behaviour of the field strength components are,
Fup ~ O, Fup e 0%, (3.18)

One may also argue for the above by studying the flux of the energy-momentum tensor,
Tab — ./Tacfbc _ igabf‘ F

/ N / JITPE, + / JITPE,. (3.19)
B B B
Then from the fact that,

T s (), T ~ O, (3:20)

we conclude,

/B\ngpaga ~ O(p>~9). (3.21)

The lack of flux for isometry charges justifies boundary conditions (3.18) in d > 3. The
d = 3 case should be discussed separately.



3.2 Boundary conditions

First, we note that different components of the gauge field in the hyperbolic coordinates
have the following large p expansion,

A, ABD
Ay =5+ pd—3 e
P P (3.22)
A, A}(f—d)
.Au:auq)—‘rﬁ"i‘w"i‘“'
In a similar manner the gauge parameter A can be expanded asymptotically,
A
)\:)\S+pd—3+'” (323)

As in the usual AdS/CFT [18], we fix the radial gauge by setting A, = 0. This gauge is
accessible by setting A, = (d — 3)5\ and correspondingly for subleading orders, while the
leading gauge parameter Ag is unconstrained. As we see this gauge fixing is not possible in
3d case, as in this case the electric charge yields a logarithmic function of p; the 3d should
be studied separately. Here we focus on d > 3 case.

Let us now focus on the A, component. The “constraint equation” (3.2) then yields
DA, = 0 while ® remains unconstrained. Under A\g gauge transformation, ® shifts while
A, remains intact. The value of A, is fixed by the reflective boundary conditions on the
electromagnetic wave in the bulk. Explicitly, the leading term in the bulk electric field
at the boundary is proportional to A, and the leading magnetic field is D, A, — D, A,,.
Nonetheless, one can decompose A, in (3.22) into an exact part and a transverse part flu

~

A, =0, 9+ A,), DrA,=0. (3.24)

The factor of ¢ is added, for later convenience, to make ® and ¥ boundary field to have
opposite and equal scaling mass dimension. The D#* A, = 0 relation then yields

D,D"¥ = 0. (3.25)

Being on the dS;_1, which allows for harmonic forms (here a 0-form, a scalar), there
is a freedom/ambiguity in making the above decomposition. We quantify this ambiguity
through A “boundary gauge transformations”. Explicitly, we have two sets of gauge
transformations A = (Ag, Ar) such that

HP=Xs, U=\,  0A,=-9 g,  D,D*\g=0, (3.26)

and hence 0yA, = 0. So, our boundary data are given by (®, ¥; Au) subject to the above
boundary gauge transformations. At this stage the separation of A, into ¥ and flu parts
seems arbitrary. Its virtue will however become clear in the next section when we study
the symplectic structure and the boundary charges.

~10 -



4 Action principle and conserved symplectic form

In this section we supplement the Maxwell action (3.1) on AdSy d > 3, by appropriate
boundary terms, so that with the falloffs (3.22) we have a well-defined variation principle.
Starting from (3.1), we vary the action to get the equations of motion and the symplectic
potential,

68 = VIV FUSA, + D40, (4.1)
AdS AdS

with the symplectic potential ¢ = —\/g}'abéAb. On the solutions of local equations of
motion, 05 ~ [ 0°. With the falloffs (3.22) we have,

0S ~ — / VOFPHSA, = (d—3) / Vh(D,UD"6® + A, D"5®) (4.2)
B B
= (d—3) / VAD"(WD,6® + 4,50) — (d - 3) / Vh(UD D60 + D4,50)
B B

where D, is the covariant derivative with respect to h,, and D* = h*¥D,,. Imposing the
boundary gauge condition D*D,® = 0, the last term vanishes (recall that A” is transverse
D, A" = 0 by definition) and we have

0" = VAD sy, hy = (d - 3)(VD,u0® + 4,50) (4.3)

which guarantees having a well-defined action principle.
We conclude that for a well-posed action principle with the falloff conditions (3.22) we
only need to have the following constraints on the boundary data,

DD, =0, (4.4)

which in turn constrains Ag to D*D,Ag = 0. That is, both of our boundary gauge trans-
formations AR, Ag satisfy the Laplace equation on the boundary.

4.1 Conserved symplectic form

Symplectic density of the theory w?® is computed by anti-symmetric variation of the sym-
plectic potential 6%, w® = 00*. The symplectic structure of the theory is obtained by
integration of the symplectic density over a Cauchy surface [31]. For globally hyperbolic
spacetimes, e.g. (asymptotically) flat spaces, we have such Cauchy surfaces. In contrast,
the AdS spacetime is not globally hyperbolic and does not have a foliation with Cauchy
slices. Here we choose the constant 7 slices as the foliation slices and define the symplectic
structure as,

Qb = / VITaSF 6 Ay (4.5)
T,

where 7, = 0,7 is the 1-form defining constant 7 slices [32].

- 11 -



The symplectic density satisfies 0,w® = 0 on-shell. By the Stokes theorem the sym-
plectic structure (4.5) is then independent of slices if the symplectic flux at the boundary
is vanishing. However this is not the case by our boundary conditions, which leads to,

Qi it — / W= [ VhD.ok" + / o (4.6)
Bi2 Bi2 B2

where Bjs is a region of the AdS boundary B with two boundary 0¥, and 0%, k
is defined in (4.3) and w™ = (3 — d)v/h(6WD*D,6® + D §A,,6®) which vanishes by our
boundary gauge condition and the definition of Au- Since the first term is a total divergence,
we can take Oyyqry = —\/ETMKJ”‘ and construct the conserved symplectic form as,

0= / wt 7{ Chary = / VIS Ay + (3~ d) § Vi, (5UDH60 + 54050
, o5, s,

)
(4.7)

with the conditions D?® = 0 = D“AM. We now have a well-defined “initial+boundary”
value problem.

Before going further with computation of charges, let us pause and discuss our re-
sult (4.7): while the symplectic form of the original Maxwell theory was not conserved, we
made it conserved by adding a boundary piece. This boundary piece was extracted through
the decomposition (3.26) and in itself may be viewed as symplectic form of a complement
gauge theory with dynamical fields (®, V) and the “external gauge field” fl“. Explicitly,
substituting the decomposition A, = 9,®+ .4, into (4.7) and using the equations of motion,
we arrive at,

0 / VGO FNS A+ (3— d) j{ Vi 7, (0D 50 + 50D6W). (45

(o)

The surface term can be inferred from a boundary action
Spary = (3 —d) / Vh 9, W0'D,  d#3. (4.9)
B

This action is invariant under SO(d — 1,1) isometry group of the boundary. The corre-
sponding energy-momentum tensor is given by
b —2 §SPd
T = 75 g = =3) [Qaw\lfay)cb — hy, 00 - 8(1)]. (4.10)
The role of this tensor will be clarified when we compute the Lorentz charge of the bulk
theory.
We note that the boundary action and symplectic form is invariant under the following
scaling symmetry:*
- M1®, U MU (4.11)

We shall return to the conserved charge of this scaling symmetry in the next section.

4This scaling symmetry appears as a result of the fact that the boundary theory (4.9) is independent of
the AdS radius ¢. Note that ®, ¥ have opposite mass dimension and hence ® - ¥ is dimensionless.

- 12 —



5 Nontrivial (physical) gauge transformations

After addition of appropriate boundary terms which makes the symplectic form conserved,
we can find the charges for gauge transformations. It turns out that there are two sets of
gauge transformations which have non-vanishing charges, the source and response gauge
transformations (Ag, Ag). The algebra is an Abelian one up to a central term between
source and response sectors. In this section we also discuss the “AdS antipodal map” and
the behavior of our charges under the map.

5.1 Charges and their algebra

The charge @) of a gauge transformation A is the generator of that transformation on the
phase space [33, 34] defined through the symplectic form as,

0Qx = (-, 05). (5.1)

We have two classes of gauge transformations the “source charge” denoted by Qf when
Ar = 0 and the “response charge” denoted by Qf‘ when A\g = 0. Using (3.26) it turns
out that,

Q5[0 = ¢ Vhr, (ASD“\II . \IID“)\S),

O (5.2)

Qf[@e] = ¢ Vi, (ARD“<I> . <I>D“/\R),
(o) 25

where in the above, to simplify the expressions, we have dropped a d— 3 factor compared to
the canonical charge values. Q5[¥], Q¥[®] are both conserved and independent of 7 as a
result of our earlier discussions on having a conserved symplectic structure. This latter may
also be directly verified given the expressions of the charges above. To see this, recall that
the boundary gauge parameter A and the boundary fields ®, ¥ satisfy Laplace equation.
This implies that dQ¥ [¥]/dr, dQ¥[®]/dr become exact forms on the S¢=2 sphere at 9%,
and hence vanish.

One can then readily compute the algebra of charges:

{Q5,Q71 =0, {Q%.Q¥=o0,

{Q§7 Qg} = _Q((S/\:w 5XR) = g \/E TM()‘DMX — xDHA).

(5.3)

As we can see the “source” and “response” charges do not commute, which justifies the
names. Using the decomposition and the formulae in the appendix A, we find

(@ Qi =2 500" +1) 610, (5.4)

where we used an expansion like (A.2) for the gauge parameters and o, ¢’ = +1 correspond
to the two solutions (A.4).
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The conserved charge associated with the scaling symmetry (4.11) is®
A= f\/ﬁm(\w”@ — ODHD), (5.5)
with the algebra,
{403 =-0% {AQ}=ef (5.6)

5.2 AdS antipodal map

Antipodal map as CPT in flat space. Local Lorentz invariant quantum field theories
in flat space enjoy CPT symmetry. CPT maps in states to their CPT conjugate out states.
On the Penrose diagram of flat space (middle and right diagrams in figure 3), the in and
out states reside on Cauchy surfaces at t = +T for large T. All Cauchy surfaces have
their boundaries at spatial infinity i°. For physically plausible configurations, the initial
massive states are localized at some scale, and the fields revert to vacuum at large enough
distances. Initial massless states are also prepared on a spacelike Cauchy surface, which at
large —T tends to # ~. Thus, in states can be prepared on Cauchy surfaces that end on the
t+r =wv — +oo limit of .#~ which is usually denoted by .#". Under PT transformations,
t —r = u ¢ —v, so the future of the past null infinity .#" is mapped to the past of the
future null infinity .#+. The out Hilbert space resides on a Cauchy surface at large T
which ends at .#F. " and S are related by PT and fields ¢ are mapped between them
by CPT conjugation.

In the analysis of soft charges, in particular in rederiving Weinberg’s soft theorems
in the language of soft charges [2, 20, 21|, our Hilbert space is the direct product of a
transverse (“hard”) and “soft” part, Hiot = Hpard @ Hsopt- While each of Hpgrg and Heo
parts are invariant under CPT, to recover the soft theorems we need to actually gauge CPT
in the H,o; part. That is, we only keep the CPT even states in the soft Hilbert space. This
gauging is called the antipodal matching, for the reason reviewed and described above.

In our analysis on the AdS (in de Sitter slicing), one may explore similar antipodal
map. As depicted in the left figure in 3, there is a PT symmetry on the AdS space and
at its boundary. Moreover, for the fields on AdS or the boundary fields ®, ¥ one can
consider CPT transformation and hence an antipodal map. The boundary fields and the
corresponding gauge transformations are solutions to Laplace equation on de Sitter and
hence the two solutions can be written in a basis in which they have definite sign under
CPT. (In terms of the ¥)* basis introduced in the appendix A, CPT(¢*)=¢T; i.e. T £~
are fields with definite sign under CPT.) From the gauge transformation rules (3.26), one
can readily see that ® (and V) field and the corresponding gauge transformation A\g (and
Ar) should have the same CPT parity. Next, we note expressions of the charges (5.2),
which imply that the charges are non-zero only if the source and response fields (®, V)
have opposite CPT parity. Therefore, one may introduce an “AdS-antipodal matching”
in which we keep the even (odd) part of ® (¥) field. However, unlike the flat space case,

50ur definition of A charge differs from its canonical value by a factor of d — 3, as also our conventions
for the charges Q*, Q°.
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Figure 3. Antipodal matching in flat and AdS spaces. As depicted in middle and right figures, in
Minkowski space the spatial infinity can be represented by a de Sitter space. Antipodal map is a map
from past to future boundary of the dS space. The left figure shows AdS space in dS slicing where
the blue points are mapped onto each other under antipodal map. The antipodal matching condition
is the boundary condition that maps the state/configurations to their CPT conjugate on dS space.

and as our analysis above shows, this is just a choice and not implied by any physical
requirement on AdS.

6 AdS isometries and their charges

In this section we study the conserved charges associated to the isometry transformations
of the AdS background. The boundary conditions, expression of our charges and the
consistency of our phase space relies on the constraints D?® = 0 = D“/lu which guarantee
vanishing of w™* defined in (4.6). These are all manifestly invariant under Lorentz part of
the AdS isometries. The Lorentz charges are hence straightforward to construct. However,
the gauge conditions are not covariant under AdS-translations and so the phase space is
not consistent with AdS-translations. The resolution to this problem is that behaviour
of the gauge field under AdS-translations must be supplemented by an appropriate (field
dependent) gauge transformation, which leaves the boundary constraints invariant.

6.1 SO(d — 1,2) transformations of boundary data
For Lorentz transformations labeled by L, we have (cf. (2.17)),

&= (€. ¢) = (0,2X1nrn) (6.1)
Note that for Lorentz transformations {7 = 0 and we also have,

Dl +Dgl =0, D&y =o. (6.2)

The definition ¢ A = L¢A implies

0e, ¥ = €40, (6.3a)
b, ® = €40, ® (6.3b)
S, Ay = gzD,,Au + A,,Dugz (6.3¢)

which reflects the fact that they are covariant Lorentz tensors.
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For AdS-translations labeled by T% = L~'* we have (cf. (2.18)),
&r = (&, 87) = (X" X"p, X" MIRH™). (6.4)

AdS-translations satisfy the following relations,
1
D& + D&, = 2T0,6) = ~2p7hy, Dugp = g(1=d).  (65)

In the p > [ limit only the leading terms are relevant and the expression for the AdS-
translation vector simplifies to

&r = (&7, €7) = (Xp, MIhM™). (6.6)
It is convenient to define,
& = lim ﬁ, & = lim &Y. (6.7)
p—oo P p—00

A useful implication of Killing equation is the following asymptotic relation

= DIl (6.8)
The boundary fields under AdS-translations transform as®
e VU = E4.0,0 + (3 — d) UL, (6.9a)
e, ® = €70, 9, (6.9b)
Oer Ay = ErDyA, + AyDy&h + (3 — d)ERA, + (d — 3)09,8,. (6.9c)

Radial gauge fixing and AdS isometries. The gauge fixing A, = 0 and the expansion

A
A, =0,0+ p L1000, 9,2=0, (6.10)

are invariant under the Lorentz SO(d — 1,1) subgroup of the AdS; isometries. The AdS-
translations, however, clearly do not respect these conditions. For example, starting
from A, =0,

LeA, = AL0,8", (6.11)

which is non-vanishing for AdS-translations. In addition, action of AdS-translations on ¢
produces subleading terms which are possibly larger than p3~¢ (actually they are O(p~2)).
Both problems are overcome if we supplement AdS-translations by a field-dependent gauge
transformation

Ag — A + 0ar, Opy = —Au0,8". (6.12)

This transformation is necessary and sufficient to preserve 9,® = 0. As a result, the
structure (6.10) is respected by all isometry transformations. For AdS-transformations,
Dp&H ~ O(p~3), therefore, v ~ O(p~2) and hence do not contribute to the canonical charges
we computed in the previous section or to the AdS-isometry charges to be discussed in the
next subsection.

S appears in the asymptotic expansion of A, at order p>~%, cf. (3.22) and (3.24). Transformation of
¥ is defined such that the spacetime function ¥* = pd% + - - transforms like a scalar field.
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6.2 Boundary gauge transformations and integrability of AdS isometry
charges

The above v gauge transformation, however, is not enough, as our other gauge conditions
D?® =0 and D, A” = 0 are not covariant under AdS-translations either. While our gauge
conditions are Lorentz scalars,

(5§L (DVDVCI)) = E{L (DVDVCP) (6.13&)
5§L (DVAV) = ‘C§L (DVAV)a (6.13b)

under AdS-translations they transform as,

S¢r (D DY ®) = D, [€7D,D'® + (d — 3)¢5.D" @] (6.14a)
Sen (D, AY) = D, [E;DMA# +(d— B)WD”Eg} . (6.14b)
We will introduce other field dependent boundary gauge transformations, which we
call a, 8 boundary gauge transformations (BGT), to preserve AdS-translations too. As we
will see, the v transformation above and the «, 5 BGT are of different order in p and that
the latter contribute to the AdS isometry charges, rendering them integrable.
6.2.1 «,3 boundary gauge transformations

Equations (6.14) show how AdS-translations violate gauge condition on ¢ and are inconsis-
tent with D, A¥ = 0. This problem can be resolved by supplementing AdS-translations by
an appropriate gauge transformation. The resolution may be provided by field-dependent
gauge transformations which undo the action of AdS-translations on ¢ and W:

0o® = —a[®i€], 00 =—PU:¢],  dpA. = DuB¥s¢], (6.15)
where o and [ specify two classes of boundary gauge transformations such that
(5a + 5§T)(I) =0, ((55 + 657")\1] = 0.

We denote this phase space action as &T = o8 + 0¢p- One can check that the BGCs are
invariant under d¢,.,

d¢, DV D, ® = 3¢, DD, ® — D%a = 0,
Se, D" A, = 8¢, D" A, + D23 = D, [5{;(1)“21“ + DD, )| ~ 0, (6.16)

where in the second line we have used the equations of motion.
The improved AdS-translation of A* also would be,

8§TA# - 5§TA# + Dyup (6.17)
~ &Dy A, + AyDyr + (3 — d)&L A, + Dy, (84D, 0 — €L DV W) (6.18)
= D, (Ep A — AE)) (6.19)
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which leads to,

doer ¢ VhT AM 2 0. (6.20)
(o) 28
This is an interesting conclusion: consider an electric monopole at the origin. For this
configuration An is vanishing and the information of the electric field flux on constant 7
surfaces (Gauss law) is completely stored in ¥ (see section 3.1),

7{ VT F* = (d - 3) yf Vhr,(A* + DFT) = (d — 3) Vhr,DH. (6.21)
[o) 20 [o) 20 [o) 2

One can translate this monopole from the origin (by the new improved AdS-translations)
and construct multipole configurations.” Interestingly, the information of the electric flux
is still completely in ¥ although AM is not zero and A carries the rest of the information,
explicitly,

¥ <— Monopoles, flu +— Multipoles (excluding the monopole part). (6.22)

6.2.2 Integrability of isometry charges

In this section we show that charges associated with Lorentz transformations d¢, and the
gauge-supplemented AdS-translation transformations 5& are integrable with our boundary
conditions. The phase space we are considering consists of configurations of the gauge
field A, respecting our boundary conditions and AdS metric with its all diffeomorphisms.
First we observe that if isometry transformations are defined by Lie derivative, none of
the isometry charges defined by Q""" are integrable, see (B.1). However, considering the
QPulk + QY9 defined in (4.7), renders the Lorentz charge integrable. The AdS-translation
charges, however, still remain non-integrable. They become integrable once we augment
the corresponding diffeos with field-dependent «, 5 gauge transformations. The details of
computations is given in the appendix B and here we mainly present the final results.

Lorentz charges are integrable. The action of Lorentz subgroup of isometries defined
by Lie derivative enjoys integrable charges. One can see that by computing phase space
Lie derivative of the symplectic form under Lorentz transformations,

Le 2= j'{ Vhr, Erw™, (6.23)

where w™* is defined in (4.6) and is vanishing on our phase space. Therefore, d¢, has an
integrable charge on the constructed phase space and is computed to be (see (B.7)),

I, = / VITEET™ + (3 — d) Vhr, [VD¥(€¢D,®) — D"VEI D] . (6.24)
po )

The notable point here is the boundary term containing the boundary data ¥ and ®. Using
our gauge conditions and Killing equations, one can easily show that the boundary term

"Note that U and Au are covariant under Lorentz transformations, so the argument is unaffected by
applying an AdS-Lorentz transformation.
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is nothing but the boundary energy momentum tensor introduced in (4.10) contracted by
&r. So, the Lorentz charges can be recast as,

I, = /E VITaEET™ + 7{92 Vhr LTI, (6.25)

AdS-Translation charges are not integrable. Under AdS-translations the symplectic
form transforms as (see appendix B for details),

Le, Q= 7{ VI 1,850 — (d — 3)2 7{ Vh 1,4 5U55. (6.26)

This proves non-integrability of AdS-translations, even if w™* = 0.

Improved AdS-translations are integrable. In section 6.2.1 we replaced d¢, by
SfT = 0¢, + 0qp Which leaves the boundary gauge conditions invariant. Detailed computa-
tions in appendix B show that the transformation &T defined above leaves the boundary
data ¥ and ¢ invariant and importantly, has integrable well-defined canonical charge. In
other words, using the equations of motion we can show that 8§T leaves our phase space
invariant and is also a canonical transformation on it,

H_éQ = (H‘ET + H_aﬂ)Q ~ 0. (6.27)
This leads us to,
O, 0gp) = g, (6.28)

where the charge [; ~turns out to be (see (B.11)),

ey = [ Vo™, (6.29)
=,

This is a plausible conclusion since the boundary data are invariant under the improved
AdS-translations.

6.3 Charge algebra

One can compute the algebra of canonical charges I¢, , I r Qf and Qf\%. First we have,

g Tep} = =00 0er) = ~er 1, (6.30)
T /E VI Ty = = /E VIt ([r, Cr]*Tup + Lo (E3Tw))  (6.31)
= e (6.32)

where we used the relation

Le(§%Taw) =CVe(§"Tup) + " Tac V(= Ve(CE Tap — G&aT™) (6.33)

~19 —



and the fact that the second term in (6.30) is a boundary term and vanishes by the pre-
scribed boundary conditions. For the Lorentz case we have the similar situation,

{LepIe } = — /E VT3¢, Tup — }g § Vhr,&loe, TEY, (6.34)

= e ¢z (6.35)

where we used the boundary form of relation (6.33). The rest Poisson brackets can also
easily be computed and the result is,

{IET’ IQCT} - I[gT/,C\T}’ e Iey} = Tl cos {I§L7I§T} = I[@] (6.36a)
{I¢,,Q3} =0, {I¢,, Q% =0 (6.36b)
{I§L7 Qi} = Qgng {Igu Qf”} = Q?ELA- (6.36C)

Among other things, the commutators above show that all our QF, Q° charges commute
with the AdS-translation charges, especially with the Hamiltonian and have zero bulk
energy. Therefore, they may be called “soft” charges. One may also show that

(AT, } =0, {AI}=0 (6.37)

7 Flat space limit

In this section, by introducing appropriate variables, we show how flat space boundary
conditions and charges are recovered at £ — oo limit. First we note that in this limit, the
AdS metric (2.9) reduces to

ds® = dp® + thW,da;“da:”, w,v=0,1,--- ,d—2, (7.1)

which is the Minkowski metric in hyperbolic coordinates [35]. The p — oo which is the
AdS boundary will also map to spatial infinity of flat space.

In our case of Maxwell theory and working in the radial gauge A, = 0, the boundary
term of the action is

58 ~ / p IV hn? g F, 6 A, = / p VRN g 9, A0 A, (7.2)

where

/02 1 (2
nt = %(1,0“) (7.3)
is the unit normal to the boundary.
Let us define the boundary one-form field &,
En=nPF, =nl0,A,. (7.4)

This would be the “electric field” if p is considered as the temporal coordinate. Introduction
of £ makes the comparison between flat and AdS asymptotics tractable, since the geometric
features of AdS space are absorbed in its definition and the boundary term becomes

58 ~ / PN Rg S A, (7.5)
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and g"” and v/h are the same for flat and AdS metrics. (Non)vanishing of the boundary
term depends only on the asymptotic behavior of A, and £, and these two are related
by definition (7.4). The gauge field A, can be obtained from &, up to an integration
“constant” 7, ~ O(1). As a boundary condition we assume that <7, is pure gauge, equal
to 0,® for some function ® of boundary coordinates.

To evaluate (7.5), it only remains to determine the behavior of &,. To this end, recall
that the equations of motion in the radial evolution (3.2) and (3.3) are

Constraints: D" =0 (7.6)
Dynamical equations: p°~nPo, (pd_351,> +D"F,, =0 (7.7)

Taking a further p-derivative over (7.7) one arrives at a differential equation for &,

n?d), (p5*dnf’a,, (;ﬂﬂ”’@)) + D¥(d€),, = 0. (7.8)

We assume that &, has a decomposition in terms of eigen-vectors Sl[f]

Eulp a®) = fulp) I (2®) (7.9)
k=0
such that (cf. appendix A),
D¥(dEM,, = —k(r +d — 4)El (7.10)

(Note that here k is not necessarily an integer and is in general a non-negative real number.
The sum in (7.9) may then be viewed as an integral.)
The zeroth component S;[LO] of the electric field satisfies

D*(de0y,, = 0. (7.11)

Excluding magnetic source configurations of any sort, implies (d€);; = 0 and it follows
from (7.11) that®
g0 = 9,0~ (7.12)

All in all, &, can be decomposed as
£, =0,¥* + &P (7.13)

Equation (7.8) determines the p-dependence for each component 5,&”]

nf0, <p57dnp8p (pdiBf,i)) —k(k+d—4)f. =0. (7.14)

BIf (dg)m = 0 then Sl = 81'2. We have
D' e, = D' (i —0.0:2) =0 = &V -8,2=4(n),

for some function g(7). The claim is proved with ¥* = Z + g.
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There are two non-trivial solutions for f,; in terms of hypergeometric functions. The
one without logarithmic dependence is

F(p) = <B)3—d—n P, [S—d—n —/<;‘6—d—2/<c._p2] (7.15)

L 2 27 2 2
We are interested in the two asymptotic limits:
L p 3—d
AdS boundary limit p>1 fr x <Z) VK >0 (7.16)
L P 3—d—k
Flat space limit pl fr x <z) (7.17)

As a result, appropriate boundary conditions for electromagnetism both in flat and AdS
space are suggested as
&, ~O(p* 9. (7.18)

In flat space, only the zeroth component ELO] = 0,V* saturates the boundary condi-
tion (7.18), while all components in AdS space have the same behavior p3~¢. Therefore,
the electric conserved charges in flat space involve only W* [26]. The procedure of making
the symplectic form conserved leads to addition of two boundary terms as in (4.7)

Q= / VT F S Ay + 7{ o IVRr (897D, + 5E[ 60 (7.19)
pa a

s,

This expression is of course equivalent to (4.7), if one reintroduces (recall (7.4))

U =0B-d)¥, PV =3-dA4,. (7.20)

In the flat space p < £ limit, however, all 5,[,>0}

modes become subleading with respect to
k=0 mode U*. As a consequence, the third term in (7.19) drops out in flat limit and the
flat space conserved symplectic form is

Q- / VITaFU5 Ay + Vit (597D,5%) (7.21)
.

()

as proposed in [22, 26].
Response transformations (3.26), or equivalently

5>\‘I/* = Ar, 5/\5;[;0} = _au)‘Pb DMDM)‘R =0 (7'22)

exist in anti de Sitter space, since U* ~ 5,?0} ~ O(p>~%). In flat space, there are no such
transformations due to mismatch of asymptotic behaviours of ¥* and El[fo]. That is, in
flat space we only have source charges and there is no response charge.

8 Discussion and outlook

We have studied soft charges and large gauge transformations for Maxwell theory on AdSy
and compared the results to the well-known flat space results. For technical reasons and
to facilitate taking the flat space limit, we adopted dS slicing of AdS space. Although we
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do not show it explicitly, we have carried out the computations in other coordinates and
confirmed that we get the same charge algebra. We observed that the boundary data may
be denoted by two scalar fields @, ¥. This is in contrast to the flat space case where there
is only the gauge transformation associated with ® and hence only Q° soft charges (see
discussions in section 7). Then, there are two associated boundary gauge transformations
\g, Ar each with their own set of soft charges Q°, Q. As another feature of the AdS case
unparalleled in the flat case, we noted that all the multipole fields for electrostatic case
show the same falloff near the AdS boundary. We also studied the charges associated with
the AdS isometries as acting on our boundary phase space labelled by ©, W.

Having a well-defined variation principle and a conserved symplectic structure in the
bulk led to a boundary action governing the ®, ¥ fields, in which ® (—¥) is momentum con-
jugate to ¥ (®). This then led to the algebra of the corresponding soft charges (5.3). While
we did our analysis in the action (Lagrangian) formulation, it can be instructive to repeat
the same analysis in the Hamiltonian formulation, as was done in [23, 24, 36] for Maxwell
theory on flat space. It is also desirable to explore the presence of magnetic sources and
the role of electromagnetic duality in this context as was done in [37—40] on flat spacetime.

As other followup projects, it is desirable to repeat the analysis here for p-forms on
AdS,. Such analysis in flat space has been carried out in [41] (see also [42—44] for 2-form po-
tentials). It is also interesting to explore similar problem for gravity theory on AdS,, d > 4
in light of our discussions here, extending the work of Brown-Henneaux [34] to higher di-
mensions. There are various arguments and statements in the literature saying that asymp-
totic symmetry algebra of AdS, space is just its isometry group SO(d — 1,2); see [45] for
a review and for a proof based on theory of deformations of algebras.

Finally, one may ask if our analyses and results have any implications for the AdS/CFT.
One may note that the two sides of the gauge/gravity duality enjoy different (local) gauge
symmetries. In the gravity side these are diffeomorphisms and on the gauge theory side
these are typically some SU(N)-type gauge symmetry in the large N limit. The AdS/CFT
then relates only the gauge/diffeo invariant (observable) quantities on the two sides. The
role of soft charges and their algebra is still an open question in the AdS/CFT setup.
Our analysis here suggests that not only a residual part of the bulk gauge symmetry may
appear on the boundary (Ag), there is a new kind of gauge symmetry also appearing on
the boundary (Ar). This latter has no direct counterpart in the bulk, nonetheless, the
associated field and (soft) charges Qf, Q° are not completely independent and do not
commute. Studying further this point can shed a new light on the AdS/CFT and the role

of local symmetries in it.
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A Spectrum of Laplacian on (A)dS space

Our boundary fields and gauge transformations satisfy the Laplace equation on dS;_1 space
with metric (2.10),
D D*p(a") = 0, (A1)

where D, is the covariant derivative on the de Sitter space. We can decompose 9 in terms
of spherical harmonic on S¢~2,

d—1
/l/J = Z /l/}l,ml (T)yl,m,” v%d—%)}l,mi - _l(l + d - 3)yl,m17 7’ = ]'7 T |::| bl (A2)
l,m;

to arrive at
2 m; + (d — 3) tan T Orthypm, + 11+ d — 3)ym, = 0. (A.3)
The solutions are of the form of Gauss’ hypergeometric functions F = oF7,

3—d

3—d, d-1 : 272
+ ;—ﬂ”), Ni=—"——/1-D(+d-3)
(A.4)

As we can explicitly see (¢, )" = ¢l+mi and w;rmi (1) = ¥, (=7). The normalization

,l/}l:l’:ml(T) :M eiilT F (l,

factor V; has been chosen such that the Wronskian is equal to one,
D O Ui, = Uil Oy, = 21 (A.5)

On spectrum of Laplacian on dS4z_;. For our analysis in section 3 we also need
spectrum of Laplacian on dS,4_1, i.e.

D, D"¢(a") = D2g(a") = Aé(a"), (A.6)

which is like the equation of motion of a massive field on dS. Using an expansion like the

above in terms of spherical harmonics on S?~2 one may reduce (A.6) to,
2 A
Oz b1m; + (d—=3)tant Ordym; + |{(1+d —3) + —5—| ¢1m;, = 0.
cos? T

The solutions of the above are hypergeometric functions whose argument depends on A.
Alternatively, and more suitably for our case (recall that we are only interested in

large or very small radius expansion of Laplacian on AdS;), we note that dSy_; can be

embedded in a d-dimensional Minkowski space with coordinates Y¢ with metric

ds* = dr® + r*h,dztdz”,

where 72 = Y,Y® and huw is the metric on dS4—1 of unit radius (2.10). Now, consider the
Laplacian on this flat space with dS slicing:

1
V2p = 0%, = 11790, <rd_l(9r<p> + T—2D290 =0 (A.7)
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Requiring to be a smooth function at r = 0 one may expand around r = 0. Noting
that (A.7) is linear in ¢ and is homogeneous in r, ¢ = 7¢,(2") where

D*¢py = —y(v+d—2)p,, 7 >0. (A.8)

With solutions,

Hill=)7 3-d d—1 :
+ e +2ir
= — F -y, — =yl 4+ —;— .
00 = Ny o F (129,25 i U )
For a vector gauge field A,, we consider V,F® = 0 in Minkowski space in the radial
gauge A, = 0 we then have
1
rio, (1170, 4, ) + D" Fyyy = 0. (A.9)
Assuming a regular solution with expansion

Ay =P AP ), B>0 (A.10)

we have

DYFPl = —B(B+d—4) AL (A.11)

B Integrability of AdS charges, computation details

In this appendix we compute Q(-,0¢,) and (-, 3&) where ) = Qbuk 4 QY'Y and
35T = ¢, + 0ap. For AdS-translations, there are three terms to be computed (-, 0¢,) =
QPUE(e, 0y ) + QY (-, 0, ) + (-, 0ap)- In what follows, we compute each term separately.

Computing Q""" (-, d¢). Since the bulk symplectic density is a covariant object on this
phase space, we have

Q.. 6¢) —5/J§— .0 (B.1)
> o

where ¢ is a generic diffeomorphism. Since J¢ = 0(d¢) — ¢ - L and 0¢ A, = LA, =
& Fra + 0a (P Ap),

/ Je = / VITa(—EF P Fyy — £°L) + VTl Ay F
s, 5,

Srp

1
= / VITa <—]—‘“b]-'cb+463]-'be}"be> + ¢ gTalP A F
o

Srp

= / VITa&o TP +(d—3) ¢ Vhr,&(A*D,® + D*UD,d) (B.2)
i 0%,

where ¥, = 0¥, denotes the co-dimension two surface at the constant time slice at large
constant p and T}, is the gauge invariant, symmetric energy-momentum tensor of the
Maxwell theory. Note that here we have defined,

0oy ay s = €ayay 07 0% = —/gF 5 Ay, Layay = V9L€ay-ay,  (B.3)

where €4, ...q, is the Levi Civita symbol.
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The surface term in (B.1) is also computed as,

0= F Py = P L~ L), (B.4)
0%, 0%, 0y, e =
o) 02

So, the second term is subleading and dose not contribute, yielding,

£€-0=(d—3) Vh1,£(D,W + A,)DF5d. (B.5)
) )

This surface term is not a total variation 6@, Therefore, the original bulk symplectic
form provides no canonical charge for AdS Killing vector fields.

Computing Q>¥Y, Q% is given by the second term in (4.7) and Q"*¥(-,d¢) can be
easily computed as

Q(,8) =0 / Je+(3—-4d) ]{ Vhr, [§UDY(8:®) — 5¢ U D" 5D
s,
+ (3 —d) f Vhr, [(DM\I/ + A)E"DHS® + (§AY5:® — 5 AV5D)| . (B.6)

After a lengthy but straightforward calculation using Killing equations, equations of motion
and boundary constraints, we can show that the above formula for £ = &, leads us to,

Q- 6¢,) = 6I, =6 / VITEET® + (3 —d)s ¢ Vhr, [¥DY (€} D,®) — DVVEL D, ).
X (o) 25
(B.7)

The above is variation of the Lorentz charge. The first term is variation of the ordinary
bulk energy momentum tensor and the second term is a “boundary energy momentum
tensor” containing our boundary data ¥ and .

Computing (-, do3). For computing the AdS-translations charges we should also com-
pute the charge variation of d,5 boundary gauge transformations. Substituting o and 3
transformations (6.15) into the symplectic form we find
Q(-,008) =(3 —d) 7{ \/HTH (06, WDHOD — DHog, PO + §¢,, DH6W — DHoe, Wod). (B.8)
Adding up (B.6) and (B.8) we obtain
O(,0e,) = 5/ Je, + (3—d) 7{ Vhr, [(Du\p + A)EDPSD + (5AY 6, & — 5&21”5@)}
2,

+(3—d) f Vh1, (8¢, ®DHST — DHS, WD)

= / V&L T® + (3 — d) B, (B.9)
o
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where B is the following phase space one-form
B= jf VAT [(D, U+ A4, )8 DY 60+ (540 6¢, D — b, A459)|

+ f Vh1, (3¢, ®DFGW — DH6e, WD) — 6 Vhr,&%.(A*D,®+D*UD,®)  (B.10)
(o) 25

If the charge for SET is integrable, B as a boundary one-form, must be exact on the phase
space. One can show that B = 0 by a lengthy but straightforward calculation using Killing
equations and equations of motion. We hence conclude that,

O, bep) = 01z = 5/2 VITaEL T (B.11)

B.1 Integrability of isometries

Phase space Lie derivative of isometry transformations can be computed straightforwardly,
with different results for Lorentz and AdS-translations:

Le, Q= 0[Q0,, )] = j{\/ﬁn%wﬂ“, (B.12)
Ley 2 = 0100ep. ) = § Vi no™ — (d =3 § Vi n,8 550, (B.13)

where w™* is defined in (4.6). This proves non-integrability of AdS-translations, even if
wi = 0. However, if the isometries are supplemented by field-dependent gauge trans-
formations d, g, the phase space Lie derivative of the combined trasformations vanishes
on-shell

H_ETQ = (U_gT + U_aﬁ)Q ~ 0. (B.14)

C Source and response charge without gauge fixing

While our computations were carried out in radial gauge and in dS slicing for AdS, our
results for the charges and their algebra are independent of these choices. We will show
here that the source and response charges emerge even if we do not fix the radial gauge.
At leading order in p we have

Fou=(3-d)A,—0,A,. (C.1)

The symplectic can be subtracted without gauge fixing according to the procedure of
section 4.1, with substitution (d — 3)y — A, and flu — A,. Accordingly, the response
transformation is now manifested as a gauge transformation which rotates A, and A,, into
each other (in which A ~ O(p3~%)). Considering the falloffs (3.22) and two boundary gauge
fixings D, A! =0 = D2®, the conserved symplectic form is obtained to be,

0= / VITaOFP Ay + ]{ \/HT“<(3 — d)5AFSD — (5A,,5D“<I>>. (C.2)
S, 0%,
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On-shell it can be written as,
Qx [ JgradFPsA, + jé Vh1, (D“éAp(SCD — 5AP5D’@>. (C.3)
Dl o5,

Since we have not fixed the radial gauge, the two independent gauge transformations
A~ O(1) and A ~ O(p*~?) defined in (3.23), take the form

Hhe =X 6A,=(d-3)N 54, = —0.\. (C.4)
The charges for these gauge transformations may be easily calculated from the symplectic
form:”
QA = ¢ Vhm,(AD"A, — 4,D")),
o (C.5)
QY@ = ¢ Vhm, (AD“CI) - @D“A),
o)

where they satisfy the following algebra,
{va Qi} =0, {Qj\Ra Q;jg} =0,

{Q§7 Qé\%} = _Q((;Agv 65\) = \/E TM(ADHS\ — S\D‘LL)\)
[o) 20

(C.6)

As before, the source charge comes from residual gauge transformation and the response
charge from the ambiguity in defining the exact and divergence-free parts of A, which is
now exhibited as a gauge transformation at O(p3~%).

Two comments are in order: (1) A, dose not explicitly appear in the on-shell conserved
symplectic form (4.8) or (C.3) and hence fixing a different gauge amounts to applying a
trivial gauge transformation on the system. As a consequence the charge algebra is also
independent of the gauge choice. (2) As another remark we point out that while the
explicit expressions for the source and response charges may depend on the coordinate
system adopted (here dS slicing on AdS), one may carry out the charge analysis in other
coordinate patches on AdS. Had we chosen global slicing or Poincare patch of AdS, we
would have got the same expression for the charges and their algebra; we will not carry
out the calculations here though.

D Multipole electric charges in AdS

As formulated in [46, 47], one can associate a conserved Noether charge to each multipole
moment of an electrostatic configuration. Restricting ourselves to the static case, we work
in the global coordinates (,r,z') where the timelike Killing vector field is manifestly 0;
and the metric is given as,

2

1 S

it == (Lt )t + (bt s 0.1)
+ 5

9Recall that we drop the (3 — d) factor in response charge, which is a redefinition of A
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Working in the static case, the system is completely described by A;. The relevant equation
of motion is,

2
r
<1 + €2> 440, (17720, A) + AA; = 0 (D.2)
where A is the Laplacian operator on the sphere. Expanding A; asymptotically,
A = Z Aﬁ”)r" (D.3)
n

and putting into the equation of motion, we find the following recursive relation,
—n(d+n—3)A™ = (n+2)(d+n— DA™ + AL (D.4)

which terminates only at n = 0 and n = 3 — d. We take the n = 3 — d branch of multipole
solutions'® and put the following boundary conditions,

Ay
where we have used the fact that F;; = 0 = F;, because we do not have magnetic sources
and the system is static.
The symplectic flux is then vanishing by our boundary conditions,

Qv — / VISF A =0 (D.6)
B

which is expected from the fact that our system is static and nothing changes from ¢ slice
to t 4 0t slice. Then the conserved symplectic form is,

Q= [ VgsF"“5A,, (D.7)

3t
and the conserved charges associated to the large O(1) gauge transformation of A; is
computed as (+,0y) = 0Q and turns out to be,

=i vmrr=-af v (D.5)

We can expand A in terms of the spherical harmonics ) ,, on Sd=2

le - \/le,mAt; (DQ)

0%t
where we ignored the coefficient (3 — d).

As we argued above, multipole configurations in AdS are at the same order compared
with monopole. This is not the case in flat space case where a n-pole has a subleading falloff
compared to a m-pole for m < n. This fact forces us to consider divergent gauge trans-
formations on boundary for being able to see the multipole structure of flat space [46]. In
AdS space however, we can see the multipole structure and define the associated conserved
multipole charges just by the regular O(1) large gauge transformations, as we have done it
here. As a final comment, we emphasize the crucial role of staticity in charge conservation
in this setup, in contrast to Lorentz invariant treatment presented in this paper.

9The n = 0 branch of solutions are regular everywhere and are examined in [30].
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