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1 Introduction

The QCD axion scenario provides an elegant solution to two distinct problems in particle
physics: the strong CP problem and the nature of dark matter. The strong CP problem
concerns the reason why the QCD #-angle, i.e. the coefficient of the F' A F' term in the

0~ !0, instead of being a number of

Lagrangian, is experimentally very small, of order 1
order one. The Peccei-Quinn mechanism relates this constant to the expectation value of
a field, whose potential has a minimum at (or very close to) zero [1-4]. The low energy
excitations of this field comprise a scalar particle, the axion, which is a viable candidate
for being a component of dark matter [5-7], provided the axion decay constant value f,

falls in a specific energy range (see e.g. the review [8]).!

!The range of f, goes from 10%-10° GeV up to around 10'7 GeV, sce e.g. [9].



Trading the fine-tuning of the strong CP problem for this “fine tuning” of f, seems a
convenient deal, for it provides at the same time a dark matter candidate. For this reason,
in the last years there has been a renewed interest in building concrete axion models of
different types and exploring their phenomenological consequences. Moreover, the study
of axion-like particles is theoretically interesting, since they are very common in top-down
models of particle physics, for example they are ubiquitous in string compactifications [10].

In this paper we show how to construct the first (to our knowledge) top-down holo-
graphic model of an axion whose low energy effective Lagrangian coincides with the axion-
dressed chiral QCD one (see e.g. [11, 12]), in the planar limit. The model is built as
a simple extension of the Witten-Sakai-Sugimoto (WSS) dual of a planar QCD-like the-
ory [13, 14]. It is a composite axion model falling in the KSVZ class [15, 16]. Its rationale
is the following.

It is well known that a single massless quark is sufficient to solve the strong CP prob-
lem, since a massless fundamental fermion renders non-physical the 6-angle. Nevertheless,
experiments are not consistent with a massless up quark and any additional massless quark
flavor (a left and right quark pair) would be incompatible with phenomenology.

This problem can be avoided if the extra quark flavor condenses at a scale M, which is
much higher than the ordinary chiral symmetry breaking scale ( f, will be of the same order
of M, in the model). In this case the extra quarks do not enter perturbative corrections of
Standard Model observables and all the extra hadrons associated to this flavor have masses
of order M, so they are not excluded by phenomenology for sufficiently large M,. The one
exception is the (pseudo) Goldstone boson of the extra chiral symmetry breaking. This
is a natural candidate for the QCD axion, since it solves automatically the CP problem
by the standard Peccei-Quinn mechanism. The axial U(1)a symmetry of the extra flavor
plays the role of the broken symmetry involved in the Peccei-Quinn mechanism.

Obviously, the main point of this scenario is how to induce a condensation of the extra
flavor at the scale M,. In the model presented in this paper, the condensation is induced by
a strongly coupled version of a (non local) Nambu-Jona-Lasinio (NJL) quartic interaction
between the extra quarks. The NJL condensation scale M, is a genuine parameter of the
model and can be made parametrically large. In fact, already the standard NJL interaction
induces chiral symmetry breaking without confinement, so that the two scales can be well
separated.’

The quartic interaction requires a suitable UV completion. In the holographic model at
hand, this is automatically provided by a higher dimensional theory. The whole QCD-like
theory with axion, including its four-dimensional low energy phase, has, at strong coupling
and in the planar limit, a dual gravitational description. As such, the construction provides
a concrete, calculable strongly coupled model for a composite axion. Needless to say, other
UV embeddings of the quartic NJL operator, possibly not related to holographic models,
are an interesting venue to explore in their own, but we will not pursue this issue in the
present paper.

2Notice that the composite axion in our model is thus not a pseudo-Goldstone boson of some extra,
hidden, gauge theory. In this respect the model differs from both standard composite axion models and
from more recent scenarios based on a large N hidden sector [17].



The holographic WSS model we exploit is recognized as a close cousin of QCD, sharing
its low energy pattern of symmetry breaking. It encompasses in an impressively precise
way the low energy Chiral Lagrangian, the Skyrme model and their effective extensions
including the vector and axial vector mesons. The model can be used to estimate various
QCD observables with a precision which is often comparable to the one of other effective
field theories.

The building blocks of the WSS model are a gravity background in type ITA super-
gravity, dual to a planar Yang-Mills theory, and a set of probe D8-branes supporting flavor
degrees of freedom. The geometry includes a cigar part and the two branches of the D8-
branes are placed at antipodal points on the cigar circle. These D8-branes are dual to the
QCD flavors. Their current algebra masses can be induced by stringy instanton effects
as we will review in the following. It turns out that adding a single D8-brane in a non-
antipodal configuration provides the extra flavor (with zero current algebra mass) needed
to implement the composite axion model described above.

In section 2 we describe more precisely this construction and present the low energy
effective theory, discussing its parameter dependence and its main characteristics (techni-
cal details are presented in appendices A and B). In the confined phase, the model can
be employed for instance to calculate the magnitude of the axion couplings to nucleons,
which constitute important data for axion detection and cosmology. The derivative axion
couplings to the proton and neutron can be extracted from existing computations in [18].
The non-derivative couplings have been derived in [19] for both the holographic and the
Skyrme model. For completeness, we review these results in section 2.3.

Then, in section 3, we consider the axion model in the deconfined phase, focusing,
for simplicity, on the Yang-Mills-like theory without probe QCD DS8-branes. We address
the temperature dependence of the axion mass, due to its crucial role in determining the
relative axion/dark matter relic abundance in the cosmological evolution. As a first step, we
compute the topological susceptibility of the Yang-Mills-like theory in the deconfined phase.
The susceptibility is exponentially suppressed by the large number of colors. Its leading
contribution is due to instantons and can be extracted from the known DO0-instanton terms
in type IIA string theory. As a second step, we also calculate the temperature dependence
of the axion decay constant and from these data we extract the axion mass. As a bonus,
we provide for the first time the result for the topological susceptibility of N'=4 SYM at
finite temperature.

Since holographic models in the gravity regime do not describe the asymptotically free
phase of the dual gauge theories, the temperature dependence of the axion mass turns out
to depart decidedly from the one expected in QCD at large temperatures, where the dilute
instanton gas approximation is under control. Recent lattice studies seem to point towards
the extension of the same “large temperature” behavior up to small temperatures, very
close to the critical one [20].> Thus, it is possible that the behavior of the actual QCD
axion mass has no regime comparable to the holographic one, which is found to increase
with the temperature.

3For recent computations of the topological susceptibility at finite temperature on the lattice see
also [21-29].



We conclude the paper with a few comments in section 4. In appendix C we report
some considerations on the NJL model in a theory with an extra dimension.

2 The holographic axion

In this section we first briefly review the Witten-Sakai-Sugimoto model of holographic QCD
and then describe the addition of the axion degree of freedom. We derive the full low energy
action, describe the axion main characteristics and present its couplings to the nucleons.

The building blocks of the WSS holographic QCD model are two different classes of
D-branes in type ITA string theory. The non-supersymmetric Yang-Mills sector is realized
as the low energy dynamics of N. D4-branes wrapped on a circle (S, ) where anti-periodic
boundary conditions for the fermions are imposed. The chiral quark matter fields are the
low energy modes of open strings stretching between the D4-branes and Ny D8/ D8-branes
placed at different points on the circle.

In the 't Hooft large V., fixed Ny limit at strong coupling, the holographic dual
description of the model is provided by the near horizon limit of the gravity background
sourced by the N. D4-branes, probed by the D8-branes.

The background, found by Witten in [13], actually provides a holographic dual descrip-
tion for a SU(N,) Yang-Mills theory in 3+ 1 dimensional Minkowski spacetime, coupled to
massive Kaluza-Klein (KK) adjoint matter at low energies. We will often refer to it as the
Witten-Yang-Mills (WYM) background. It contains a non trivial metric, a running dilaton
and a four-form Ramond-Ramond (RR) field strength

3/2 R\3/2 du?
2 _ (u " 2 R 3/2,1/2 102
ds <R) (dztdz,, + f(u)dx]) + (u) ) + R u2dQy
3 3/4
_ to ¢ _ g Y — 3R3
f(u) = 1_$7 (& _QSW’ F4—3R Wy . (21)

Here p = (0,1, 2,3) label the 4d Minkowski directions, the radial variable u has dimensions
of length and ranges in [ug,o0), R = (ﬂ'gch)l/gls and wy is the volume form of the
transverse S%. The circle wrapped by the D4-branes is parameterized by the compact
coordinate x4 which is thus taken to have finite extension fy = 2rR4 = 27/Mgk. The
adjoint Kaluza-Klein modes related to compactification have thus masses of order Mkxk.

Absence of conical singularities at u = ug is ensured setting 9up3?7 = 1672R3. With
this condition the (z4,u) subspace has the topology of a cigar, a key feature of the model.
Confinement and the formation of a mass gap for the glueballs are beautifully encoded
by this holographic model. The glueball masses and thus the scale Ay, turn out to
be proportional to Mkgk. The Yang-Mills string tension scales as Ts ~ )\MIQ(K, where
the parameter A\=2ng;N.l; Mgk = g%MNC/2 — a sort of 't Hooft coupling at the scale
Mgk — measures how much the model departs from planar Yang-Mills. The holographic
approximation is reliable only when A > 1, which implies that in such regime the spurious
KK massive adjoint modes are never decoupled.

A non zero topological #-angle in the model can be included by turning on a RR one-
form potential C; along the circle S, , so that, at u — oo, fm Cy ~ 6 [30]. On the confining



background (2.1) this boundary condition and the equations of motion give rise to a non
trivial field strength F» = dC; whose flux along the cigar is f(mm Fy~0. If0/N. — 0
the backreaction of this field on the background can be neglected.* Further details can be
found in appendix A.

The introduction of Ny probe D8/D8-branes at antipodal points on the circle S,
corresponds to adding chiral quarks to the theory, as shown by Sakai and Sugimoto [14].
In the holographic background the two branches actually join at the tip of the cigar, nicely
accounting for the spontaneous chiral symmetry breaking in the quantum field theory.
The low energy effective action on the Ny D8-branes precisely reproduces the 4d chiral
Lagrangian for the pseudoscalars including the Witten-Veneziano mass term for the 7.
The tower of (axial) vector mesons is accounted for as well.

Scalar and (axial) vector mesons in the model correspond to fluctuations of the U(Ny)
gauge field A on the D8-branes. In particular, the matrix U of the pseudoscalar bosons

is given by the path-ordered holonomy U = Pet [ Azdz

, where z € (—00,00) is a suitably,
single-valued redefinition of the holographic radial variable on the D8-branes.

A (small w.r.t. Mkk) current algebra mass term for the quarks and hence a term of
the form Tr[MU +h.c.] in the effective action for the pseudoscalar fields, can also be added
in the holographic model. All these features are reviewed in appendix A.

The antipodal embedding is chosen in such a way that chiral symmetry breaking and
confinement occur at the same energy scale. This is not the only possibility. One can
generically place the D8/D8-branes at a separation distance L < mR4, where Ry is the
radius of the circle [34]. In this case the brane and the anti-brane join at a radial position
uy > up. Crucially, as shown in [35], this deformation of the theory does not correspond
to giving a current algebra mass to the quarks — the pseudoscalar Goldstone bosons are
still exactly massless [34]. Rather, the new parameter L (or equivalently w ;) is dual to the
coefficient of a deformation of the theory which, at weak coupling, is a non-local quartic
coupling between the quarks. As such, this type of embedding is suitable to study the
strongly coupled phase of a NJL-like model.

As we discuss in detail in appendix C, the non-locality of the quartic term at weak
coupling depends on the fact that the fermions are stuck at different points in the fifth
dimension. Once the 5D gauge field is integrated out (in the 1-gluon exchange approxima-
tion) the quartic terms arise. It is worth to outline that this perturbative picture does not
hold when the dual holographic description is reliable.

We are going to point out that simply adding to the WSS model with antipodally
embedded D8-branes, one extra D8/D8-brane pair (a “PQ-brane”, where PQ stands for
Peccei-Quinn) with L < wRy corresponds to adding an axion to the QCD-like theory
(see figure 1). In fact, as we have seen, the addition of this D8/D8 pair corresponds to
the addition of an extra flavor of chiral quarks with a quartic Nambu-Jona-Lasinio type
interaction.” As stressed above, these quarks are still massless, thus accounting for the

“It is also possible to take the backreaction into account, see [31-33].

®An axion model with some similarities in a non holographic context can be found for instance in [36].
A five dimensional orbifold model where the QCD axion is identified with the component of a U(1) gauge
field along the extra dimension, has been proposed in [37].
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Figure 1. Brane arrangement for the holographic axion model.

Peccei-Quinn mechanism trivializing the 6 angle, much like a massless up quark would do.
We know that a massless up quark is excluded by experiments. In the case at hand, instead,
the extra flavor condenses due to the quartic coupling, at a scale dictated by the quartic
coupling itself. The latter is a free parameter of the theory, so the condensation scale can
be made very high. In this way the only degree of freedom surviving at low energy is the
(would be) Goldstone boson of the symmetry breaking, the axion a. All the other mesons
have a very large mass of the order of the condensation scale, both the ones with two PQ
valence quarks [34] and the ones with one PQ and one QCD valence quark [38, 39].

The low energy physics of the axion is dictated by symmetry: it couples in the Chiral
Lagrangian just to the topological charge density operator Q ~ TrF' A F, precisely as the
n'. But, crucially, its decay constant f, is not related to fr (not even in the planar limit
we are discussing, where f,; = fr), since it is controlled by the new free parameter L.

In the following subsection we will present the effective action of the model, focusing
on the axion plus pseudoscalar mesons sector. We will then discuss the axion couplings to
matter.

In appendix C we will extend some of the weak coupling considerations of [35] on the
non-local NJL model to the case with two types of flavors. The reliability of the calculation
in the appendix requires that the separations of both flavors, L for the PQ quarks and L’
for the QCD ones, is much smaller than wRy4. This is different from the WSS antipodal
model (where the QCD quarks are at distance mRy4), but allows to have an idea on the
kind of quartic operators which are turned on, and the relative strength of their couplings.
In particular, it is found that, apart from the two quartic terms involving separately the
QCD and PQ quarks, there are quartic terms involving both types of quarks. The strength



of the coupling of the latter interaction is of the same order of the one among the QCD
quarks, so it is supposed to be much smaller than the one of the PQ quarks in the limit
L <« L' we are interested in. So, the dominant term at weak coupling is the one causing
the condensation of the PQ quarks at the scale f,.

2.1 The effective action

To lowest order in derivatives, the 4d low energy effective Lagrangian on the Ny antipodal
WSS D8-branes plus the extra non-antipodal PQ one, reduces to

2 V2N 2 \?
Lo = —ZWTr [8uU8“UT] - % a0t a + cTr [MUJr +h.c] - XW2YM (9 + 7 n + \ffa> ,
(2.2)

where a is the axion field, U = e2(*T*+@N) ™)/ s the U(Ny) matrix for the pseu-
doscalar bosons I1 and 1/, T are SU(N ) generators (with Tr[T%T°] = §%/2), f, (resp. fa)
is the pion (resp. axion) decay constant and we set fr = f,/ since we work in the large
N, limit and with small quark masses. Finally, M is the QCD flavor mass matrix, c is
proportional to the VEV of the chiral condensate, (—2¢ = (g;¢;) that, in the large N,
limit and for small quark masses, does not depend on the flavor index i) and xwywm is the
topological susceptibility of the unflavored theory. To this Lagrangian one can add system-
atically other pieces, such as the Skyrme term and (axial) vector meson contributions, see
appendix A. Notice that the physical axion, 7’ and pions will actually be given by linear
combinations of the fields appearing above, as it can be easily realized by diagonalizing the
related mass matrix. We will discuss this point in the next subsection.

When no axion field is included, the above effective Lagrangian is deduced from the
low energy dynamics of the Ny WSS D8-branes [14, 40, 41]. We will briefly review the
construction in appendix A. In terms of the model parameters, we get

NcA PRIVE
2 <2 KK
= = .
fx KK> XWYM 4(37)0

(2.3)

The connection between the masses of the quark flavors m; entering in the matrix M and
the squared masses of the meson flavors ,u? is given by the GMOR relation:

— 2m () = f2u7 . (2.4)

Analogously, as we will review in appendix B, in the unflavored model without the NNy
Sakai-Sugimoto branes, the low energy effective action for the axion field a arises from the
low energy limit of the non-antipodal PQ-brane.

Crucially, the interaction between the low energy modes on the WSS and PQ D8-
branes is driven by the potential term proportional to xywywm in (2.2). It arises from the
|?, where xF, = dC7. The modified RR
field strength F, reduces to the standard F, = dCy one in the pure Yang-Mills case where,

on-shell ten-dimensional action term f a0z }13'2

as we have recalled above, f(u ) Fy ~ 6. In this case, the related on-shell action term

S dlox’F2’2 provides the O(6?) correction to the gauge theory energy density, which is in



fact proportional to the topological susceptibility xwywm [30]. In presence of D8-brane
sources this term gets modified.

The Ny WSS antipodal D8-branes and the extra PQ non-antipodal one, in fact, carry
CS action terms of the form® [i;oq CrATrF WSS and Jrq C7AFPQ where FWVSS (resp. FTQ)
is the U(Ny) (resp. U(1)) gauge field strength on the WSS (resp. PQ) branes. These terms
imply that the Bianchi identity for F» ~ *dC7 is modified, in such a way that Fp =
dCy + TrAVSS A wwss + APQ A wpq, where the one-forms wwss and wpq are related to the
D8-branes embeddings. Integrating the previous expression along the cigar, recalling that
n/fx~ [ dzTrAVSS and identifying the novel pseudo-Goldstone boson as a/f, ~ J APQ
one gets [ Fy ~ 0 + V2N [ fx 4+ V2a/ fa. The Fy on-shell action term thus gives the
whole potential term proportional to xwym appearing in (2.2). In the standard WSS case
(i.e. with no PQ D8-brane), this is precisely what produces the Witten-Veneziano (WV)
mass term for the 7 field [14]. See appendix A for further details.

When Ny = 0, the above mentioned potential term in (2.2) implies that the axion
mass is given by the WV formula

mg = %XWYM . (25)
a
In the flavored case, with massive flavors, xywvywm is replaced by the full topological suscep-
tibility. We will briefly discuss the mass spectrum in subsection 2.3.

Allin all, by including both the N; antipodal D8/ D8 pairs and the non-antipodal PQ
one, we get precisely the Chiral Lagrangian of [12]. In order to see this explicitly, one can
introduce an auxiliary field Q(z) (that turns out to be the topological charge density) and
rewrite the last term in (2.2) as follows

( F,+>Q+ BRI
fr fa 2Xwym

= {—9—% %Tr <10gU—10gUT> + % <10gV — logVT>] Q+

2
2XWY o, (26)
V2
with V =¢'fa® (this is called N in [12]).
As we will show in appendix B, where details on the non-antipodally embedded flavor
branes and the related meson spectrum are provided, the axion decay constant is given by

N J3b) 1 "
e b= — 2.
Ja 1673 I(b) MggL3’ uy’ 27)

where

2 1 y%
= g\/ 1—08 =, (2.8)
1 )\/1—b3y—(1—b3)y§

/dy \/1 ” Ty : ) (2.9)

5In this discussion we use labels in order to distinguish gauge fields and field strength belonging to the

PQ-brane from those belonging to the WSS-ones. In the rest of the paper we will omit these labels since
there will be no risk of confusion.



and
1

L=J(b)R2u,? (2.10)
is the distance between the PQ asymptotic branches on the S, circle.
Let us complete our analysis with the implications for our model coming from the
phenomenological constraints which read
10°<r= ;‘1 <108 . (2.11)

™

Recalling eq. (2.3) for fr, we get

r

Wl
win

Mgk L = %W%J(b)l(b)_ (2.12)

This condition fixes the value of L which, in turn, fixes u;. Using (2.10) and up = %MI%KR?’

- (ﬂ;@)g , (2.13)

Since I(b) ~ 2.4 for any value of b < 107!, we obtain

this condition becomes

10724 <bh <1072, (2.14)
Throughout this interval numerically .J (b) ~ 0.7, so L ~ 0.7 R/ 2u;1/ % and

NcA 1

2
~ 01834 ——=.
Ja ~ 0153 1673 Mgk L?

(2.15)

We can compare the separation of the PQ-branes with the length of the cigar circle (4.
Recalling 84 = 4R/ ?u, 1/2 /3 we have L/B4 ~ 0.5b"/? and therefore

L
10712< 2<107° . (2.16)
Ba
We know that our model is reliable in a range of the radial coordinate below a critical value
Uerit, which can be identified as that value for which the dilaton e? becomes of order one.
Recalling (2.1), this value is given by

—4/3 - Nf/glgMKK

Ucrit ~ Ry 3 (2.17)

We therefore ask the condition uj < ucit to be valid. Recalling 2R313_2 = \/Mxkk, we can
write this condition in terms of field theory quantities as

N2/3 > p283) (2.18)



2.2 Further properties of the model

In the setting outlined above, the PQ-brane is put at a macroscopic distance in the in-
ternal space from the Ny WSS branes. As a consequence, in the dual theory the two
types of degrees of freedom interact only through the gauge sector. Since we are in the
planar limit, these interactions are quite suppressed. Thus, this model falls in the KSVZ
class [15, 16] (the PQ symmetry is not realized on Standard Model fermions). As such, the
UV dependent part — i.e. that not encoded in the low energy Lagrangian (2.2) — of the
couplings of the axion with the nucleons is exactly zero, as reviewed for instance in [9]. In
the next subsection we will collect the known results for the “universal”, IR part of these
couplings [19].

Moreover, in the WSS model the electromagnetic current is obtained by weakly gauging
a vectorial part of the U(Ny) x U(Ny) chiral symmetry. As such, it pertains to the N
WSS D-branes: the PQ quarks are automatically electrically uncharged.”

Thus, the electromagnetic interactions of the axion just come from the mixing with the
pion and the 7’ in the Chiral Lagrangian, with no UV contribution. Also in this respect,
the model falls in the KSVZ class. Apart from the existence of a strongly coupled version
of the NJL interaction in the UV, the extra information that the holographic picture seems
to provide about the model is the co-existence of (at least) three quark condensates in the
IR. In fact, suspended between each type of D8-branes there are string world-sheets whose
areas provide the magnitude of the fermion bilinear condensates [42]. Hence, if we denote
as ¢,1) respectively the standard and extra quarks we expect to have both the (gq), (1))
condensates and a condensate of the form (gy1)q). It would be interesting to investigate
whether the latter has some influence on the model both at weak and at strong coupling.

A last comment is in order. We have presented the simplest axion model with one
extra flavor and a very symmetric configuration of branes. This is not the only possibility.
For example, one can imagine a setting where one end point of the PQ-brane coincides with
one end point of the QCD-branes, so that one stack of branes contains Ny + 1 elements.
Nevertheless, there is no enhancement of chiral symmetry (before spontaneous chiral sym-
metry breaking). This is because the QCD quarks have a mass term breaking explicitly
chiral symmetry to SU(Ny) x U(1)g x U(1)r, x U(1)g, where the last two terms refer to
the PQ quarks.

In the dual holographic picture, this means that the Ny WSS D8-branes must join the
Ny WSS D8-branes. There is no possibility of joining one WSS D8 with the PQ D8, for
example. Then, the PQ D8 and D8 have no possibility but joining among themselves.

"Strictly speaking, in the holographic model, the electromagnetic U(1) symmetry is global on the QFT
side, since it corresponds to a gauge symmetry in the bulk. It is not clear whether our PQ quarks would
stay uncharged also in a setup where a local U(1) Maxwell symmetry is properly realized in the QFT. We
thank Michele Redi for discussions about this point.

~10 -



2.3 Axion couplings to matter

In order to be self-contained, in this subsection we report on the results found in [19] on
the couplings of the axion to the nucleons.® As we have stressed before, the UV part of
these couplings is exactly zero. The couplings can then be extracted directly from the low
energy action (2.2).

Let us consider the Ny = 2 case, where M = diag(m,, mq) and 27% = 7% are the Pauli
matrices. Neglecting the mixing terms between pions and 7/, the mass eigenstates of the
Lagrangian (2.2), to leading order in 1/f, and absorbing the 6 parameter in the VEV of
ﬂa/fa, turn out to be

7=+ M2
7 =7+ %TT‘I“[TGM_I]\'/ELG ,
i=a-— %Tr[M’l] \/Ji"/ - ’Z’;”Tr[TaMl]\/? : (2.19)
where
X dexwym , (2.20)

T de+ 2xwym T [M 1]

is the full topological susceptibility of the theory.

As it is shown in [19], the model allows to deduce the derivative as well as the non-
derivative couplings of the axion to matter fields to leading order in the holographic limit.
The most relevant ones are the couplings with nucleons. In the WSS model, the latter
correspond to instanton solutions for the gauge field F on the WSS D8-branes [43]. By
carefully taking into account the mixing terms in (2.19), the axion couplings to nucleons
can be derived from those of the pseudoscalar mesons.

The derivative axion-nucleon couplings defined by the effective interaction term

o) _
5£aNN,der = _\/g; CNNVM’VSNa (221)

where N = (p,n) is the nucleon field, are given by

¢, = —INN Xfr gy p 1y 9NN X w1 sy

my 4c my 4c
en = —ITNN XInepy gy poty | 9oNN Xmepy o173y (2.22)
my 4c my 4c

where my is the (large) nucleon mass and g,y nn, g=nn are the CP-even couplings of the
n’ and the pions with the nucleons.

8Notice that the axion decay constant f, in the present paper differs from that in [19]: f, [here] =

V2 fa[there].
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To leading order in the chiral limit 4¢ < 2xwymTr[M *1], which sets the pion mass to
be much smaller than that of the 7/, the above expressions reduce to

1, 1 mg—my
Cp N —— —_ = _—
P 29A 29Amd+mu
1, 1 mg—my
R —— —gA———— 2.23
Cn 594 + 29Amd Ty (2.23)

where we have used the generalized Goldberger-Treiman relations

my . my
gYNN = ——3JA, GaNN = ——JA, (2.24)
fr fr

between the isoscalar and isovector axial couplings and those of the ' and the pion. The
couplings in (2.23) are independent on any UV parameter and precisely coincide with the
ones obtained in any axion model in the KSVZ class [15, 16]. In the WSS model, the
couplings g4 and g4 have been computed in [18]. To leading order in the holographic limit
(and so in the classical limit for the instanton pseudo-moduli) they read

27 2N
G4 = — 2.25
9a =5y (2.25)
Non-derivative axion-nucleon couplings of the form
5£aNN,n0n—der = ENGNNa (226)

can be induced whenever the Peccei-Quinn mechanism is not precise and an effective 0
parameter is left over. In [19] it has been found that

~ W2 2X . V2xfr

= TYyNN T 7. Tr[M '] = Gann icf, Tr[M ')
Cn = —gy' NN {);fﬂ (M~ + grnn \Q);fﬂ (M3, (2.27)

where g,y nny and gy are the linear in § CP-odd couplings of 1’ and pions with nucleons.”

To leading order in the holographic limit, in [19] it has been found that

_ 54 \ Y4 m2 N2y, 2, OMy )
gy’NN = — (125> 7f27r7/2 (1 — )9 = 2fﬂ- (1 € )9,
9 Y4 m2/Nevya ) (M, — M) s
= — 1— — A TTpst g 2 2.9
g =5 (15) eapp- @ =-Ce g, ey

where m2 f2 = 2c(my, + mg), € = (mg — my)/(mg +m,) and

o0
9 m
71:/ dyy” | 14 cos —— | = 1.10,
0 ( \/1+1/y2>
> ( 2) 3/2 m
72:/ dy(l+y “) "/ “sin | ———— | = 1.05.
0 V1i+y—2

9See for example ref. [11] for a review on such terms in the chiral effective field theory.

(2.29)
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In (2.28), 0 My is the quark mass contribution to the nucleon mass in the mass degenerate
case — the so-called pion-nucleon sigma term — [44] and (M, — M,)s. is the strong force
contribution, due to isospin-breaking, to the neutron-proton mass splitting [45].

/2

Recalling that f2 ~ N., we see that gy NN ~ Ncl/2 and grnN ~ Nc_1 . Numerical

estimates and further details on the couplings can be found in [19].

3 The holographic axion at large temperature

Interesting questions concerning axion phenomenology are posed at finite temperature.
In the holographic model, turning on a temperature amounts to modify the dual gravity
solutions in such a way that the Euclidean time coordinate is a circle of length § = 1/T'. In
the WYM case there are two possible solutions which satisfy this requirement. A solution is
given again by eq. (2.1), just with a compact time coordinate. The other possible solution
is given by a background where the dilaton and the RR four form are the same as in (2.1),
while the metric has an event horizon. Explicitly, it reads

ds? — u . dt? + dzide; + dz? ol “ 3/2,,1/2 302
= (7)) (~Fade + do'da; +dad) + = T
- u

with i=1,2,3. Here ur is the radial position of the horizon, related to the temperature by

ur = §W2R3T2 . (3.2)
This black brane solution, whose entropy scales like N2, corresponds to the deconfined
phase of the dual gauge theory and it is energetically preferred at T > T, where T, =
Mxx/(27). The other solution mentioned above is dual to the confined phase at 0 <7 < T.
The holographic model precisely accounts for a first order phase transition at T = T
between the two phases.

Notice that the temperature dependence in the confined phase is typically trivial, i.e.
no dependence is found, basically because of the absence of a horizon. This means that
the main properties of the holographic axion will not be sensible to the temperature as far
as T < T..

Before going on let us just recall that the black brane solution presented above has,
notoriously, two unwelcome features. To begin with, it has been argued that the dual QFT
phase is not in the same universality class of finite temperature Yang-Mills (or QCD for
that matters)'’ — some discrete symmetries do not match [46].1' Moreover, the deconfined
phase dual solution reflects the six-dimensional nature of the holographic model in the
UV; for example, the free energy density scales with the sixth power of the temperature.
Nevertheless, the solution is very simple and allows to get a lot of geometric intuition on

Tnstead, the confined phase dual solution (2.1) is commonly believed to be in the same universality
class of pure YM in the confined phase.
"1n [46] there is an attempt to build the “correct” deconfined phase dual solution.
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N¢ D8 Ny D8

Figure 2. Brane arrangement in the deconfined phase.

chiral symmetry restoration and deconfinement transition, so we are going to use it as a
proof of concept.

The main feature of the black brane solution (3.1) is that it can be obtained by a
double Wick rotation of the solution in (2.1), exchanging the role of S, with the Euclidean
temporal circle (with length 8 ~ 1/T'). As such, the cigar in the geometry (2.1) is replaced
by a semi-infinite cylinder originating at ur, see figure 2.

This makes it clear that the two branches of the Ny WSS antipodal D8-branes fall
separately into the horizon and do not join anymore, realizing chiral symmetry restoration
in the deconfined phase. Instead, the PQ brane is quite mildly affected by the presence of
the horizon as long as ur < uy, that is T < O(10'%) GeV (at that temperature the axion
would melt in the plasma, revealing its composite nature). This means that the embedding
of the PQ brane will have some quite small deformation due to the (distant) horizon [34].

Concerning the axion, a first important issue we want to focus on is the temperature
dependence of its mass in the deconfined phase. The axion mass, in turn, is expected to be
proportional to the topological susceptibility. In the flavored WSS setup we know that the
latter can be different from zero only if all the quarks are massive. However, at present,
there is no clear prescription on how to give finite masses to the flavors in the deconfined
phase of the model. For this reason, we will only consider the unflavored WYM model in
the following.

The topological susceptibility of the WYM model at T > T, is certainly strongly
suppressed in the planar limit. This is reflected by the fact that the solution for the
RR one-form potential Cy, such that |, Sey Ci ~ 0, is now a constant on the black brane
background. Thus, F» = dC; = 0, so that at leading order in IV, there are no effects of the
f angle in this phase.
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In order to recover a non-trivial #-dependence it is necessary to go beyond the leading
order gravity approximation. In Yang-Mills we know that, at least for asymptotically large
temperatures, the #-dependence is captured by a dilute instanton gas. The leading one-
instanton contribution to the topological susceptibility gives xym(T) ~ Tie=8*/9%m(T),
where the gauge coupling is evaluated at the scale T. Asymptotic freedom drives the

11
3 Ne

exponentially suppressed term into x(7) ~ T*(T/A)~ , which for N, = 3 gives a
susceptibility which is power-like suppressed yyn ~ T~ 7.

In the holographic WYM model the one-instanton action corresponds to the action for
a Euclidean DO-brane whose worldline is along the compact direction z4. This brane is
stable only in the deconfined phase, since in the confined case the cigar geometry tends to
shrink the DO-brane to zero size. This nicely reproduces the field theory expectation that
no (dilute) instanton gas can be defined in the confined phase. The Euclidean DO-brane

action on the background (3.1) supported by a constant Cy ~ 0dx4 potential, reads

1 —¢ 7 8> .
SDOZZ— e ,/g44d:c4—l— Cr=—5——1ib, (3.3)

Y

where 9\2(1\/[ = 4mg,lsMyk. We thus expect instanton driven exponential corrections e P04
c.c. to contribute to the topological susceptibility. Remarkably enough string theory allows
to precisely compute these corrections. As we will see in the following, they arise when
higher derivative (quartic) corrections to the gravity action are taken into account.

Before considering the WYM case, as a warm-up we present the calculation of the
topological susceptibility of finite temperature N' = 4 SYM at strong coupling. To our
knowledge, this result was missing in the literature. Then we will move to the WYM
model showing how a non-trivial instanton-driven temperature-dependent topological sus-
ceptibility arises.

To complete our analysis of the temperature dependence of the axion mass in WYM
we will also study how much the axion coupling f, varies with T, referring to appendix B
for details.

3.1 Topological susceptibility of finite temperature N’ =4 SYM

Let us consider the N' = 4 SU(N,) SYM theory in 341 dimensions. This is a superconformal
gauge theory where the complex coupling 7 = (27)~'6 + 47rig§§/[ is a modulus. There are
no anomalies, hence, despite the fact that the theory contains massless (adjoint) fermions,
the #-dependence cannot be rotated away. At zero temperature, however, the topological
susceptibility of the theory is zero. This can be immediately deduced from dimensional
analysis: the theory has no scale, while the susceptibility is dimensionful. The same result
can also be obtained by a direct computation

xsym(T =0) = /d4a:<Q(a3)Q(0)) =0, (3.4)
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where Q(z) ~ TrF' A F is the topological charge density operator, with protected conformal
dimension A = 4 and the Euclidean correlator'? is computed on the ground state at zero
temperature.

At finite temperature, however, the above result can well be modified. The holographic
dual description is provided by a AdSs x S® black brane background

ds® = T (—f(r)de + daidai) + 5 (97 1 2a02) | ) =1 h (3.5)
2 ’ AV rt

with constant dilaton e? = g, and a five-form flux on S°® proportional to the number of
colors N.. The radius of the horizon is related to the temperature by 7, = 7l>T and the
AdSs5 radius is given by I = 4rgsN.o/?.

The holographic picture suggests that the only possible contributions to the topological
susceptibility can come from instanton corrections, i.e. D-instanton corrections on the
gravity side [48]. The reason is that the type IIB axion Cy, which is dual to the field theory
f-angle according to the relation 8§ = 2w (), is constant on the background. To leading order
in derivatives, the (related, truncated) type IIB effective action only contains derivatives of
Ch, so that the on-shell gravity action will not show any #-dependent term. The situation
changes if we include D-instanton corrections. As it was shown in [49] (see also [50]) these
contribute to the first subleading correction (in o) to the type IIB effective action, i.e.
to the so-called R* term. In Einstein frame and using the standard convention on the
background value of the dilaton e = g, the latter can be written as (see e.g. [51] and [52])

0S8 = — /dloa: ga'3f(7,%)g§’/2e_%¢W, (3.6)

16mG1g

where W contains quartic terms in the Riemann tensor,
T=Cy+ie ?, (3.7)

and the non-holomorphic function f(7,7), in the e? — 0 limit, is given by

2¢>O°

fr,7) = 4(83) - W— Y+ Z Gna, (3-8)

where the first term arises at tree level, the second one at one loop and the third one
contains the non-perturbative D-instanton corrections (the summation runs over the
N-instanton contributions). The leading order, one-instanton term reads [50]

G4 = 4dme” Fe2mT 4 e, (3.9)

The action term (3.6) has been computed at tree level in [51], to obtain the first subleading
correction (in inverse powers of the 't Hooft coupling) to the free energy of N' =4 SYM

121t is worth recalling that the topological susceptibility is an equilibrium observable, not to be confused
with the Chern-Simons diffusion rate, also known as Sphaleron decay rate, which is a transport coefficient
related to a Wightman correlator of Q(z). See e.g. [47] for a detailed discussion about this point.
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at finite temperature in the holographic limit. As discussed in [51] there exists a scheme
where the quartic term W can be written in terms of just the Weyl tensor

rsk rsk

1
W = Ok Gy Cr PO+ 5C’L’WLCpqmn(J,’;Spcq (3.10)

With this choice, the term (3.6) does not modify the zero-temperature AdSs x S° solution.
However it does perturb the finite temperature black brane solution [51]. Nevertheless, if
one is interested in just the leading corrections to the field theory free energy, it is enough
to compute the action term (3.6) on the unperturbed black brane solution. The related
on-shell value of the quartic term W has been computed in [51] with the result

180 73

Integrating over S° the on-shell action reduces to

1
55 =— d’x/g50® f (7,7 12
S =g | Cavamatr W, (312)
where o 5
167 10 T
167TG5 == W, Vg5 = l73 . (313)

Crucially, in view of the on-shell value of eq. (3.11), one immediately realizes that the
integral in 65 is perfectly convergent at large r so that one does not need to add any
counterterm to the computation.

Using the holographic relation F' = TSg,_ghen between the field theory free energy
and the on-shell gravity action, we thus get that the correction to the free energy density
corresponding to the 6.5 term reads'3

5f =~ N2 (r AL (3.14)

The leading order #-dependent term arises from the one-instanton contribution to f(7,7)
and reads (see eq. (3.8) and (3.9))

_ 871'2

1 ©or
5FO) = _%ﬂwmm Rt cosf, (3.15)

so that the topological susceptibility is given by

872

a5 £ 15 — 5
xsym(T) = Tb';\e:o = o5 2/ N.The . (3.16)

Notice that, apart from the overall factors, it has the same form as can be obtained for a
dilute instanton gas. A crucial difference w.r.t. to pure non supersymmetric Yang-Mills is
that the gauge coupling does not run to leading order in 1 /Ay in the thermal case (actually
the quartic term makes the dilaton running with r [51]). As a result, the topological
susceptibility increases with T'.

Notice that the overall factor /N, is typical of instanton corrections in the present
setup, see e.g. [53].

3n this section we use different conventions w.r.t. those in [51] for what concerns the holographic
definitions of the couplings. Here we use Aym = g3y Ne = 47mgs N, while in [51] G = 27gs.
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3.2 Topological susceptibility in the deconfined phase of WYM

The WYM black brane solution (3.1) in type ITA string theory can be obtained starting
from the AdS7 x S* black brane solution

2 4 2
ds? = GyydeMdaN = % —f(y)dt* + Z; da? + dxty | + fif)yzdyQ + R%dQ3,  (3.17)
arising as the near horizon limit of the background sourced by N, non-extremal M 5-
branes. Here f(y) =1—1y; 8 /4% and the horizon position 7y is related to the temperature by
3yo = 47 R*T. The IIA background (3.1) is obtained by reducing the above solution on a
two-dimensional torus Sy, x Sy, with circles of radii Ry = My and Rig = gsls [13]. The
solution also supports N units of four-form flux along S*. The flux quantization condition
fixes R/k3, = N2/(277°), where 2x%, = 167 G(ll) (2m)813; gives the 11-dimensional
Newton constant. The 11-dimensional Planck length is related to the type ITA string scale
by by = ga/%ls.
Quite remarkably, quartic corrections to the 11d supergravity action compactified on
a torus are known, see e.g. [54, 55]. With the conventions used in [51, 55] they read

55 = — 2/3/d11 V=G W[+V23/2f(, RN (3.18)

K11

where W can be expressed as in (3.10), so that the extremal AdS7; x S* solution is not
modified by the action term (3.18) [51]. Moreover, (recalling that Ry = My and g2y =
47TgslsMKK);

47’ RyoR Ar?gl Mg v* _ 63 2
) = el L 4/13 4 G = 2T 9sts KK 954;9 KKy—2 = j}zM 7‘7[/9%, (3.19)
k11 k11 KK K17
is related to the volume V7 of the torus by
Vp = 110V, = / dr4dz104 /G2y » (3.20)

with Gy = G44G1010- In the Vo — oo limit the action term (3.18) reduces to that
considered in [51] in the non-compact 11d case.
The modular function appearing in (3.18) is defined as [54]

2 . -
() (e ) (3.21)

where we neglect corrections with instanton number higher than one and we take the

Flp,p) = 2¢(3)p3 +

p2 — oo limit with
p=p1+ipy = (2m) 710 + drmigyyy, (3.22)

being proportional to the action (3.3) of a Euclidean DO0-brane wrapped along the x4
circle [54]. The quartic term W on the background (3.17) has been computed in [51]

and reads
3285 y

= GarF (3.23)
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Using the above expressions we get that the free energy density of the WYM theory at
T > T receives the following contributions from the quartic term (3.18)

5f = (5fGKT + 5fV2 5 (324)
where .
27 T\ 4/3 4
5 fascr = —730 (3) (5)" raryr (3.25)

can be obtained by a simple compactification of the related Mb5-brane result found
in [51] and

T2 T2
)\eﬂ‘<T) = gYMNci = )\YMi . (326)
Mgy Mgy
The novel contribution is
285 [/ 27\* 22 N2 22 V.
dfy, = —& = MggT? 5 7; <C(3) + il + 16m3/2 V22 =87 /9% cos |
42 3 AVM 3 AYM

(3.27)
Hence, from the #-dependent term, we see that, to leading order in the instanton expansion,
the topological susceptibility of the WYM model in the deconfined phase reads

398573/2 <47r>4 VN, g2

T4 % . 3.28
42 Aett (T) (3:28)

xwym(T) = 3
Notice that we get the same overall /N, factor as in the SYM case and that the scaling
with the temperature is given by xywym ~ M T®.

Let us conclude, for completeness, by recalling the status of the analogous computation
in the alternative background, dual to the deconfined phase, presented in [46]. In [56]
it is pointed out that extracting the instanton action for generic instanton size is not
possible at present. So, a complete estimate of the topological susceptibility for that
background is lacking. What can be done is to check that, in this case, the dual instanton
action is peaked at a specific size, where the temperature behavior is of the form Sy, ~

8% (1 — const TC/T>.

9m
3.3 Temperature dependence of the axion mass in WYM

The temperature dependence of the axion mass in the deconfined phase of WYM can be
read from a suitable generalization of eq. (2.5)

2
2
ma(T) = —=xwym(T) . (3.29)
¢ f2(T)
If the temperature is much smaller than f, (the zero-temperature axion coupling) but
higher than the deconfinement temperature 7., the temperature dependence of the axion
coupling is usually neglected. In the WYM model the coupling f,(7") can be deduced by
a careful extension to the deconfined WYM background of the computations reviewed in
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appendix B for deducing f,. The details are provided at the end of that appendix. The
result is that, in the T, < T < f, regime, i.e. for LT, < LT <« 1

1.3 76
fAT) ~ f2 1+F/\2N2 +- 0, (3.30)

Ml
where we have used eq. (2.15) for the zero temperature axion coupling f,. So the decay con-
stant f, (7)) slightly increases with temperature in that regime. Just as for the topological
susceptibility, this behavior differs from what is expected in QCD. At very high tempera-
tures, instead, (more precisely at LT > LT, ~ 0.154 [34]) the axion melts as a result of
the fact that the energetically favoured configuration for the PQ D8-brane corresponds to
two disconnected branches.

Thus, in the LT < 1 regime, the temperature dependence of f, can be neglected and
that of the axion mass in the deconfined phase of the WYM model is driven by that of the
topological susceptibility (3.28). The result is that m2 increases like T2 in that regime.
This behavior is of course very different from the power-like suppression of the axion mass
with temperature which can be extracted, from asymptotic freedom, in Yang-Mills in the
dilute instanton gas approximation. The peculiar higher dimensional UV completion of
the WYM model is at the basis of this expected discrepancy.

4 Conclusions

In this paper we have introduced a new calculable, strongly coupled UV completion of the
low energy QCD axion physics in the planar limit. The completion is provided by the five
dimensional theory (and then by the six dimensional (2,0) theory in the M-theory limit) in
the UV of the holographic WSS model. The construction seems to evade the phenomeno-
logically unsatisfactory constraints on the allowed values of f, commonly encountered in
string theory axion models [10].

Often a higher dimensional embedding of the axion physics provides a natural pro-
tection against higher dimensional operators which could spoil the PQ mechanism (see
e.g. [57-59]). It would be interesting, for the future, to check if this is the case in the
present model.

Since in the construction the Peccei-Quinn symmetry is unrelated to Standard Model
matter, the model falls in the KSVZ class. The couplings of the axion with the nucleons
and the photon have no UV contributions and are entirely determined by the low energy
action and the mixing with the pseudoscalars. The magnitude of the couplings to nucleons
have been estimated in [19].

In the deconfined phase, we have evaluated the topological susceptibility, the temper-
ature dependence of f,; and that of the axion mass. The latter is found to be an increasing
function of the temperature. The setting seems to be less reliable as a QCD model in this
phase, for it exhibits a higher dimensional completion and absence of asymptotic freedom.

As an aside, we have calculated for the first time the topological susceptibility of N = 4
SYM at strong coupling.

—90 —



A particularly interesting task for the future would be the study of axionic strings and
domain walls, since the holographic model geometrizes these topological objects [32]. Tt
would be also interesting to investigate the consequences of the presence of more than one
extra flavor in the axion sector.
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A The WSS model with antipodal D8-branes

Let us consider adding Ny probe D8-branes to the WYM background (2.1). The induced
metric on their worldvolume can be conveniently written in terms of the coordinates [14]

2
= ud Fuei®, o= —ﬂx4, (A.1)

Ba

and, in turn, parameterizing the (@, ¢) plane by coordinates (y, 2)
y=1ucosyp, z=usiny. (A.2)

In this way the cigar metric reads

3/2
ds(y) = % (Ij) [(1 - q(@)2%) d=% + (1 - q(@)y®) dy® — 22y q(@)d=dy] ., (A.3)

with u = u(z,y) and gq(a) = % (1 — ). The antipodal D8 embedding is simply given

by y = 0. The stability of the configuration with respect to small deformations of the
embedding has been demostrated in [14]. Note that z € (—o00,00) and that the two
asymptotic values correspond to the two D8 — D8 branches at antipodal points on the x4
circle. The D8-brane embedding, therefore, nicely realizes the chiral symmetry breaking
U(N¢) x U(Nf) = U(Ny) of the dual field theory.

The D8-branes action, at leading order in the low energy expansion reads

1 N,
Swss = —K / d*xdz <2h(z) TrF,, FH +k(z)”[&“]-'uz]:"z> + 543 / ws(A),  (A.4)

where (in units ug = 1)

N

K= o168 KK hz)=(1+22)713 k(z) = (1422, (A.5)

and

ws(A) = Tr (A AF?— %AS AF — 110,45> . dws(A) = TrF3. (A.6)
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Here A is the U(Ny) gauge field on the D8-branes. As we have recalled in section 2, the
fluctuations of this gauge field on the background are holographically related to mesonic
fields in the dual field theory. Instanton solutions correspond instead to baryons.

Let us restrict for a moment to the Abelian case Ny = 1, and insert into (A.4) the
following expansions for the gauge field

Zw (@")dn(2),
(e.)

Ap(at,2) = > B (2" ) (2) . (A.7)

n=1

Choosing the functions ¢, (2), ¥, (2) to form complete, suitably normalized sets

— h(2) 0. (k(2)0:4n(2)) = Antha(2) "J/dz h(2)tn(2)¥m(2) = Omn , (A.8)

and inserting (A.7) in (A.4) gives the following four dimensional action [14]

——H/d4

Under parity transformation P : (z#,2) — (—a#, —2) we have (A,,,A;) = (=Ag,,—A.),

so from (A.7) we see that Bfln) are four-dimensional vectors (resp. axial vectors) when ),

2

n>1

is even (resp. odd) while ¢(™ are four-dimensional scalars (resp. pseudoscalars) when ¢,
is odd (resp. even). The B,S”) modes correspond to massive vectors (resp. axial vectors),
for odd (resp. even) n, with masses m2 = A\, MZy. For example, B}(}) is identified with
the p meson and B,(f) with the a; meson. The scalar modes ¢(™ for n > 1 get eaten by
the B;(Ln), and the massless field (%) is associated to the mode 1 o< (1 + 22)~! which is an
even function: it is thus a pseudoscalar field, the Ny = 1 version of the Goldstone bosons
arising from the spontaneous breaking of chiral symmetry. Other massive scalar mesons
are given by fluctuations of the D8-brane embedding.

Thus, the effective action (A.4) includes into a unified picture both the low lying
mesonic modes and the whole tower of massive mesons. Their properties (masses, decay
rates, couplings) are given in terms of the few parameters of the model, i.e. N, Ny, Mk
and A. Clearly, as in QCD, the low energy physics is dominated by the pions, since all the
other modes (glueballs, Kaluza-Klein modes and axial or vector mesons) have masses of
order MKK-

A.1 Chiral Lagrangian

Suitably generalizing the discussion above to the Ny > 1 case, the low energy effective
action on the D8-branes reduces to [14]

S = n/dA‘x Tr (a (U0,U)* +b([U'0,U, U0, U))?) , (A.10)
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where a and b are constants given by

1 1
a=_., b=_ 51525, (A.11)
and'*
A, (2t 2) = iU 9, Uy (A.12)
with 14 (2) = 2(1 £ ¢o(2)) and
U(z") =Pexp <z/ dz A, (z", z)> = exp (?W“(m“)T“) , (A.13)

being the pseudoscalar meson matrix. Here T are U(Ny) generators normalized to
Te(TT?) = 150

The action (A.10) precisely coincides with the chiral Lagrangian including the Skyrme
term. The pion decay constant f, and the Skyrme coupling e are given by

K 9 1
=24/, ~—. A14
f \/; ™95k (A-14)

A.2 Theta and mass terms

As we have recalled in section 2, turning on a topological f-term in the unflavored gauge
theory amounts to turning on a non trivial F5, = dC7 ~ xdC7 RR two form with non-
zero flux along the cigar in the WYM background (2.1). The backreaction of Fy can be
neglected if /N, <« 1. If we further add to the background N; D8-brane probes, the
equations of motion and the Bianchi identity for the RR form get modified, due to the
Chern-Simons coupling [ C7 A TrF on the D8-brane worldvolume. This is accounted for
by the bulk+branes action term

Sc, = 417T(27Tl8)6/dC’7 A *xdC7 + 217T/C7 NTEF A wy, (A.15)
where we have introduced the one-form w, = 6(y)dy, in order to extend the D8 integral
to the whole spacetime and we have used the same normalization on the RR fields as
n [14]. The equation of motion for C7 can be rewritten as the modified Bianchi identity
for Fy = (2nl,)8dCy

dFy = TrF A d(y)dy . (A.16)

This can be formally solved by

. Ni ~
Fy=dCy + \/%A A S(y)dy (A.17)

!Here we have used the gauge A, = 0. We have also ignored the (massive) vector mesons in the expansion
of A, = iUT'0, Uy + > B,(L")(mu)d}n(z). The vector mesons can be consistently added to the Chiral
Lagrangian [14].
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where A is the Abelian component of the U(Ny) gauge field, i.e. the hatted field in the

decomposition
1

2N,

A=A

+ AT (A.18)

where T are now the SU(NNf) generators.
The action S¢. is actually equivalent to [40, 41]

I S A TN AT
St =~ Gr Ly / 42| P2 (A.19)

Considering a zero mode for ;1\2 such that

/
/ QzA, = 2]?7 , (A.20)

using the integrated Bianchi identity for Fy (on the cigar directions) and the equation of
motion d * Fy = 0, the on-shell value of the action above reduces to

2
/2N

where xwywm is the topological susceptibility of the unflavored model (2.3). From this
action one can also deduce the large N, estimate of the 1’ mass predicted by the Witten-

Veneziano formula oN
m;72 = m%vv = ?;XWYM . (A22)

The 6-dependence in (A.21) can actually be rotated away by a chiral rotation, which
corresponds to a gauge transformation of the Abelian field A [14]

1 ~ 1 ~ 0
—— A, — — | A, — —. A.23
1/2Nf/ : ,/2Nf/ Ny (4.23)
This is not unexpected since the quarks we are adding by means of the WSS D8-branes
are massless.

Actually, in the WSS model it is possible to turn on a mass term for the quarks of the
same form Tr[MU' + h.c.] as in the chiral Lagrangian setup. It reads

Sass = C/d4x TP [M exp <—z/ Azdz> + h.c} , (A.24)

where c is a constant and M is the flavor mass matrix. This term has actually a very precise
meaning in string theory [42, 60]: it is the deformation due to open string worldsheet
instantons stretching between the D8-branes. The deformation has the simple form given
above only for quark masses parametrically much smaller than Mkyk. Moreover it is trivially
zero in the deconfined phase where chiral symmetry is restored. It is easy to realize that
adding the action above to the action (A.10) gives masses to the pions according to the
GMOR relation (2.4) [40, 41].
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Now, after the shift (A.23), Spass becomes

P2 0
Smass = c/d4x TrP [Me Niexp (—z/ Azdz> + h.c.] , (A.25)
which amounts to redefining
M —s MeP/Nr (A.26)

The 6-dependence is thus not erased anymore. Moreover, as expected in QCD, the physical
0 parameter is given by the combination

0 =0+ argdet M . (A.27)

Combining together the WSS effective action (A.10), the action (A.21) and the mass
term (A.25) and expanding to lowest order in derivatives, one gets precisely the effective
Lagrangian (2.2) without the axion term (a = 0).

As we have discussed in section 2, the axion field is introduced in the model by means
of an extra D8-brane (which we have called Peccei-Quinn, PQ, D8-brane) which is not
antipodally embedded. The following section is thus devoted to a review of non-antipodally
embedded D8-branes in the model.

B Non-antipodally embedded D8-branes

Let us consider embedding in the WYM background (2.1) a PQ D8-brane with two asymp-
totic branches placed at non-antipodal points on the x4 circle. Their distance on the circle
is thus L < wRy, i.e. LMkkg < w. The part of the DBI action which depends on the
metric reads

3
Spg = —7'8V3+1V21/d$4u4\/f(u) + (f) flzz) ; (B.1)

where
1 ,  du

Tp = ————, U =—-—,
P empitt day

and V3,1 and Vj are, respectively, the field theory spacetime volume and the S* volume.

(B.2)

Since the Lagrangian does not explicitly depend on x4 we have a first integral:

. = u’\/f(uy) (B.3)

/2

1+ ( ) fg(u)
Here u is the point where u’ vanishes, as illustrated in figure 1. The distance L is given by

*d & d

L—/da;4—2/ 1,‘—2/ —
uy U u w\3/2 u flu
’ T ) (R) \/(w) fiy =1
1/2
— R3/2 _1/2 /1 b3/ dy Yy

(1—03y) /1 — b3y — (1 —b3)y8/3

(B.4)
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In the last line we substituted y = u3 /u? and defined b = ug/u,. Calling

\/1—b3/ dy Y

(1—b3y) /1 — b3y — (1 — b3)y8/3’

1/2

(B.5)

we can write

3,3
L=Jb)R2u,? . (B.6)

Let us now show that the Abelian gauge theory on the PQ-brane gives a pseudoscalar
pseudo-Nambu-Goldstone boson (which we will identify with the axion field a) analogous
to the mode ¢(© in the WSS Ny =1 antipodal case, see eq. (A.9). On top of this there will
also be a tower of massive vector mesons. As we will show, the mass of the latter scales as
m? ~ L2 and therefore the vector mesons decouple at low energy [34].

Expanding the D8-brane DBI action we obtain the term

Srr =~ (2ma)’ / d*ze=?\/det grung™ g™ Farn Frs - (B.7)

Integrating over S* with the assumption that the field strength Fj;x does not depend on
the S* coordinate we get

Srr = —C’/d4xdu'y_1/2 (R3u_1/2]:u,,.7:“” + 2’7U5/27]“V]:uu]:1/u) ) (B.8)

where we defined

’7‘8V4R3/2

C = 20 (2ma)?, (B.9)
1) = ()~ flu) () (5.10)

It is convenient to work with the coordinate z, defined by
u = (u3+uJ22)1/3 . (B.11)

This coordinate takes values along the whole real axis, it is positive for x4 > L/2 and
negative for x4 < L/2. The action then reads

Cuy 4 R? _1/2’2‘ (L 9 1/2 U9/2 /u/
Following [14] we expand the components of the gauge field as
ZB (2")hn(2), (B.13a)
Zs@ (@")pn(2) . (B.13b)
Accordingly,
Fu(ah, 2 Z a;“ VU (2), (B.14a)
z) = Z 0™ (a")pn(2) = > B (2#) Dt () - (B.14b)
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B.1 PQ vector mesons

Let us first consider only the vector mesons. We have

C R3y~1/2
SYF = — u‘] E /d4 dz ’Y ‘ |F(n (n)mewn +
9 1/2 u9/2 (n) g(m)
+ BY B"™HEY, 4,0 . B.1
27 uilz] =Y Zwm) (B.15)

In order to obtain the kinetic term of the massive vector action we ask 1), to be normalized

such that
4CUJR3

3

Let us take the mass term

3C 71/2 9/2
_2> E R B pm)p _
2UJ /dz |Z’ U az'wnazwm 1

1
Z / dz=0, < 9/232¢n> Y BB (B.17)
2UJ

In order to obtain the mass term for the tower of mesons we ask

+00
/ dz|2ly 2um Pt = G - (B.16)
—00

9 71/2u5/2 1/ 0
— 9, w200, | = m2 R34, B.18
so that
?’C/d 72 W20 Dt = ~m25 (B.19)
2UJ ’ ’ z¥nvYz¥m — 2 mmn - .

By dimensional analysis, in the limit u; > ug we have

uj 1
M~ ™~ T3 (B.20)
B.2 Scalar sector: the holographic axion
From the second term in (B.12),
9/2
Sscal _£ d4mdz’71/2u 7/ " Fo.Fo. (B.Ql)
2uy || g ’
we read the kinetic term for the tower of scalar mesons:
scal Z/d4xdz*y 8 (,0 ¢m¢n . (B22)

In order to canonically normalize the fields <p(m) we ask that ¢,, satisfy the orthonormality
condition

?’C/d e s - (B.23)
u ]
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Comparing (B.19) and (B.23), we see that it is possible to choose ¢, = m,,19,1,. There
exists a zero mode,

30 [t —-1/2
o) = Colsby 22, o= (39 [ Tasapnee) L e
J J—oc0o
which is orthogonal to the other modes, since
u¥/2

/ dzyWW(ﬁmgﬁo ~ / dz0.4 =0 . (B.25)

The field strength . is then decomposed as
Fuz = 0,00 + Z (mglaugo(”) - B,(f‘)) Uy (B.26)

n>1

We can choose a gauge in which the second term vanishes, hence we are left with the action
of a spinless massless field,

Sseal — —% / d*28,0 V") (B.27)

Under parity transformation P : (z#,z) — (—zt, —z) we have A, — —A,, so, since ¢o(z)
is an even function, from (B.13b) we see that »(®) must be a pseudoscalar field. We are
thus led to identify go(o) with the axion field a. As we will see, the axion field gets a
Witten-Veneziano mass precisely as the 7' in the previous section.

To summarize, the gauge field on the PQ D8-brane gives rise to the axion field and to

a tower of PQ vector mesons,
4. |1 1z 1 w Lo ) g
Spr =~ [ d'z | ;0uad"a+ > G Ew P+ omi BB . (B.28)
n>1

B.2.1 The axion decay constant f,

In order to find the axion decay constant f,, namely the analogous of f; for the axion

) . (B.29)

Expanding these exponentials up to the linear term and using the expression (B.13b) for
A, and (B.24) for the zero mode we have

chiral Lagrangian, we define the holonomy for the axion field as

oo (0)
V(xt) = Pexp (Z/ dz Az(x“,z)> = exp (\/iigofo

+o0 +o0
V~1 —I—i/ dzA, =1+ iCop® / dz|z|y =202 (B.30)
and therefore .
2= 3¢ (/ dzz*y_l/Qu_gm) . (B.31)
uy \Jo
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Factorizing the dimensionful quantities by the change of variable y = u% Ju?, we obtain

6C
2= @uiﬂ, (B.32)
where )
Yy’ (B.33)

/1
I(b)= [ dy .
0 \/17b3y7(17b3)y§

The function I(b) is of order one for any value of b < 1. Finally, in terms of field theory
quantities the axion decay constant reads

s NAJO) 1

= . B.34
Ja' = 163 I(b) MgyL3 (B.34)
Notice that for b <« 1
=0 ppgalNer L om?) (B.35)
a ™% 1673 Mgy L3 ‘ '

As we have seen in section 2, phenomenological constraints actually require b to be tiny.
Hence, the leading order term in (B.35) can be taken as the defining relation between
the zero temperature axion coupling and the parameters of the WSS model. Using the
Witten-Veneziano formula for the axion mass we can verify that in the regime in which we
work the vector bosons masses are much bigger than the axion one:

ma  xwymL® Mg LA 74710/3)‘72

m2 12 N. N,

<1, (B.36)

where we have used (2.12).

B.2.2 Axion mass term and mixing with the 7’

The combined presence of a #-term and a PQ DS8-brane affects the equation of motion
and the Bianchi identity for F precisely as in the case of the antipodal WSS branes.
Actually, in [61] it has been shown that the action (A.21) is the same for the non-antipodal
configuration, with the obvious substitutions ' — a, fr — fa

2
Sg,z) = —XW% /d4x <9+ fa) . (B.37)

From this formula it follows that, in the pure Yang-Mills case, the axion mass is given by
the WV formula (2.5).

By combining together the contribution from the Ny WSS D8-branes and that of the
PQ one, we get a total action term

2
V2N
St = —LVQYM /d% <9+ i 7+ fa) : (B.38)

The total action made up summing this term, the axion kinetic term (B.27), the effective
WSS action (A.10) without the Skyrme term and the flavor mass term (A.25) exactly
reproduces the axion-dressed chiral Lagrangian (2.2).
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B.3 Axion Lagrangian in the deconfined phase

We now consider the Dirac-Born-Infeld action on the non-antipodal axionic PQ D8-brane
at finite temperature, in the regime where it keep on being connected whereas the QCD
quark branes are disjoint, as depicted in figure 2. Such action reads

Sps = —Tg /dgx e ?\/det gy + 2mad Fyy (B.39)
The induced metric on the D8-brane can be derived by the ten-dimensional one (3.1),
and reads
3 3
-2 u\2 3 2 i 1 R\ 1 2 RNz 2,42
ds? = <E) [—f(u)dt + d;dx’ + <u,2+ (u> f(u)) du ] + (5) wdly, (B.40)
where u/ = 9%

T dxg
At the zeroth order we have the usual action giving the first integral (which yet differs
from the one at zero temperature, because of the blackening factor moving from dz4 to dt)

U4 f u
fluy) AN (B.41)

uy

The distance L is now given by
L= Jp(b)R¥?u;"?, (B.42)

where b = up/uy and
.9 — 1 1/2
JT(b):3\/1b3/ dy——— Y . .
0 \/1—b3y\/1—b3y—(1—b3)y8/3

At zero temperature, eqgs. (B.4)—-(B.6), by fixing L we also fix u;. When we turn on the

(B.43)

temperature T, u; becomes a non-trivial function of 7. Indeed, recalling Qur = 1672 R3T?
we have

LT = %\/Z Jr(B). (B.44)

In figure 3 we represent LT = LT(b). Notice that the solution we are focusing on only
holds for LT < LT, ~ 0.154. At T = T, there is a first order phase transition towards a
configuration where the axion is dissolved since the Peccei-Quinn D8-brane splits into two
disconnected branches [34]. The occurrence of this transition explains the behavior of LT (b)
shown in figure 3. This function increases with b up to a maximum value LT, (by,) > LTy
above which the connected D8 brane solution does not exist anymore. For b > by, the
function decreases with b and this corresponds to an unstable branch.

Going back to the action (B.39), at the quadratic order in o/ we have

Srr= _% (2ra)? / Bz e=?\/det g GMEGVS FrrnFrs

= —C’/d4x du u3 % GMEGNS FyinFrs (B.45)
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Figure 3. LT as a function of b.

where
F(w) = f(u) = =% f(uy), (B.46)

and the constant C' is the same as defined in eq. (B.9).
We then use equation (B.41) to express

3
G = o251 = (%)2 A(u) . (B.47)

Using this and the expression of the metric (B.40), we are able to expand the action (B.45)
as follows:

~ oo 3 71 ~
Srr =20 [ | du{w[_;ﬁﬂﬁ;f(u)mj
w Y(u)f

Y (u)

O | = FuuFu + J(0) FiuFi }} : (B.48)

f(u)

—+u

Notice that the temperature breaks Lorentz invariance on the four-dimensional boundary,
as known.

We now define a suitable base of functions, such that

Fiu =3 (00" (1, 7) I () — A (1, 2)y0n(w)) | (B.49a)
Fiu = Z (9102 2) ) = AL (1. )28 (w)) (B.49D)
Fij = g: (atAg.”)(t, 7) — 0,A (¢, 50’)) an(u), (B.49¢)
Fij = Zn: (04 (1,8 = ;4 (1,2)) Bulw) - (B.49d)
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In order to recover a four-dimensional action for a massive vector field, such that it satisfies

(n) _ _

the equation of motion 974, m,%Agn), we have to require

ACR™3 /:du (g)g \/7“% Ul = Oy » (B.50a)
(B)'57 (@un) @um) = e (B.500)

The scalar sector in (B.49a), (B.49b) displays a zero-mode ¢, that should be normal
to the higher modes, which in turn can be absorbed in redefinition of the vector fields by a
gauge transformation on the boundary, as it is usual fashion in the Sakai-Sugimoto model.
We then require the diagonal terms in the zero-mode scalar field and the gauge fields to
vanish, that is

5

40/ du w3 f2 4% o Oyom =0, (B.51a)

40/ du u /7] ¢o0uBn =0 . (B.51b)
ug

These relations are satisfied by

o= oo
)

w\»—‘

“ifrqy73, (B.52)
(with Cy a so far undetermined constant) if we take
Oty = f Oubn . (B.53)

With this last identity the equation (B.50b) can be rewritten into a differential equation
for the modes a,,’s by themselves:

Ba [(%)3%1& auan} Fmla, =0, (B.54)

Now we have to normalize the zero-mode ¢ in order to have a canonically normalized
kinetic term %(Gﬂp(o))Q in the four-dimensional Lagrangian. This is given by

40/ dug

which thus fixes the constant Co.
Using all these orthonormality relations, we can write down the part of the ac-

N\H
-2

-1 79 o 51 __1
72 $2 = CC2 duu 2f2572=1, (B.55)
uy

tion (B.48) that concerns the scalar mode ¢(©), that is the axion,

/d4w B@tcp(o)@tcp(o) — <1 — U Cé’g/ duu™2 f% 5); ,Lp( )81-(,0(0)] , (B.56)
uy

where we have used the explicit expression of the thermal form-factor f in (3.1) in order
to highlight the dependence on the temperature through up, which deforms the dispersion
relation of the axion from the relativistic one, i.e.:

= <1 — U Cég/ duu=z f% %> k. (B.57)

J
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For b < 1, using (B.44), we obtain

w,zw<1 16F(())F(( §) )k

~ [1—16383.2 L°T® + -] k?. (B.58)

Analogously, we can wonder what is the effect of the temperature on the axion decay
constant f,. To this purpose, we apply the same reasoning of equations (B.29) and (B.30)
to the current finite-temperature model, and we obtain

m\»—t
w\»—t
H

V~l +2¢/ du gy =1+ i® 00/ w3 fz 5 1+ —o® (B.59)
ug uy CCO

where in the last step we have used the normality relation (B.55). Then, having in mind
the definition (B.29), we straightforwardly read the temperature-dependent decay constant

=

00 —1
F2(T) = 2C%C2 = 2C (/ du w225 ) . (B.60)

J
In terms of the coordinate z, defined by u? = u?} + w22, this result reads
3C Loz 1\
A1) = d,z zu"2f2472 . (B.61)
ugy 0

This result agrees with the one that was found in [62] by another argument.
In terms of field theory quantities (and L) the axion decay constant at finite temper-
ature reads .
u? N JRED) 1
[T(INJ) 1673 IT(i)) MKKL3 ’

1
y~24/1— b3y
/dy . (B.63)
\/1—b3y y3 (1—b%)

A plot of f2(T) as a function of LT is given in figure 4. For LT < 1 we get

JAT) = 6C (B:62)

where

Fa(T) » 3 [1 414247 L°T® + - ] (B.64)

where the zero temperature axion coupling f, is given in (B.35). The leading order term
coincides with the one we found at zero temperature in the limit u; > ug, see eq. (B.35).

C Non-local Nambu-Jona Lasinio model

From the field theory point of view, the Witten-Sakai-Sugimoto model is a five-dimensional
gauge theory with two Weyl fermions of opposite chiralities placed at two antipodal points
along the fifth, compactified z4-dimension. In this sense, the fermions are co-dimension
one defects. In the main text we extended the model in order to include the Peccei-Quinn
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Figure 4. f2(T) as a function of LT.

axion. This has been achieved by the introduction of an additional pair of D8-branes,
which amounts to adding two additional co-dimension one defects in the five-dimensional
field theory. In order to disentangle the chiral symmetry breaking mechanism (whose
associated Nambu-Goldstone boson we identified with the axion) from confinement, the
additional Weyl fermions had to be taken in a non-antipodal configuration and in the
regime L < wRy, where L is the distance between fermions along the x4 direction and Ry
is the compactification radius.

In the limit in which R4 — oo the gauge theory with two non-antipodal fermions
reduces to the so-called non-local Nambu-Jona Lasinio model studied in [35]. It is not
straightforward to extrapolate the considerations in [35] to the WSS confining case. If the
separation L of the D8/D8-branes is small compared to the length of the semi-circle, then
the analysis is the same as in [35] to a very good accuracy. In [63] there is a first field
theory analysis of the effects of the compact circle, but still in the L <« wR4 case. The
idea is that now the theory has a four dimensional phase in the far IR, where the non-local
model should reduce to the local one. As such, chiral symmetry breaking should be present
only above a certain value of the coupling. A concrete realization of this idea is far from
established.

In this appendix we shall follow the analysis in [35] in order to extract information
about the relative strengths of the interactions among the fermions. We shall consider the
gauge theory in the linear approximation, hence treating the gauge field as an Abelian field
and integrating it out. Since the gauge field is massless, its integration yields a Lagrangian
with non-local quartic fermion interactions. We shall first consider the case with only one
defect, then with two defects and finally with four defects, as in the WSS model generalized
by the inclusion of the axion. The analysis is meant to be valid only in the case in which
the distance between two fermions is much smaller than the radius of compactification of
the fifth direction. This forces us to take in a non-antipodal configuration also the QCD
quarks. Moreover, due to the non-locality of the model, we have to limit ourselves to the
massless fermions case, as will be explained at the end of this appendix.
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One defect case. Let us consider the gauge theory with a set of Ny left Weyl fermions
qi placed at x4 = 0, where i is a flavor index. The system is invariant under global U(Ny)r,
transformations which act as

a5, — (UL)id], Up € UWNy)L - (C.1)

In the following we will omit the flavor indices. Capital latin letters will label the whole set
of coordinates whereas greek letters will label all the coordinates except x4. The classical

action is

1
5

Here we use the standard notation o* = (1,0%), * = (1,—0'),where o' are the Pauli
matrices. The gauge part of the Lagrangian is the Maxwell Lagrangian with a matter
current

M (@, 24) = 62 6(24)q} ()" qr. (2) (C.3)

which transforms in the adjoint of the gauge group and it is a singlet under the global
group U(Ny)r. Let us integrate out the gauge field. In the Feynman gauge the propagator
for the Abelian gauge field reads

2

X = i
Amn(p) = GG (P)nmn = _%UMN : (C4)
In coordinate space the propagator G(x) reads
1 1
Gz, 1) = . (5)

872 [yt + a2]3/2
We can use the propagator in order to express the gauge field in an integral form:
Ay (w,x4) = =03 / PyG(x — y, w4 — ya)muned(ya)al ()" 1 () - (C.6)

Inserting this result in (C.2) the interaction term becomes'®

St = g8 [ d'ad'yGla ~ 9,0) o} (@)ouas )] [a] 0o au(o)] - (C38)

The terms in square bracket in (C.8) are singlet under the gauge group and transform in
the adjoint of the global flavor group. The interaction term Sjy gives a correction to the
free field propagator.

15Here we use the Fierz identity

("/’IL‘}‘%/’?L) (ng‘};ﬂ/ML) = (¢IL5H¢4L) (w;,L‘_TuwZL) . (C-7)
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Two defects. Let us now consider the case in which we have Ny left Weyl fermions
placed at x4 = L/2 and Ny right Weyl fermions at x4 = —L/2. In addition to the global
symmetry U(Ny)r there is a symmetry under the global transformations U(Ny)g which
act as

0k — (Ur)ja% , Ur € U(Nj)R - (C.9)

The classical action is then

1
S = /d%[— 4—F]%4N + 9 (x4 —L/2)q}6“ (10 + Au) qr +

9
+8(2za + L/2)gho" (10, + A,) qR] . (C.10)
In this case the matter current is
M (@, wa) = 6,10(es — L/2)q}(2)5"qu () + 8,/ 8(xa + L/2)ap(x)o"qr(x),  (C.11)
hence

Ay(z,24) = —g3 / dPyG(z — y, 24 — Ya)um (5(y4 — L/2)q} (y)5"qr(y) +

+0(y1 + L/2)ap(4)0" ar(v)) - (C.12)

Inserting this expression in the action (C.10) we are left with three interaction terms: two
of them give corrections to the propagator of the left and right fermions, akin to the term
derived in the previous subsection; the other one describes the interaction between left and
right fermions and reads'®

Sint = —4g3 / d*zd'yG(z — y, L) q}(w)-qR(y)} [qE(y) qrn(z)] . (C.14)

Each term in square bracket is a singlet under the gauge group and transforms in the
adjoint under U(Ny)r, x U(Ny)g.

Four defects. Let us consider the case in which we have two “quark defects” separated
by a distance L’ as in the previous subsection and two “axion defects” separated by a
distance L < L'. In particular we will consider a single left Weyl fermion ¢ (x) placed
at x4 = —L/2 and a single right Weyl fermion ¢ r(z) placed at 4 = L/2. In addition to
the U(N¢)r, x U(Ny)g there is also a symmetry under the U(1)7, x U(1)g transformations
which act on the axion quarks. The action reads

1
5
+6 (x4 + L/2) 15" (10, + Au) br, + 0(za + L' /2)gho" (10, + AL) qr

+6 (01~ L/2) who (10, + A) vl (C.15)

18Tn order to obtain this term we use the Fierz identity

(wlpo"var) (Whnouar) =2 (Wvar) (v]pver) - (C.13)
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The matter current in this case is

Mz, 24) = M 8(xs — L'/2)q] (2)5"qr () + 6316 (x4 + L' /2)gh(2)o"qr(z) +
+0M 8 (g + L)2)0} (2)5" b1 () + 8Y (s — L/2)0k ()0 pr(z),

hence the gauge field can be written as

Ap(z,24) = —g§/d5yG(w — Y, T4 — Ya) DM (5(y4 — L'/2)q} (y)5"qr(y) +

+0(ya + L/2)0L ()oY () + 0 (ys + L' /2)a (v) o ar(y) +
+3(y1 — L/2)0h(n)o br(y)) - (C.16)

Plugging this expression in (C.15) we obtain four kinds of terms:

e quartic terms which give corrections to the fermion propagators;

e quartic interactions involving both left and right quarks:

St = ~i9} [ dad'yGla ~v.L) [ (o) an)] [h) - ax@)] 5 (©a7)
e quartic interactions involving both left and right axion quarks:

St = g} [ dlad'yGlae -~ .1) [5]@) - ve)] [ohw) ve@)] ¢ (Cas)

+ quartic interactions which involve two quarks and two axion quarks:
st =t [ ettt .2 1] [io) vat)]
< [0k @] + [vL) - @] [gh@) - vw)] } T
293 / dlad'yGe —y, L' /2 + L/z>{ a(@)7 e (y)] %

< [Vl @)] + [ah@) o vrw)] [vh@)owr@)] } (C.19)

We expect the relative strengths between the different interactions to depend on the dis-
tance between the fields along the fifth direction. Hence, in order to estimate them let us
consider

1
ﬁ .
Recalling that 4779?) = Mkxk g%,M and the result (B.34) for the axion decay constant, we have

Gx—y,L)~ (C.20)

2 2
S9T 975 ~ MKK 2
int 3 2 Ja °
L N2

(C.21)
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Analogously,

2 2

9 oI5 KK g2

int 13 2 Jq7
L N2

(C.22)

where 3( )
1 J°(b A
2
= N, . 2
fq 1673 I1(b) MggL'3 (C.23)

In the regime L < L/,

2 2
qaaT o 95 Mgy 40
int 3 2 Jq °
3" N

(C.24)

Thus, we expect the interaction involving two quarks and two axion quarks to be as relevant
as the interactions between the quarks.

Finally, let us stress the fact that in this appendix we have been discussing the non-
local NJL model assuming the quarks to be massless. Due to the non-locality of the model,
we cannot add a Dirac mass term to the Lagrangian. The best we can do is to consider a
Wilson line such as

Sinass = —m/d4xd4quR(:v)77 exp (z/

—L)2

L2
d$4A4> ar(y) - (C.25)

Unfortunately, such a term makes the gauge field equations non-linear, thus preventing us
from proceeding with the analysis.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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