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1 Introduction

In the search for new physics at the Large Hadron Collider (LHC), a central goal is to

measure all quantum numbers and couplings of known Standard Model particles as well as

to observe as-of-yet undiscovered particles. At a collider experiment, measuring the mass

of a particle is straightforward because detectors measure nearly all of the energy produced

in collision. Techniques exist for determining a particle’s electric charge by weighting hits

in the tracking system by their energy [1, 2]. However, direct measurement of a particle’s

charge under quantum chromodynamics (QCD) or color is subtle, as all of the particles

that are actually detected by experiment are color-neutral. A particle’s color, or at least if

it has non-zero color, is inferred from jet production and quantities measured on jets [3–7].

The observable pull [8] was introduced to be directly sensitive to the flow of color

between pairs of jets. The distribution of soft radiation throughout a collision event is

determined by the location and connections of color dipoles, the ends of which are the

observed jets. Pull quantifies the location of the dominant soft radiation between two jets,

thus providing a measure of their color connectedness or their color “pull” on one another.

Two jets that form a color-singlet dipole, from the decay of a color-singlet resonance, for

example, will dominantly emit soft radiation in the region between the jets, because gluons

emitted at wide angles would only see the net zero color of the two jets. By contrast,

two jets that are produced from standard QCD processes at the LHC would in general

have color connections to the initial state, as well as to whatever other color objects were

produced. Thus, radiation about these jets would have a much weaker correlation with the

relative locations of the jets of interest.
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While pull has a very nice physical interpretation, has been studied extensively in

simulation, and has even been measured in experiment [9–11] and used in searches [12–

16], there has been little theoretical analysis of the observable to honestly justify that it

does what it is claimed to do. The first calculations of pull as measured on the two jets

from color-singlet decay were presented in ref. [17], which illustrated the challenges of the

calculation and demonstrated that at least in this restricted case, pull acts as expected.

Further, pull had been measured in experiment on jets from W boson decay, which enabled

direct comparison to data.

Nevertheless, to demonstrate that pull is indeed sensitive to the color connection be-

tween two jets, we should demonstrate that there is a significant difference between the

calculated distribution of pull for pairs of jets that do and do not form a color-singlet

dipole. This is our goal in this paper. The simplest collision event in which pairs of jets

do not form color-singlets is e+e− → three jet events, which is what we consider first. For

simplicity, we restrict our analysis to leading-order in the strong coupling and to leading

power in the soft or collinear limits. We will measure the color-connectedness of the two

jets closest in angle with pull. With three jets in the final state, there are therefore three

distinct dipoles from which soft radiation can be emitted. We will show that the radiation

from two of these dipoles can be accounted for from calculations presented in ref. [17], with

some re-interpretation. We present a new calculation for the distribution of radiation from

the dipole which does not include the jet on which pull is directly measured.

Our calculations for pull in three-jet final states can then be leveraged to theoretically

understand one of the original motivations for the observable. Identifying the decay of the

Higgs boson to bottom quarks at high significance is a challenge at the LHC. Once jets

have been tagged as containing bottom quarks, a major background to H → bb̄ decay is

the gluon splitting process g → bb̄. Because this splitting lacks a soft singularity, once the

invariant mass of the bottom quarks is selected for, the kinematics of the bottom quarks

from Higgs decay and gluon splitting are nearly identical. However, because the Higgs

boson is a color singlet, radiation from the bottom quarks is confined to lie between them,

distinct from the gluon splitting case. This suggests that pull may provide discrimination

power between these two processes, though this has not been observed in simulation [18–20].

With an explicit calculation, we are able to understand the discrimination properties

of pull in a controlled, well-defined context. Working in the limits in which both the

Higgs is highly boosted and the radii of the bottom quark subjets is small, we are able to

explicitly calculate the discrimination power of pull for this problem, quantified in the signal

vs. background efficiency curve. We conjecture that in these boosted and collinear limits the

pull distribution exhibits a universality, exclusively depending on the color configuration

of the two nearby jets. In these limits, we are able to write down a master formula for

the distribution of pull, for any two jets in QCD on which it might be measured. We

enumerate all possible irreps of color SU(3) that arise in the product representation of

the color of two QCD jets and how that affects the corresponding pull distribution. This

explicitly demonstrates that pull is indeed sensitive to the color flow between a pair of jets

in a simplified limit. We leave validation of this observation in simulation to future work.

This paper is organized as follows. In section 2, we first define the pull observable,

presenting a slightly modified definition from that originally proposed that is more natural
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in the e+e− collision case. In section 3, we present the calculation of the distribution

of the pull observable measured on the closest two jets in angle produced in e+e− →
three jets events. Section 4 expands on these results, and applies them to the problem of

discrimination of H → bb̄ and g → bb̄ in the highly boosted limit. We explore pull for all

possible representations of SU(3) color that can arise in the product of the color of two

QCD jets in section 5, and conclude and discuss future directions in section 6. appendices

contain details of calculations quoted in the body of the paper.

2 Observable definitions

For application to jets produced in hadron collisions, ref. [8] introduced the pull vector ~t as:

~toriginal =
∑
i∈J

p⊥i|~ri|
p⊥J

~ri . (2.1)

Here, the sum runs over the particles i in a jet J of interest, p⊥ is the momentum transverse

to the collision beam, and the vector ~ri is

~ri = (yi − yJ , φi − φJ) . (2.2)

The jet center is located at rapidity-azimuth of (yJ , φJ) and particle i is located at (yi, φi).

The jet center is just defined as the vector sum of the momenta of all particles that compose

the jet. Pull is therefore defined as a two-dimensional vector in the plane of the cylindrical

detector. As used to probe color connections, pull can be measured on two jets and the

directions of their vectors compared. Jets with a strong color connection (i.e., jets that

form a color-singlet dipole), will have pull vectors that point toward one another, while

weakly color-connected jets will have pull vectors with a random relative orientation.

For the calculations presented in this paper, however, we use a slightly different defi-

nition of the pull vector motivated both by our study of jets in e+e− collisions as well as

simplifying analytical calculations. This modified definition of the pull vector was intro-

duced in ref. [17] and is

~tmodified =
∑
i∈J

Ei sin2 θi
EJ

(cosφi, sinφi) . (2.3)

Now, E is the energy, θi is the angle from particle i to the jet center, and φi is the azimuthal

angle of the particle about the jet center. In the collinear limit, these two definitions are

identical, but in general differ at finite angle. As our investigation mainly concerns with

the limit where the jet radius R � 1, this modified definition of the pull vector simplifies

the calculation without losing the limit behavior of interest. For all results presented in this

paper, the azimuthal angle φi will be defined with respect to the location of a neighboring

jet’s center. Specifically, if a particle i lies on the line between the jet J and the reference

jet, φi = 0, while if it is on the other side of jet J , φi = π. This is what we will mean by

measuring pull on a pair of jets: we calculate the pull vector of one jet whose components

are defined with respect to the location of the second jet.
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Figure 1. Illustration of color flow between the three jets produced in e+e− → qq̄g collisions.

The dashed lines represent the flow of color in dipoles that stretch between pairs of jets with the

corresponding absolute value of the color charge carried by each dipole indicated.

Rather than the Cartesian components of the pull vector, we will typically express it

as its magnitude t and azimuthal angle φp. We call φp the pull angle and it is defined as

φp = cos−1 tx
t

= cos−1

∑
i∈J Ei sin2 θi cosφi∣∣∑

i∈J Ei sin2 θi (cosφi, sinφi)
∣∣ . (2.4)

The pull vector is infrared and collinear (IRC) safe, and so its distribution can be calculated

order-by-order in perturbation theory. However, the pull angle φp alone is not IRC safe.

We will have to deal with this later as the pull angle is the aspect of the pull vector that

is most sensitive to color connections between jets.

3 Pull in e+e− → 3 jet events

To illustrate the form of the pull distribution for pairs of jets that do not form a color-

singlet dipole, we will study pull as measured on pairs of jets in e+e− → three jets events.

The setup of how we measure pull on this final state is illustrated in figure 1. For a three-jet

final state in the center-of-mass frame, those three jets lie in a plane and the most energetic

will be isolated in a hemisphere about the collision point. We refer to this most energetic

jet as jet 3. The two lower-energy jets are the pair closest in angle. Of these two jets, jet

1 is the most energetic and the jet on which we measure pull. Jet 2, the lowest-energy

jet, defines the axis along which the pull angle is defined to be 0. Figure 1 shows that

the quark is the most energetic jet, and the anti-quark is the second most-energetic jet.

Thus, in this configuration, we measure pull on the anti-quark jet with respect to the gluon

jet’s direction.

Figure 1 also shows the strength of color correlation between the pairs of jets, as

measured by the product of each particle’s color matrix. Because the total color of the

final state is 0, the sum of the color of the quark, anti-quark, and gluon is 0:

Tq + Tq̄ + Tg = 0 . (3.1)

The square of any of the color matrices is just the quadratic Casimir for that particular

color representation. In QCD, we have

T2
q = T2

q̄ = CF =
4

3
, T2

g = CA = 3 . (3.2)
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By dotting the individual color matrices with eq. (3.1), we can solve for the values of the

dot products of pairs of color matrices, that correspondingly determine the strength of

color connectedness of two jets. We have

Tq ·Tq̄ =
CA
2
− CF , Tq ·Tg = Tq̄ ·Tg = −CA

2
. (3.3)

With this setup, we would like to calculate the differential cross section of the pull

vector, or equivalently, the double differential cross section of the pull magnitude t and the

pull angle φp. To do this calculation, we will work to lowest order in the strong coupling

αs and in the leading soft or collinear limits, where the pull magnitude is small, t � 1.

With these approximations, the double differential cross section decomposes into a sum of

contributions from soft and collinear emissions:

d2σt�1

dt dφp
= Sqq̄g(t, φp) + J(t, φp) . (3.4)

Here, we refer to Sqq̄g(t, φp) as the soft function for pull and J(t, φp) as the jet function for

pull which encode the contribution to pull from soft and collinear emissions, respectively.

Note that no rigorous, all-orders factorization of the pull cross section is assumed or implied

here; this decomposition simply follows from the factorization of QCD matrix elements into

these components.

The separation of the emission phase space into soft and collinear regions is arbi-

trary, so one needs to use some regularization scheme to do it. For pull, dimensional

regularization is sufficient to uniquely define the soft and jet functions individually. Thus,

calculation of the soft function, for example, proceeds by calculating the distribution of

pull on the dimensionally-regulated phase space with the single-emission, eikonal matrix

element. There are three possible dipoles off of which a soft particle can be emitted, and

we need to sum together each of their contributions. We won’t present explicit calculations

in the text here, but will discuss how the pieces fit together for the complete soft function.

Following the identification of jets in figure 1, one of the dipoles that can emit a soft

gluon is the dipole formed from jets 1 and 2. The calculation of this contribution to the

soft function was done in ref. [17], with the only necessary change to the case at hand to

replace the Casimir CF in that calculation with (−T1 · T2) for the three-jet case. Next,

the soft gluon could be emitted off of the dipole formed by jets 1 and 3. Note that, relative

to jet 2, jet 3 has an azimuthal angle π about jet 1, by momentum conservation. Also, this

dipole still contains the jet 1, on which pull is measured, and so we can use the results of

ref. [17] again, with two modifications. First, the Casimir CF in the soft function result

of ref. [17] should be replaced by (−T1 ·T3) for the three-jet case. Second, the pull angle

φp should be rotated by π to represent the orientation of jet 3 with respect to jet 2. The

contribution of soft gluons emitted off of the dipole formed from jets 2 and 3 is novel, and

requires a new calculation. For this case, the dipole that emits the soft gluon does not

contain the jet on which pull is measured. As such, this contribution to the soft function

lacks a collinear singularity. This calculation is presented in appendix A.
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Adding together all three possible sources of soft radiation, the leading-order soft

function for pull when t > 0 measured on e+e− → three jet events is:

Sqq̄g(t, φp) =
αs
π2

1

t

[
T2

1 log
µ2 tan2 R

2

t2E2
J sin2 φp

(3.5)

+ (−T1 ·T2)f(φp, θ12) + (−T1 ·T3)f(π + φp, θ13) + (−T2 ·T3)g(φp)

]
.

Here, µ is the dimensional regularization scale and the function f(φp, θ) was calculated in

ref. [17] and is

f(φp, θ) = 2 cotφp tan−1

tan R
2

tan θ
2

sinφp

1− tan R
2

tan θ
2

cosφp

− log

(
1 +

tan2 R
2

tan2 θ
2

− 2
tan R

2

tan θ
2

cosφp

)
. (3.6)

The function g(φp) is calculated in appendix A and is

g(φp) =
(tan θ12

2 + tan θ13
2 )2

tan2 θ12
2 + tan2 θ13

2 + 2 tan θ12
2 tan θ13

2 cos(2φp)
(3.7)

×

sin θ12−θ13
2

sin θ12+θ13
2

log


tan2 R

2

tan2 θ13
2

+ 1 + 2
tan R

2

tan
θ13
2

cosφp

tan2 R
2

tan2 θ12
2

+ 1− 2
tan R

2

tan
θ12
2

cosφp



+2 cotφp tan−1


(

tan R
2

tan
θ12
2

− tan R
2

tan
θ13
2

+ 2
tan R

2

tan
θ12
2

tan R
2

tan
θ13
2

cosφp

)
sinφp

1−
(

tan R
2

tan
θ12
2

− tan R
2

tan
θ13
2

)
cosφp − tan R

2

tan
θ12
2

tan R
2

tan
θ13
2

cos(2φp)


 .

θij is the angle between jets i and j. For the coefficient of the logarithmic term in eq. (3.5)

above, we have used the conservation of color to express

−T1 ·T2 +−T1 ·T3 = T1 · (−T2 −T3) = T2
1 . (3.8)

For a general configuration of the three final state jets, jet 1, on which pull is measured,

can be any of the quark, anti-quark, or gluon jet. For the collinear emission contribution to

the cross section, we then need to calculate pull as measured on either collinear emissions

from quark jets or from gluon jets. The calculation of the quark jet function for pull was

presented in ref. [17], while the gluon jet function is novel, and its calculation is presented

in appendix B. We can express the jet function for either quarks or gluons as

J(t, φp) =
αsT

2
1

π2

1

t

[
log

4tE2
J sin2 φp
µ2

−B1

]
, (3.9)

where B1 comes from hard collinear splittings and is

Bq =
3

4
, Bg =

11

12
− nf

6CA
, (3.10)
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for quark and gluon jets, respectively. Other than the (trivial) sin2 φp dependence in the

logarithm, collinear emissions are flat in φp: they are at too small of an angle to know the

specific direction of jet 2 and are uncorrelated with any other jets in the event.

Adding the soft and jet functions together, we find the cross section for pull at leading

order to be

d2σt�1

dt dφp
=
αs
π2

1

t

[
T2

1 log
4 tan2 R

2

t
−T2

1B1 (3.11)

+ (−T1 ·T2)f(φp, θ12) + (−T1 ·T3)f(π + φp, θ13) + (−T2 ·T3)g(φp)

]
.

Note that the dimensional regularization scale µ has dropped out; the physical cross section

is independent of this unphysical scale.

3.1 Inclusive prediction for pull

With the differential cross section of the pull vector, we can assume that the soft and

collinear contribution of the pull vector factorizes from an e+e− → qq̄g event. Then, the

soft and jet functions are regarded as a conditional probability density of the pull vector

for observing an additional soft or collinear emission off from one of the three particles

in the final state. Thus, the inclusive differential cross section of the pull vector for an

e+e− → qq̄g + X event can be found by integrating over the phase space of the final

state particles

d2σqq̄g
dt dφp

=

∫ 1

0
dxq

∫ 1

0
dxq̄ Θ(xq + xq̄ − 1)

1

σ0

d2σ(e+e− → qq̄g)

dxq dxq̄

∑
jet orderings

d2σt�1

dt dφp
Θpull ,

(3.12)

in which d2σ(e+e−→qq̄g)
dxq dxq̄

denotes the cross section for e+e− → qq̄g in terms of energy fractions

xq and xq̄, and Θpull is the phase space constraints for identifying the two jets on which

pull is measured. The differential cross section for e+e− → qq̄g is

1

σ0

d2σ(e+e− → qq̄g)

dxq dxq̄
=
αsCF

2π

x2
q + x2

q̄

(1− xq)(1− xq̄)
, (3.13)

in which the energy fraction xi of particle i is defined as

xi =
2pi ·Q
Q2

, Q = p1 + p2 + p3 . (3.14)

Note that the angular dependence in the jet and soft function frequently appears as

tan(θij/2). A straightforward algebraic manipulation with dot products shows that

tan

(
θij
2

)
=

√
1− cos θij
1 + cos θij

=

√
xi + xj − 1

(1− xi)(1− xj)
. (3.15)

where θij ∈ [0, π].

With Θpull, we aim to describe the following algorithms for the pull measurement: (1)

identify the two lower energy jets, (2) identify the one of them with a higher energy, and

– 7 –
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Figure 2. Plots of the relative double differential cross section of the pull vector measured on

e+e− → qq̄g events in the (tx, ty) = (t cosφp, t sinφp) plane. The colors range over a linear scale

with white (black) corresponding to the largest (smallest) cross section. To make these plots, we

have set the jet radius R = 0.5, the jet energy cut xcut = 0.2 and the number of active fermions

nf = 5. (left) Pull vector summed over all six jet orderings. (right) Pull vector when gluon is the

most energetic jet.

(3) ensure that those two jets are separated by at least 2R such that they are recognized

as distinct jets. Therefore, we demand that the following three inequalities hold:

E1 > E2, E3 > E1, θ12 > 2R. (3.16)

These can correspondingly be expressed as in terms of the three-body final state energy

fractions xi:

Θpull = Θ(x3 − x1)Θ(x1 − x2)Θ

(
x1 + x2 − 1

(1− x1)(1− x2)
− tan2R

)
Θ(x2 − xcut) . (3.17)

The rightmost Θ-function enforces x2 > xcut and ensures that the cross section is IRC safe.

With these phase space restrictions and matrix elements identified, we can then per-

form the integrals in eq. (3.12), summing over all possible orderings of the q, q̄, and g jets.

The result of this calculation is shown on the left in figure 2. In that figure, we have plotted

the relative differential cross section, in terms of the components of the pull vector

tx = t cosφp , ty = t sinφp . (3.18)

Recall that φp = 0 is in the direction of the nearby reference jet. To make this plot, we

have set the jet radius R = 0.5, the jet energy cut value xcut = 0.2, and the number of

active fermions to nf = 5. The cross section is highly peaked about the positive tx axis,

demonstrating that most radiation is present in the region between the two jets. This is to

be expected: because of the soft and collinear singularities of the gluon in the e+e− → qq̄g

matrix element, the dominant configuration of the jets is with the gluon as the lowest

– 8 –
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energy jet. Therefore, pull is measured about the quark or anti-quark jet, with respect

to the direction of the gluon jet, and this pair of jets lives in the 3 or 3̄ representation of

SU(3) color. The product of color factors in this configuration is −T1 · T2 = CA/2 > 0,

and so the cross section peaks around ty = 0 and tx > 0 (φp = 0) because the functions

f(φp, θ) and g(φp) have maxima at φp = 0.

It is also interesting to restrict to studying the non-dominant jet configuration, by

forcing the gluon jet to have the largest energy of all three final state jets. In this con-

figuration, the jets on which pull is measured, the quark and anti-quark, are in the 8

representation of SU(3) color. As such, the product of their color matrices is negative,

−Tq ·Tq̄ = CF −CA/2 = −1/6, and so the radiation is dominantly outside of the two jets

on which pull is measured. This is illustrated in the plot on the right of figure 2. The cross

section in this configuration is peaked about the negative tx axis, as expected.

4 H → bb̄ vs. g → bb̄

The results presented in the previous section, along with prior calculations [17], can inform

the use of pull for identification of H → bb̄ decays. One of the original motivations for pull

presented in ref. [8] was that it could be used to identify Higgs decays to bottom quarks

from the dominant background of gluon splitting to bottom quarks. Because there is no

soft singularity for g → bb̄ splitting, the kinematics of H → bb̄ and g → bb̄ are nearly

identical, once the mass of the pair of bottom quarks is fixed. Thus, observables sensitive

to jet kinematics, such as subjet energy fractions, are not useful for this problem. However,

the Higgs boson is a color singlet, while the gluon is a color octet, and this distinction is

imprinted on the distribution of soft radiation within and about the pair of bottom quarks.

Pull is explicitly sensitive to the orientation of soft radiation, and so can be used to improve

identification of Higgs decays.

In this section, we will study the discrimination power of the pull angle φp for Higgs

decays to bottom quarks. We will work in the highly-boosted limit in which the energy

or transverse momentum of the Higgs boson is much larger than its mass mH , so that

the bottom quark jets are relatively collimated. Further, we assume that the radii of the

individual bottom quark jets R is significantly smaller than the angular separation of the

bottom quarks. These limits are relevant and can easily be borne out in practice. For

example, for a Higgs boson with p⊥ = 250 GeV, the angular separation of the bottom

quarks θ12 is approximately

θ12 '
2mH

p⊥
' 1 . (4.1)

Correspondingly, subjet radii for individual bottom quarks of R . 0.4 are reasonable as

now even down to R = 0.2 is used in experiment [21]. Importantly, for the subjets to

be well-defined and non-overlapping, their jet radius R should be less than half of the

angular separation of the bottom quarks, θ12. Then, taking the R� θ12 � 1 limits of the

expression for the pull distribution for a color singlet from ref. [17] we find

d2σH→bb̄,R�θ12�1

dt dφp
=
αsCF
π2

1

t

[
log

R2

t
− 3

4
+ 4

R

θ12
cosφp

]
+O

(
R2
)
, (4.2)

where φp ∈ [0, π].
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Figure 3. Color flow in the e+e− → three-jet configuration relevant for comparison to boosted

H → bb̄ in which the two quarks form a color octet. Pull is measured about jet 1 with respect

to jet 2.

For the color octet configuration, we use the more general expression presented in

eq. (3.11). The configuration of jets we consider produced from e+e− collisions is illustrated

in figure 3 where we restrict to the configuration in which the quark and anti-quark jets

are closest in angle. For expanding to linear order in the jet radius R, we first note that

the expansion of the function g(φp) is proportional to R2. This contribution comes from

a dipole that does not include the jet of interest, so for radiation from this dipole to land

in the jet, it must hit an uncorrelated region of area R2. Continuing, the contribution

proportional to T1 ·T3 expands to linear order in R as

f(π + φp, θ13)|R�θ13
= 2R cot

θ13

2
cos(π + φp) +O

(
R2
)

= −2R cot
θ13

2
cos(φp) +O

(
R2
)
.

(4.3)

In the high-boost limit of the two bottom quark jets, θ13 → π, and so cot θ13
2 → 0.

Therefore, this term is also ignorable to linear order in the jet radius R. The only relevant

term in the cross section in these limits is proportional to T1 ·T2, which is just the product

of the color matrices of the bottom quarks. The relevant color factor is

Tq ·Tq̄ =
CA
2
− CF . (4.4)

Therefore, the pull distribution for the color octet configuration in the small R limit is

d2σg→bb̄,R�θ12�1

dt dφp
=
αsCF
π2

1

t

[
log

R2

t
− 3

4
− 4

(
CA
2CF

− 1

)
R

θ12
cosφp

]
+O

(
R2
)
. (4.5)

This has been written with an explicit negative sign in front of the linear in R term because

CA/(2CF ) − 1 = 1/8 > 0. Going forward, we will drop the remainder O(R2) as it will be

implicit in the following.

4.1 Discrimination power of pull

These distributions are already informative, but we would like to determine the distribution

of the pull angle φp alone to identify its power as a discrimination observable. Because the

pull angle is not IRC safe, we cannot determine the distribution of φp by just integrating

these distributions over t. However, φp is Sudakov safe [17, 22, 23], and so we can calculate

its distribution by marginalizing against the probability distribution of the pull magnitude,
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t. That is, for probability distribution p(t) and conditional probability distribution p(φp|t),
the distribution of the pull angle is

p(φp) =

∫
dt p(t) p(φp|t) . (4.6)

As long as p(t) has no support around t = 0, this integral is finite. This is indeed the

case for the physical (or resummed) distribution, so eq. (4.6) provides a way to define

the distribution of φp. Here, we will just calculate the conditional probability distribution

p(φp|t) to lowest order in the limits we have discussed.

To lowest order, the conditional distribution p(φp|t) is just the ratio of the double

differential cross section of t and φp to the cross section for t alone:

p(φp|t) =

d2σ
dt dφp
dσ
dt

. (4.7)

Above, we had calculated the distributions for both the H → bb̄ and g → bb̄ configurations.

To determine the distribution for t exclusively, we can just integrate over φp. For either the

singlet or octet color configurations, the result is the same in the limits in which we work:

dσ

dt
=

∫ π

0
dφp

d2σ

dt dφp
=
αsCF
π

1

t

[
log

R2

t
− 3

4

]
. (4.8)

Note crucially that the term linear in R integrates to 0. From the expressions for the double

differential distributions above, the conditional distributions for the Higgs decay and gluon

splitting are:

pH→bb̄(φp|t) =

d2σH→bb̄

dt dφp
dσ
dt

=
1

π
+

4

π

1

log R2

t − 3
4

R

θ12
cosφp , (4.9)

pg→bb̄(φp|t) =

d2σg→bb̄

dt dφp
dσ
dt

=
1

π
− 4

π

CA
2CF
− 1

log R2

t − 3
4

R

θ12
cosφp . (4.10)

We can then determine the distribution of the pull angle. For the Higgs decay, for

example, we have

pH→bb̄(φp) =

∫
dt pH→bb̄(t) pH→bb̄(φp|t) . (4.11)

We are restricting our analysis to linear order in the jet radius R, which will dramatically

simplify what follows. As shown above, the pull magnitude distribution p(t) actually has

no contribution to it that is linear in R. Thus, in this integral, we only need to keep the

terms in p(t) at leading order in the R → 0 limit. This is correspondingly the collinear

limit in which the only thing that the pull magnitude depends on is the flavor of the jet

of interest. For both H → bb̄ and g → bb̄, the jet of interest is always a quark, and so the

distribution of t is identical for the two processes, up to corrections of order R2:

pH→bb̄(t) = pg→bb̄(t) +O(R2) . (4.12)
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To the order we work, we can then safely set pH→bb̄(t) = pg→bb̄(t) ≡ p(t), independent of

production process.

With this simplification, it follows that the pull angle distribution for Higgs decay is

pH→bb̄(φp) =

∫
dt p(t) pH→bb̄(φp|t) =

∫
dt p(t)

(
1

π
+

4

π

1

log R2

t − 3
4

R

θ12
cosφp

)
(4.13)

=
1

π
+ d0 cosφp .

Note that the distribution p(t) is normalized and integrates to 1, by definition. We define

d0 as the corresponding moment of the pull magnitude distribution:

d0 =
4

π

R

θ12

∫
dt

p(t)

log R2

t − 3
4

. (4.14)

With this notation, it then follows that the gluon splitting distribution is

pg→bb̄(φp) =
1

π
− d0

(
CA
2CF

− 1

)
cosφp . (4.15)

We can estimate the value of d0 by determining the mean value of the pull magnitude,

〈t〉. In the collinear limit for a quark jet, this is at lowest order

〈t〉 =
αsCF

2π

∫ 1

0
dz

∫ R2

0

dθ2

θ2

1 + (1− z)2

z
z(1− z)|1− 2z|θ2 (4.16)

=
13

64

αsCF
π

R2 .

Further, the angle between the two quark jets θ12 can be approximated from the mass and

energy of the singlet resonance. In the collinear or high-boost limit, we have

θ12 '
2mH

p⊥
, (4.17)

where mH is the mass of the Higgs and p⊥ is its transverse momentum, assuming it is

central in the detector.

Using these results and assuming that the distribution p(t) is highly peaked around its

mean, we then have that

d0 =
4

π

R

θ12

∫
dt p(t)

1

log R2

t − 3
4

' 4

π

1

log R2

〈t〉 − 3
4

R

θ12
(4.18)

=
4

π

1

log
(

64
13

π
αsCF

)
− 3

4

Rp⊥
2m

.

Evaluating everything except for the jet radius, transverse momentum, and mass, this is

approximately

d0 ' 0.2
Rp⊥
mH

, (4.19)
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Figure 4. (Left) Distributions of the pull angle from Higgs decay and gluon splitting to bottom

quarks in the high-boost and narrow jet limits. We use d0 = 0.2 to make the plots. (Right)

Corresponding signal versus background efficiency curve for Higgs decay and gluon splitting to

bottom quarks.

where we have used αs = 0.1. Recall that for the two bottom quark jets to be non-

overlapping, we require that R . mH/p⊥, less than approximately half of the angle between

the bottom quark jets. So, d0 is bounded from above by about 0.2.

From these distributions, we can then quantify the discrimination power of the pull

angle by making a sliding cut on the value of φp. The distributions of the pull angle from

Higgs decay and gluon splitting are plotted in figure 4, where we use d0 = 0.2. On the right

we plot the signal versus background efficiency curve or receiver operating characteristic

(ROC) curve found from keeping those events that have pull angle below a sliding cut.

Because the pull angle peaks at small values for H → bb̄, this procedure amplifies the

signal over the background, as manifest by the ROC curve lying below the diagonal.

To quantify the absolute power of the pull angle to discriminate Higgs from gluon split-

ting, we can integrate under the ROC curve. This area-under-the-curve (AUC) vanishes

for perfect discrimination and takes value 1/2 for identical distributions. The AUC can be

calculated as an ordered integral over the two distributions and we find

AUC(H vs. g) =

∫
dφs

∫
dφb pH→bb̄(φs) pg→bb̄(φb) Θ(φs − φb) =

1

2
− d0

π

CA
CF

(4.20)

' 0.35 .

The numerical value on the second line was found from setting R = mH/pT and using

the value of d0 identified earlier. For comparison, this value of the AUC is comparable to

the value of the AUC for other jet discrimination problems, such as discriminating quark-

from gluon-initiated jets. For that problem, the discrimination power of the jet mass as

quantified by the AUC at leading logarithmic accuracy is [24]

AUC(q vs. g) =
1

1 + CA
CF

' 0.31 . (4.21)
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We also note, however, that these theoretical prediction of metrics may not be borne out

in simulation or experiment, but are at least representative of the possible information

available in the pull distribution for discrimination.

This simple calculation of course ignores many relevant physical effects that would

exist in a real jet and would affect discrimination power. The largest such effect would

likely be from soft radiation uncorrelated or only weakly correlated with the direction of

the jet. Radiation that lands in the jet from color dipoles that are not color connected to

the jet of interest would be approximately uniformly distributed over the area of the jet,

with no preferred azimuthal direction. The profile of such radiation in the pull angle φp
would therefore be flat, and work to wash out the distinction between color singlet and

octet dipoles studied in this section. To mitigate this effect, one might groom the jet,

removing soft, wide-angle radiation in the jet, but preserving radiation collinear to the jet

axis. However, collinear radiation is also flat in pull angle φp to lowest order in the collinear

angular size, so this is also likely to wash out these subtle differences. These considerations

demonstrate the fragility of color correlations and possibly explain why pull has not been

observed to be a useful discriminant in simulation [18–20].

Beyond these practical considerations, one would like to have a formal understanding

of the accuracy of the distributions and discrimination metrics derived in this section.

While the pull angle φp is not an IRC safe observable, its Sudakov safety means that

one can vary renormalization scales in the integrand of eq. (4.6) to have some estimate

of theoretical uncertainties. Such a procedure was also used in in ref. [25] to estimate

theoretical uncertainties for the groomed energy fraction zg [23]. As observed in that case

as well, we expect that this scale variation underestimates theoretical uncertainties on the

calculated pull angle distribution. Moving away from the small jet radius R limit, we expect

that increasing R will likely improve discrimination power to a point. More soft radiation

that is sensitive to the dipole configuration will be included in the jets, but so too will

more uniform contamination radiation, as mentioned earlier. The effect of contamination

radiation scales like the area of the jet, R2, while the leading color-correlations between

pairs of jets scales like R, so we expect there is some range of R where contamination

is small but color correlations are relatively large. Further, higher-order effects like non-

global logarithms [26] will likely increase these color correlations present in the pull angle

distribution. Non-global effects will pull radiation in the jet toward ends of the dipoles

that lie outside of the jet, in principle enhancing differences between the color singlet and

octet configurations.

5 Other color representations

The analysis of the previous section suggests a more general result for the pull distribution,

appropriate for any combination of a pair of jets on which pull is measured. We denote the

jet 1 as the jet on which pull is measured and the jet 2 as the reference jet that defines the

origin of the pull angle φp. In the limits in which the boost of the jet pair is large (θ12 � 1)

and jet radius is small (R� θ12), the leading-order expression for the pull distribution is

d2σR�θ12�1

dt dφp
=
αs
π2

1

t

[
T2

1 log
R2

t
−T2

1B1 + 2
[
T2

1 + T2
2 − (T1 + T2)2

] R
θ12

cosφp

]
. (5.1)
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The coefficient of the term proportional to the jet radius R is just another way to express

the product of color matrices:

T2
1 + T2

2 − (T1 + T2)2 = −2T1 ·T2 . (5.2)

We conjecture that this distribution is universal, in the limits R� θ12 � 1 described

above. A unique aspect of this distribution is that there is a non-trivial term linear in the

jet radius, R. For many (if not nearly all) other observables, the first corrections to the

distribution due to a finite jet radius are quadratic in R. This is true of the jet mass, for

example, and the magnitude of the pull vector, t. The term proportional to R integrates

to 0 on φp ∈ [0, π], and so does not contribute to the pull magnitude’s distribution. The

universality of this distribution along with the simplicity of color representations of pairs of

jets in QCD enables us to explicitly enumerate all possible values for the quadratic Casimir

difference, the coefficient of the R term. This is a concrete manifestation and justification

for the name “pull”: the difference of quadratic Casimirs explicitly corresponds to how

soft radiation is pulled around the jets. If the product representation is smaller than the

sum of jets’ Casimirs, then radiation is pulled between the pair of jets. By contrast, if the

product representation is larger than the pair of jets individually, radiation is pushed out

of the pair.

A general irreducible representation of SU(3) can be represented with two non-negative

integers m1 and m2 and denoted as D(m1,m2). The dimension for such a representation is

dim(m1,m2) = (1 +m1)(1 +m2)

[
1 +

m1 +m2

2

]
. (5.3)

The quadratic Casimir of this representation is

C(m1,m2) = T2
(m1,m2) =

1

3

(
m2

1 +m2
2 + 3m1 + 3m2 +m1m2

)
(5.4)

The fundamental and adjoint representations are 3 = D(1, 0) and 8 = D(1, 1), respectively,

and these formulae give the correct values for the dimension and Casimir of these represen-

tations. Exhaustive information about the representation theory of SU(3) can be found in

ref. [27]. The jets that form the pair on which pull is measured can only be some combina-

tion of quarks and gluons in QCD, so enumerating the possible product representations of

color SU(3) that can appear is a simple exercise with SU(3) Clebsch-Gordan coefficients.

In table 1, we list all possible QCD jet pairs, the irreps of SU(3) color that appear in

their corresponding product representation, and then the value of the difference of quadratic

Casimirs, using the formula presented earlier. For most of the representations in the table,

the difference of Casimirs is positive, indicating that the pull angle distribution peaks at

φp = 0; that is, most radiation lies between the jet pair. Only the highest dimension product

representations produce negative Casimir differences, indicating that most radiation in this

case is emitted outside of the region between the jet pair. Intriguingly, the 10 representation

of the color of a pair of gluons exhibits a perfectly flat pull angle distribution in this

limit. Apparently this representation corresponds to exactly the same amount of radiation

between as outside of the pair of gluon jets.
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Jet Pair Product Irrep T2
1 + T2

2 − (T1 + T2)2

qq̄
1

8

8
3

− 1
3

qq
3̄

6 = D(2, 0)

4
3

− 2
3

qg

3

6̄

15 = D(2, 1)

3

1

−1

gg

1

8

10 = D(3, 0)

27 = D(2, 2)

6

3

0

−2

Table 1. Table of the possible jet pairs in QCD on which pull can be measured. The irreps of

color SU(3) that appear in the corresponding product representation are presented in the middle

column. We have only listed those irreps that correspond to unique values of the quadratic Casimir,

e.g., 10 and 10 have the same quadratic Casimir. In the final column, we calculate the “pull” of

the product representation; the difference between the individual quadratic Casimirs of the two jets

and their product representation.

6 Conclusions

The pull observable was designed to be sensitive to the flow of color between pairs of

jets and thus sensitive to their product representation of SU(3) color. This has been

studied in simulation extensively and motivated measurements, but had not been justified

theoretically. In this paper, we demonstrated that pull, especially the pull angle, takes on

a different distribution for pairs of jets in distinct product representations of color. We

performed explicit calculations at leading order for pull measured on e+e− → three jets

events, studied the discrimination power of pull for identification of H → bb̄ decays, and

presented a conjecture for the pull distribution in the high-boost, small jet radius limit.

The results presented in this paper suggest a number of extensions. Observables that

are more sensitive to color flow between jets can be designed, motivated by recent work in

machine learning for particle physics [28–30]. In particular, soft, wide-angle radiation in a

jet is most sensitive to the colors of the other jets in an event, and to leading order, the

distribution of this radiation is described by eikonal matrix elements. With these eikonal

matrix elements, one can construct the theoretically-optimal observable for discrimination

of, say, a pair of jets that form a color singlet from a pair of jets that do not. This optimal

observable is the likelihood ratio by the Neyman-Pearson lemma [31], and in general is not

the pull angle. Designing such observables may also resolve issues regarding residual color

flow information in machine learning studies, even for jets on which pull is measured.

Prospects for observation of other hadronic decays of the Higgs boson could potentially

be improved by using pull, or related color flow observables. The Standard Model Higgs

boson decays to pairs of gluons nearly 10% of the time, and yet the H → gg decay
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mode is extremely challenging to observe. Because gluons carry more color individually

than quarks, the strength of color connection between the gluons in H → gg decays is

substantially larger than between the bottom quarks in H → bb̄ decays, as shown in table 1.

This may suggest that it is easier to discriminate the gg color singlet representation from

non-singlet color representations; however, this may also mean that identification of the

H → gg decay at high boost is more challenging to identify because the two hard prongs

in the jet are less well-defined.

Finally, as the pull angle is not IRC safe, its calculation relies on resummed multi-

differential cross sections to be well-defined. Thus, ideally one would like the two-

dimensional resummed cross section for the pull vector, from which the pull angle can

be defined by marginalization. How this resummation would proceed for different color

configurations of jets would be interesting to determine. Further, measurements of pull on

g → bb̄ decay, for example, would test the extent to which the results derived in this paper

were accurate at all at describing reality. This then may point to a whole new class of

observables that can be used to study global correlations in particle collision events.
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A Non-connected soft function calculation

The double differential soft function for emissions from a dipole, neither of whose ends

include the jet on which we measure the pull, can be calculated from

S23(t, φp) = (−T2 ·T3)g2µ2ε

∫
[ddk]+

2n2 · n3

(k · n2)(k · n3)
Θjet,R δt δφp . (A.1)

Here, we call the two ends of the dipole 2 and 3 and the phase space constraints Θjet,R, δt,

and δφp are the jet radius R constraint, the measurement of the pull vector magnitude, and

the measurement of the pull angle, respectively. The light-like vectors n2 and n3 have unit

0th component and point along the direction of particles 2 and 3. Three-jet production

in e+e− collisions in the center-of-mass frame is restricted to a plane, which simplifies the

expression of the integrand. With MS dimensional regularization, the soft function can be

written as

S23(t, φp) = (−T2 ·T3)
αs

π3/2Γ(1/2− ε)µ
2ε

∫ ∞
0

dk⊥ k
−1−2ε
⊥

∫ ∞
−∞

dη

∫ π

0
dφ sin−2ε φ (A.2)

× 1− cos θ23

(cosh η − cosφ sin θ12 − sinh η cos θ12)(cosh η + cosφ sin θ13 − sinh η cos θ13)

×Θ

(
tan

R

2
− e−η

)
δ(φp − φ) δ

(
t− k⊥

EJ cosh η

)
.
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Here, EJ is the energy of the jet of interest, θ12 is the angle between the jet on which pull

is measured and jet 2 (and correspondingly for θ13 and θ23). Note the difference in sign

in the cosφ term in the two factors in the denominator of the matrix element term: jet 2

has an azimuthal angle of φ2 = 0 about jet 1 while jet 3 has an azimuthal angle of φ3 = π

about jet 1. This assignment follows from the fact that jet 2 defines the location of the

origin of the pull angle and that the collision occurs in the center-of-mass frame and the

final state is confined to a plane.

The integrals that remain are finite for ε→ 0, so we can just set ε = 0 to calculate the

corresponding pull distribution for t > 0. We find

S23(t, φp) = (−T2 ·T3)
αs
π2

1

t

(tan θ12
2 + tan θ13

2 )2

tan2 θ12
2 + tan2 θ13

2 + 2 tan θ12
2 tan θ13

2 cos(2φp)
(A.3)

×

sin θ12−θ13
2

sin θ12+θ13
2

log


tan2 R

2

tan2 θ13
2

+ 1 + 2
tan R

2

tan
θ13
2

cosφp

tan2 R
2

tan2 θ12
2

+ 1− 2
tan R

2

tan
θ12
2

cosφp



+2 cotφp tan−1


(

tan R
2

tan
θ12
2

− tan R
2

tan
θ13
2

+ 2
tan R

2

tan
θ12
2

tan R
2

tan
θ13
2

cosφp

)
sinφp

1−
(

tan R
2

tan
θ12
2

− tan R
2

tan
θ13
2

)
cosφp − tan R

2

tan
θ12
2

tan R
2

tan
θ13
2

cos(2φp)




= (−T2 ·T3)
αs
π2

1

t

(
R2

4

(
cot

θ12

2
+ cot

θ13

2

)2

+O(R3)

)
.

In the final line, we have Taylor expanded the expression in powers of the jet radius R.

As expected, because there is no collinear singularity in this dipole configuration, the soft

function is proportional to the area of the jet, R2. One can also find a closed-form analytic

expression for the more general case in which the jets 1, 2, and 3 do not lie in a plane, but

we will not present it here.

B Gluon jet function

To calculate the general distribution of pull measured on any jet in e+e− → three jets

events, we must include the possibility of the jet being a gluon. So, for the complete

calculation, we also need to calculate the distribution of pull from collinear emissions in

a gluon jet. The d = 4 − 2ε, dimensionally-regulated, MS gluon jet function on which we

measure pull is

Jg(t, φp) =
αs
2π

1

π1/2Γ(1/2− ε)

(
µ2

E2
J

)ε ∫ 1

0
dz

∫ ∞
0

dθ2 (θ2)−1−ε
∫ π

0
dφ sin−2ε φ (B.1)

× z−2ε(1− z)−2ε

[
CA

(
1

z
+

1

1− z + z(1− z)− 2

)
+
nf
2

(
1− 2

1− εz(1− z)

)]
× δ(t− z(1− z)|1− 2z|θ2)δ (φp − φ) .
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nf is the number of active fermions. Performing the integrals over the δ-functions, we

then have

Jg(t, φp) =
αs
2π

1

π1/2Γ(1/2− ε)

(
µ2

E2
J sin2 φp

)ε
1

t1+ε

∫ 1

0
dz z−1−ε (B.2)

× (1− z)−ε|1− 2z|ε
[
CA
(
2 + z2(1− z)− 2z

)
+
nf
2

(
z − 2

1− εz
2(1− z)

)]
.

In this expression, we have also symmetrized the first two terms of the splitting function,

to isolate the divergence at z = 0. To integrate over z, we can expand the first factor in

+-functions:

z−1−ε = −1

ε
δ(z) +

(
1

z

)
+

+ · · · . (B.3)

The integral with the δ(z) is just 2CA. For the integral with the +-function, we can set

ε = 0 and we have∫ 1

0
dz

(
1

z

)
+

[
CA
(
2 + z2(1− z)− 2z

)
+
nf
2

(
z − 2z2(1− z)

)]
(B.4)

=

∫ 1

0
dz
[
CA (z(1− z)− 2) +

nf
2

(1− 2z(1− z))
]

= −11

6
CA +

nf
3
.

With these results, the jet function is

Jg(t, φp) =
αsCA
π

1

π1/2Γ(1/2− ε)

(
µ2

E2
J sin2 φp

)ε
1

t1+ε

[
−1

ε
− 11

12
+

nf
6CA

]
. (B.5)

Only keeping those terms that contribute for t > 0, the jet function is then

Jg(t, φp) =
αsCA
π2

1

t

[
log

4tE2
J sin2 φp
µ2

− 11

12
+

nf
6CA

]
. (B.6)
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