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Abstract: We perform lattice studies of the gauge theory with Sp(4) gauge group and

two flavours of (Dirac) fundamental matter. The global SU(4) symmetry is spontaneously

broken by the fermion condensate. The dynamical Wilson fermions in the lattice action

introduce a mass that breaks the global symmetry also explicitly. The resulting pseudo-

Nambu-Goldstone bosons describe the SU(4)/Sp(4) coset, and are relevant, in the context

of physics beyond the Standard Model, for composite Higgs models. We discuss scale set-

ting, continuum extrapolation and finite volume effects in the lattice theory. We study

mesonic composite states, which span representations of the unbroken Sp(4) global sym-

metry, and we measure masses and decay constants of the (flavoured) spin-0 and spin-1

states accessible to the numerical treatment, as a function of the fermion mass. With help

from the effective field theory treatment of such mesons, we perform a first extrapolation
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towards the massless limit. We assess our results by critically comparing to the literature

on other models and to the quenched results, and we conclude by outlining future avenues

for further exploration. The results of our spectroscopic analysis provide new input data

for future phenomenological studies in the contexts of composite Higgs models, and of dark

matter models with a strongly coupled dynamical origin.

Keywords: Lattice Quantum Field Theory, Technicolor and Composite Models, Beyond

Standard Model
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1 Introduction

The Large Hadron Collider (LHC) recently discovered a new scalar particle [1, 2], which has

experimental properties compatible with those of the Higgs boson and mass ∼ 126 GeV.

This discovery stands out against the current absence of clear evidence of new physics

beyond the Standard Model (SM), both in direct and indirect experimental searches, up

to and beyond the TeV scale — evidence of a little desert in high energy physics. Com-

posite Higgs Models (CHMs) implement the symmetry-based mechanism first proposed in
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refs. [3–5]. They provide a compelling framework that allows to soften the level of fine-

tuning required to accommodate the little desert within an Effective Field Theory (EFT)

description of Electro-Weak Symmetry Breaking (EWSB).

In the SM, EWSB is induced at the scale vW ∼ 246 GeV by the dynamics of a complex

doublet of weakly-coupled Higgs fields. Composite Higgs models reinterpret its compo-

nents as some of the interpolating fields appearing in the EFT that describes the low

energy, weakly coupled dynamics of a set of composite pseudo-Nambu-Goldstone bosons

(pNGBs). They emerge from a more fundamental — possibly strongly coupled and UV

complete — theory, that dynamically drives the spontaneous breaking, at scale f > vW , of

an extended approximate continuous global symmetry. After coupling this EFT to the SM

gauge bosons and fermions, what results is a natural and stable dynamical origin for the

little hierarchy between the masses of the SM particles (the Higgs boson in particular) and

the higher scale beyond which new phenomena arise. The ratio vW /f < 1 is determined

by the interplay of strong-coupling dynamics and weakly coupled, symmetry-breaking per-

turbations. Electroweak symmetry breaking is triggered via what, in the jargon of the

field, is often referred to as vacuum misalignment — a phrase that highlights the intrinsic

differences with other models of EWSB with a strongly coupled dynamical origin [6].

A wide variety of implementations of these ideas has been proposed in recent years, and

their model-building features, phenomenological implications, and dynamical properties are

the subject of a rich, diverse, and rapidly evolving literature (see for instance refs. [7–39]).

Particular attention has been devoted to models and dynamical theories characterised by

the SU(4)/Sp(4) coset (see for instance refs. [40–59]). The low-energy EFT Lagrangian

contains, in this case, five scalar fields, that describe the long-distance dynamics of the

five pNGBs. With an appropriate choice of embedding for the SU(2) × U(1) gauge group

of the SM, four such fields reconstruct the complex Higgs doublet familiar to the Reader

from the Standard Model, with the fifth scalar a new real, neutral singlet, extending the

SM Higgs sector.

The investigations summarised in these pages contribute to the study of the strong dy-

namics underlying the SU(4)/Sp(4) theory, under the working assumption that it originates

from a Sp(2N) gauge theory with two fundamental (Dirac) fermions, which is amenable to

lattice numerical treatment. We ultimately aim at computing the many free parameters

of the low-energy EFT, by starting from fundamental principles. This paper summarises

the findings of the second stage of development of the programme outlined in ref. [60] (see

also [61–64]), by focusing attention on the case in which the matter field content consists of

two dynamical Dirac fermions transforming in the fundamental representation of the Sp(4)

gauge group. Analogous to the SU(3) gauge theory with two flavours of Dirac fermions

in the fundamental representation, this theory is expected to be asymptotically free and

deep inside a chirally broken phase [65, 66]. For instance, the first two coefficients in the

perturbative beta function of the gauge coupling are positive.

The main step forwards we make here is that we move beyond the quenched approxima-

tion adopted in earlier explorative work [60], as we implement in its stead fully dynamical

(Wilson) fermions on the lattice. In the presence of two fundamental lattice parameters,

the scale-setting process has to be reconsidered — especially in the dynamical regime away
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from the chiral limit. We compute the spectrum of the lightest mesons, which are organ-

ised in irreducible representations of the unbroken global Sp(4) group. We mostly discuss

scalar S, pseudoscalar PS, vector V and axial-vector AV composite flavoured particles. For

completeness we also analyse the mass of states sourced by both the antisymmetric tensor

T and its axial counterpart AT, although only the latter sources genuinely independent

states — the tensor T and vector V operators source the same states. We extract masses

and (appropriately renormalised) decay constants from 2-point functions of the relevant

interpolating operators. We assess the size of finite volume effects and perform continuum

limit extrapolations.

An important limitation of this work is that the physical masses of the pNGBs are

large enough that the vector mesons are effectively stable. The corresponding ranges of

pseudoscalar mass and decay constant with respect to vector mass in the continuum limit

are 0.54 . mPS/mV . 0.72 and 0.129 . fPS/mV . 0.136, respectively. While we attempt

an extrapolation towards light masses of relevance to phenomenologically viable CHMs,

the large-mass regime is interesting in itself, being relevant for models of dark matter with

a strongly coupled dynamical origin, along the lines discussed in refs. [67–69]. A crucial

piece of dynamical information in this context turns out to be the strength of the coupling

gVPP between V and two PS mesons, which plays an important role in controlling the relic

abundance.

The gVPP coupling can in principle be extracted by careful analysis of 4-pNGB ampli-

tudes [70–72] (see also ref. [73] for an application in the context of new physics), but the

amount of data generated for this paper is not sufficient to even approach this gargantuan

task, which we leave for future dedicated studies. We instead perform a first, preliminary

extrapolation of our results towards the massless limit, with help from low-energy EFT

instruments. The EFT treatment we proposed in ref. [60] is based on the ideas of hidden

local symmetry (HLS), adapted from refs. [74–78] (see also refs. [79–82]), and supplemented

by some additional, simplifying working assumptions. This process allows us not only to

estimate the masses and decay constants of the spin-1 states in the regime relevant to elec-

troweak models, but also to extract an estimate of gVPP, hence providing a first, possibly

rough measurement of its size based on a numerical, dynamical calculation. In particular,

we obtain this coupling in the massless limit, gχVPP = 6.0(4)(2), which is not far from the

experimental value of real world QCD. We also discuss several non-trivial features of the

spectra, and compare them to previously published results obtained in other related gauge

theories as well as the results of quenched calculations, that are reported elsewhere [83].

A result of particular interest concerns the ratio between vector mass and pseudoscalar

decay constant, for which we find that mV/
√

2fPS = 5.47(11) for the lightest ensemble and

5.72(18)(13) in the massless limit.

The paper is organised as follows. In section 2 we introduce the model by defining

its lattice action. We recall some useful notions about the Hybrid Monte Carlo (HMC)

algorithm we employ, and present our choices of lattice parameters. In section 3 we employ

the gradient flow method to set the physical scales. The mass dependence of the flow

scale can be understood in EFT terms [84]. We also discuss the size of finite-volume

artefacts. In section 4 we present our numerical lattice results for the spectra of mesons
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and renormalised decay constants. We define the corresponding interpolating operators

and analyse their 2-point correlation functions. Details on the HMC algorithm, diquark

operators and the fits of correlation functions are presented in appendix A. We present our

strategy and perform the continuum limit extrapolation by employing a mass-dependent

prescription [85] introduced through the Wilson chiral perturbation theory (WχPT) [86, 87]

(see also ref. [88], and the literature on improvement [89, 90]), and report the results in

section 4.3. Given the extensive amount of information we are communicating, we find it

useful to conclude this part of the paper with a short summary of the lattice numerical

results in section 5.

From section 6 onwards, we restrict the discussion to the study of the continuum limit

extrapolations obtained by using only a set of eleven ensembles selected in section 4.3. We

deploy our EFT tools and perform extrapolations towards the massless limit to determine

the Low Energy Constants (LECs). We also critically discuss implications, applications,

and limitations of the resulting numerical fits. Details of the numerical results are pre-

sented in the histograms of appendix B. Section 7 is devoted to comparing our results to

the analogous observables in other theories, by borrowing published data available in the

literature, as well as to the results obtained within the quenched approximation [83]. As

we shall see, besides providing an important sanity check, the latter also allows us to assess

the impact of quenching on 2-point correlators, information that might be of general value,

as it provides guidance towards future studies of Sp(2N) theories with N > 2. We provide

a summary of the most important results in the continuum in section 8, based upon the

detailed information provided in sections 6 and 7. We conclude the paper with a short list

of open avenues for future exploration in section 9.

2 Lattice model

A distinctive feature of Sp(2N) gauge theories with Nf massless Dirac fermions in the

fundamental representation is the enhancement of the global symmetry to SU(2Nf ), which

originates from the pseudo-real character of the representation.

The lattice formulation in terms of Wilson fermions introduces an operator that breaks

the global symmetry, and introduces a (degenerate) mass term for the fermions. The global

symmetry is expected to be spontaneously broken by the formation of a non-zero fermion

bilinear condensate. With Nf = 2, both explicit and spontaneous breaking follow the

(aligned) SU(4) → Sp(4) pattern. The resulting low-energy dynamics is governed by five

pNGBs. They describe the SU(4)/Sp(4) coset, and have degenerate masses.

2.1 Lattice action

The four-dimensional Euclidean-space lattice action contains the gauge-field term Sg, to-

gether with the fermion matter-field term Sf :

S = Sg + Sf . (2.1)
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We use the standard Wilson plaquette action for the discretised gauge fields, with the

gauge links Uµ group elements of Sp(4) in the fundamental representation:

Sg ≡ β
∑
x

∑
µ<ν

(
1− 1

4
Re Tr Pµν

)
. (2.2)

The plaquette Pµν is defined by

Pµν(x) ≡ Uµ(x)Uν(x+ µ̂)U †µ(x+ ν̂)U †ν (x) . (2.3)

The trace Tr is over the fundamental of Sp(4), and the lattice coupling is given by

β = 8/g2. We define the fermion sector by using the (unimproved) Wilson action for

two mass-degenerate Dirac fermions Q in the fundamental representation

Sf ≡ a3
∑
x

Q̄(x) (4 + am0)Q(x)+

− 1

2
a3
∑
x,µ

Q̄(x)
(

(1− γµ)Uµ(x)ψ(x+ µ̂) + (1 + γµ)U †µ(x− µ̂)Q(x− µ̂)
)
, (2.4)

where a is the lattice spacing and am0 is the bare mass in lattice units.

2.2 Numerical Monte Carlo treatment

We use the lattice action in eq. (2.1) to study the Sp(4) theory with Nf = 2 Dirac fundamen-

tal fermions, with the gauge configurations generated by the standard Hybrid Monte Carlo

(HMC) algorithm. In ref. [60] we extensively discussed the relevant numerical techniques

adopted, including the need to project back onto the symplectic group after each HMC up-

date of the configurations, and the associated modifications to the HiRep code [91]. During

this study, we have further improved the code to implement arbitrary values of N ≥ 2 and

to reduce the storage size of an individual gauge configuration by a factor of two — details

are presented in appendix A.1.

Pioneering lattice studies of Sp(2N) Yang-Mills showed that a bulk phase transition

is absent in the Sp(4) theory, implying that one can in principle take the continuum limit

by choosing any values of β [92]. By contrast, in the case of dynamical simulations

with two Wilson-Dirac fermions, the preliminary study of the average plaquette value

〈P 〉 ≡ (24NtN
3
s )−1Re

∑
x

∑
µ<ν TrPµν(x) detected evidence of a first-order bulk phase

transition [60] — Nt and Ns are the temporal and spatial extents of the lattice, respec-

tively. Hybrid Monte Carlos trajectories of 〈P 〉 started from cold (unit) and hot (random)

configurations at small lattice volume show signs of hysteresis. Careful study of the volume

dependence of the plaquette susceptibilities indicates that the continuum extrapolation can

be carried out safely when β & 6.8. In this regime, the desired continuum limit can be

reached safely, and subsequently the fermion mass can be lowered smoothly, avoiding the

unphysical Aoki phase near the massless limit [93]. For all ensembles considered in this

work, we operate far enough from the massless limit and no sign of the Aoki phase is visible.

The parameters characterising the ensembles generated by the dynamical simulations

are summarised in table 1. In the table we present the values of lattice coupling β and bare
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Ensemble β am0 Nt ×N3
s Nconfigs δtraj 〈P 〉 w0/a

DB1M1 6.9 -0.85 32× 163 100 24 0.54675(5) 0.8149(7)

DB1M2 6.9 -0.87 32× 163 100 24 0.55052(6) 0.8654(9)

DB1M3 6.9 -0.89 32× 163 100 20 0.55478(6) 0.9342(11)

DB1M4 6.9 -0.9 32× 163 100 20 0.55696(6) 0.9784(18)

DB1M5 6.9 -0.91 32× 163 100 20 0.55951(5) 1.0413(19)

DB1M6 6.9 -0.92 32× 243 80 28 0.56204(3) 1.1196(14)

DB1M7 6.9 -0.924 32× 243 62 12 0.56328(4) 1.1618(13)

DB2M1 7.05 -0.835 36× 203 100 20 0.575267(29) 1.2939(19)

DB2M2 7.05 -0.85 36× 243 100 24 0.577371(23) 1.4148(21)

DB2M3 7.05 -0.857 36× 323 102 20 0.578324(13) 1.4836(15)

DB3M1 7.2 -0.7 36× 163 100 20 0.58333(4) 1.2965(25)

DB3M2 7.2 -0.73 36× 163 100 20 0.58548(4) 1.3884(36)

DB3M3 7.2 -0.76 36× 163 100 20 0.58767(4) 1.5155(28)

DB3M4 7.2 -0.77 36× 243 100 20 0.588461(19) 1.5625(21)

DB3M5 7.2 -0.78 36× 243 96 12 0.589257(20) 1.6370(29)

DB3M6 7.2 -0.79 36× 243 100 20 0.590084(18) 1.7182(32)

DB3M7 7.2 -0.794 36× 283 195 12 0.590429(9) 1.7640(18)

DB3M8 7.2 -0.799 40× 323 150 12 0.590869(9) 1.8109(23)

DB4M1 7.4 -0.72 48× 323 150 12 0.604999(7) 2.1448(25)

DB4M2 7.4 -0.73 48× 323 150 12 0.605519(7) 2.2390(34)

DB5M1 7.5 -0.69 48× 243 100 12 0.611900(13) 2.3463(84)

Table 1. List of ensembles generated for this study. The lattice parameters β and am0 are,

respectively, the bare coupling and bare fermion mass. The lattice sizes are denoted by Nt × N3
s ,

separately highlighting the time-like and space-like dimensions. The number of configurations used

to estimate the average plaquette 〈P 〉 and the gradient flow scale w0/a is denoted by Nconfigs. The

separation of trajectories between adjacent configurations is denoted by δtraj. In the results for 〈P 〉
and w0/a, in parenthesis we indicate the statistical error.

fermion mass am0. The former is chosen to be in the range 6.9 ≤ β ≤ 7.5. The choices

of the latter will be discussed later in the paper, where we will see that some of the larger

choices of am0 will not be used in the analysis.

The four-dimensional Euclidean lattice has size Nt × N3
s , and we impose periodic

boundary conditions in all directions for the gauge fields. The physical volume V = T ×L3

is obtained by setting T = Nta and L = Nsa. For the Dirac fields we implement periodic

boundary conditions in the spatial directions, but anti-periodic boundary conditions in the

temporal one.

We anticipate that all lattice volumes satisfy the condition mPSL & 7.5, where amPS

denotes the mass of the lightest pseudo-scalar meson (expressed in lattice units). The

latter is extracted from the two-point correlation functions, as will be discussed in details

– 6 –
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in section 4 (see also table 6). As we shall see later in the paper, this choice guarantees

that the volumes are large enough that the finite-size effects are under control. In the

table we also present the results for the average plaquette 〈P 〉 and the gradient flow scale

w0 defined in section 3.1, which are measured from Nconfigs configurations separated by

δtraj trajectories. Throughout this work we estimate the statistical uncertainties by using

a standard bootstrapping method for resampling [94].

3 Scale setting, topology and finite volume effects

Lattice calculations yield dimensionless numbers. The inverse of the lattice spacing a acts

as a hard momentum cut-off Λcut, and all lattice measurements in lattice units can be

written as a function of a. For example, a dimensionless mass mlat can be expressed as

mlat = ma, with m having canonical units. But this is not sufficient to take the non-trivial

limit a → 0, as the lattice spacing does not have a precise counterpart in the continuum

theory. A physical quantity that can be measured both in the continuum as well as in the

discretised theory must be used to set a common reference scale, and yield a scale setting

procedure within the continuum extrapolation.

We adopt Lüscher’s Gradient Flow (GF) technique [95]. Besides achieving good accu-

racy with modest numerical effort, this procedure has two other major advantages. The

reference scale is defined on fully theoretical grounds, which is convenient for theories that

have not been tested experimentally. Furthermore, it preserves the topological charge Q,

while strongly suppressing ultraviolet (UV) fluctuations. In this section, after carrying out

the scale-setting programme, we also discuss the topology of the ensembles. We conclude

by studying finite volume effects and arguing that they are smaller than the statistical

uncertainties.

3.1 Gradient flow and scale setting

We denote by Aµ(x) the four-dimensional non-abelian gauge field evaluated at the space-

time coordinates x. The gradient flow is defined in the continuum theory by a diffusion

equation (in Euclidean five-dimensional space) for a new gauge field Bµ(t, x) at the fictitious

flow time t. The equation reads:

dBµ(t, x)

dt
= DνGνµ(t, x), with Bµ(0, x) = Aµ(x), (3.1)

where Dν is the covariant derivative in terms of Bν , while Gµν = [Dµ, Dν ] is the field-

strength tensor. Repeated indices are summed over. Along the flow time the gauge fields

evolve into renormalised gauge fields, smoothed over a radius of
√

8t, the characteristic

scale of the diffusion process. As shown in ref. [96], at t > 0 the correlation functions of

the renormalised fields are finite to all orders in perturbation theory. In particular, the

following gauge-invariant observable does not require any additional renormalisation other

than that at zero flow time (t = 0):

E(t, x) ≡ −1

2
Tr Gµν(t, x)Gµν(t, x) . (3.2)

The expectation value of E(t) is proportional to the inverse of the flow time squared.

– 7 –
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We consider two different proposals for defining the gradient flow scale, and denote

them by t0 [95] and w0 [97]. We first define the dimensionless observables at positive flow

time t as

E(t) ≡ t2〈E(t)〉, (3.3)

and

W(t) ≡ d

d lnt
t2〈E(t)〉. (3.4)

Then the scales are set by imposing the conditions

E|t=t0 ≡ E0, (3.5)

and

W|t=w2
0
≡ W0. (3.6)

Here E0 and W0 are common, dimensionless reference values. In numerical studies, we

measure the dimensionless quantities t0/a
2 and w0/a, which determine the relative size of

the lattice spacing between ensembles obtained by using different (bare) lattice parame-

ters. In this project, consistently with our previous work [60], we employ the Wilson-flow

method [95] to proceed with the lattice implementation of eq. (3.1).

In our previous publication [60], we performed detailed numerical studies of the GF

scheme for the quenched theory, as well as full dynamical calculations for β = 6.9. We

found that w0 shows smaller cut-off-dependent effects, compared to t0. In particular, no

significant deviation was found between the values of w0 obtained by using the action

density at non-zero flow time E(t) constructed from the average plaquette and from the

symmetric four-plaquette clover, as defined in [95].

In this study, we consider a finer lattice with β = 7.2. The results are presented in

figure 1. We find that while the values of t0 show significant discrepancies, the measured

values of w0 from the two definitions of E(t) are in good agreement over the wide range

of W0 and m0 we considered, in particular for W0 = 0.3 ∼ 0.4. The agreement in the flow

scales has improved with respect to the results from coarser lattices in [60]. In table 1, and

in subsequent calculations, we elect to use the gradient flow scale w0, which we compute

with the reference value of W0 = 0.35, on the four-plaquette clover action density — for

which smaller lattice artefacts are observed. For convenience, we introduce the following

notation: m̂ ≡ mlatwlat
0 = mw0 denotes the dimensionless quantity corresponding to a

mass. We use â ≡ a/w0 when we discuss lattice-spacing artefacts in section 4.2.

3.2 Chiral perturbation theory for gradient flow observables

Figure 1 shows that the scales
√

8t0/a and w0/a depend on the fermion mass am0. The

title of this subsection is borrowed from ref. [84], to reflect the fact that we employ the

EFT treatment suggested in this reference and we apply it to our numerical results. The

EFT treatment assumes that the square root of the flow scale t0 is much smaller than the

Compton wavelength of the pseudoscalar meson.

Following [84], we use the leading order (LO) relation in the chiral expansion m2
PS =

2Bmf (where mf is the fermion mass), to write the next-to-leading-order (NLO) result for

– 8 –
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Figure 1. Gradient flow scales t0 (left panel) and w0 (right panel) as a function of the bare quark

mass am0, for β = 7.2. Different symbols denote the different definitions of an action density

(plaquette or clover). Different colours denote the reference values chosen for E0 and W0. The

choices of mass and coupling identify the ensembles from table 1.

the GF scale wNLO
0 as

wNLO
0 (m2

PS) = wχ0

(
1 + k1

m2
PS

(4πfPS)2

)
, (3.7)

where wχ0 is the GF scale and fPS is the pseudoscalar decay constant, both defined in the

chiral limit. It is convenient to rescale this expression by writing

wNLO
0 (m2

PS)/a = (1 + k̃1m̂
2
PS)wχ0 /a, (3.8)

where k̃1, wχ0 /a and m̂PS = w0mPS are dimensionless parameters.1 We also find it con-

venient to report here on the extraction of the constants k̃1 and wχ0 from the dynamical

ensembles in table 1. This requires that we anticipate the use of numerical data for the

measurement of mPS/a that will be discussed extensively in section 4 and appendix A.3,

and will be reported in table 6.

Figure 2 shows data from table 1 combined with table 6, together with the result of

the two separate fits (for β = 6.9 and 7.2) to eq. (3.8) of the five ensembles with smallest

m̂PS. The resulting values of the fit parameters are reported in table 2. The values of

χ2/Nd.o.f. at the minima indicate that chiral perturbation theory for w0 well describes the

data. Deviations from linear mass dependence of w0/a appear at around m̂2
PS ∼ 0.4. We

anticipate that this scale is in broad agreement with the upper bound inferred by studying

the pseudoscalar decay constant, and will be discussed in section 4.

1The difference between w0 mPS and wχ0 mPS is a sub-leading effect, which would appear at next-to-

next-to-leading order (NNLO).
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Figure 2. Gradient flow scale dependence on the pseudoscalar meson mass for β = 6.9 (left panel)

and β = 7.2 (right panel). Numerical data from table 1 and from table 6. The blue bands as based

upon eq. (3.8), with the fit parameters in table 2. The band width represents the (1σ) statistical

uncertainties. The fits are restricted to the five ensembles with lightest PS mass (shown in blue),

while larger m̂2
PS (shown in red) are not included.

β wχ0 /a k̃1 χ2/Nd.o.f.

6.9 1.347(4) −0.896(12) 0.7

7.2 2.047(8) −0.545(10) 0.5

Table 2. Results of the NLO fits for w0/a from table 1 and m̂PS from the combination with

table 6. The fit uses the five ensembles with smallest mass to extract the parameters k̃1 and wχ0 /a

in eq. (3.8).

We observe that the value of k̃1 is smaller for the finer lattice. We have too few

ensembles for other lattice couplings to extract the values of k̃1, yet the generic trend

is consistent with expectations, as visible in figure 3, with the mass-dependence becoming

milder for larger choices of β.2 Later in the paper, we will perform simultaneous continuum

and massless extrapolations via a global fit of all measurements of physical quantities —

masses and decay constants of mesons — expressed in units of w0.

3.3 Topology

By analogy with the continuum definition ( 1
32π2

∫
d4x εµνρσ Tr {Fµν(x)F ρσ(x)}), the lattice

topological charge of a gauge configuration is defined by summing over lattice sites i as

Q ≡ 1

32π2

∑
i

εµνρσ Tr {Uµν(i)Uρσ(i)} . (3.9)

The HMC algorithm yields gauge configurations in which ultraviolet fluctuations have

typical sizes that are orders of magnitude larger than the desired signal. The resulting large

cancellations prevent a reliable extraction of Q. A smoothing procedure must be applied,

2Numerical studies of SU(2) lattice gauge theory with two fundamental Dirac fermions show that the

resulting values of low energy constant k̂1 in the chiral expansion of w0 obtained from fine lattices are not

affected by large discretisation effects [45].
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Figure 3. Inverse of the gradient flow scales w0 with respect to the pseudoscalar meson mass

squared, for data taken from table 1 and from table 6. Blue, purple, green, red and brown colours

(top to bottom, approximately linear series) have β = 6.9, 7.05, 7.2, 7.4 and 7.5, respectively.

that preserves the topological charge of a configuration while removing UV fluctuations,

in order to measure Q. The gradient flow described in the earlier subsections can be

used for this purpose. For each ensemble, we measure Q from uncorrelated, thermalised

configurations, after flowing to a flow time t/a2 = N2
t /32 (equivalent to

√
8t = T/2).

With our choice of boundary conditions, at finite lattice volume, Q is quantised, and

assumes only integer values. Infinitesimal changes in the field configuration cannot alter

the topological charge. The change at each Monte Carlo time-step required to yield a

good acceptance rate in the Metropolis step of the HMC becomes smaller for fine lattice

spacings and small fermion masses. For this reason, at large volumes and small masses,

there is a risk that the topological charge freezes at a single value, for the finite HMC

trajectories that one implements in practice. Since values of observables may depend on

which topological sector is being observed, this effect may introduce a systematic error. To

ensure that our measurements are not (heavily) affected by this type of systematic effect,

we plot and inspect histories of Q for each ensemble used.

We expect the measurements of the charge Q to obey a Gaussian distribution about

zero in the limit of infinite simulation time. With a finite number of configurations, we use

the fitting form

n(Q) = An exp

(
−(Q−Q0)2

2σ2

)
(3.10)

in order to fit the histogram data. The two fit parameters Q0 and σ are the mean and

the standard deviation of the Gaussian distribution. The resulting values are presented in

table 3, while a sample of topological charge histories is shown in figure 4.

We also calculate the autocorrelation function CQ(τ) of the topological charge

history as

CQ(τ) =
N−τ∑
t=1

(Qt − 〈Q〉)(Qt+τ − 〈Q〉)
var(Q)

, (3.11)
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(a) β = 6.9,m = −0.85, V = 32× 163
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(b) β = 7.2,m = −0.78, V = 36× 243
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(c) β = 7.5,m = −0.69, V = 48× 243

Figure 4. Topological charge histories (left), and histograms (right), for the ensembles DB1M1,

DB3M5, and DB5M1, respectively. Fitted parameters are (a) Q0 = 0.02(95), σ = 8.97(96),

τexp � 1; (b) Q0 = −0.48(86), σ = 7.96(86), τexp = 1.9(7); (c) Q0 = 0.11(24), σ = 2.53(24),

τexp = 7.9(6).
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Ensemble Q0 σ τexp

DB1M1 0.02(95) 8.97(96) � 1

DB1M2 0.20(85) 8.32(85) 0.34(23)

DB1M3 −0.76(77) 8.23(77) � 1

DB1M4 −0.44(87) 8.48(87) � 1

DB1M5 −0.26(65) 6.92(67) 0.542(65)

DB1M6 1.1(1.7) 13.8(1.8) 0.36(15)

DB2M1 1.28(72) 8.06(73) 0.82(17)

DB2M2 −0.9(1.2) 8.9(1.2) 0.90(29)

DB2M3 −0.7(1.4) 12.1(1.4) 0.38(20)

DB3M1 −0.27(71) 6.98(74) 1.39(19)

DB3M2 −0.50(41) 4.61(41) 0.90(17)

DB3M3 −0.34(48) 4.35(48) 1.18(25)

DB3M4 0.12(89) 7.41(93) 0.80(17)

DB3M5 −0.48(86) 7.96(86) 1.98(65)

DB3M6 −0.45(63) 6.24(63) 1.21(19)

DB3M7 −0.40(60) 4.76(60) 1.160(81)

DB3M8 −0.06(99) 8.2(1.0) 2.33(32)

DB4M1 0.77(60) 6.27(60) 5.39(28)

DB4M2 0.51(93) 9.05(94) 10.45(18)

DB5M1 0.11(24) 2.53(24) 7.33(36)

Table 3. Fit results of the topological charge to a Gaussian function for all ensembles. The

quantities Q0 and σ are defined in eq. (3.10). They are the mean and the standard deviation for

the distribution of the topological charge, respectively. In the last column, we present the results

of the exponential autocorrelation time τexp defined in eq. (3.12).

where t indexes the configurations analysed from 1 to N , and 〈Q〉 and var(Q) are the mean

and variance of Q for these configurations without any assumptions on the distribution.

The exponential autocorrelation time τexp is then calculated from this by fitting

CQ(τ) = exp

(
− τ

τexp

)
. (3.12)

We report the fit results for τexp in the last column of table 3. In the ideally decorrelated

case, CQ(τ) is consistent with zero for all τ > 0, and so the fit fails to converge; this is

checked explicitly, and we report the autocorrelation time as τexp � 1 in these cases.

All ensembles used to generate the results presented in this paper were found to be

free of significant topological freezing, with Q0 always within 1σ from zero, and the auto-

correlation time typically τexp < 2 and always τexp . 10.
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Ensemble am0 Nt ×N3
s amPS amV minf

PS L

DB3M4∗ 36× 163 0.4267(16) 0.521(4) 6.75

DB3M4∗∗ -0.77 36× 203 0.4224(12) 0.5153(28) 8.43

DB3M4 36× 243 0.4222(8) 0.5112(16) 10.12

DB3M6∗ 36× 163 0.3309(16) 0.445(4) 5.02

DB3M6∗∗ -0.79 36× 203 0.3183(10) 0.4290(28) 6.28

DB3M6 36× 243 0.3153(9) 0.4264(19) 7.53

Table 4. Ensembles and numerical results used to estimate the size of finite volume effects. The

number of configurations and the separation of trajectories between adjacent configurations are

given by Nconfigs = 200 and δtraj = 12, respectively, for all these ensembles. The pseudoscalar masses

in the infinite volume limit minf
PS are estimated from the exponential fits as discussed in the text.

3.4 Finite size effects

The finiteness of the lattice volume represents an inherent source of systematic uncertainties

in lattice calculations. In a confining gauge theory, finite-volume (FV) contaminations of

the masses and decay constants are expected to be exponentially suppressed as a function of

the length of the spatial lattice L, at least when the volume is much larger than the inverse

of the Compton wavelength of the lightest state, i.e. as long as mPSL� 1. The size of FV

effects can be estimated in a systematic way within chiral perturbation theory, as long as

the volume is larger than the hadronic scale. For fPSL & 1, the dominant contribution is

expected to arise from one-loop tadpole integrals of the pseudoscalar mesons [98, 99]. The

leading-order FV corrections to the meson masses can be written as

mM(L) = minf
M

(
1 +AM

e−m
inf
PSL

(minf
PSL)3/2

)
, (3.13)

where minf
M(PS) is the meson (pseudoscalar) mass in the infinite volume limit. In principle,

the coefficient AM can be determined within chiral perturbation theory without introducing

any new parameters in the infinite-volume chiral Lagrangian. Nevertheless, since our data

is far from the massless limit, we treat AM as free.

To quantify the size of FV effects, we calculate masses of pseudoscalar PS and vector V

mesons amPS(V) on three spatial lattice volumes of N3
s = 163, 203, 243 at two sets of lattice

parameters, (β, am0) = (7.2, −0.77) and (β, am0) = (7.2, −0.79). Numerical results are

reported in table 4. At the smallest volume minf
PS L ∼ 5, the masses deviate from those

at the largest volume by 4 ∼ 5%, more than expected from statistically uncertainties. At

minf
PS L ∼ 6.3 the deviations decrease to the level of 1 ∼ 2%, compatible with the statistical

uncertainties for amV, but not for amPS. We performed a fit of the pseudoscalar masses to

eq. (3.13). As shown in figure 5, the data are well described by the exponential fit function:

the blue dashed lines correspond to the best fits, while the black solid lines indicate the

masses in the infinite volume limit. From this analysis we conclude that the size of FV

effects is no larger than ∼ 0.3% — smaller than the typical size of statistical uncertainties
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Figure 5. Volume dependence of the pseudoscalar masses, as in table 4. Lattice parameters are

(β, m0) = (7.2, −0.77) in the left panel and (7.2, −0.79) in the right panel. The (blue) dashed and

(black) solid lines denote the fit results and the extrapolated values in the infinite volume limit,

respectively.

in the spectroscopic measurements reported in the following sections — if we require that

mPS L & 7.5. In the rest of this work we restrict attention to ensembles that satisfy this

requirement — see table 6.

The gradient flow scale also receives a correction from the finite size of the lattice

volume. The flow along the fictitious time t can be understood as a smearing procedure

with scale
√

8t, hence FV effects are controlled by the dimensionless ratio cτ =
√

8t/L. At

the reference value of E0 = 0.35 we find that cτ does not exceed 0.2 in most ensembles.

Using the results in ref. [100] we estimate the size of FV corrections to eq. (3.4) to be at

most at a few per-mille level. The only exception are the ensembles with β = 7.2 on a

36× 163 lattice and the one with β = 7.5. These ensembles do not play an important role

in the analyses that follow, because of the large physical masses associated with them.

4 Meson spectroscopy and decay constants

In this section we summarise the main results of our lattice study, by focusing on the

properties (masses and decay constants) of the mesons in the dynamical theory. We start

in section 4.1 by defining the operators we are interested in, the correlation functions we

measure, and the renormalisation procedure we apply. We then present all the main spec-

troscopy results in section 4.2, and discuss the continuum limit extrapolation in section 4.3.

Useful supplementary details are relegated to appendix A.2 and A.3.

4.1 Two-point correlation functions

Following established procedure, we extract the masses and the decay constants of flavoured

mesons by studying the behaviour of the relevant two-point correlation functions at large

Euclidean time t. The interpolating operators which carry the same quantum numbers

with the desired meson states take the generic form

OM (x) ≡ Qi(x)ΓMQ
j(x), (4.1)
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Label (M) Interpolating operator (OM ) Meson JP Sp(4)

PS Qiγ5Q
j π 0− 5

S QiQj a0 0+ 5

V QiγµQ
j ρ 1− 10

T Qiγ0γµQ
j ρ 1− 10(+5)

AV Qiγ5γµQ
j a1 1+ 5

AT Qiγ5γ0γµQ
j b1 1+ 10(+5)

Table 5. Interpolating operators OM sourcing the lightest mesons in the six channels considered in

the main text. To avoid mixing with the flavour singlets, we restrict to i 6= j the flavour indices of the

Dirac fermions, while colour and spinor indices are summed and omitted. For completeness, we also

show the JP quantum numbers and the corresponding particle in the QCD classification of mesons.

Notice that two of the operators source the same particles (ρ meson) because of the breaking of chiral

symmetry. In the last column we report the irreducible representation of the unbroken global Sp(4)

spanned by the meson (see also [43]). In brackets are irreducible representations of Sp(4) that are

sourced by operators with the same Lorentz structure, but that we do not discuss in this context.

where i, j = 1, 2 are the flavour indices, and ΓM refer to the Dirac structures summarised

in table 5. Summations over spinor and colour indices are understood.

The lightest spin-0 and spin-1 mesons, denoted by PS, V and AV for pseudoscalar, vec-

tor and axial-vector mesons, respectively, appear in the low-energy EFT described in [60].

In section 6 we will use their masses and decay constants to test the EFT and to extrapo-

late towards the chiral limit. We also consider additional interpolating operators with the

Dirac structures 1, γ0γµ, γ5γ0γµ, referred to as scalar S, (antisymmetric) tensor T, and

axial tensor AT, though from the related correlation functions we only extract the meson

masses. We restrict our attention to the flavoured mesons (by choosing i 6= j in flavour

space) — the analogous mesons in QCD are π, ρ, a1, a0, and b1. As the global symmetry

is broken, the states created by the interpolating operators denoted by V and T mix, with

the low-lying state corresponding to the ρ meson in QCD (see [101] and references therein,

as well as figure 1 of both refs. [102] and [103]).

For all the meson interpolating operators OM listed in table 5, we define the zero-

momentum Euclidean two-point correlation functions at positive Euclidean time t as

COM (t) ≡
∑
~x

〈0|OM (~x, t)O†M (~0, 0)|0〉. (4.2)

In the numerical study, the resulting mesonic two-point correlation functions are studied

by replacing the point-like sources in eq. (4.1) with Z2 × Z2 single time slice stochastic

sources [104], with number of hits 3.

Because of the pseudoreal nature of the representation of the symplectic gauge group,

diquark operators are indistinguishable from the mesonic operators. We report in table 5

also the multiplicity of each state (the size of the irreducible representation of Sp(4)).

For instance, five pNGBs form a multiplet of the unbroken Sp(4), in the SU(4) → Sp(4)

enhanced symmetry pattern of the gauge theory considered here. Compared with what
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happens with gauge group SU(N), these five pNGBs include the three associated with the

breaking SU(2)L × SU(2)R → SU(2)V , together with two diquarks.3 In appendix A.2 we

explicitly show the equivalence of meson and diquark correlators by using the lattice action

in eq. (2.4).

At large Euclidean time t the correlation functions in eq. (4.2) are dominated by the

lowest excitation at zero spatial momentum so that the mass mM appears in the asymptotic

expression:

COM (t)
t→∞−−−→ 〈0|OM |M〉〈0|OM |M〉∗

1

2mM

[
e−mM t + e−mM (T−t)

]
, (4.3)

where T is the temporal extent of the lattice. The decay constants fM are determined from

the matrix elements, which are parameterised as

〈0|Q1γ5γµQ2|PS〉 = fPSpµ ,

〈0|Q1γµQ2|V〉 = fVmVεµ ,

〈0|Q1γ5γµQ2|AV〉 = fAVmAVεµ . (4.4)

The polarisation vector εµ is transverse to the momentum pµ and normalised by ε∗µε
µ = 1.

The meson states |M〉 are conventionally defined by the self-adjoint isospin fields, as in

M = MATA, where TA are the generators of the group. We adopt conventions such that

in QCD the analogous experimental value of the pion (pseudoscalar) decay constant is

fπ ' 93 MeV. In eq. (4.4), the pseudoscalar decay constant fPS is defined via the local

axial current. To calculate the decay constant fPS, we introduce an additional two-point

correlation function

CΠ(t) =
∑
~x

〈0|[Q1γ5γµQ2(~x, t)] [Q1γ5Q2(~0, 0)]|0〉

t→∞−−−→ fPS〈0|OPS|PS〉∗

2

[
e−mPSt − e−mPS(T−t)

]
, (4.5)

where 〈0|OPS|PS〉∗ can be obtained from COPS
(t) in eq. (4.3). In practice, we calculate

mPS and fPS by performing a simultaneous fit to the numerical data for COPS
(t) and CΠ(t).

The details of the fit of the meson correlators, including the effective masses and best-fit

ranges, are provided in appendix A.3.

The matrix elements in eq. (4.4), calculated from the lattice at finite lattice spacing a,

must be converted to those renormalised in the continuum. For Wilson fermions the decay

constants in the continuum are determined from lattice ones via

fPS = ZAf
bare
PS , fV = ZVf

bare
V , and fAV = ZAf

bare
AV , (4.6)

where ZV and ZA are the renormalisation factors for vector and axial-vector currents which

are expected to approach unity in the continuum. Since the pseudoscalar decay constant

3The full expressions of spin-0 and spin-1 meson operators in the bases of both four-component Dirac

and two-component Weyl spinors will be presented in a separate publication [83]. See also the analysis in

ref. [105].
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fPS is defined using the axial current as in eq. (4.4), it receives renormalisation with the

factor of ZA. The renormalisation factors are determined by the one-loop renormalisation

procedure in lattice perturbation theory for Wilson fermions, and the expressions for the

matching factors are the following [106]:

ZA = 1 + C(F )
(
∆Σ1 + ∆γ5γµ

) g̃2

16π2
,

ZV = 1 + C(F )
(
∆Σ1 + ∆γµ

) g̃2

16π2
. (4.7)

The eigenvalue of the quadratic Casimir operator with fundamental fermions is C(F )=5/4

for the Sp(4) gauge theory. The one-loop factor ∆Σ1 arises from the wave-function renor-

malisation of the external fermion lines, while the other ∆’s arise from the one-loop com-

putations of the vertex functions. The numerical values obtained by one-loop integrals

within the continuum MS (modified minimal subtraction) renormalisation scheme are as

follows: ∆Σ1 = −12.82, ∆γµ = −7.75 and ∆γ5γµ = −3.0. The coupling used in eq. (4.7)

is defined via the mean field approach to the link variable, which effectively removes the

tadpole diagrams, as g̃2 = g2/〈P 〉 [107], where 〈P 〉 is the average plaquette value and g

the bare gauge coupling.4

4.2 Masses and decay constants

Using the techniques described in the previous subsection, we calculate meson masses

and decay constants for the ensembles in table 1. The resulting values in lattice units

are summarised in table 6 for mesons sourced by PS and S operators, and in table 7 for

those sourced by V, AV, T, and AT operators. The decay constants in the tables are

renormalised as in eq. (4.6). As expected, the pseudoscalar mesons are the lightest states

for all ensembles. In table 6 we also present the numerical values of mPSL and fPSL. The

lattice volumes in all ensembles are large enough that mPSL & 7.5, and, as we discussed in

section 3.4, finite volume effects are negligible. Furthermore, all the values of fPS satisfy

the condition fPSL > 1, to ensure that the lattice volume is large enough to capture the

chiral symmetry breaking scale. The ensembles to be used for the massless and continuum

extrapolations are further restricted to fPSL & 1.5.

Mesons with higher mass (and spin) can in principle decay into 2 and/or 3 pseu-

doscalars [54], but for all the ensembles we considered they cannot decay due to large

pseudoscalar masses. Table 7 shows that the masses of mesons sourced by V and T oper-

ators are in good agreement, within current statistical uncertainties. As is the case within

QCD, low-lying states identified by a given set of quantum numbers (I, JPC) can result

from admixture of more than one possible operator when the global symmetry is strongly

broken [101]. We also find that the masses of three heavier states, sourced by S, AV, and

AT operators, and that have different quantum numbers, are close to one another. They are

4This tadpole-improved coupling is a convenient choice for evaluating one-loop matching coefficients in

eq. (4.7) in our exploratory work. Drawing experience from QCD calculations, its value is normally very

close to that of reasonable choices of renormalised couplings which are determined by more complicated

procedures.
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Ensemble amPS afPS amS mPS L fPS L

DB1M1 0.8344(11) 0.1431(7) 1.52(4) 13.351(17) 2.290(10)

DB1M2 0.7403(12) 0.1299(11) 1.44(4) 11.845(19) 2.079(17)

DB1M3 0.6276(14) 0.1147(8) 1.15(5) 10.042(23) 1.836(13)

DB1M4 0.5625(21) 0.1052(11) 1.290(20) 9.00(3) 1.683(18)

DB1M5 0.4813(10) 0.0943(6) 1.04(5) 7.701(16) 1.509(10)

DB1M6 0.3867(11) 0.0823(6) 1.032(25) 9.28(26) 1.977(13)

DB1M7 0.3388(12) 0.0765(6) 0.92(5) 8.13(3) 1.835(14)

DB2M1 0.4376(14) 0.0822(9) 0.88(3) 8.752(28) 1.645(17)

DB2M2 0.3311(11) 0.0670(5) 0.830(16) 7.946(26) 1.609(13)

DB2M3 0.2729(9) 0.0612(4) 0.777(13) 8.732(27) 1.958(12)

DB3M1 0.6902(11) 0.0994(9) 1.046(25) 11.043(18) 1.590(14)

DB3M2 0.5898(13) 0.0905(8) 0.994(16) 9.437(21) 1.449(13)

DB3M3 0.4700(13) 0.0772(6) 0.838(13) 7.521(21) 1.235(10)

DB3M4 0.4222(8) 0.0726(3) 0.792(11) 10.133(18) 1.743(8)

DB3M5 0.3702(9) 0.0666(4) 0.744(13) 8.884(21) 1.598(9)

DB3M6 0.3153(9) 0.0604(4) 0.646(18) 7.568(22) 1.448(9)

DB3M7 0.2874(7) 0.05755(28) 0.665(12) 8.048(19) 1.611(8)

DB3M8 0.2532(7) 0.0536(3) 0.598(17) 8.102(24) 1.714(10)

DB4M1 0.3190(5) 0.05452(23) 0.576(9) 10.208(15) 1.745(7)

DB4M2 0.2707(6) 0.04999(27) 0.548(8) 8.663(20) 1.600(9)

DB5M1 0.3264(9) 0.0529(4) 0.562(7) 7.835(23) 1.270(9)

Table 6. Masses and (renormalised) decay constants for flavoured mesons sourced by pseudoscalar

(PS) and scalar (S) operators in units of the lattice spacing a. The pseudoscalar decay constant

fPS is renormalised via the one-loop perturbative matching in eq. (4.6). Statistical uncertainties

are indicated in parenthesis.

affected by large statistical and systematical uncertainties when their masses are extracted

from the two-point correlation functions (see appendix A.3 for technical details).

In order to compare to one another results obtained from ensembles at different bare

parameters, we must relate them to the corresponding renormalised quantities in the con-

tinuum limit. We do so by adopting the GF scheme as explained in section 3.1: we define

the meson masses and decay constants in units of w0 using the notation

m̂M ≡ mMw0 = mlat
Mwlat

0 and f̂M ≡ fMw0 = f lat
M wlat

0 . (4.8)

We can compare measurements at different lattice couplings β, and use the EFT to remove

residual artefacts due to the discretisation. This procedure will be explained in detail in

section 4.3.
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Ensemble amV afV amAV afAV amT amAT

DB1M1 0.9275(17) 0.2326(15) 1.561(29) 0.228(14) 0.9277(21) 1.512(24)

DB1M2 0.8475(19) 0.2224(14) 1.445(26) 0.215(11) 0.8475(27) 1.434(29)

DB1M3 0.7494(25) 0.2056(18) 1.315(24) 0.211(10) 0.754(3) 1.276(25)

DB1M4 0.692(4) 0.1917(25) 1.27(3) 0.217(14) 0.688(5) 1.205(29)

DB1M5 0.622(3) 0.1777(21) 1.16(4) 0.191(21) 0.619(4) 1.169(21)

DB1M6 0.546(4) 0.1629(20) 1.059(14) 0.193(5) 0.547(5) 0.97(3)

DB1M7 0.517(4) 0.1564(23) 0.97(4) 0.163(14) 0.527(6) 0.96(4)

DB2M1 0.5517(24) 0.1445(14) 0.918(28) 0.139(10) 0.554(4) 0.933(26)

DB2M2 0.470(3) 0.1284(20) 0.825(23) 0.135(8) 0.466(5) 0.834(24)

DB2M3 0.4237(29) 0.1202(14) 0.75(3) 0.120(11) 0.424(5) 0.736(27)

DB3M1 0.7490(17) 0.1478(16) 1.142(16) 0.146(6) 0.7484(23) 1.154(9)

DB3M2 0.6591(25) 0.1408(14) 1.036(15) 0.146(6) 0.659(3) 1.038(13)

DB3M3 0.5529(26) 0.1269(15) 0.879(18) 0.127(7) 0.555(3) 0.905(14)

DB3M4 0.5112(16) 0.1208(10) 0.847(13) 0.129(5) 0.5138(16) 0.788(16)

DB3M5 0.4664(25) 0.1121(15) 0.789(14) 0.125(5) 0.4750(28) 0.785(21)

DB3M6 0.4264(19) 0.1083(9) 0.720(20) 0.114(8) 0.426(3) 0.696(24)

DB3M7 0.4019(23) 0.1040(11) 0.698(10) 0.116(3) 0.4013(27) 0.715(13)

DB3M8 0.3772(24) 0.0990(13) 0.650(15) 0.107(5) 0.386(3) 0.643(17)

DB4M1 0.3974(11) 0.0905(6) 0.623(11) 0.092(5) 0.3976(15) 0.635(9)

DB4M2 0.3548(17) 0.0844(9) 0.560(8) 0.0853(27) 0.3528(21) 0.555(11)

DB5M1 0.3941(20) 0.0832(12) 0.594(8) 0.0851(26) 0.391(3) 0.596(11)

Table 7. Masses and (renormalised) decay constants for flavoured mesons sourced by vector (V),

axial-vector (AV), and tensor (T) and axial-tensor (AT) operators in lattice units. The V and AV

decay constants are renormalised via the one-loop perturbative matching in eq. (4.6). Statistical

uncertainties are indicated in parenthesis.

On the lattice, the bare fermion mass mf is a free parameter. It can vary from being

very small (yielding very light pseudoscalars) to assuming somewhat large values (yielding

stable vector mesons). A detailed study of the renormalisation of the fermion mass mf

requires a dedicated study that goes beyond the purposes of this work. In its stead, we

replaced mf by the pseudoscalar mass squared m2
PS, which is a physical quantity. In the

low-energy EFT, the two are related through the LO relation m2
PS = 2Bmf , with B one

of the coefficients in the chiral Lagrangian.

Before proceeding, we must check what is the regime of parameters for which the LO

mass relation between fermion mass and pseudoscalar mass is a good approximation to the

data. To illustrate this point, in the top panel of figure 6 we present the pseudoscalar masses

squared m̂2
PS and decay constants squared f̂2

PS against the bare mass — after subtracting
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Figure 6. Top panel: pseudoscalar masses squared m̂PS and decay constants squared f̂2
PS as a

function of the subtracted bare fermion mass. Green and blue symbols stand for m̂2
PS and f̂2

PS,

respectively. Bottom panel: left-hand side of the GMOR relation, as a function of the subtracted

fermion mass. All points computed with β = 7.2. The uncertainty on the horizontal axis descends

form the determination of m̂c
0.

the effects of lattice additive renormalisation (m̂0 − m̂c
0) — for ensembles at β = 7.2, with

various bare masses.5 The critical mass m̂c
0 is determined numerically, extrapolating from

the linear fit to the lightest five data points to the value for which m̂2
PS = 0. As shown in

the figure, deviation from linearity appear for m̂2
PS > 0.4. The decay constant squared also

shows a linear behaviour, and its slope is not negligible. The bottom panel of figure 6 shows

deviations from linearity of the dependence of the combination m2
PSf

2
PS on the fermion mass.

The Gell-Mann-Oakes-Renner (GMOR) relation [108], m2
PSf

2
PS = mf 〈ψ̄ψ〉, would imply a

mass dependence of the fermion condensate over the range of mass considered. We alert

the reader that a rigorous discussion of the GMOR relation would require first to determine

the values of m̂c
0 for each fixed choice of â (obtained by adjusting both the bare mass and

5Notice that all dimensional quantities are normalised by the flow scale w0. The transition from m2
PS =

2Bmf to m̂2
PS = 2B̂m̂f is understood up to higher order corrections of O(m̂4

PS).
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coupling, while keeping the lattice spacing in units of w0 fixed), while in this simplified

discussion we kept the lattice coupling β = 7.2 fixed. This is adequate for the purposes of

this subsection, but we refer the reader to section 6.1 for an assessment of the validity of

the GMOR relation in the continuum limit.

In figure 7 we show the numerical results of the decay constants squared of PS, V and

AV mesons, while in figures 8 and 9 we present the masses squared of mesons sourced by

the operators V and T, and by S, AV, and AT, respectively, as functions of m̂2
PS. Our

first observation is that discretisation effects in f̂2
PS and m̂2

V (or m̂2
T) are significant, given

the visible difference between data collected at different lattice couplings (and denoted by

different colours). For other quantities the deviations are no larger than the statistical

uncertainties. Also, the masses and the decay constants decrease as we approach the

massless limit, with the exception of f̂2
AV. Overall, the masses and decay constants show

linear dependence on m̂2
PS in a wide range inside the small-mass region.

4.3 Continuum extrapolation

We are now in a position to perform the continuum extrapolation, and to eliminate discreti-

sation artefacts in the meson masses and decay constants. In order to do so, we introduce

the important tool of WχPT [86, 87] (see also ref. [88], and [89, 90]). It extends the con-

tinuum effective field theory by a double expansion, both in small fermion mass m, as well

as lattice spacing a, as both of them break chiral symmetry and can be introduced in the

EFT as spurions. We denote the lattice spacing in units of w0 by

â ≡ a/w0 = 1/wlat
0 . (4.9)

This yields the natural size of discretisation effects, consistently with the fact that we

measure all other dimensional quantities in units of w0.

At NLO in WχPT [87], the tree-level expression for the pseudoscalar decay constant

leads to

f̂NLO
PS = f̂χ

(
1 + b̂χf m̂

2
PS

)
+ Ŵχ

f â, (4.10)

where f̂χ = fχwχ0 is the pseudoscalar decay constant in the massless and continuum limit.

The fermion masses used in this study are comparatively large, and hence it is legitimate

to omit from eq. (4.10) the chiral logs, which are important for small values of m̂PS. The

coefficients b̂χf and Ŵχ
f control the size of corrections due to finite mass and finite lattice

spacing, respectively. In principle one should measure all observables in units of wχ0 , while

we instead use the mass-dependent w0, as measured at the finite mass of the individual

ensembles, hence avoiding the need to extrapolate to the massless limit [85] — we collected

enough data to attempt such extrapolation only for two values of β. The replacement of

wχ0 by w0 does not affect the NLO EFT, the difference appearing at higher orders in m2
PS.

Compared to the continuum NLO expression in ref. [109], it results in a shift b̂χf by k̃1 in

eq. (3.8), due to fitting the measurements of fPSw0.

Among the underlying assumptions of WχPT is the requirement that the measure-

ments it describes satisfy
m2

PS

Λ2
χ

∼ aΛχ < 1, (4.11)
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Figure 7. Decay constant squared for pseudoscalar (PS, top), vector (V, middle) and axial-vector

(AV, bottom) mesons as a function of the pseudoscalar mass squared m̂2
PS. Different colours refer

to different lattice couplings as shown in the legends. The error bars represent the size of statistical

uncertainties. (See appendix A.3 for the details.)
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Figure 8. Mass squared of mesons sourced by vector (V, top) and tensor (T, bottom) operators

as a function of the pseudoscalar mass squared m̂2
PS. Different colours refer to different lattice

couplings as shown in the legends. The error bars represent the size of statistical uncertainties.

(See appendix A.3 for the details.)

where Λχ is the symmetry breaking scale, for which we take the estimate Λχ = 4πfPS. In

section 3.2, we found the NLO EFT to describe the measurements of ŵ0 up to m̂2
PS . 0.4.

The numerical results for the pseudoscalar decay constant squared in figure 7 shows linear

mass dependence over the range of 0.15 . m̂2
PS . 0.40. Using the (bare) results in table 1,

restricted to this range, the two mass scales associated with the power counting for the

tree-level NLO WχPT are estimated to be

0.13 .
m2

PS

Λ2
χ

∼ 0.20 , and 0.60 . aΛχ ∼ 1.4. (4.12)

The first estimate is roughly consistent with the scale separation in eq. (4.11). But we find

that aΛχ evaluated on some of the ensembles is greater than unity. We further constrain the

analysis to the ensembles that satisfy the condition â . 1, which is satisfied by DB1M5−7,

DB2M1−3, DB3M5−8, and DB4M2. Only these ensembles will be used in the continuum

and massless extrapolations that employ the tree-level NLO WχPT. We will report the val-
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Figure 9. Mass squared of mesons sourced by scalar (S, top), axial-vector (AV, middle) and

axial-tensor (AT, bottom) operators as a function of the pseudoscalar mass squared m̂2
PS. Different

colours refer to different lattice couplings as shown in the legends. The error bars represent the size

of statistical uncertainties. (See appendix A.3 for the details.)
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f̂2, χ
M L0

f,M W 0
f,M χ2/Nd.o.f

PS 0.00618(28)(33) 3.01(21)(33) −0.00135(29)(19) 1.6

V 0.0296(15)(8) 0.51(9)(6) 0.0004(16)(8) 1.0

AV 0.032(7)(2) 0.17(35)(14) 0.012(8)(2) 1.1

m̂2, χ
M L0

m,M W 0
m,M χ2/Nd.o.f

V 0.404(13)(9) 2.18(10)(7) −0.220(15)(12) 0.9

T 0.418(18)(2) 2.08(12)(17) −0.229(22)(30) 0.8

AV 1.07(13)(2) 1.37(32)(7) 0.04(13)(2) 0.8

AT 1.08(13)(8) 1.49(34)(16) −0.08(13)(13) 2.4

S 1.16(12)(12) 0.85(21)(20) −0.08(14)(16) 1.8

Table 8. Fit results of the continuum and massless extrapolations for masses squared and decay

constants squared of mesons in the dynamical simulations. The low-energy constants appearing in

WχPT are defined in eqs. (4.13) and (4.14). The fits of f̂2
PS measurements are restricted to include

only the eleven ensembles identified in the main text. For the other quantities, additional ensembles

satisfying m̂2
PS . 0.6 and â . 1 have been included. In parenthesis, we report the statistical and

systematic uncertainties, respectively.

ues of the χ2/Nd.o.f. in the analysis, and we anticipate here that the quality of the fits of the

data supports the results of this exclusion process, otherwise based upon a set of estimates.

As the linear dependence of f̂NLO
PS on both m̂2

PS and â can be recast into linear behaviour

of f̂2,NLO
PS and because — on the basis of the EFT described in [60] — at NLO also the mass

squared and decay constant squared of spin-1 mesons have leading corrections of O(m2
PS),

we consider the following linear ansatz:

f̂2,NLO
M = f̂2,χ

M

(
1 + L0

f,Mm̂
2
PS

)
+W 0

f,M â (4.13)

for the decay constants squared of the mesons M = PS, V, and AV, and

m̂2,NLO
M = m̂2,χ

M

(
1 + L0

m,Mm̂
2
PS

)
+W 0

m,M â (4.14)

for the masses squared of the mesons M = V, AV, S, T, and AT.

We restrict the fit to the eleven ensembles identified earlier for f̂2
PS. Yet, the results for

V, AV, S, T and AT mesons in figures 7, 8 and 9 exhibit linear dependence on m̂2
PS also in

heavier ensembles, so that in the fits of their properties we included additional ensembles

with m̂2
PS ∼ 0.6 and â . 1. The fit results are presented in figures 10 and 11. In the figures,

the grey bands denote the continuum extrapolated results obtained by setting â = 0 in

eqs. (4.13) and (4.14), and by using the fit parameters summarised in table 8. In the table,

the numbers in the two parentheses denote the statistical and systematic uncertainties

associated with the numerical fits. The latter is estimated by varying the fitting range

to include or exclude the coarsest or the heaviest ensemble. We find acceptable values

of χ2/d.o.f for all the fits, in support of the applicability of the tree-level NLO EFT to

describe our data.
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Figure 10. Top to bottom, left to right: decay constants squared of the pseudoscalar (PS), vector

(V), and axial-vector (AV) mesons, as a function of the pseudoscalar mass squared m̂2
PS. Various

colours denote different lattice couplings: β = 6.9 (blue), 7.05 (purple), 7.2 (green), 7.4 (red), and

7.5 (brown). The grey bands (the width of which indicates the statistical error) show the results of

the continuum and massless extrapolations after subtracting the discretisation artefact, as discussed

in the text.

5 Lattice results: summary

We provide here a list of lattice highlights (from sections 2, 3, and 4). We will be very

schematic: precise definitions and detailed discussions can be found in the main text.

L1. The lattice ensembles used in the dynamical study, and the values of the lattice

parameters that characterise them, are discussed in section 2, and listed in table 1,

including the average plaquette and the gradient flow scale w0.

L2. The gradient flow scale w0 is defined and studied in section 3.1. Its mass dependence

is illustrated by figures 1, 2, and 3 and table 2. Throughout this work we employ the

gradient flow scale to set the physical scale of the lattice calculations.

L3. The topological charge is defined and studied in section 3.3, and examples of topo-

logical charge histories are depicted in figure 4. The ensembles used in the numerical

analysis do not show clear evidence of topological freezing.

L4. Lattice finite size effects are studied in section 3.4. They are negligibly small provided

the condition mPSL & 7.5 is satisfied — see also table 4 and figure 5. In the analysis

presented in this paper, all ensembles satisfy this condition.
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Figure 11. Top to bottom, left to right: masses squared of the vector (V), tensor (T), axial-vector

(AV), axial-tensor (AT), and scalar (S) mesons, as a function of the pseudoscalar mass squared

m̂2
PS. Various colours denote different lattice couplings: β = 6.9 (blue), 7.05 (purple), 7.2 (green),

7.4 (red), and 7.5 (brown). The grey bands (the width of which indicates the statistical error)

show the results of the continuum and massless extrapolations after subtracting the discretisation

artefact, as discussed in the text.

L5. In section 4, we define the operators and the two-point functions used for the mea-

surement of decay constants and masses of the mesons — see table 5. The decay

constants are perturbatively renormalised according to eqs. (4.6) and (4.7).

L6. The masses and (renormalised) decay constants (in units of the lattice spacing a) of

the spin-0 mesons are reported in table 6, and those of the spin-1 mesons in table 7.

L7. In section 4.2 we introduce the notation m̂ ≡ mMw0, and equivalent for all di-

mensional quantities expressed in terms of the gradient flow scale. We discuss the
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GMOR relation and illustrate it in figure 6. Linearity with the fermion mass holds

for m̂2
PS . 0.4. From this point on, we eliminate the dependence on the fermion mass,

and study our observables only as a function of the mass (squared) of the PS state.

L8. Masses and decay constants, expressed in units of the gradient flow scale, are plotted

for all ensembles in figures 7, 8, and 9. We notice that the V and T masses are com-

patible with each other, and so are the AV and AT — although the latter two states

are physically distinct. We do not further discuss the T and AT states in the paper.

L9. We apply tree-level WχPT via eqs. (4.13) and (4.14), that we use to perform the con-

tinuum and massless extrapolations. We impose the conditions â . 1, mPSL & 7.5,

and m2
PS . 0.4, which identify a subset of eleven ensembles to be used for the con-

tinuum extrapolation of f̂2
PS. For the other observables we relax the condition on the

mass to m2
PS . 0.6. The results are shown in table 8 and in figures 10 and 11.

L10. As reflected in the fit results for W 0 presented in table 8, f̂2
PS and m̂2

V (and similarly

m̂2
T) are affected by discretisation effects, the sizes of which are about 4 ∼ 13% and

10 ∼ 35%, respectively, over the considered ranges of bare parameters. In all other

observables, discretisation effects are no larger than the statistical errors.

6 Low-energy phenomenology: EFT and sum rules

In this section, we study some of the long distance properties of the Sp(4) gauge theory that

may be useful inputs for phenomenological studies performed in the context of composite

Higgs models based upon the SU(4)/Sp(4) coset. We restrict our attention to the PS, V

and AV states, and consider only ensembles with â . 1 and m̂2
PS . 0.4. We perform a

simplified continuum extrapolation, by subtracting from their masses and decay constants

the last term of eqs. (4.13) and (4.14), with the coefficients W 0
f,M and W 0

m,M obtained by

a fit similar to the one presented in section 4.3, but restricted to include only the eleven

ensembles that satisfy all the constraints. We then use the resulting eleven independent

measurements of the three masses and three decay constants, that we report in table 9, to

perform a simplified global fit based upon the NLO EFT in ref. [60]. The results of the

fit allow us to provide an extrapolation to the massless limit, and to assess the validity

of the EFT itself by providing a first estimate of the size of the gV PP coupling between a

vector state V and two pseudoscalar states PS. We also discuss several phenomenological

quantities of general interest, connected with classical current algebra results, such as the

aforementioned GMOR relation [108], and the saturation of the Weinberg sum rules [110]

by the lightest spin-1 states.

6.1 Global fit and low-energy constants

The EFT presented in ref. [60] describes the low-energy behaviour of the lightest PS,

V, and AV mesons, by adopting the ideas of HLS [74–78]. The extension of the chiral

Lagrangian is achieved by enhancing the SU(4) global symmetry to SU(4)A × SU(4)B,

weakly gauging the SU(4)A group factor, and implementing the spontaneous breaking
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Ensemble 10 â 10 m̂2
PS 100 f̂2

PS 10 m̂2
V 100 f̂2

V m̂2
AV 100 f̂2

AV

DB1M5 9.603(17) 2.512(22) 1.092(21) 6.19(13) 3.24(14) 1.44(16) 2.8(11)

DB1M6 8.932(11) 1.873(19) 0.969(23) 5.59(12) 3.15(14) 1.38(13) 3.5(8)

DB1M7 8.607(9) 1.549(17) 0.903(25) 5.40(13) 3.13(17) 1.24(17) 2.5(10)

DB2M1 7.728(12) 3.20(3) 1.230(30) 6.71(15) 3.35(13) 1.39(13) 2.3(7)

DB2M2 7.068(11) 2.192(26) 0.993(23) 5.90(17) 3.17(16) 1.35(15) 2.8(8)

DB2M3 6.740(6) 1.637(17) 0.914(23) 5.36(15) 3.05(15) 1.23(17) 2.3(10)

DB3M5 6.109(11) 3.68(3) 1.270(21) 7.09(17) 3.25(13) 1.65(10) 3.4(6)

DB3M6 5.820(11) 2.94(3) 1.153(22) 6.57(16) 3.35(13) 1.51(14) 3.1(8)

DB3M7 5.669(6) 2.574(21) 1.106(20) 6.20(16) 3.25(14) 1.50(12) 3.5(7)

DB3M8 5.522(7) 2.105(21) 1.014(21) 5.81(17) 3.11(15) 1.37(14) 3.1(8)

DB4M2 4.466(7) 3.67(3) 1.312(20) 7.24(14) 3.49(12) 1.56(10) 3.1(5)

Table 9. Input data used in the continuum EFT global fit. We consider only ensembles with â . 1

and m̂2
PS . 0.4. For each ensemble, we subtracted the finite lattice spacing effect, according to

eqs. (4.13) and (4.14), with the coefficients W 0
f,M and W 0

m,M obtained by a fit restricted to these

ensembles.

to the global Sp(4) by the VEVs of two spin-0 fields subject to non-linear constraints,

and transforming one on the bi-fundamental of SU(4)A × SU(4)B and the other on the

antisymmetric of SU(4)A, respectively. In this way, besides the 5 pNGBs identified with

the PS states of the theory, the spectrum also contains 15 massive spin-1 particles, identified

with the 10 V and 5 AV states. Explicit breaking of the global symmetry due to the fermion

mass mf is implemented by the familiar spurion analysis. The results for physical quantities

in terms of the 12 free parameters (f , F , b, c, gV , κ, v, v1, v2, v5, y3, y4) of the EFT are

summarised in eqs. (2.19)–(2.24), together with eqs. (2.29), (2.30) and (2.33) of ref. [60].6

The simplified global fit in ref. [60] suffered from uncontrolled systematics such as

quenching effects and discretisation artefacts. In this paper, we overcome these limitations

with the continuum extrapolations of the data obtained by dynamical simulations, as dis-

cussed in previous sections. A further technical difficulty of the global fit is due to the large

parameter space and the limited number of observables available. Because we employ Wil-

son fermions, we have one more unknown fit parameter, the critical bare fermion mass mc
0,

if we use the bare mass m0 for the fermion mass in the EFT. A better way to determine the

parameters in the EFT might be to consider a more sophisticated definition of the fermion

mass, such as the one calculated via partially conserved axial current (PCAC). However,

this would require to carry out a more involved computation of the renomalisation factors

associated with the pseudoscalar operators, which is beyond the scope of this work.

Along the lines discussed in section 4.2, here we take a different approach. We elim-

inate from the analysis any direct reference to the fermion mass, effectively replacing its

6We notice an inconsequential typo in eq. (2.16), of ref. [60], in which the last term should appear with

a + sign, rather than a − sign, in order to be consistent with eq. (2.30).
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role with the mass of the PS state. Because the linear relation m2
PS = 2Bmf holds only

at leading-order, we restrict our attention to ensembles for which m̂2
PS . 0.4 (see table 9).

Furthermore, we expand the dependence of the other observable masses and decay con-

stants [60] on m̂2
PS, truncating at linear order. (We express all quantities in units of w0.)

Up to O(m̂4
PS), we find

m̂2
V =

g2
V(bf̂2+F̂ 2)

4(1+κ)
+

2v̂1(κ+1)−ŷ3(bf̂2+F̂ 2)

4(κ+1)2
g2

Vm̂
2
PS, (6.1)

m̂2
AV =

(b+4)f̂2+F̂ 2

4(1−κ)
g2

V+

(
(b+4)f̂2+F̂ 2

)
ŷ4−2(1−κ)(v̂1−2v̂2)

4(1−κ)2
g2

Vm̂
2
PS, (6.2)

f̂2
V =

1

2
(bf̂2+F̂ 2)+v̂1m̂

2
PS, (6.3)

f̂2
AV =

(F̂ 2−bf̂2)2

2((b+4)f̂2+F̂ 2)
− ((3b+8)v̂1−4(b+2)v̂2)f̂2+F̂ 2v̂1

((b+4)f̂2+F̂ 2)2
(F̂ 2−bf̂2)m̂2

PS, (6.4)

f̂2
PS =

2f̂2((b+4c+bc)f̂2+(1+b+c)F̂ 2)

(4+b)f̂2+F̂ 2
− 4(2+b)f̂2((2+b)f̂2v̂1+(F̂ 2−bf̂2)v̂2)

((4+b)f̂2+F̂ 2)2
m̂2

PS , (6.5)

having make use of the redefinitions

f̂ ≡ fw0, F̂ ≡ Fw0, ŷ3 ≡
y3

2B̂w0

, ŷ4 ≡
y4

2B̂w0

, v̂1 ≡
v1w0

2B̂
, v̂2 ≡

v2w0

2B̂
, (6.6)

and

B̂ ≡ Bw0 , B ≡ v3/(2f2
PS) . (6.7)

This linearised ansatz involves 10 unknown parameters (f̂ , F̂ , b, c, gV , κ, v̂1, v̂2, ŷ3, ŷ4)

to be determined from 5 measurements. The remaining two parameters (v and v5) are

associated with the GMOR relation, as they enter at NLO the definition of m̂2
PS. We will

return to this point later on.

We perform a global fit using the functions in eqs. (6.1)–(6.5). The χ2 function is

defined in a simplified manner, by summing the individual χ2 obtained from the five in-

dependent fit equations, and hence ignoring correlations among the fit equations. Besides

subtracting the discretisation effects W 0
m,M â and W 0

f,M â from the original data, and re-

stricting consideration to m̂2
PS . 0.4 and â . 1, as anticipated, we also constrain the fit by

implementing the following conditions, which are the consequences of unitarity [60]:

1 > κ+ m̂2
PSŷ4,

−1 < κ+ m̂2
PSŷ3,

0 < bf̂2 + F̂ 2 + 2m̂2
PSv̂1,

0 < 2 + b+ c+ (b+ 4c)
f̂2

F̂ 2
− 2m̂2

PSv̂1, (6.8)

0 < b
(

(c+ 1)f̂2 + F̂ 2 − 2m̂2
PSv̂1 + 2m̂2

PSv̂2

)
+

+ c
(

4f̂2 + F̂ 2 − 2m̂2
PSv̂1 + 4m̂2

PSv̂2

)
−
m̂4

PSv̂
2
2

f̂2
+ F̂ 2 − 2m̂2

PSv̂1.
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Figure 12. Decay constants squared in the continuum limit — subtracting lattice artefacts due

to a finite lattice spacing (see table 9) — as a function of the pseudoscalar mass m̂2
PS. The bars

represent the statistical uncertainties. The global fit results are denoted by shaded bands whose

widths indicate the statistical errors.
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Figure 13. Masses squared in the continuum limit — subtracting lattice artefacts due to a finite

lattice spacing (see table 9) — as a function of the pseudoscalar mass m̂2
PS. The bars represent the

statistical uncertainties. The global fit results are denoted by shaded bands whose widths indicate

the statistical errors.

In figures 12 and 13 we present the continuum values of the masses and decay constants

from table 9, along with the results of the global fits, represented by blue bands, obtained

through a constrained bootstrapped χ2 minimisation with 10 parameters, with the con-

straints guided by an initial minimisation of the full data set. The fit functions describe

the data well, with χ2/Nd.o.f ∼ 0.4. But we also find that some of the EFT parameters
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f̂2, χ
M L0

f,M m̂2, χ
M L0

m,M

PS 0.00617(28)(36) 3.02(22)(35)

V 0.0291(18)(11) 0.45(16)(14) 0.400(16)(10) 2.16(15)(9)

AV 0.039(7)(2) −0.82(15)(8) 1.07(19)(8) 1.42(6)(3)

Table 10. Coefficients appearing in eqs. (4.13) and (4.14), determined by using the results of the

global fit described in the main text. The results are compatible with those obtained with the

alternative fit process in table 8, except for the coefficient L0
f,AV.

are not well determined (see discussion in appendix B, in particular the histograms of 200

resampled data obtained by bootstrapping, for the LO parameters in figure 21 and for the

NLO ones in figure 22), indicating the presence of flat directions in the χ2.

The fact that the EFT yields a good quality fit of the masses and decay constants

justifies using its results to calculate other physical quantities. The coupling gVPP is re-

sponsible for the decay of the vector meson into two pseudoscalar mesons. The NLO EFT

expression can be found in [60] (where gρππ denotes gVPP) and in the massless limit we

have that the gχVPP coupling is

gχVPP =
gV(b+ 2)(2f̂2 + F̂ 2)(bf̂2 + F̂ 2)

((b+ 4)f̂2 + F̂ 2)((b+ (b+ 4)c)f̂2 + (b+ c+ 1)F̂ 2)
√

1 + κ
. (6.9)

We find that gχVPP = 6.0(4)(2) — see also appendix B, in particular the histogram of the

coupling in figure 23, which shows a nice gaussian distribution.

As a consistency check, we also calculate the relevant coefficients in eqs. (4.13)

and (4.14), by using the results of the global fit. We present the results in table 10:

they are consistent with the ones in table 8, with the only exception of L0
f,AV which is over-

constrained by eqs. (6.1)–(6.5), but also affected by larger systematic as well as statistical

uncertainties.

The results of this exercise have to be taken with caution, for a number of reasons.

The fermion masses considered are not small enough to fully justify the linearisation of the

fit equations, nor the truncation of the EFT itself to exclude higher-order terms. This is

also clear from the fact that the masses considered are such that the V mesons are stable,

because the 2-PS channel is closed. These objections can be addressed in the future, by

lowering the fermion mass studied on the lattice. Also, the coupling gV (or alternatively

the coupling gVPP) turns out not to be small, bring into question the truncation of the

EFT. This coupling should be suppressed if we consider future lattice studies of Sp(2N)

theories with N ≥ 3.

6.2 GMOR relation and Weinberg sum rules

There are several consequences of the HLS EFT (and of current algebra) that can be tested

on our lattice data. If we first restrict our attention to the PS sector, we have the GMOR

relation, which at NLO takes the corrected form

m2
PSf

2
PS = mf (v3 +mfv

2
5), (6.10)
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Figure 14. The quantity m̂2
PSf̂

2
PS entering the GMOR relation, for the data set of m̂2

PS . 0.4 and

â . 1, in the continuum limit (see table 9).

where v and v5 are the two low-energy constants defined in ref. [60] that we removed from

our global fit. As noted in section 4.2, we cannot extract v and v5 without renormalisation

of the fermion mass. In figure 14 we plot the numerical results of m̂2
PSf̂

2
PS with respect to

m̂2
PS, as an illustration of eq. (6.10).

Going beyond the pseudoscalar sector, the first non-trivial prediction of the NLO EFT

— related to some reasonable assumptions for the truncation of the series of operators —

is that the sum of the decay constants (at zero momentum)

f2
0 ≡ f2

PS + f2
V + f2

AV , (6.11)

is expected to be independent on the fermion mass. In the top-left panel of figure 15 we

plot the numerical results of f̂2
0 with respect to m̂2

PS, with the continuum extrapolation

shown in the top-right panel. As seen in the figure, at the level of the present precision the

numerical results support the mass independence of f2
0 over the range of mass considered.

While the Weinberg spectral theorems, which involve integration over all momenta, are

exact, because they reflect the properties of the underlying condensates in the theory [110],

the saturation of the resulting sum rules over a finite number among the lightest spin-

1 states is an approximation. The NLO EFT analysis captures such violations in the

non-nearest-neighbour interactions appearing in the HLS Lagrangian. These terms are

generated by integrating out heavier resonant spin-1 states that contribute to the dispersion

relations. Saturated over the lightest resonances, the first and second sum rules are

f2
AV − f2

V + f2
PS = 0 , (6.12)

and

f2
Vm

2
V − f2

AVm
2
AV = 0 , (6.13)

respectively. The aforementioned corrections give finite contributions to the right-hand-

side of these two relations. The numerical results for these quantities, normalised by f2
V and
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Figure 15. Top to bottom: f̂2
0 , the first, and the second Weinberg sum rule, saturated over

the lightest spin-1 states, as a function of m̂2
PS. Left panels: we do not perform the continuum

extrapolation, colour coding represents the bare lattice coupling of the various ensembles. Blue,

purple, green, red and brown colours have β = 6.9, 7.05, 7.2, 7.4 and 7.5, respectively. Right

panels: continuum-extrapolation results as in table 9 (in blue), and the results of the continuum

and massless extrapolation (in black). Statistical and systematic errors are summed in quadrature.

f2
Vm

2
V, respectively, are shown in the middle and bottom panels of figure 15. As the figures

show, after continuum extrapolation the results are closer to saturating the Weinberg

sum rules. The conservative estimate of the uncertainties includes both statistical and

systematic error, and with its current size this comparison is somewhat inconclusive.
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Ensemble m̂V/m̂PS m̂PS/f̂PS m̂V/f̂PS m̂AV/f̂PS m̂S/f̂PS f̂V/f̂PS f̂AV/f̂PS

DB1M5 1.569(18) 4.80(5) 7.53(13) 11.5(6) 10.9(6) 1.72(4) 1.6(3)

DB1M6 1.728(20) 4.40(6) 7.60(14) 11.9(6) 12.3(6) 1.80(4) 1.90(21)

DB1M7 1.867(26) 4.14(6) 7.74(15) 11.7(8) 11.9(9) 1.86(5) 1.6(4)

DB2M1 1.446(18) 5.10(6) 7.37(13) 10.6(5) 10.7(5) 1.65(3) 1.34(23)

DB2M2 1.640(26) 4.70(6) 7.71(16) 11.6(7) 12.2(5) 1.78(5) 1.65(26)

DB2M3 1.807(28) 4.24(5) 7.66(16) 11.6(8) 12.5(6) 1.83(5) 1.6(4)

DB3M5 1.390(17) 5.38(5) 7.47(12) 11.4(4) 11.1(4) 1.60(3) 1.63(14)

DB3M6 1.497(19) 5.05(5) 7.55(13) 11.4(5) 10.7(5) 1.70(3) 1.62(21)

DB3M7 1.553(21) 4.82(5) 7.49(13) 11.6(5) 11.5(5) 1.72(4) 1.76(17)

DB3M8 1.662(25) 4.55(5) 7.57(15) 11.6(6) 11.1(6) 1.75(4) 1.72(23)

DB4M2 1.403(15) 5.29(4) 7.43(10) 10.9(3) 10.9(4) 1.63(3) 1.53(14)

Massless N/A N/A 8.08(32) 13.4(1.5) 14.2(1.7) 2.15(8) 2.3(4)

Table 11. Ratios of meson masses and decay constants, extrapolated to the continuum limit by the

subtraction method explained in section 4.3. We restrict the data to the eleven ensembles for which

the subtraction of effects due to the finite lattice spacing can be done for all measurable quantities.

In the last row, we report the results of the continuum and massless extrapolation, obtained by

applying eqs. (4.13) and (4.14) to the eleven ensembles. Statistical and systematic uncertainties

have been added in quadrature.

7 Comparison to other gauge theories

This section is devoted to comparing our results with those obtained in a few other lattice

gauge theories with two Dirac fermions. We start by presenting our results in a different

way, by normalising all masses and decay constants to the decay constant fPS of the

lightest PS state. By doing so, we remove direct reference to the gradient flow scale w0,

and make the comparison to other theories more transparent. We report the results of

this exercise in table 11 and figure 16. We restrict attention to the eleven ensembles

for which we are able to take the continuum limit for all the observables, as described

in section 4.3. We then compare our results to those obtained in gauge theories with

SU(2) [45], SU(3) [112], and SU(4) [85] with matter field content consisting of Nf = 2 Dirac

fermions in the fundamental.7 We do so by testing the validity of the two phenomenological

Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin (KSRF) relations [113, 114]. We conclude

this section with a comparison to the continuum extrapolation of the quenched Sp(4)

theory; details of additional quenched computations performed beyond those presented in

ref. [60] to facilitate this analysis are presented elsewhere [83].

7In the literature more lattice results are available for the SU(2) [48, 111] and SU(4) [111] theories with

two fundamental Dirac fermions. However, we note that in these references continuum extrapolations of

the numerical data computed at finite lattice spacing have not been carried out. Hence, we do not include

them in the comparison.
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Figure 16. Ratios of masses and decay constants, in the continuum limit, expressed in units of the

decay constant of the PS meson (as in table 11), shown in blue. We also show the extrapolation to

the continuum and massless limit in black, except for m̂PS, which vanishes in the limit of massless

fermions.

The fermion masses in the selected eleven ensembles are moderately heavy, with

1.39 . m̂V/m̂PS . 1.87, so that both V and AV mesons are stable, as the decay chan-

nels to two and three PS mesons, respectively, are kinematically forbidden. Bearing this in

mind, we nevertheless apply eqs. (4.13) and (4.14) to the eleven ensembles, and we perform

the massless (and continuum) extrapolations. In the last row of the table 11 we report

the resulting ratios of the masses and decay constants to f̂PS, which are rendered in black

colour in figure 16. Notice that the ratio are independent of the gradient flow scale w0, so

that fV/fPS = f̂V/f̂PS (and analogous for all dimensionless quantities in table 11).
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The spectroscopy of the lightest meson states is captured to some approximation by

the two KSRF phenomenological relations [113, 114]. The first such relation states that

fV =
√

2fPS , (7.1)

which is rather close to real-world QCD, as taking the experimental value of the rho meson

decay constant to be fρ ' 148 MeV, yields fρ/fπ ∼ 1.6 [115]. We can compare our results

for Sp(4) with the first KSRF relation by looking at f̂V/f̂PS in figure 16. For m̂2
PS < 0.4

the ratio monotonically increases from f̂V/f̂PS ∼ 1.5 as m̂2
PS decreases. A simple linear

extrapolation yields the ratio in the massless and continuum limit to be f̂V/f̂PS ∼ 2.1.

Therefore, our numerical results do not support the first KSRF relation: the resulting

values not only depend on the fermion mass, but also become larger in the massless limit.

The second KSRF relation involves mV, fPS, and the on-shell coupling constant gVPP

associated with the decay of a vector meson:

gVPP =
mV√
2fPS

. (7.2)

In real-world QCD, the mass of ρ meson mρ ' 775 MeV, expressed in units of the pion

decay constant fπ, yields roughly mρ/
√

2fπ ∼ 5.9 [115]. For comparison, we adopt the tree-

level definition for the decay rate of ρ meson, Γρ =
g2ρππ
48π mρ

(
1− 4m2

π
m2
ρ

)3/2
, and the reference

experimental values Γρ ' 150 MeV and mπ ' 140 MeV. We find gρππ ' 6.0, which is in

quite good agreement. By evaluating the right-hand side of the second KSRF relation for

the Sp(4) gauge theory, computed with the lightest ensemble and in the massless limit, we

find m̂V/
√

2f̂PS = 5.47(11) and m̂V/
√

2f̂PS = 5.72(18)(13), respectively. By comparing

with the independent measurement of gVPP = 6.0(4)(2) from section 6, obtained from the

global fit of the EFT, we conclude that the second KSRF relation holds.

It is interesting to compare the right-hand side of the second KSRF relation with other

lattice results available in the literature on SU(N) gauge theories with two fundamental

Dirac fermions. We show the comparison in figure 17. For the lightest ensembles avail-

able, it is found that in the continuum limit mV/
√

2fPS ∼ 8.1(1.2) for SU(2) [45], and

mV/
√

2fPS ∼ 5.2(3) for SU(4) with additional nf = 2 dynamical (massive) Dirac fermions

in the two-index antisymmetric (sextet) representation [85], respectively. The general trend

in SU(N) theories is that the value of mV/
√

2fPS decreases as N increases, which com-

plies with the expectation that gVPP decreases in the large-N limit.8 Near the threshold

of mPS/mV ∼ 0.5, the vector meson mass we find for Sp(4) in the continuum limit lies

between the values for SU(3) and SU(4).

We close this section by comparing the dynamical results to the quenched ones. Ex-

perience from lattice QCD suggests that the quenched results, which require only a small

amount of computing resources, capture well the qualitative features of the dynamical re-

sults for masses and decay constants, in spite of the fact that the associated systematic

8It is also interesting to investigate the flavour dependence of the ratio mV/
√

2fPS. A recent lattice study

for SU(3) gauge theory coupled to Nf fundamental fermions finds that the ratio is statistically independent

on Nf up to Nf = 6, for which all theories considered are expected to behave in a way resembling QCD [116].

On the other hand, the ratio could depend on the group representation of the fermion matter fields. For

instance, large-Nc arguments suggest that gVPP ∝ 1/
√
Nc and gVPP ∝ 1/Nc for single index and two-index

fermion representations, respectively. Pioneering lattice results in SU(4) are consistent with this scaling [85].
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Figure 17. The ratios of the vector mass and pseudoscalar decay constant mV/
√

2fPS in several

lattice gauge theories with Nf = 2 fundamental Dirac flavours. Purple, red, green and blue colours

are for SU(2) [45], SU(3) [112], SU(4) (with two additional massive sextet Dirac fermions in the

sea) [85] and Sp(4) gauge groups, respectively. The Sp(4) result obtained in this work are obtained

in the continuum limit for the eleven ensembles identified in section 4.3. The black circle is the

experimental value of the coupling in the real world of QCD. Notice that for the SU(2) and

SU(4) theories we show only the lightest data points, extracted approximately from the plots in the

respective publications.

uncertainties are not under analytical control. Quenching effects are expected to be smaller

as the number of colours increases with a fixed number of fundamental flavours.

In order to make the comparison possible, our preliminary exploration of quenched

simulations [60] had to be extended by considering larger lattice volumes and various lattice

couplings [83]. As in the dynamical case, the quenched ensembles satisfy the condition

mPSL & 7.5, that allows one to neglect finite volume effects. Continuum extrapolations

use ensembles constructed for β = 7.62, 7.7, 7.85, 8.0 and 8.2. In contrast to the case of

dynamical results — in which different ensembles are characterised by the choices of β as

well as am0 — only five independent ensembles generated at different β values are used for

all the quenched measurements. The results are hence affected by correlations among the

data for various values of the fermion mass, which are obtained from the same ensemble,

as well as from the continuum extrapolation carried out by using only five different values

of the lattice spacing. The uncertainties associated with these systematic effects were

estimated by varying the fitting intervals in the continuum and massless extrapolations.

The numerical details and results of this quenched calculations are presented in ref. [83].

In figures 18 and 19, we show together the continuum extrapolated data both for

quenched and dynamical fermions, restricted to the linear-mass regime — to m̂2
PS . 0.4 for

the pseudoscalar decay constant and to m̂2
PS . 0.6 for masses and decay constants of all

other mesons. As seen in the figures, f̂2
PS and m̂2

S are significantly affected by quenching,

and the differences become more substantial as the fermion mass decreases. We estimate
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Figure 18. Meson masses squared from quenched (blue) and dynamical (red) calculations, in the

continuum limit obtained by considering all the ensembles with m̂2
PS . 0.6, as in section 4.3. The

coloured bands illustrate the fit of the measurements used in the massless extrapolations, with the

width of the bands representing the statistical error in the fit.

the discrepancies to be δf̂2PS
/f̂2

PS ∼ 20% and δm̂2
S
/m̂2

S ∼ 25%, in the massless limit. The

mass of the V meson shows a somewhat milder discrepancy, at the level of ∼ 10%. For

other quantities, quenching effects are not visible: the corresponding discrepancies are

smaller than the uncertainties associated with the fits. Interestingly, the resulting values of

m̂V/
√

2f̂PS for the dynamical and quenched simulations, which may be used to estimate the

coupling gVPP via the second KSRF relation, are found to be consistent with each other in

the massless limit [83]. The general conclusion of the comparison with the quenched results

is quite encouraging, although at present we do not know whether this conclusion is an

indication that the quenched approximation adequately captures the information encoded

in the two-point functions — possibly because of the proximity to large-N — or whether

it is just a trivial consequence of the large fermion masses we studied.

8 Continuum results: summary

In this section, we briefly summarise the continuum extrapolation results for the dynamical

theory, presented in section 6 and 7.

C1. Our continuum results for the decay constants and masses of PS, V, and AV states,

for the ensembles satisfying m̂2
PS ≤ 0.4, are reported, in units of the gradient flow

scale, in table 9.
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Figure 19. Meson decay constants squared from quenched (blue) and dynamical (red) calculations,

in the continuum limit obtained by considering all the ensembles with m̂2
PS . 0.6 for f̂2

V and f̂2
AV,

but restricting to m̂2
PS . 0.4 for f̂2

PS, as in section 4.3. The coloured bands illustrate the fit of the

measurements used in the massless extrapolations, with the width of the bands representing the

statistical error in the fit.

C2. The global fit based on the EFT describing PS, V and AV states using hidden local

symmetry yields the results in table 10, illustrated in figures 12 and 13.

C3. Section 6.1 discusses the GMOR relation and three sum rules in the continuum limit.

The main results are shown in figures 14 and 15.

C4. In section 7 the continuum limit results are discussed in units of the decay constant

fPS of the PS states, that are summarised in table 11, and illustrated in figure 16. We

include also the mass of the scalar flavoured state S. All our measurements are in the

range 1.39 . m̂V/m̂PS . 1.87, in which the V states cannot decay to states containing

two PS particles. (Analogous considerations apply to the 3-body decay of the AV

mesons.) This range may be of direct relevance in the context of dark matter models.

C5. We perform the extrapolation to the massless limit. The masses of V, AV, and

S states are mV/fPS = 8.08(32), mAV/fPS = 13.4(1.5), and mS/fPS = 14.2(1.7).

The decay constants of V and AV states in the continuum and massless limit are

fV/fPS = 2.15(8) and fAV/fPS = 2.3(4), respectively — see table 11.

C6. We find that fV/fPS = 2.15(8) is larger than expected on the basis of the first KSRF

relation, which would yield fV =
√

2 fPS — see section 7.
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C7. The second KSRF relation is satisfied, with gVPP = 6.0(4)(2) from the global fit, and

mV/(
√

2fPS) = 5.72(18)(13) obtained from the massless limit extrapolation.

C8. We compare the continuum and massless limit results to the literature on theories

with two Dirac fermions on the fundamental. Figure 17 shows that the VPP coupling

is smaller than in the SU(2) theory, but comparable to SU(3) and SU(4).

C9. We close section 7 by comparing our results, obtained with dynamical fermions, to

quenched calculations [83]. (See figures 18 and 19.) We find that, in the mass-

less limit, the decay constant squared of the PS state f̂2
PS is ∼ 20% lower than the

quenched result. The mass squared of the (flavoured) scalar is ∼ 25% lower than

in the quenched result, while that of the vector is lower by ∼ 10%. In the other

observables, the dynamical and quenched results are compatible with one another,

given the current uncertainties.

9 Conclusions and outlook

Following along the programme outlined in ref. [60], with this paper we have made a sub-

stantial step forwards in the study of the gauge theory with Sp(4) group and Nf = 2 (Dirac)

fundamental fermions, that at long distance yields pNGBs describing the SU(4)/Sp(4)

coset, of relevance in the CHM context. We have adopted the Wilson-Dirac lattice action

for gauge and fermion degrees of freedom, and performed numerical studies via the HMC

method, with dynamical fermions. We have repeated the calculations at several values of

the lattice bare parameters (fermion mass and gauge coupling). Our main result is the first

continuum extrapolation of the Sp(4) measurements for the masses and decay constants of

the lightest, flavoured, spin-0 and spin-1 mesons. While numerical studies are performed

in a regime of fermion masses large enough to preclude the decay of heavier mesons to the

pNGBs, we have presented also a preliminary massless extrapolation, and compared the

results to those of the quenched approximation. Summaries of the lattice and continuum

limit results can be found in the brief sections 5 and 8, respectively. Other results of rel-

evance to the broad research programme of lattice gauge theories with Sp(2N) group will

be reported in refs. [83] and [117] (see also ref. [64]).

In the CHM context, while it is not strictly necessary to have massless fermions, it

would be important in the future to extend this study to reach closer to the massless

regime, for pNGB masses that allow the heavier mesons to decay. This would allow to test

whether the moderate departure of our results from the quenched ones is due to the large

fermion mass in the action, to the approach to the large-N limit, to dynamical properties

of the theory or to a combination of the above. Of great importance in the CHM context is

also the problem of vacuum alignment. A first step towards addressing this point, without

specifying the full set of couplings to SM fermions, would be to compute the coefficients of

higher-order operators in the EFT obtained by retaining only the pNGB degrees of freedom.

This information could be used as input in model building, to compute the (perturbative)

Higgs potential responsible for EWSB. In general, it would also be interesting to track the
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dependence on N of the spectra of mesons in Sp(2N) theories with the same fermion field

content, and understand how closely it follows the expectations from the large-N analysis.

The mass regime we studied is suitable for direct application in the context of models

with strongly-coupled origin of dark matter (along the lines of refs. [67–69], for example).

The information we provide here is a necessary first step towards adopting this theory as

a candidate for the origin of dark matter. Further information about the dynamics feeds

into the relevant cross-sections, the calculation of which requires knowing the interactions.

The first coupling one would like to measure in the future is the gVPP coupling between

one vector state V and two pseudoscalar states PS. We have performed a preliminary

determination of this coupling based upon the EFT constructed to include also V and AV

mesons, but the intrinsic limitations of this process imply that the results should be used

with some caution.

Finally, CHM constructions often involve advocating for (partial) compositeness of

some of the SM fermions, the top quark in particular. To this purpose, model building

requires the existence of new composite fermion states with special properties, that can be

realised in the Sp(4) gauge theory by introducing nf = 3 (Dirac) fermions transforming

in the 2-index antisymmetric representation of the group [13, 42]. Some results about

the (quenched) spectrum of mesons in the theory with this field content will be presented

in ref. [83], but the implementation of fully dynamical calculations with multiple fermion

representations will require a significant amount of development, with only few examples

of calculations of this type existing in the current literature [28, 32, 37, 85, 118].
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A Lattice action and numerical calculations: additional details

We collect in this appendix some supplementary details, pertaining the lattice numerical

study that ultimately leads to the results summarised in tables 6 and 7, which provide the

data upon which we perform the continuum and massless extrapolations. In appendix A.1

we discuss the treatment of the Sp(2N) matrices within the HMC algorithm. We briefly

clarify the role of diquark operators in appendix A.2. Finally, in appendix A.3 we present

details of the fitting procedure of the correlation functions used to extract masses and

decay constants.

A.1 Hybrid Monte Carlo

We perform numerical simulations using a variant of HiRep code [91], which is designed to

simulate SU(N) and SO(N) lattice gauge theories with fermions in higher representations.

While a detailed description of the implementations of Sp(2N) theories in the HiRep code is

described in ref. [60] (see also refs. [61] and [63]), here we briefly summarise its main features

and then report on some improvements we implemented for the purposes of this and future

projects. This paper focuses on the spectroscopy of Sp(4) with two fundamental fermions,

higher-dimensional representations will be discussed elsewhere.9 To study the Nf = 2

theory we use the standard hybrid Monte Carlo algorithm, a well established technique for

lattice QCD.

In our preliminary study of the two-flavor Sp(4) theory [60], we used the specific form

of group generators TA given in ref. [49] with the normalisation of Tr(TATB) = δAB/2 for

the molecular dynamics (MD) evolution. We also implemented a resymplectisation process,

to ensure that updated configurations stay inside the Sp(4) group manifold, that requires

performing a (normalised) group projection onto the quaternion basis. This process works

well for Sp(4) theories, but in order to enhance the capability of the software in view of

future studies of dynamical Sp(2N) theories with arbitrary N , in this study we further

improve and generalise the code in the following way.

9Preliminary results for Sp(2N) theories with fermions in the anti-symmetric two-index irreducible rep-

resentation are presented in ref. [64], and a more detailed study will be discussed in ref. [83].
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First, we remind the reader that the group elements U of Sp(2N) satisfy the condition

U∗ = ΩUΩ†, with Ω =

(
0 IN×N

−IN×N 0

)
. (A.1)

U is a unitary matrix, and it can be written as U = exp(iaATA), where TA are Hermitian

traceless 2N × 2N matrices, and aN real numbers. Combining eq. (A.1) and unitarity, one

can also write the matrix U in the block-diagonal form:

U =

(
V W

−W ∗ V ∗

)
, (A.2)

where V and W are complex N × N matrices. Because of its adaptability to any N , we

perform the resymplectisation via a variant of the modified Gram-Schmidt algorithm, that

has been tested for the pure gauge model with Heath Bath algorithm [60, 63]. The basic idea

is that the (N+j)-th column of U can be obtained from j-th via colj+N = −Ωcolj , while the

Gram-Schimt procedure is used to find the (j+1)-th column through the orthonormalisation

with respect to the j-th and (N + j)-th. We also modified the code to save two N × N
matrices (V and W ), instead of the full 2N × 2N unitary matrix U , reducing by half the

size of each configuration.

The MD update in HMC makes explicit use of the generators of the group, not just

of the group elements. We write the group generators TA as follows. Eq. (A.1) can be

rewritten in terms of the group generator TA, as the condition

TA∗ = −ΩTAΩ†, (A.3)

which allows to write TA in block-diagonal matrix form as

TA =

(
X Y

Y ∗ −X∗

)
, (A.4)

where of the two N × N matrices, X is Hermitian and Y is complex symmetric. We use

the definition in eq. (A.4), supplemented by the normalisation Tr (TATB) = δAB/2, for the

generators implemented into the HiRep code.

We conclude by summarising some technical details about the algorithm used in the

Sp(4) gauge theory with two Dirac fermions in the fundamental representation. Gauge

configurations are generated using the HMC with a second order Omelyan integrator for the

MD update. We use different lengths of MD time steps δτg and δτf for gauge and fermions

actions, respectively, which are optimised to keep the acceptance rate of the Metropolis test,

performed at the end of each HMC update, in the range of 75− 85%. Thermalisation and

autocorrelation lengths are determined by monitoring the average value of the plaquette.
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A.2 Of diquarks

In the theory studied in this paper, mesons and diquarks combine together in the low-

energy spectrum, to form irreducible representations after the spontaneous breaking of

the enlarged global SU(4) symmetry breaking to Sp(4). Hence, we do not calculate the

diquark correlators, as they are identical to the corresponding meson correlators. A general

discussion of both real and pseudoreal representations can be found in ref. [105], yet we

think it is useful to explicitly write the diquark operators and show the identity at the level

of correlators by using our lattice action in eq. (2.4). Such an analysis for SU(2) theory

with two fundamental fermions can be found in ref. [43].

The diquark operators are defined by

OD(x) ≡ QTi (x)(−Ω)CΓQj(x), (A.5)

where C is the charge conjugation operator satisfying γµTC = −Cγµ, Γ is a generic ma-

trix with spinor indices, spinor indices are understood and summed over, and the anti-

symmetric matrix Ω defined in eq. (A.1) acts on the (understood) colour indices. Then,

the diquark correlation function is

COD(t) =
∑
~x

〈0|OD(~x, t)O†D(~0, 0)|0〉

=
∑
~x

Tr
[
ΓSj(x; 0)γ0Γ†C†(−Ω)†γ0TSTi (x; 0)(−Ω)C

]
= −

∑
~x

Tr
[
ΓSj(x; 0)γ0Γ†γ0C†(−Ω)†STi (x; 0)(−Ω)C

]
. (A.6)

The inverse of a quark propagator S−1 — or, equivalently, the Wilson-Dirac operator —

can be obtained from eq. (2.4):

S−1
i (x; y) = (4 + am0)δx,y −

1

2

∑
µ

(
(1− γµ)Uµ(x)δx+µ̂,y + (1 + γµ)U †(x)δy,x−µ̂

)
. (A.7)

By recalling eq. (A.1) and the defining property of the charge-conjugation matrix

C−1 = C† = CT = −C, one can show that

C−1(−Ω)−1(S−1
i (x; y))T (−Ω)C = S−1

i (y;x), (A.8)

which in turn leads to

C†(−Ω)†STi (x; y)(−Ω)C = Si(y;x). (A.9)

Combining this result with eq. (4.2) and eq. (A.6), we finally arrive at

COD(t) = COM (t) , (A.10)

where COM (t) is the meson correlation function defined in eq. (4.2).
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A.3 Effective mass and fitting procedure

In order to extract the lattice measurements of masses and decay constants, we fit the nu-

merical data for the relevant two-point correlation functions. In all ensembles we produced,

the Euclidean time is large enough to reach a plateau region in the plot of meff versus time

t, in which the correlation functions are well approximated by a single exponential func-

tion, with its decay rate identified by the mass of mesons — the relevant 2-point function

asymptotically behaves as COM (t) ∝ e−mMt. We use standard χ2 minimisation to this

functional form to determine the best fit parameters (mass and decay constant, in units of

the lattice spacing) and their statistical uncertainties.

This process requires choosing, for each ensemble and each meson, an interval

Ifit = [ti, tf ] of Euclidean time, and restricting the fit to data collected between its min-

imum value ti and its maximum time tf . We choose the fitting intervals as follows: we

first look at the effective mass plots and identify the emergence of the plateau. Over the

plateau region, we perform a single-exponential fit. We vary the choices of ti and tf , and

ultimately identify the best fit range with the choice that yields the smallest value for

χ2/Nd.o.f , with the largest possible range tf − ti. We provide the relevant details of this

process in tables 12 and 13. As an illustrative example, in figure 20 we show the effective

mass plots for PS, V, AV and S mesons at β = 7.2 and am0 = −0.794 (corresponding to

ensemble DB3M7). The shaded bands represent the fit results, showing both the statistical

uncertainties (width of the band) and the best fitting ranges (length of the band). For the

PS meson, we perform a simultaneous fit of the two-point functions of PS and AV operators

in eq. (4.3) and eq. (4.5).

We notice that while the effective masses retained in the fit extend to the maximum

length of the temporal directions Tmax for PS and V mesons, those for AV and S mesons

typically cease at t < Tmax due to severe numerical noise problems, which in practical terms

reduce the fitting ranges. As a result, we expect a comparatively large systematic error

associated with the choice of the fitting range for AV and S states (analogous arguments

apply to the AT states).

B Low-energy constants and global fit

In this appendix, we present the numerical results for the LECs in eqs. (6.1)–(6.5) obtained

from the simplified global fit to the data discussed in section 6.1. As anticipated, we find

it instructive to explicitly show the histograms associated with the LEC distributions.

Figures 21 and 22 report the histograms for the LECs appearing in the EFT at the leading

and the next-to-the-leading order, respectively. As seen in the figures, some fit parameters

do not exhibit gaussian distributions, but rather expose long, flat tails. The samples in the

tail do not lead to big upwards fluctuations of the value of χ2/Nd.o.f , suggesting that there

are some local minima in the parameter space with χ2 close to the global minimum, or

possibly a flat direction. Figure 23 shows the histogram for the gVPP coupling as defined

and discussed in eq. (6.9) in section 6.1.
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Ensemble Nconfigs δtraj
PS V AV

Ifit χ2/Nd.o.f Ifit χ2/Nd.o.f. Ifit χ2/Nd.o.f.

DB1M1 100 24 9–16 0.3 10–16 0.4 6–10 1.3

DB1M2 100 24 11–16 0.8 9–16 0.2 6–9 0.1

DB1M3 100 24 10–16 0.5 10–16 1.0 6–10 1.1

DB1M4 74 32 10–16 1.1 10–16 0.2 6–9 0.9

DB1M5 183 12 10–16 0.6 10–15 1.0 7–10 0.6

DB1M6 80 28 10–16 0.7 10–16 0.3 6–9 0.5

DB1M7 71 12 10–16 0.5 10–16 1.3 7–10 0.5

DB2M1 100 20 12–18 0.8 11–18 0.5 8–11 1.1

DB2M2 100 24 12–18 0.5 13–18 0.6 8–14 0.6

DB2M3 102 20 13–18 1.0 12–16 0.4 9–11 0.1

DB3M1 120 20 14–18 0.5 14–18 0.2 8–12 0.3

DB3M2 100 24 12–18 0.6 12–18 0.8 8–14 1.0

DB3M3 200 12 13–18 1.0 13–17 1.0 9–15 0.4

DB3M4 200 12 14–17 0.7 14–18 0.7 9–15 0.9

DB3M5 150 12 15–18 0.3 15–18 0.8 9–15 1.3

DB3M6 200 12 13–18 0.8 13–17 0.1 10–15 0.6

DB3M7 199 12 14–18 0.6 14–18 0.8 9–14 1.4

DB3M8 150 12 15–20 0.6 15–20 0.9 10–16 0.2

DB4M1 150 12 19–24 1.0 15–24 1.9 12–17 0.6

DB4M2 150 12 19–23 0.4 17–24 0.6 12–15 0.2

DB5M1 105 12 16–24 0.6 18–24 0.2 11–19 0.6

Table 12. Fitting intervals of the Euclidean time Ifit = [ti, tf ] used in the single-exponential fit

of the measured correlators for PS, V and AV mesons. The number of configurations and the

separation between the adjacent configurations are denoted by Nconfigs and δtraj, respectively. We

carry out a correlated fit using standard χ2 minimisation. We show the resulting values of χ2/Nd.o.f.,

as a way to assess the quality of the fit itself.
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Ensemble
T AT S

Ifit χ2/Nd.o.f Ifit χ2/Nd.o.f. Ifit χ2/Nd.o.f.

DB1M1 9–16 1.1 6–10 0.8 6–9 1.7

DB1M2 9–16 0.9 6–9 0.9 6–9 0.4

DB1M3 8–16 1.0 6–10 1.6 7–10 0.6

DB1M4 10–16 1.4 6–10 1.0 5–8 1.2

DB1M5 10–16 0.4 6–10 0.6 7–10 0.7

DB1M6 9–16 0.7 7–10 1.6 6–9 0.5

DB1M7 8–16 0.5 7–10 0.8 6–10 0.1

DB2M1 11–18 0.7 8–12 0.6 8–13 0.4

DB2M2 12–18 1.5 8–12 1.6 7–9 1.0

DB2M3 11–18 1.0 9–11 1.1 7–12 0.3

DB3M1 14–18 0.2 7–12 0.4 9–14 0.9

DB3M2 12–18 0.9 7–13 1.5 8–14 1.0

DB3M3 13–18 0.8 8–14 0.9 8–14 0.2

DB3M4 11–18 1.2 10–15 0.4 9–16 0.5

DB3M5 13–18 0.4 10–14 1.4 9–15 0.7

DB3M6 12–17 0.1 10–15 0.7 10–15 1.2

DB3M7 13–18 0.6 9–16 1.6 9–15 0.9

DB3M8 11–20 0.4 10–14 1.0 10–17 1.7

DB4M1 15–24 0.4 11–16 1.1 12–18 0.5

DB4M2 16–24 0.7 12–16 0.2 11–17 0.5

DB5M1 18–24 0.6 11–19 0.2 11–20 1.3

Table 13. Fitting intervals of the Euclidean time Ifit = [ti, tf ] used in the single-exponential fit of

the measured correlators for T, AT and S mesons, where the same Nconfigs and δtraj in table 12 are

considered. We carry out a correlated fit using standard χ2 minimisation. We show the resulting

values of χ2/Nd.o.f., as a way to assess the quality of the fit itself.
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Figure 20. Example of effective mass plots of low-lying spin-0 and spin-1 mesons. The data is

taken from the DB3M7 ensemble (see list in table 1), which is characterised by the lattice parameters

β = 7.2 and am0 = −0.794. The individual fits that yield the masses of the PS, V, S and AV states

are restricted to include only the plateau regions, which are highlighted by the shaded bands. The

width of each band represents for the statistical uncertainty.
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Figure 21. Histograms of the distribution of the six low-energy constants appearing in the EFT

of section 6.1 at the leading order, as determined from the global fit.
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Figure 22. Histograms of the distribution of the four low-energy constants appearing in the EFT

of section 6.1 at the next-to-the-leading order, as determined from the global fit.
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Figure 23. Histogram of derived quantity gVPP — see eq. (6.9) in section 6.1 — based upon the

distributions in figures 21 and 22.
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