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1 Introduction

Coherent forward scattering of neutrinos on particles of medium ψ (ψ = e−, n, p) generates

the Wolfenstein potential VW [1]. Being added to the neutrino evolution equation, VW
can significantly affect neutrino oscillations, known as the Mikheyev-Smirnov-Wolfenstein

(MSW) effect [1–3]. When neutrino-matter interactions are mediated by a heavy boson

with the interaction radius m−1A (where mA is the mediator mass) much smaller than the

object in which neutrinos propagate (or the distance over which the density varies), the

Wolfenstein potential equals

VW =
gνgψ
m2
A

nψ, (1.1)

where nψ is the number density of the ψ particles, gν and gψ are the couplings of mediator

to ν and ψ respectively. The potential depends on the local number density nψ while the

size and shape of the object are not relevant. The medium can be considered as infinite. In

the standard model (SM), the mediators are the W and Z bosons, satisfying the condition

for (1.1). New heavy particles beyond the SM can generate via non-standard interactions

additional contributions to the Wolfenstein potential with the same form as (1.1).

New neutrino interactions may be mediated by light particles as well, if the light

mediators are very weakly coupled to the SM fermions. With sufficiently small values of gν
and gψ, and correspondingly small mA, sizable gνgψ/m

2
A can evade various bounds from

processes with large momentum transfer |q2| � m2
A, because the new physics contributions

in such processes are typically proportional to the small quantity gνgψ/|q2| rather than

gνgψ/m
2
A. In contrast, the Wolfenstein potential in (1.1), can be unchanged if m2

A decreases

proportionally with respect to gνgψ. This, however, is restricted by the finite size of the

object R. When mA becomes smaller than 1/R, the dependence of VW on mA in (1.1) is

modified so that the matter effect turns out to be also suppressed. In this paper we will

consider this dependence and its implications in details.

The matter effects due to light mediators have been studied before [4–21]. The me-

diators, mostly considered in the literature, are new gauge bosons of the lepton numbers
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Le − Lµ, Lµ − Lτ or Lτ − Le. Long-range forces induced by these bosons can affect solar

and atmospheric neutrino oscillations [4, 5] as well as high energy astrophysical neutrinos

interacting with electrons in the Universe [15]. Various fifth force and gravitational exper-

iments put very strong bounds on couplings of light mediators with matter but in certain

ranges it is neutrino oscillation phenomena that have the best sensitivity to couplings [17].

As for scalar interactions, it is well known that the corresponding matter effect leads to

corrections to the neutrino masses. Recently this possibility has been studied in ref. [18]

and it is claimed that such scalar interactions can explain the discrepancy between the

solar neutrino and KamLAND determinations of ∆m2
21.

In this paper, we present detailed study of the Wolfenstein potentials induced by light

mediators (both vector and scalar). We compute the Wolfenstein potentials for several

spherically symmetric density profiles and study dependence of the potentials on the medi-

ator mass. Taking into account existing bounds on light mediators, we assess their relevance

to neutrino experiments.

The paper is organized as follows. In section 2 we study the effects of light scalar

and vector mediators on neutrino propagation, considering general matter density distri-

butions. In section 3 we present derivation of the effective potentials for several spherically

symmetric density distributions which can be applied to the Earth, the Sun and similar

celestial bodies. In section 4 we consider existing bounds on light mediators and apply our

results to neutrinos propagating in the Sun, the Earth and supernovae. Discussion and

conclusions are presented in section 5.

2 Effects of light mediators on neutrino propagation

Let us consider interactions between neutrinos (ν) and particles in matter (ψ) mediated by

a new light vector boson Aµ or scalar boson φ. The relevant part of the Lagrangian reads

L ⊃ νi/∂ν −mννν − gνν /Aν − gψψ /Aψ −
m2
A

2
AµAµ (2.1)

in the vector case. In the case of a scalar mediator, the last three terms in (2.1) should be

replaced by

L ⊃ −yννφν − yψψφψ −
m2
φ

2
φ2. (2.2)

We assume that neutrinos are Dirac particles. For Majorana neutrinos, though the inter-

action forms are slightly different, the results are the same. Also we consider neutrinos of a

single flavor. It can be straightforwardly generalized to the case of three-neutrino mixing.

The Lagrangian (2.1) determines the equations of motion (EOM) of ν and Aµ:

i/∂ν −mνν − gν /Aν = 0, (2.3)[
∂2 +m2

A

]
Aµ − gννγµν − gψψγµψ = 0. (2.4)

According to eq. (2.3), the effect of Aµ on neutrino propagation can be described as

the displacement i/∂ → i/∂ − gν /A, which in the momentum space corresponds to

pµ → pµ + gνA
µ, (2.5)
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where pµ is the 4-momentum of the neutrino. In particular, the neutrino energy E receives

the correction:

E = p0 → E + V, V = gνA
0. (2.6)

In the scalar case, the EOM from eq. (2.2) are

i/∂ν −mνν − yνφν = 0, (2.7)[
∂2 +m2

φ

]
φ− yννν − yψψψ = 0. (2.8)

As follows from eq. (2.7), the effect of φ on neutrino propagation is equivalent to changing

the neutrino mass:

mν → mν + δmν , δmν = yνφ. (2.9)

In most applications, the medium particles ψ are at rest (non-relativistic), hence1

ψψ = nψ, ψγ
µψ = nψ(1, 0, 0, 0). (2.10)

Since the neutrino number density is much smaller than the number density of electrons

or nucleons, we take νν � ψψ and νγµν � ψγµψ in eqs. (2.8) and (2.4). This means that

φ and Aµ are dominantly induced by ψ.

For the vector case, eq. (2.10) implies that the spatial components of Aµ vanish (up to

gauge uncertainties):

Aµ = (A0, 0, 0, 0). (2.11)

Furthermore, since the ψ particles are at rest, A0 has no temporal dependence (∂tA
0 = 0).

Therefore, eq. (2.4) becomes [
−∇2 +m2

A

]
A0 = gψnψ. (2.12)

Given a distribution of nψ, eq. (2.12) determines A0.

All the above analyses can be straightforwardly applied to a scalar mediator. Starting

from eq. (2.8), we obtain the equation similar to eq. (2.12):[
−∇2 +m2

φ

]
φ = yψnψ, (2.13)

and hence a similar solution.

From eqs. (2.12) and (2.13), we can see that φ and A0 are determined by nψ in the

same way. However, the effects of φ and A0 on neutrino propagation are very different.

In the neutrino evolution equation φ gives correction to the mass and therefore appears

as (mν + δmν)2/2E. Approximately(for δmν � mν), this corresponds to adding

VS ≈
mν

E
δmν =

mν

E
yνφ (2.14)

to (mν)2/2E. In comparison, A0 appears in the equation as an addition of V = gνA
0

to m2
ν/2E. Thus, the scalar matter effect enters the flavor evolution equation with the

1Recall that the physical meaning of ψγµψ is the electric current density and ψγ0ψ = ψ†ψ is the electron

number density [22]. For ψ at rest, ψψ = ψγ0ψ is identical to the electron number density.
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additional suppression factor mν/E. This factor is due to chiral suppression. Since the

helicity is conserved in neutrino oscillations, the chirality-flipping terms in the Lagrangian,

such as mass terms or scalar interactions, have to change it twice, which is the reason

that m2
ν appears instead of mν in neutrino oscillations. Because the scalar interaction

flips the chirality, another flip is needed which is given by mν/2E. In other words, only

mν/2E fraction of the chirality-flipped state contains the original helicity. This means

that, to obtain effects of the same size, yνφ should be E
mν

times larger than gνA
0. That is,

yνyψ/m
2
φ should be E

mν
times larger than gνgψ/m

2
A. This strongly affects the relevance of

the scalar case to the oscillation phenomenology.

In the case of pseudo-scalar and axial-vector mediators, the corresponding fields are

produced by interactions with ψγ5ψ and ψγµγ5ψ. In unpolarized medium, these two quan-

tities vanish due to γ5. For polarized medium, the pseudo-scalar and axial-vector potentials

decrease as r−3, being dipole effects (see, e.g., ref. [23]). Therefore these potentials are small

compared to scalar and vector potentials.

3 Effective potentials for spherically symmetric density distributions

In what follows, we consider the vector case, while for the scalar case, the results can be

obtained immediately with the substitutions: A0 → φ, mA → mφ, gν → yν , and gψ → yψ.

In many applications (e.g., the Earth, the Sun), the matter density distribution is, to

a good approximation, spherically symmetric. The spherical symmetry allows us to reduce

eq. (2.12) to a radial differential equation:[
∂2

∂r2
+

2∂

r∂r
−m2

A

]
A0(r) = −gψnψ(r). (3.1)

For any given profile nψ(r), eq. (3.1) can be solved by a standard method known as variation

of parameters, which gives

A0(r) =
gψ
mAr

[
e−mAr

∫ r

0
xnψ(x) sinh(mAx)dx+ sinh(mAr)

∫ ∞
r

xnψ(x)e−mAxdx

]
. (3.2)

The above computations of potentials are essentially classical. Therefore for an arbi-

trary density distribution nψ(r) (not necessarily spherically symmetric), A0 can be found

by performing summation (integration) of the Yukawa potentials produced by individual

particles [see also eq. (3.8)]:

A0(r) = −gψ
4π

∫
nψ(r̃)

e−mA|r−r̃|

|r − r̃| d3r̃. (3.3)

For the spherically symmetric case, one can integrate over angular variables in eq. (3.3),

which also leads to eq. (3.2).

Using eq. (3.2) we compute the Wolfenstein potentials for several matter density pro-

files, which can be used to approximately describe the density distributions of the Earth,

the Sun, and supernovae. Some interesting limits will be discussed.
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Constant density within a sphere. For a constant density distribution within a sphere

of radius R:

nψ(r) =

{
0 (for r > R)

nψ (for r ≤ R)
, (3.4)

we find from (3.2)

A0(r) =
gψnψ
m2
A

F (r), (3.5)

where

F (r) =

1− mAR+1
mAr

e−mAR sinh(mAr) (r ≤ R)

e−mAr

mAr
[mAR cosh(mAR)− sinh(mAR)] (r > R)

, (3.6)

describes deviation from the infinite medium potential. Then according to eq. (2.6), the

effective neutrino potential produced by A0 equals

V (r) = gνA
0(r) =

gνgψnψ
m2
A

F (r). (3.7)

Several important limits are in order.

• R → 0. We fix the number of particles ψ, Nψ ≡ 4
3πR

3nψ, within the sphere when

taking R→ 0. In this limit nψ(r)→ Nψδ(r), eqs. (3.6) and (3.7) give

V (r) =
gνgψ
m2
A

e−mAr

r
nψ
R3

3
=
gνgψ
m2
A

Nψ
e−mAr

4πr
, (3.8)

which, for Nψ = 1, reproduces the Yukawa potential of a single ψ particle.

• mA → 0. In the limit of massless mediator, eqs. (3.6) and (3.7) lead to

V (r) = gνgψnψ ×


3R2−r2

6 (r ≤ R)

R3

3r (r > R)
(3.9)

which coincides with the r dependence of the Coulomb potential of a charged sphere.

In this limit, the potential for r > R is determined by the total particle number

Nψ inside the sphere, independently of the radial distribution. If mA is nonzero but

small, the first order correction in mA to the potential equals (for both r ≤ R and

r > R)

δV (r) = −gνgψnψ
mA

3
R3. (3.10)

• mA →∞. In this limit, eqs. (3.6) and (3.7) give

V (r) =


gνgψnψ
m2
A

(r ≤ R)

0 (r > R)
. (3.11)

Inside medium, the potential is a constant and outside it vanishes. This reproduces

the standard Wolfenstein potential for infinite medium.
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Figure 1. The effective potentials V (in arbitrary unit) produced by a sphere of radius R with

constant matter density. Left panel : dependence of V on the distance r for different values of the

mediator mass mA. Values of gνgψnψ are chosen in such a way that V (r = R) = 1/2 for all values

of mA. Right panel : comparison of V (mA) in the large and small mA limits with the exact result,

computed using eqs. (3.5)–(3.7) and (3.9)–(3.11) at the surface of the sphere (r = R).

• |R− r| � m−1A � R. The limit means that the radius of interaction is much smaller

than R but much larger than the depth of the trajectory R − r. The absolute sign

“| |” indicates that this limit applies not only to underground neutrino trajectories

but also to above-the-surface neutrino beams. The limit can be realized for reactor

and accelerator experiments. In this limit, we obtain

V (r) =
1

2

gνgψnψ
m2
A

. (3.12)

It differs from the standard Wolfenstein potential by the additional factor of 1/2,

which reflects that only half of the space produces the potential.

In the left panel of figure 1, we show the dependence of V on r for different values of

mA according to (3.7) and (3.6). For mA � R−1 (green curve) the r-dependence is close

to that of the standard Wolfenstein potential, which is essentially a step function. Near

the surface (r ≈ R) the short-range potential (green curve) is roughly half the standard

Wolfenstein potential (the plateau of this curve), as expected from eq. (3.12). When mA

decreases, it becomes smoother (yellow line). For very small mA, the long-range force leads

to a Column-like potential (blue curve).

In the right panel of figure 1, we show the dependence of V at r = R on mA accord-

ing to the exact formula (blue solid curve) as well as the small- and large-mA limits in

eqs. (3.9)–(3.11). The inverse-square dependence of the standard Wolfenstein potential on

mA deviates significantly from the exact dependence for small values of mA.

Multi-layer density profile. A multi-layer density profile with constant densities within

layers is a good approximation for the Earth density distribution. Using result (3.6) for

constant density spheres one can obtain results for the Earth. For instance, for two layers

(a simplified mantle-core profile) with constant average densities nMψ and nCψ and radii RM

and RC respectively, the Wolfenstein potential in the mantle is

V (r) =
gνgψ
m2
A

[
nMψ Fr<R(r,RM ) + (nCψ − nMψ )Fr>R(r,RC)

]
, (3.13)

– 6 –
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and in the core is

V (r) =
gνgψ
m2
A

[
nMψ Fr<R(r,RM ) + (nCψ − nMψ )Fr<R(r,RC)

]
, (3.14)

where Fr<R and Fr>R are given by the lower and the upper lines of eq. (3.6). For more

realistic profiles with many layers, the generalization is straightforward.

Exponential density distribution. Exact analytic results can be obtained for an ex-

ponential density distribution,

nψ(r) = nψ(0)e−rκ. (3.15)

This distribution can be used to partially describe the matter density of the Sun and

supernovae. Computing the integral in (3.2) gives

V (r) =
gνgψnψ(r)

m2
A − κ2

[
1 +

2κ

m2
A − κ2

1

r

(
e(κ−mA)r − 1

)]
. (3.16)

Several important limits are in order.

• κ → 0. This limit corresponds to a constant density distribution. In this limit,

eq. (3.16) reduces to the standard Wolfenstein potential of infinite medium, see

eq. (3.11) with nψ = nψ(0).

• mA � κ. In this limit, the radius of force is much larger than the scale of density

change. From eq. (3.16), we obtain

V (r) = −gνgψnψ(r)

κ2

[
1− 2

κr
(eκr − 1)

]
, (3.17)

which does not depend on mA. For r � κ−1, eq. (3.17) reduces to

V (r) =
gνgψnψ(0)

κ2
2

κr
, (3.18)

that is, the potential at large r decreases as 1/r, i.e., slower than the matter density (∝
e−κr) decreases. This can produce interesting phenomena such as new level crossing

for solar neutrinos [24].

• mA ≈ κ. In this limit, eq. (3.16) gives

V (r) =
gνgψnψ(r)

4κ2
(1 + κr). (3.19)

Exponential density distribution with a cut-off. The density profile of the Sun can

be described more accurately than in (3.15) by an exponential distribution with a cut-off

at the solar radius:

nψ(r) = nψ(0)

{
e−rκ (r ≤ R)

0 (r > R)
. (3.20)

– 7 –
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After straightforward calculations, we obtain the potential:

V (r) =
gνgψnψ(0)

mAr
×
{
Kin (r ≤ R)

Kout (r > R)
, (3.21)

with Kin and Kout given by

Kin ≡ κmAe
−r(κ+mA) e

mAr
(
m2
Arκ

−1 − κr − 2
)

+ 2eκr

(m2
A − κ2)2

−sinh(mAr)e
−R(κ+mA)(mAR+ κR+ 1)

(mA + κ)2
, (3.22)

Kout ≡ e−mAr−κR sinh(mAR)
m2
A(κR− 1)− κ2(κR+ 1)(

m2
A − κ2

)2
+e−mAr−κR cosh(mAR)

m3
AR− κ2RmA − 2κmA(

m2
A − κ2

)2 + e−mAr
2κmA(

m2
A − κ2

)2 . (3.23)

All the above results can be applied to the scalar case with the simple substitution:

A0 → φ, mA → mφ, gν → yν , and gψ → yψ.

4 Phenomenology

Let us consider experimental bounds on the couplings and masses of light mediators and

check whether light scalar and vector mediators, that satisfy these bounds, can produce

observable matter effects in neutrino oscillations. For brevity we introduce the couplings

g ≡ √gνgψ and y ≡ √yνyψ.

For mA,φ & O(102) keV, g2/m2
A & GF and y2/m2

φ & GF have been excluded

by numerous laboratory experiments including the elastic neutrino-electron scatter-

ing [25–27], neutrino-nucleus scattering [28–30], fixed target experiments [31–33], collider

searches [34, 35], etc. For 1 eV . mA,φ . 102 keV, the astrophysical observations provide

much stronger constraints. For instance, the expected amount of energy loss via neutrinos

in the Sun and globular clusters excludes g and y down to 10−14, corresponding to an upper

bound of g2/m2
A or y2/m2

φ above 10−5GF [36].

Below 1 eV, the constraints mainly come from searches of fifth forces and precision tests

of gravity [37, 38]. These constraints are only applicable to gψ or yψ. To obtain the bounds

on
√
gνgψ or

√
yνyψ, we can use the cosmological bounds on neutrino self-interactions,

g2ν/m
2
A or y2ν/m

2
φ . (3 MeV)−2 [39]. In addition, for certain ranges of mA,φ, the black hole

super-radiance provides robust constraints [15, 40] which are independent of the couplings.

These constraints are combined and presented in figure 2.

Notice that these constrains for the mass of mediators below 1 eV (shown in figure 2) are

based on tests of gravity and cosmological observations, and therefore flavor independent.

Searches for the fifth force and precision tests of gravity are sensitive to the couplings of

mediators with matter gψ (yψ), while the bounds on neutrino couplings gν (yν) are based

– 8 –
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√
g ν
g ψ

Vector, Earth

Vector, Sun
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mφ/eV
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y
=
√
y ν
y ψ

Scalar, Earth

Scalar, Sun

Scalar, SN

Figure 2. The regions of masses and couplings of ultra-light vector (left) and scalar (right)

mediators in which significant effects are produced by the matter of the Earth at its surface (blue

lines) and by matter of the Sun in its center (orange lines). The blue shaded regions are excluded

by the combination of various observations (explained in the text). The grey hatched regions are

excluded by black hole super-radiance. Left panel : lines of equal potentials generated by vector

mediator. From down to up: V/VSM = {10−2, 10−1, 1}. Right panel : lines of equal corrections to

the neutrino mass generated by scalar mediator. From down to up: δmν/eV = {10−3, 10−2, 10−1}.
For comparison, we plot two dashed lines with δmν = 10−11 eV for the Earth and δmν = 10−8 eV

for the Sun which have parts below the excluded regions. Red dashed line corresponds to δmν = 5

MeV generated by the core of supernovae. The region above this line is excluded (see text).

on the effect of neutrino free streaming on CMB, which are independent of neutrino flavors.

Above 1 eV, some of the mentioned constraints, e.g., from neutrino scattering, do depend

on flavors. However, studies in this region of masses show that new interactions cannot

be much larger than the SM interactions. Therefore above 1 eV the scalar case remains

excluded, whereas the vector case still has viable parameter space, as has been widely

discussed in the literature.

Now let us determine the required values of g or y to generate significant matter effects.

The latter can be quantified by

V

VSM
=

g2

m2
A

√
2GF

F (r,m2
A), δmν =

y2

m2
φ

nψ(r)F (r,m2
φ), (4.1)

where VSM ≡
√

2GFnψ, and F presented in eqs. (3.6) describes the deviation from the

standard Wolfenstein potential. According to eq. (4.1), for given values of V
VSM

and δmν ,

g2 and y2 are determined by:

g2 =
V

VSM
m2
A

√
2GFF

−1(r,m2
A), y2 = δmνm

2
φ[nψ(r)F (r,m2

φ)]−1. (4.2)

In figure 2, we plot the dependence g = g(mA) and y = y(mφ) from eq. (4.2) for V/VSM ∈
{10−2, 10−1, 1} and δmν ∈ {10−3, 10−2, 10−1} eV correspondingly. The curves determine

the bands of strong (observable) matter effects in the mediator parameter space. The values

of F have been computed numerically for the center of the Sun (r = 0) using the solar

density distributions from [41], and for the surface of the Earth (r = R⊕) using the density

distribution from [42]. The value of F has been computed numerically using the density
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distributions for the Sun from [41] and for the Earth from [42]. The value of r is set to

zero for the Sun, and to the Earth radius for the Earth.

The dependence g = g(mA) and y = y(mφ) can be understood from our analytic

results. For large mA (short range forces), F ≈ 1. According to eq. (4.2), we have g ∝ m2
A

for mA � 1/R, where R is the radius of the object. For very small mA, F should be

proportional to m2
A so that g is independent of mA. In the intermediate range, mA ∼ 1/R,

the dependence is more complicated.

According to figure 2, the solid curves turn at the values of mediator masses

2.8×10−16 eV for the Sun, and 3.1×10−14 eV for the Earth that are determined by inverse

of the solar radius R� = 7.0×105 km and the Earth radius R⊕ ≈ 6.4×103 km correspond-

ingly. Below these masses at mA, mφ < 10−16 eV (for the Sun) and mA, mφ < 10−14 eV

(for the Earth) the curve becomes horizontal, i.e. dependence on the mediator masses dis-

appears. This corresponds essentially to the Coulomb-like potentials generated by massless

mediators.

According to figure 2 (left) there are several mA-g regions of observable matter effects

which are generated by the vector mediator and allowed by the present bounds. In the

long-range forces domain they include

mA = (10−21 − 10−19) eV, g = (10−27 − 10−26), (4.3)

for neutrinos in the Sun, and

mA = (10−21 − 10−19) eV, g = (10−27 − 10−26), (4.4)

both for neutrinos in the Sun and in the Earth. The unexcluded regions in the short range

forces domain are the same for the neutrinos in the Sun and the Earth:

mA = (10−11 − 10−6) eV, g = (10−24 − 10−19), (4.5)

mA > 10−4 eV, g > 10−17. (4.6)

This could motivate further phenomenological studies.

As follows from figure 2 (right panel) the scalar mediators cannot generate significant

matter effects, in contrast to the claim in ref. [18]. For comparison, a black dotted line

corresponds to δmν = 0.001 eV generated in the infinite size medium with the same density

as in the center of the Sun. (For large mφ it coincides with the corresponding line for

the Sun.) In this case, significant matter effects would be possible for mφ . 10−20 eV).

However, this possibility is excluded when F (r) (the correction) due to the finite size of

medium is taken into account.

One may be interested in the allowed values of scalar matter effect. So, we plot two

dashed curves that correspond to values of corrections δmν = 10−11 eV for the Earth and

δmν = 10−8 eV which have small sections below the excluded region. These values are far

beyond the precision of any realistic experiments.

Finally, strong constraints on the scalar mediator parameters can be obtained from

supernova neutrinos, which have not been considered in the literature. Let us estimate the
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effect in the core of a supernova with a typical radius of RSN = 20 ∼ 30 km and a density

of nSNψ = 1013 ∼ 1014 g/cm3. For relatively heavy scalar mediators with mφ > 1/RSN, the

mass correction

δmSN
ν ∼

nSNψ

nearthψ

δmearth
ν , (4.7)

is about 13 orders of magnitude larger than the correction in the Earth δmearth
ν . For

δmearth
ν = 0.01 eV, we obtain δmSN

ν ∼ 100 GeV, which is certainly excluded since in this

case neutrinos can not even be produced in supernovae. For very light mediators with

mφ < 1/RSN, eq. (4.7) is modified to

δmSN
ν ∼

nSNψ

nearthψ

(
RSN

Rearth

)2

δmearth
ν . (4.8)

Taking δmearth
ν = 0.01 eV, we obtain δmSN

ν = 5 MeV and correspondingly, y = 10−20 (see

figure 2). Since neutrino masses mν > 5 MeV would strongly affect production of neutrinos

and their energy spectrum, values of couplings y > 10−20 can be excluded. More detailed

analyses will be given elsewhere [24].

5 Conclusion

We studied the effects of new neutrino-matter interactions mediated by ultra-light scalar

and vector bosons on neutrino propagation, taking into account the finite size and density

distribution of the medium. We compute the Wolfenstein potentials explicitly for several

spherically symmetric density profiles which can be approximately applied to the Earth

and the Sun.

The Wolfenstein potentials induced by ultra-light mediators have very different depen-

dence on the mediator masses (mA) from the standard case. In infinite medium, due to

the 1/m2
A dependence in eq. (1.1), the Wolfenstein potentials can be enhanced by reducing

the mediator masses. In finite medium of size R, when mA decreases down to the region

where m−1A becomes comparable or larger than R, the 1/m2
A dependence is modified. In

this case the matter effect is determined by the geometry (including the size) and density

distribution of the object, rather than the local density. In particular, the potential can

extend outside of the medium. For mA � R, the potential does not depend on mA.

With correct expressions for the Wolfenstein potentials and existing bounds on light

mediators, we find that scalar mediators cannot produce observable effects in realistic ex-

periments, which implies that the scenario considered in ref. [18] is not viable. Vector

mediators, however, can produce significant matter effect, in particular, within the param-

eter space mA ∈[2× 10−17, 4× 10−14] eV and g ∼ 10−25.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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