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1 Introduction

The composite Higgs models (CHMs) were originally proposed to solve the Standard Model

(SM) hierarchy problem. In CHMs, the Higgs boson is a composite object emerged as a

pseudo-Nambu-Goldstone boson (pNGB) from the global symmetry breaking G/H of a

new strongly interacting sector. The interactions between the elementary (SM) sector and

the composite (strong) sector break G explicitly and generate the Higgs potential at loop

levels [1–3], triggering the electroweak symmetry breaking (EWSB). The Higgs boson is

then naturally light. In addition, the linear mixing between the elementary quarks and

the strong fermionic operator (the so-called partial compositeness mechanism) provides

an explanation for the quark mass hierarchy [3]. Depends on different choices of G/H and

various embeddings of the SM fermions, one can have different kinds of CHMs. For example,

the minimal CHM (MCHM) is based on SO(5)/SO(4) [3, 4], which gives exactly one Higgs
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doublet; while the next-to-minimal CHM (NMCHM) is based on SO(6)/SO(5) [5], whose

scalar sector contains one Higgs doublet and one real singlet.1

During the last decade, people were aware that CHMs can also account for the as-

trophysics phenomena beyond the scope of SM. For example, refs. [10–14] consider the

extra pNGBs in the non-minimal CHMs as dark matter candidates, while refs. [15–19]

use CHMs to explain the baryon asymmetry of the universe. In the latter case, the extra

scalars, either from the dilaton of the conformal invariance breaking [15, 16] or from the

pNGBs of the G/H global symmetry breaking [17–19] of the strong sector, assist the Higgs

field to trigger a strong first order electroweak phase transition (SFOEWPT), creating the

departure from thermal equilibrium in the early universe; while the Yukawa interactions

in the quark sector provide necessary CP violating phase to realize the EW baryogenesis

mechanism [15–19].

In this article, we focus on the SFOEWPT scenario of NMCHM. SFOEWPT is not

only a necessary ingredient of the EW baryogenesis mechanism but also testable via grav-

itational waves signals at the future detectors such as LISA [20], Tianqin [21], Taiji [22],

BBO [23] or DECIGO (Ultimate DECIGO) [24, 25].2 The scalar sector of NMCHM is

similar to the real singlet extensions of SM (with a Z2 symmetry in the scalar potential),

which are motivated by EW baryogenesis and dark matter [27–37]. However, NMCHM

differs from those models in several important aspects. First, due to the pNGB nature, the

interactions between the singlet and the Higgs boson include derivative vertexes. Second,

the scalar potential is not added by hand but generated by the SO(6)-breaking terms.

Third, as a strongly interacting theory, NMCHM contains additional vector and fermion

resonances, whose masses are expected to be O(TeV). Compare to previous studies about

the SFOEWPT in non-minimal CHMs [17, 18], the novelty of our work is that we consider

various fermion embeddings, perform the concrete calculation of the form factor contribu-

tions to the scalar potential and point out that they are not sufficient for a SFOEWPT

(see below).

This paper is organized as follows. In section 2, we briefly introduce the NMCHM,

list the form of its scalar potential at both zero and finite temperature, and give the

conditions for SFOEWPT. A complete analysis of the scalar potential is given in section 3,

where we specify two sources of the scalar potential:3 the IR contributions, which are

from the one-loop form factors of the lightest composite resonances and calculable; the

UV contributions, which are from local higher dimensional operators and incalculable. In

1In the concept of global symmetry breaking pattern, NMCHM is the minimal extension of MCHM.

However, concerning about the underlying theory of the strong sector, NMCHM is the minimal model with

a fundamental UV description from the bound states of new fermions. This is because SO(6)/SO(5) ∼=
SU(4)/Sp(4), a coset that can be realized by a QCD-like theory with four-flavor Weyl fermions [6–9].

2For a recent review of the cosmic phase transition and gravitational waves, see ref. [26].
3In principle, the scalar potential of a composite Higgs model with UV completion can be evaluated

via lattice calculation. However, due to the complexity of the calculation, only very few lattice results are

available for specific UV models. While no dedicated lattice calculations for the scalar potential have been

done for the models mentioned in our paper, we therefore use the bottom-up approach and the form factor

integrals to derive the scalar potential. This is inspired by the successful experiences in QCD (such as the

calculation of the pion mass difference [38–41]).
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many previous studies, the authors assume the UV contributions are negligible due to

some unknown mechanisms of the underlying theory [11, 42–45]. This is known as the

minimal Higgs potential hypothesis (MHP), first clearly proposed in ref. [42]. However, in

this study we will show that MHP is not sufficient for the SFOEWPT in NMCHM, at least

for various fermion embeddings from 1 up to 15 representations of SO(6). To trigger a

SFOEWPT, we have to add the UV contributions, whose sizes are estimated by the näıve

dimensional analysis (NDA) [46]. Section 4 demonstrates that when combining the IR and

UV contributions, SFOEWPT in the 6 + 6 NMCHM can be triggered and experimentally

tested by the gravitational waves. A brief discussion about the collider phenomenology of

the model is also provided. Finally, we summarize and conclude in section 5.

2 NMCHM and the SFOEWPT condition

2.1 A brief introduction to NMCHM

Since we are interested in the physics at O(TeV), which is well below the confinement

scale of the strong sector, the relevant physical degrees of freedom are the pNGBs, the

vector and fermion resonances. In this case, the Coleman-Callan-Wess-Zumino (CCWZ)

formalism [47, 48] can be used to describe the effective Lagrangian of NMCHM.4 The full

expressions and formulae are put in appendix A, while here we only quote the main results.

Denote the 15 generators of SO(6) as TA = {T Ā, T̂ r2 }, where T Ā = {T aL, T aR, T̂ i1}
are the 10 generators of the unbroken SO(5) [in which {T aL, T aR} belong to the subgroup

SO(4) ∼= SU(2)L × SU(2)R while T̂ i1 belong to the coset SO(5)/SO(4)], and T̂ r2 are the 5 bro-

ken generators of SO(6)/SO(5). The ranges of the subscripts are (a = 1, 2, 3), (i = 1, . . . , 4)

and (r = 1, . . . , 5). The Goldstone matrix is defined as

U(~π) = e
i
√
2
f
πrT̂ r2 , (2.1)

where f is the decay constant, and ~π = (π1, . . . , π5)T are the 5 pNGBs, which trans-

form as the 5 representation of the unbroken SO(5). Under the group decomposition of

SO(5)→ SO(4) ∼= SU(2)L × SU(2)R, 5→ 4⊕ 1 ∼= (2,2)⊕ (1,1), where

H =
1√
2

(
π2 + iπ1

π4 − iπ3

)
, (2.2)

is the Higgs doublet (2,2) and π5 is the real singlet (1,1). Choosing the SO(5)-

preserved vacuum state vector as Σ0 = (0, 0, 0, 0, 0, 1)T , we define the Goldstone vector

as Σ(~π) = U(~π)Σ0. The d and e symbols are given by the Maurer-Cartan form

U †iDµU = drµT̂
r
2 + eĀµT

Ā ≡ dµ + eµ, (2.3)

where

Dµ = ∂µ − ig0Aµ = ∂µ − ig0W
a
µT

a
L − ig′0BµT 3

R, (2.4)

4An excellent introduction of CCWZ application to CHM can be found in ref. [49].
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is the gauge covariant derivative. We only gauge a subgroup SU(2)L × U(1)Y ⊂ SO(6),

with Y = T 3
R.

It is convenient to work under the unitary gauge, where π1,2,3 = 0 and π4,5 are redefined

as [5]

h

f
=

π4√
π2

4 + π2
5

sin

√
π2

4 + π2
5

f
,

η

f
=

π5√
π2

4 + π2
5

sin

√
π2

4 + π2
5

f
. (2.5)

Under the unitary gauge, the kinetic term of the Goldstone fields is

Lkin =
f2

4
tr [dµd

µ] =
1

2
∂µh∂

µh+
1

2
∂µη∂

µη

+
1

2

(h∂µh+η∂µη)2

f2−h2−η2
+
g2

0

8
h2

[(
W 1
µ

)2
+
(
W 2
µ

)2
+

(
W 3
µ−

g′0
g0
Bµ

)2
]
, (2.6)

in which we can read the W and Z mass terms after EWSB, i.e. 〈h〉 = v. Higher order

operators can also be constructed using the d and e symbols.

There are two kinds of composite resonances in the NMCHM. One is spin-1, similar

to the ρ-mesons in the QCD; the other is spin-1/2, also known as the top partner. The

composite objects transform in the representations of the unbroken SO(5). For the vector

resonances, we consider the 10 and 5 representations, and denote them as ρµ = ρĀµT
Ā and

aµ = arµT̂
r
2 . Under the decomposition SO(5) → SU(2)L × U(1)Y , the ρµ decomposes to 1

triplet, 3 singlet and 1 complex doublet; while the aµ decomposes to 1 complex doublet

and 1 singlet, i.e.[
10→ 30 ⊕ 11 ⊕ 10 ⊕ 1−1 ⊕ 21/2 ⊕ 2−1/2

ρĀ → ρL ⊕ ρ+
R ⊕ ρ0

R ⊕ ρ
−1
R ⊕ ρD ⊕ ρ̃D

]
;

[
5→ 21/2 ⊕ 2−1/2 ⊕ 10

ar → aD ⊕ ãD ⊕ aS

]
, (2.7)

where ρ̃D = iσ2ρ∗D and ãD = iσ2a∗D. The full expressions of the resonances can be found

in appendix A. The Lagrangian of vector resonances reads5

Lρ = −1

4
tr [ρµνρ

µν ] +
M2
ρ

2g2
ρ

tr
[
(gρρµ − eµ)2

]
− 1

4
tr[aµνa

µν ] +
M2
a

2
tr [aµa

µ] , (2.8)

where gρ � g0, g′0 is the coupling constant of the strong sector. The field strengths are

ρµν = ∂µρν − ∂νρµ − igρ[ρµ, ρν ], aµν = ∇µaν −∇νaµ, (2.9)

where the SO(6)/SO(5) covariant derivative is ∇µ = ∂µ − ieµ.

For the fermion resonances, we consider the 1, 5 and 10 representations of SO(5). To

give the correct hypercharge, an extra U(1)X is introduced, and the gauging of hypercharge

5In the Lagrangians of this subsection, the summation of resonances with the same quantum number is

always implied, e.g.

−1

4
tr [ρµνρ

µν ]→ −1

4

Nρ∑
n=1

tr
[
ρ(n)µνρ

µν
(n)

]
,

and similar for aµ, Ψ10, Ψ5 and Ψ1. Generally we assume the resonance labeled by a larger number is

heavier, such as Mρ(n+1) > Mρ(n).
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is extended to Y = T 3
R +X. As we will see, for the fermion resonances relevant to the top-

quark interactions, X = 2/3. Under the decomposition SO(5)×U(1)X → SU(2)L×U(1)Y ,

we get[
52/3 → 27/6 ⊕ 21/6 ⊕ 12/3

Ψ5 → QX ⊕Q⊕ T̃

]
;

[
102/3 → 32/3 ⊕ 15/3 ⊕ 12/3 ⊕ 1−1/3 ⊕ 27/6 ⊕ 21/6

Ψ10 → Y ⊕K5/3 ⊕K2/3 ⊕K−1/3 ⊕ JX ⊕ JQ

]
,

(2.10)

where the full expressions of the above fields are given in appendix A. The Lagrangian of

top partners reads

LΨ = tr

[
Ψ̄10

(
i /∇+ g′0

2

3
/B −M10

)
Ψ10

]
+ Ψ̄5

(
i /∇+ g′0

2

3
/B −M5

)
Ψ5 + Ψ̄1

(
i/∂ + g′0

2

3
/B −M1

)
Ψ1, (2.11)

where the SO(6)/SO(5) covariant derivatives

∇µΨ5 =
(
∂µ − ieĀµ tĀ

)
Ψ5, ∇µΨ10 = ∂µΨ10 − ieĀµ tĀΨ10 + iΨ10e

Ā
µ t
Ā, (2.12)

and the matrices [taL,R]rs ≡ [T aL,R]rs, [t̂i1]rs ≡ [T̂ i1]rs with (r, s = 1, . . . , 5).

The SM fermions gain their masses through EWSB and the mixing with the strong

sector, i.e. the partial compositeness interactions. The heavier a fermion is, the more

strongly it couples to the top partners. Therefore, only the interactions with top quark

are sizable due to the large top mass, and hereafter we only consider qL = (tL, bL)T and

tR. In CCWZ, the elementary fermions are embedded into the incomplete representation

of SO(6), and one has the degree of freedom to choose various embeddings when building

the model. For qL, we consider the 6 and 15 representations; while for tR, we consider

the 1, 6 and 15 representations. The explicit expressions of the embeddings are as follows.

First, tR can be the 12/3 of SO(6)× U(1)X : t1R ≡ tR. Second, under group decomposition

SO(6)×U(1)X → SU(2)L ×U(1)Y we get

62/3 → 27/6 ⊕ 21/6 ⊕ 12/3 ⊕ 12/3, (2.13)

thus the embedding of qL is unique while of tR can be the superposition of the two 12/3:

q6L =
1√
2

(
ibL bL itL −tL 0 0

)T
, t6R =

(
0 0 0 0 tRe

iφcθ tRsθ

)T
, (2.14)

where cθ and sθ stand respectively for cos θ and sin θ, with θ and φ being the mixing

angles [44]. The phase φ is unphysical [44, 50].

Finally, we consider the 15 representation. Under the decomposition chain SO(6) ×
U(1)X → SU(2)L ×U(1)Y we have

152/3 → 32/3 ⊕ 15/3 ⊕ 12/3 ⊕ 1−1/3 ⊕ 27/6 ⊕ 21/6 ⊕ 27/6 ⊕ 21/6 ⊕ 12/3. (2.15)

Since two 21/6 are obtained, we have two different ways to embed qL in to 15, namely

q15AL = (q6L)j T̂
j
1 , q15BL = i(q6L)j T̂

j
2 , (2.16)

– 5 –



J
H
E
P
1
2
(
2
0
1
9
)
0
2
8

where (j = 1, . . . , 4). The 15B embedding has been considered in ref. [51], while the 15A
is first proposed here. Phenomenologically, the model with 15B embedding is stringently

constrained by the ZbLb̄L coupling measurement, see appendix B for the details. Hereafter

we only consider q15AL and denote it as q15L . On the other hand, the right-handed top can

be embedded into the superposition of the two 12/3 in eq. (2.15), i.e.

t15R = T 3
RtRcθ + T̂ 5

2 tRe
iφsθ. (2.17)

The special case θ = 0 is considered in ref. [51] for a collider phenomenology study.

Having the SM embeddings in hand, we are able to write down the partial composite-

ness interactions. Since qL has two different embeddings while tR has three, the combina-

tions yield six different models, which can be labeled by (left-handed embedding)+(right-

handed embedding). For example, the 15 + 6 NMCHM means the benchmark model with

qL embedded in 15 while tR embedded in 6. We will discuss those models one by one.

The 6 + 1 model.

L6+1 ⊃ y5Lf(q̄6L)IUIrΨ
r
5 + y1Lf(q̄6L)IUI6Ψ1 + y1Rf t̄

1
RΨ1 + h.c. , (2.18)

where (I = 1, . . . , 6). After EWSB, the Yukawa interactions give mass to the top quark.

The 6 + 6 model.

L6+6 ⊃ y5Lf(q̄6L)IUIrΨ
r
5+y1Lf(q̄6L)IUI6Ψ1+y5Rf(t̄6R)IUIrΨ

r
5+y1Rf(t̄6R)IUI6Ψ1+h.c. . (2.19)

The 6 + 15 model.

L6+15 ⊃ y5Lf(q̄6L)IUIrΨ
r
5 + y1Lf(q̄6L)IUI6Ψ1

+ y10R f(t̄15R )IJUJrΨ
rs
10[U †]sI + y5RfΣ†I(t̄

15
R )IJUJrΨ

r
5 + h.c. . (2.20)

The 15 + 1 model.

L15+1 ⊃ y10L f(q̄15L )IJUJrΨ
rs
10[U †]sI + y5LfΣ†I(q̄

15
L )IJUJrΨ

r
5 + y1Rf t̄

1
RΨ1 + h.c. , (2.21)

where (I, J = 1, . . . , 6). Note that the Yukawa interactions in above equation cannot give

a mass to the top quark, because qL mixes with Ψ10 and Ψ5, while tR mixes with Ψ1.

Therefore, this model is not supported by reality.

The 15 + 6 model.

L15+6 ⊃ y10L f(q̄15L )IJUJrΨ
rs
10[U †]sI + y5LfΣ†I(q̄

15
L )IJUJrΨ

r
5

+ y5Rf(t̄6R)IUIrΨ
r
5 + y1Rf(t̄6R)IUI6Ψ1 + h.c. . (2.22)

The 15 + 15 model.

L15+15 ⊃ y10L f(q̄15L )IJUJrΨ
rs
10[U †]sI + y5LfΣ†I(q̄

15
L )IJUJrΨ

r
5

+ y10R f(t̄15R )IJUJrΨ
rs
10[U †]sI + y5RfΣ†I(t̄

15
R )IJUJrΨ

r
5 + h.c. . (2.23)

In summary, we get five different NMCHMs to study (the 15 + 1 model is dropped

because of the issue of massless top quark).
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2.2 The scalar potential and the condition of SFOEWPT

In the strong sector, h and η are protected by the Goldstone theorem and strictly massless.

It is the SO(6)-breaking interactions between the elementary sector and the strong sector

that generate the effective potential V (h, η). As we will see in section 3, the potential can

be written in a very good approximation as

V (h, η) =
µ2
h

2
h2 +

λh
4
h4 +

µ2
η

2
η2 +

λη
4
η4 +

λhη
2
h2η2. (2.24)

Above potential implies a Z2 symmetry η → −η, which might be broken either sponta-

neously by the global vacuum expectation value (VEV) of η or explicitly by the Yukawa

interactions such as tt̄η (depends on the choice of θ in the tR embedding). A physically

acceptable potential V (h, η) should have a VEV 〈h〉 = v at zero temperature and give

correct masses to the observed particles such as the Higgs boson, the W± and Z bosons,

the top quark, etc.

At finite temperature, V (h, η) receives the thermal corrections and the vacuum struc-

ture changes. For the tree-level driven first-order EWPT, the high-temperature expansion

approximation of the finite temperature potential could be adopted to characterize the

dynamics of the phase transition [52]. Keeping only the leading T 2 terms,6 the finite

temperature potential is then written as:

VT (h, η) =
µ2
h + chT

2

2
h2 +

λh
4
h4 +

µ2
η + cηT

2

2
η2 +

λη
4
η4 +

λhη
2
h2η2, (2.25)

where

ch =
3g2 + g′2

16
+
y2
t

4
+
λh
2

+
λhη
12

, cη =
λη
4

+
λhη
3
, (2.26)

with g(′) and yt being the physical EW couplings and top Yukawa, respectively. The

necessary condition for SFOEWPT is the existence of two degenerate vacuums at some

critical temperature Tc. In the thermal potential VT (h, η), the proper way to realize that

is the so-called “two-step” phase transition,7 in which the VEV (〈h〉 , 〈η〉) changed as

(0, 0) → (0, w) → (v, 0) when the universe cooled down from the temperature T � Mh

to T = 0. This also tells us the Z2 symmetry of η is preserved by the scalar potential at

zero temperature (but it might be broken by the Yukawa interactions, see the discussions

in section 3).

Now we address the conditions for the two-step phase transition. The method used

here is similar to those in refs. [34, 35]. At zero temperature there should be a EW breaking

6Which has been proved to be gauge-independent in refs. [53, 54].
7We briefly comment on the other two possible SFOEWPT mechanisms. The first one is the “one-step”

SFOEWPT, in which a potential barrier is induced only along the h direction, and the η never gets a

VEV [37]. This scenario exists only when the thermal corrections depend linearly on T are included. As

those terms cause gauge-dependent Tc and vc [55], we will not consider them here. The second one is

the effective field theory (EFT) scenario, in which a heavy η is integrated out, leaving the dimensional-6

operators that generate SFOEWPT [56–61]. However, a portal interaction ηh2 is crucial in generating a

sizable h6 operator [61]. While such a portal term is absent in our potential eq. (2.24), the EFT scenario

is disfavored.
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local minimum (v, 0) along the h direction, which requires

µ2
h < 0, λh > 0, λhµ

2
η > λhηµ

2
h, ⇒ v =

√
−µ2

h/λh; (2.27)

and another local minimum (0, w) along the η direction, which needs

µ2
η < 0, λη > 0, ληµ

2
h > λhηµ

2
η, ⇒ w =

√
−µ2

η/λη. (2.28)

Note the third inequalities in eqs. (2.27) and (2.28) come from the Hessian matrix and

ensure (v, 0), (0, w) to be local minima but not saddle points. One can infer λhη > 0 and

λ2
hη > λhλη from those inequalities too. In addition, the EWSB minimum should be the

true vacuum, i.e.

V (v, 0) = −
µ4
h

4λh
< V (0, w) = −

µ4
η

4λη
, (2.29)

thus µ2
η

√
λh > µ2

h

√
λη.

At the critical temperature Tc, there should exist two degenerate vacuums (vc, 0) and

(0, wc) satisfying

µ2
h + chT

2
c < 0, λh(µ2

η + cηT
2
c ) > λhη(µ

2
h + chT

2
c ), vc =

√
−(µ2

h + chT 2
c )/λh;

µ2
η + cηT

2
c < 0, λη(µ

2
h + chT

2
c ) > λhη(µ

2
η + cηT

2
c ), wc =

√
−(µ2

η + cηT 2
c )/λη,

(2.30)

and

V (vc, 0) = −
(µ2
h + chT

2
c )2

4λh
= V (0, wc) = −

(µ2
η + cηT

2
c )2

4λη
. (2.31)

Solving the above equation yields

T 2
c =

µ2
h

√
λη − µ2

η

√
λh

cη
√
λh − ch

√
λη

. (2.32)

Requiring Tc ∈ R yields ch
√
λη > cη

√
λh. Substituting the expression of Tc into eq. (2.30),

one obtain cηµ
2
h > chµ

2
η. Combining all the inequalities we get, the condition of two

degenerate vacuums for VT (h, η) is

cη
ch

<
µ2
η

µ2
h

<

√
λη√
λh

<
λhη
λh

. (2.33)

Note that eq. (2.33) is necessary but not sufficient for a first order EWPT. To really

achieve a first order EWPT, one should calculate the bubble nucleation rate per volume in

the early universe

Γ/V ≈ T 4

(
S3

2πT

)3/2

e−S3(T )/T , (2.34)

and confirm that the critical condition

S3(Tn)

Tn
∼ 4 ln

ξMPl

Tn
∼ 140, (2.35)
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is satisfied at some nucleation temperature Tn. Here S3 is the classical action of the O(3)

symmetric bounce solution [62], ξ ≈ 0.03 and MPl = 1.22 × 1019 GeV. Normally Tn is

slightly lower than Tc. Only when eq. (2.35) is satisfied can the bubbles percolate in an

expanding universe and phase transition successfully complete. In addition, to avoid the

generated baryon asymmetry being washed out, the EW sphaleron process should be sup-

pressed. That means the phase transition should be sufficiently strong [63–65], satisfying

vn/Tn & 1, (2.36)

where vn is the Higgs VEV at Tn. We will deal with eqs. (2.35) and (2.36) numerically in

section 4.

In the end of this subsection, we discuss the allowed parameter space under eq. (2.33).

At zero temperature, due to the derivative interactions in the kinetic term, the field shift

that canonicalizes the Higgs kinetic term should be

h→ v +

√
1− v2

f2
h, (2.37)

which changes the zero temperature potential eq. (2.24) to

V (h, η)→ −µ2
h

(
1− v2

f2

)
h2 + λhv

(
1− v2

f2

)3/2

h3 +
λh
4

(
1− v2

f2

)2

h4

+
1

2
(µ2
η + λhηv

2)η2 +
λη
4
η4 + λhηv

√
1− v2

f2
hη2 +

λhη
2

(
1− v2

f2

)
h2η2,

(2.38)

and the physical masses can be easily read as

M2
h = −2µ2

h

(
1− v2

f2

)
, M2

η = µ2
η + λhηv

2. (2.39)

Since v2 � f2 is expected, µ2
h is almost fixed by the observed Mh = 125.09 GeV. And λh is

also fixed by −µ2
h/v

2. The mass and the Higgs coupling of the EW bosons are respectively

M2
W =

g2v2

4
, ghWW =

g2v

2

√
1− v2

f2
= gSM

hWW

√
1− v2

f2
, (2.40)

see the Goldstone kinetic term in eq. (2.6). Current EW and Higgs measurements have

constrained f & 1 TeV.

When Mη < Mh/2, the decay channel h→ ηη opens and the partial width is [10]

Γ(h→ ηη) =
v2

32πMh

(
M2
h

f
√
f2 − v2

− 2λhη

√
1− v2

f2

)2√
1−

4M2
η

M2
h

. (2.41)

Depending on the various η decay channels, h → ηη can lead to invisible decay (for the

dark matter scenario), multi-boson final state (if η decays to a pair of EW bosons via WZW

anomaly) or multi-jet final state (if η decays to jj or gg via fermion loops), etc. On the
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Figure 1. The parameter space giving degenerate vacuums.

other hand, the Higgs total width in SM is extremely small that Γh = 4.07 MeV [66], thus

even a small hηη vertex can change the Higgs branching ratios a lot. As SFOEWPT needs

a sizable λhη (see eq. (2.33) for details), were h→ ηη allowed it would dominate the Higgs

decay. This would be ruled out by the existing experimental measurements [67, 68], which

show compatible branching ratios with the SM prediction. To avoid this conflict, we will

consider only the Mη > Mh/2 region, and h→ ηη is then forbidden by phase space.

Given eq. (2.39), the coefficients in V (h, η) can be expressed in terms of f , Mη, λη
and λhη, because Mh and v are fixed by experiments. As long as f � v, the dependence

of f is mild and the degrees of freedom reduce to three. In figure 1 we plot the parameter

regions allowed by eq. (2.33) for different Mη values. One can see that λhη has a positive

correlation with Mη, as expected.

3 Deriving the scalar potential of NMCHM

In this section, we first classify the sources of the potential and then investigate them

one by one. Especially, we will demonstrate that the IR contributions can’t trigger

SFOEWPT alone.

3.1 The sources of the scalar potential

The coefficients µ2
h,η and λh,η,hη in V (h, η) are generated by two kinds of SO(6)-breaking

interactions. The first type is gauge interaction, see eq. (2.4). This breaks SO(6)×U(1)X
into its largest subgroup containing the SM gauge group as an ideal, i.e. SU(2)L×U(1)Y ×
U(1)η [5], where U(1)η is the subgroup generated by T̂ 5

2 . As a result, the gauge interactions

contribute to the potential for h (i.e. µ2
h and λh) but not η (i.e. µ2

η and λη,hη).

The second source of the potential comes from the partial compositeness terms, i.e.

eqs. (2.18) to (2.23). In general, they break SO(6) × U(1)X into SU(2)L × U(1)Y and

– 10 –
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Gauge-induced Fermion-induced

IR contributions

(calculable)

Form factors from eq. (2.8),

in terms of g(′), gρ and Mρ,a

Form factors from eqs. (2.11) and (2.18)∼(2.23),

in terms of M1,5,10 and y1,5,10L,R

UV contributions

(estimated by NDA)
Local operators involved g(′) Local operators involved y1,5,10L,R

Table 1. The sources of the scalar potential in the NMCHM.

contribute to all coefficients in V (h, η). However, in some embeddings, accidentally the

elementary fermion multiplet has a definite U(1)η quantum number and then its contribu-

tion to the η potential vanishes. For the embeddings considered in this paper, under the

action of eiα
5T̂ 5

2 ,

δq6L = 0, δt1R = 0, δt15R = 0. (3.1)

Thus they have U(1)η quantum number zero.8 As a result we expect µ2
η and λη receive no

contributions from the q6L, t1R and t15R embeddings (λhη may receive contributions from the

combination of one of these embeddings and another U(1)η-breaking embedding). Hence in

the 6+1 and 6+15 NMCHMs, U(1)η is only spontaneously broken by the strong dynamics

and η remains as an exactly massless NGB. These two models are not only unable to trigger

SFOEWPT but also ruled out by the experimental searches for axion [5, 69], thus they will

not be studied in the rest of this paper. In summary, only the 6 + 6, 15 + 6 and 15 + 15

NMCHMs are considered for the SFOEWPT in the following text.

According to the calculability, the sources of the scalar potential are also classified into

two types. The first type is the IR contributions, which come from the leading operators in

Lagrangians eq. (2.8), eq. (2.11) and eqs. (2.18) to (2.23). When integrating out the heavy

resonances and require suitable Weinberg sum rules, the IR contributions are calculable and

expressed in terms of the resonances masses and couplings. The second type, denoted as

the UV contributions, are from the local higher dimensional operators which depend on the

interactions above the cutoff scale and their interplay with the SO(6)-breaking interactions.

This type of contributions is incalculable but only estimated by NDA [46]. Unfortunately,

NDA shows the UV contributions & IR contributions [42], thus strictly speaking the scalar

potential V (h, η) is not calculable in CHMs. To ensure the calculability, and partially

inspired by the pion mass mechanism in QCD, ref. [42] proposes the MHP hypothesis,

which assumes the UV contributions are negligible due to some unknown mechanism of

the underlying theory. MHP has been generally adopted in the studies of CHMs [11, 42–45].

However, as we will demonstrate, under MHP all three NMCHMs we consider fail to trigger

SFOEWPT. To realize a SFOEWPT, the UV contributions must be included. A summary

of the sources of the scalar potential is given in table 1.

In the following subsections we will derive the scalar potential for the three benchmark

NMCHMs: the 6+6, 15+6 and 15+15 models. For the IR contributions, we express the

potential coefficients in terms of the form factor integrals; while for the UV contributions,

we list the relevant local operators. For the Higgs field h, according to the sources of the

8In case θ = π/4 and φ = π/2, t6R also has a definite U(1)η charge −1/
√

2.
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SO(6)-breaking interactions we can separate the coefficients into

µ2
h = µ2

g + µ2
f , λh = λg + λf , (3.2)

where “g” and “f” denote the gauge and partial compositeness (fermion) contributions,

respectively. The µ2
η and λη,hη receive fermion contributions only. We will first discuss the

gauge contributions and then the fermion contributions for various embeddings.

3.2 Contribution from vector bosons

The gauge contributions are universal for all benchmark NMCHMs. Generally, the gauge-

induced potential can be written in a polynomial form

Vg(h) =
µ2
g

2
h2 +

λg
4
h4, (3.3)

where the coefficients receive contributions from both IR and UV sources.

The IR contributions. Integrating out the ρ and a resonances in eq. (2.8) we get the

Lagrangian involving vector bosons up to quadratic terms in the momentum space

Lρ →
1

2
PµνT

(
−p2BµBν − p2tr [WµWν ] + Π0(p2)tr [AµAν ] + Π1(p2)Σ†AµAνΣ

)
, (3.4)

where Π0,1(p2) are form factors, and Aµ is defined eq. (2.4). The transverse and longitudinal

projection operators are defined as

PµνT = gµν − pµpν

p2
, PµνL =

pµpν

p2
, (3.5)

respectively. Under the unitary gauge, eq. (3.4) becomes

Lρ →
1

2
PµνT

{(
−p2 +

g′20
g2

0

Π0(p2)

)
BµBν +

(
−p2 + Π0(p2)

)
W a
µW

a
ν

+
Π1(p2)

4

h2

f2

[
W 1
µW

1
ν +W 2

µW
2
ν +

(
W 3
µ −

g′0
g0
Bµ

)(
W 3
ν −

g′0
g0
Bν

)]}
, (3.6)

and it contributes to the Higgs potential as [3]

V IR
g (h) ≈ 6

2

∫
d4Q

(2π)4
ln

(
1 +

Π1

4ΠW

h2

f2

)
+

3

2

∫
d4Q

(2π)4
ln

[
1 +

(
g′20
g2

0

Π1

4ΠB
+

Π1

4ΠW

)
h2

f2

]
,

(3.7)

where Q2 ≡ −p2, ΠW = Q2 +Π0 and ΠB = Q2 +(g′20 /g
2
0)Π0. Above result is derived under

the assumption of Landau gauge ξ = 0. Only in this gauge can we omit the contributions

from the ghost fields [70]. An expansion of eq. (3.7) up to h4 can give a very good approx-

imation, because higher order terms are suppressed by g2
0v

2/f2. Matching the polynomial

potential to eq. (3.3), we get

(µ2
g)

IR =
3

4f2

∫
d4Q

(2π)4

(
g′20
g2

0

Π1

ΠB
+ 3

Π1

ΠW

)
,

(λg)
IR = − 3

16f4

∫
d4Q

(2π)4

[
2

(
Π1

Π2
W

)2

+

(
g′20
g2

0

Π1

ΠB
+

Π1

ΠW

)2
]
.

(3.8)
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Since ΠB,W ∼ Q2 at large momentum, the coefficients are quadratic divergent. To get a

convergent Vg, the Π1 form factor should at least have a scaling Q−4. This can be realized

via suitable Weinberg sum rules, as we will see in section 4.

The UV contributions. This part of contributions comes from the higher order opera-

tors, which can be written down using the spurion trick [46]. We rewrite the gauge field as

gAµ = gT aLW
a
µ + g′T 3

RBµ ≡ GĀaT ĀW a
µ + G′ĀT

ĀBµ. (3.9)

The symmetry of the theory is formally extended to SO(6)× SU(2)0×U(1)0, in which the

spurions have quantum number

GĀa : (6,30), G′Ā : (6,10). (3.10)

The VEVs of the spurions

〈GĀa〉 = gδĀaL ,
〈
G′Ā
〉

= g′δĀ3R
, (3.11)

break the SO(6)× SU(2)0 ×U(1)0 back to SU(2)L ×U(1)Y ×U(1)η. The spurions can be

used to count the number of gauge insertions when generating a specific operator. Denoting

Ga = GĀaT Ā and G′ = G′
Ā
T Ā, the relevant operators for h potential are

cgf
4Σ†GaGaΣ, cg′f

4Σ†G′G′Σ, dg
16π2

f4
(

Σ†GaGaΣ
)2
,

dg′

16π2
f4
(

Σ†G′G′Σ
)2
, (3.12)

where the coefficients cg,g′ and dg,g′ are all O(1) according to NDA. Matching above op-

erators to eq. (3.3) yields

(µ2
g)

UV = cg
3g2

2
f2 + cg′

g′2

2
f2, (λg)

UV = dg
9g4

64π2
+ dg′

g′4

64π2
. (3.13)

3.3 Contribution from fermions: the 6 + 6 model

The fermion-induced potential of all kinds of embeddings can be generally written in

Vf (h, η) =
µ2
f

2
h2 +

λf
4
h4 +

µ2
η

2
η2 +

λη
4
η4 +

λhη
2
h2η2, (3.14)

and the contributions to the coefficients can be classified into IR and UV ones.

The IR contributions. Integrating out the top partners in eq. (2.19), the general

fermion Lagrangian up to quadratic term is

L6+6 → q̄6L/p
(

Πq
0(p2) + Πq

1(p2)ΣΣ†
)
q6L + t̄6R/p

(
Πt

0(p2) + Πt
1(p2)ΣΣ†

)
t6R

+ q̄6L

(
M t

0(p2) +M t
1(p2)ΣΣ†

)
t6R + h.c. , (3.15)
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where Π0,1
q,t (p

2) and M t
0,1(p2) are form factors. Above Lagrangian is greatly simplified under

the unitary gauge

L6+6 → t̄L/p

(
Πq

0 +
Πq

1

2

h2

f2

)
tL + t̄R/p

[
Πt

0 + Πt
1

(
c2
θ

η2

f2
+ s2

θ

(
1− h2 + η2

f2

))]
tR

− M t
1√
2

h

f

(
sθ

√
1− h2 + η2

f2
+ icθ

η

f

)
t̄LtR + h.c. , (3.16)

where we have chosen the unphysical phase φ = π/2 in t6R. The b̄LbL form factor is

accidentally zero because of the q6L embedding. Note that (h2 + η2)/f2 < 1 by definition

(see eq. (2.5) for details), thus the square root in eq. (3.16) is always well-defined. In the

studies involving dark matter, θ = π/2 (for which the tt̄η vertex is absent) is chosen to

ensure the η → −η symmetry and get a stable dark matter candidate [10, 11]. Here we focus

on SFOEWPT where the stability of η is unimportant, thus allow θ to be any real number.

The effective potential caused by eq. (3.16) is

V IR
f (h,η)≈−2Nc

∫
d4Q

(2π)4

{
ln

(
1+

Πq
1

2Πq
0

h2

f2

)
+ln

[
1+

Πt
1

Πt
0

(
s2
θ

(
1− h

2

f2

)
+c2θ

η2

f2

)]

+ln

[
1+

1

Q2

|M t
1|2

2Πq
0Πt

0

h2

f2

(
s2
θ

(
1− h

2

f2

)
+c2θ

η2

f2

)]}
, (3.17)

with Nc = 3 being the QCD color number of the SM quarks. A good approximation can be

obtained by truncating the Taylor expansion up to the quartic term of h and η, as shown

in eq. (3.14). The coefficients can be expressed in terms of five basic integrals [45],

αq,t =
Nc

f2

∫
d4Q

(2π)4

Πq,t
1

Πq,t
0

, βq,t =
Nc

f4

∫
d4Q

(2π)4

(
Πq,t

1

Πq,t
0

)2

, ε=
Nc

f4

∫
d4Q

(2π)4

|M t
1|2

Q2Πq
0Πt

0

, (3.18)

giving

(µ2
f )IR = −2αq + 4s2

θαt − 4s4
θf

2βt − 2s2
θf

2ε, (µ2
η)

IR = −4c2θαt + 4c2θs
2
θf

2βt,

(λf )IR = βq + 4s4
θβt + 4s2

θε, (λη)
IR = 4c2

2θβt,

(λhη)
IR = −4c2θs

2
θβt − 2c2θε.

(3.19)

Note that (µ2
η)

IR and (λη)
IR are irrelevant to αq and βq due to the U(1)η symmetry of

q6L. In addition, provided θ = π/4, η would decouple from the effective potential. This is

because in this limit even t6R has a definite U(1)η quantum number: −1/
√

2, and then η is a

true NGB that free of potential [5]. The form factors in the basic integrals of eq. (3.18) can

be derived for the QCD-like underlying theory in terms of the masses of top partners and

mixing couplings. Although they are generally divergent, by imposing suitable Weinberg

sum rules we can make them converge and get the finite results of eq. (3.19). This will be

done in section 4.

Before turning to the UV contributions, we demonstrate that SFOEWPT cannot be

triggered by the IR contributions alone. The issue is from (µ2
η)

IR and (λη)
IR. SFOEWPT
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needs a local minimum along the η direction, which is

w =

√
−
µ2
η

λη

IR only−−−−−→

√
αt − s2

θf
2βt

c2θβt
. (3.20)

However, as αt and βt come from the expansion of the same logarithm, |αt| � βtf
2 is

expected, thus w2|IR � f2. This inequality can never be achieved because η < f is given

by its definition, see eq. (2.5).9 Therefore, the IR contributions fail to trigger SFOEWPT.

The UV contributions. A spurion approach is used to rewrite

q6L = Q6qL, t6R = T 6tR, (3.21)

where the spurions have quantum numbers

Q6 : (62/3,2−1/6), T 6 : (62/3,1−2/3), (3.22)

under the extended SO(6) ×U(1)X × SU(2)0 ×U(1)0 group. Their VEVs,

〈
Q6
〉

=
1√
2

(
0 0 i −1 0 0

i 1 0 0 0 0

)T
,
〈
T 6
〉

=
(

0 0 0 0 eiφcθ sθ

)T
, (3.23)

break the symmetry down to SU(2)L×U(1)Y . The operators relevant for scalar potential are

cLf |yL|
2 f4Σ†Q6Q6†Σ, cRf |yR|

2 f4Σ†T 6T 6†Σ,

dLf
16π2

|yL|4 f4
(

Σ†Q6Q6†Σ
)2
,

dRf
16π2

|yR|4 f4
(

Σ†T 6T 6†Σ
)2
,

(3.24)

where the coefficients cL,Rf and dL,Rf are the O(1) Wilson coefficients according to NDA.

The contributions to the scalar potential eq. (3.14) are then

(µ2
f )UV = cLf |yL|

2 f2 − 2cRf |yR|
2 f2s2

θ −
dRf
4π2
|yR|4 f2s4

θ,

(µ2
η)

UV = 2cRf |yR|
2 f2c2θ +

dRf
4π2
|yR|4 f2s2

θc2θ,

(λf )UV =
dLf

16π2
|yL|4 +

dRf
4π2
|yR|4 s4

θ,

(λη)
UV =

dRf
4π2
|yR|4 c2

2θ, (λhη)
UV = −

dRf
4π2
|yR|4 s2

θc2θ.

(3.25)

The cLf and dLf don’t contribute to (µ2
η)

UV and (λη)
UV because of the U(1)η symmetry.

Again, η decouples if θ = π/4.

9One may concern that in case w & f , the perturbative expansion of η2/f2 in the logarithms of eq. (3.17)

is not valid and we cannot use the polynomial eq. (2.24) to describe the Higgs potential. However, we found

that even for η comparable with f , the statement about the local minimum w remains robust. In appendix C

we provide a discussion about this issue.
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The combination of IR and UV contributions gives the complete fermion-induced po-

tential for the 6 + 6 NMCHM. If dRf is large enough, then λη receives an enhancement and

w2 � f2 may be satisfied. In section 4 we will show numerically this is indeed the case, i.e.

SFOEWPT can be triggered in the 6 + 6 NMCHM when both IR and UV contributions

are taken into account.

3.4 Contribution from fermions: the 15 + 6 model

In this subsection, we match the IR and UV contributions of the 15 + 6 model into the

general potential in eq. (3.14).

The IR contributions. Integrating out the top partners from eq. (2.22) gives

L15+6 →
(

Πq
0(p2)tr

[
q̄15L /pq

15
L

]
+ Πq

1(p2)Σ†q̄15L /pq
15
L Σ

)
+
(

Πt
0(p2)t̄6R/pt

6
R + Πt

1(p2)t̄6R/pΣΣ†t6R

)
+M t

1(p2)Σ†q̄15L t6R + h.c. , (3.26)

which is simplified in the unitary gauge as

L15+6 → b̄L/p

(
Πq

0 +
Πq

1

2

η2

f2

)
bL + t̄L/p

[
Πq

0 +
Πq

1

2

(
h2

2f2
+
η2

f2

)]
tL

+ t̄R/p

[
Πt

0 + Πt
1

(
c2
θ

η2

f2
+ s2

θ

(
1− h2 + η2

f2

))]
tR −

M t
1

2

h

f
cθ t̄LtR + h.c. , (3.27)

where the unphysical phase φ in t6R is set to π/2. The corresponding potential can be

derived, expanded up to quartic level and matched to the polynomial potential,

(µ2
f )IR =−αq+4αts

2
θ−4s4

θf
2βt−c2

θf
2ε, (µ2

η)
IR =−4αq−4αtc2θ+4c2θs

2
θβtf

2,

(λf )IR =
βq
4

+4s4
θβt, (λη)

IR = 2βq+4c2
2θβt,

(λhη)
IR =

βq
2
−4c2θs

2
θβt.

(3.28)

And the five basic integrals are the same as eq. (3.18).

The 15+6 model should be the most hopeful one to realize SFOEWPT using only the

IR contributions, because both the embeddings q15L and t6R break U(1)η and then contribute

to µ2
η. Therefore, a cancelation may exist in eq. (3.28) and reduce (µ2

η)
IR to an acceptable

value that gives w2 � f2. However, the quartic coefficients suffer from another problem.

The condition eq. (2.33) requires λ2
hη > λhλη. Since λf � λg [42], we expect

(λ2
hη)

IR − (λh)IR(λη)
IR ≈ (λ2

hη)
IR − (λf )IR(λη)

IR

= −1

4
βq [βq + 8(1− c2θ)βt + 2(1 + c4θ)βt] < 0, (3.29)

where the last inequality holds because βq,t > 0 by definition. Therefore, the necessary

condition for SFOEWPT is broken and then IR contributions from the 15 + 6 cannot

realize SFOEWPT.
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The UV contributions. For q15L , we introduce spurion as(
q15L
)
IJ

=
(
Q15

)
IJα

(qL)α, Q15 : (152/3,2−1/6), (3.30)

under the extended SO(6)×U(1)X × SU(2)0 ×U(1)0 group (here α = 1, 2 is the subscript

of SU(2)0 elementary representation). The VEV of Q15 can be inferred from eq. (2.16)

thus not shown here. The relevant operators for the scalar potential are

For the fermion contributions, we have

cLf |yL|
2 f4Σ†Q15

α Q15†
α Σ,

dLf
16π2

|yL|4 f4
(

Σ†Q15
α Q15†

α Σ
)2
, (3.31)

where the coefficients cLf and dLf are O(1) numbers. The spurion relevant to t6R and the

corresponding operators have been introduced in last subsection. Combining them together

we get the UV contributions to the scalar potential

(µ2
f )UV =

cLf
2
|yL|2 f2 − 2cRf |yR|

2 f2s2
θ −

dRf
4π2
|yR|4 f2s4

θ,

(µ2
η)

UV = 2cLf |yL|
2 f2 + 2cRf |yR|

2 f2c2θ +
dRf
4π2
|yR|4 f2s2

θc2θ,

(λf )UV =
dLf

64π2
|yL|4 +

dRf
4π2
|yR|4 s4

θ,

(λη)
UV =

dLf
4π2
|yL|4 +

dRf
4π2
|yR|4 c2

2θ, (λhη)
UV =

dLf
16π2

|yL|4 −
dRf
4π2
|yR|4 s2

θc2θ.

(3.32)

With the assistance of the UV contributions, λhη may be enhanced to be larger than
√
λhλη

and the necessary conditions of SFOEWPT are achieved.

3.5 Contribution from fermions: the 15 + 15 model

The IR contribution. Integrating out the top partners in eq. (2.23), the Lagrangian

up to quadratic term is

L15+15 →
(

Πq
0(p2)tr[q̄15L /pq

15
L ] + Πq

1(p2)Σ†q̄15L /pq
15
L Σ

)
+
(

Πt
0(p2)tr[t̄15R /pt

15
R ] + Πt

1(p2)Σ†t̄15R /pt
15
R Σ

)
+M t

1(p2)Σ†q̄15L t15R Σ + h.c. , (3.33)

Using unitary gauge and choosing the phase φ = 0 in t15R , we can simplify the expression as

L15+15 → b̄L/p

(
Πq

0 +
Πq

1

2

η2

f2

)
bL

+ t̄L/p

[
Πq

0 +
Πq

1

2

(
h2

2f2
+
η2

f2

)]
tL + t̄R/p

[
Πt

0 +
Πt

1

4

(
2s2
θ + (1− 3s2

θ)
h2

f2

)]
tR

+
M t

1

4

h

f

(
√

2sθ

√
1− h2 + η2

f2
+ i

η

f
cθ

)
t̄LtR + h.c. . (3.34)
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Matching the corresponding potential to the polynomial form eq. (3.14) gives the

coefficients

(µ2
f )IR = −αq − αt(1− 3s2

θ) +
βtf

2

2
(1− 3s2

θ)s
2
θ −

εf2

2
s2
θ, (µ2

η)
IR = −4αq,

(λf )IR =
βq
4

+
βt
4

(1− 3s2
θ)

2 + εs2
θ, (λη)

IR = 2βq,

(λhη)
IR =

βq
2
−

1− 3s2
θ

4
ε.

(3.35)

The five basic integrals the same as eq. (3.18). The (µ2
η)

IR and (λη)
IR are independent of

αt and βt because the embedding t15R conserves U(1)η. It is apparent that eq. (3.35) cannot

trigger SFOEWPT, because it gives a η-direction local minimum w2|IR = 2αq/βq � f2.

The UV contributions. The spurions for T 15 is(
t15R
)
IJ

=
(
T 15

)
IJ
tR, T 15 : (152/3,1−2/3), (3.36)

under the extended SO(6) × U(1)X × SU(2)0 × U(1)0 group.
〈
T 15

〉
can be inferred from

eq. (2.17) thus not shown here. The relevant operators are

cRf |yR|
2 f4Σ†T 15T 15†Σ,

dRf
16π2

|yR|2 f4
(

Σ†T 15T 15†Σ
)2
, (3.37)

with cRf and dRf being O(1) parameters. The UV contribution to the scalar potential is

(µ2
f )UV =

cLf
2
|yL|2 f2 +

cRf
2
|yR|2 f2(1− 3s2

θ) +
dRf

32π2
|yR|4 f2s2

θ(1− 3s2
θ),

(µ2
η)

UV = 2cLf |yL|
2 f2,

(λf )UV =
dLf

64π2
|yL|4 +

dRf
64π2

|yR|4 (1− 3s2
θ)

2,

(λη)
UV =

dLf
4π2
|yL|4 , (λhη)

UV =
dLf

16π2
|yL|4 .

(3.38)

They can help to reduce w2 and match the requirement of SFOEWPT.

4 Realizing SFOEWPT in the 6 + 6 NMCHM

In last section, we have seen the necessary conditions of SFOEWPT are not satisfied by the

IR contributions alone, for all benchmark models we considered. However, we also showed

that with the help of the UV contributions, SFOEWPT may exist in the 6 + 6, 15 + 6 and

15 + 15 models. In this section, we take the 6 + 6 NMCHM as an example to investigate

the SFOEWPT under the combination of the IR and UV contributions.

4.1 Calculating the IR contributions with Weinberg sum rules

The UV contributions to V (h, η) of the 6+6 model have been given in eqs. (3.13) and (3.25),

while the IR contributions are expressed as the integrals of the form factors in eqs. (3.8)

and (3.19). For a QCD-like strong dynamics, the form factors can be written explicitly

and the integrals can be evaluated with the help of suitable sum rules.
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Gauge contributions. The Π0,1(p2) are expressed by the strong couplings and vector

resonances masses [38]

Π0(p2) = g2
0p

2

Nρ∑
n=1

f2
ρ(n)

p2 −M2
ρ(n)

,

Π1(p2) = g2
0f

2 + 2g2
0p

2

 Na∑
n=1

f2
a(n)

p2 −M2
a(n)

−
Nρ∑
n=1

f2
ρ(n)

p2 −M2
ρ(n)

 ,

(4.1)

where fρ(n) ≡ Mρ(n)/gρ(n). Then in eq. (3.6), the kinetic terms of B and W fields are

modified into

− p2

2
PµνT

1 +

Nρ∑
n=1

g′20
g2
ρ(n)

BµBν , −p
2

2
PµνT

1 +

Nρ∑
n=1

g2
0

g2
ρ(n)

W a
µW

a
ν . (4.2)

A field redefinition is needed to get the canonical kinetic terms, i.e. W a
µ → (g/g0)W a

µ and

Bµ → (g′/g′0)Bµ, where

g2 = g2
0

1 +

Nρ∑
n=1

g2
0

g2
ρ(n)

−1

, g2 = g′20

1 +

Nρ∑
n=1

g′20
g2
ρ(n)

−1

, (4.3)

are the physical gauge couplings. After this redefinition, the g
(′)
0 in Π0,1 can be replaced

by g(′).

As mentioned in previous section, the convergent IR contributions require a scaling

Π1 ∼ Q−4. By expanding the second line in eq. (4.1), we find that means the following two

equations,

Nρ∑
n=1

f2
ρ(n) =

f2

2
+

Na∑
n=1

f2
a(n);

Nρ∑
n=1

f2
ρ(n)M

2
ρ(n) =

Na∑
n=1

f2
a(n)M

2
a(n), (4.4)

known as the Weinberg first and second sum rules, which are first proposed in the study

of QCD ρ-mesons [71]. If we further assume the lightest resonances dominate, i.e. Nρ =

Na = 1, then the sum rules become

f2
ρ =

f2

2
+ f2

a , f2
ρM

2
ρ = f2

aM
2
a . (4.5)

Note that above equation implies Ma > Mρ. In such a case, the form factors become

Π0(Q2) = g2Q2
f2
ρ

Q2 +M2
ρ

, Π1(Q2) =
g2f2M2

ρM
2
a

(Q2 +M2
ρ )(Q2 +M2

a )
, (4.6)

and eq. (3.8) can be calculated analytically. If we impose ΠB,W ≈ Q2 (the error of this

approximation is O(g2/g2
ρ), small enough to neglect), the results are quite simple

(µ2
g)

IR =
3(3g2 + g′2)

64π2

M2
ρM

2
a

M2
a −M2

ρ

ln
M2
a

M2
ρ

,

(λg)
IR =

3
[
2g4 + (g2 + g′2)2

]
256π2(M2

a −M2
ρ )2

[
M4
a +

M4
ρ (M2

ρ − 3M2
a )

M2
a −M2

ρ

ln
M2
a

M2
W

+ (a↔ ρ)

]
.

(4.7)
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We have used a cutoff Q2 = M2
W to regularize the IR divergence of (λg)

IR.10 Note that

(µ2
g)

IR is positive definite. Comparing eqs. (4.7) and (3.13), one can see (µ2
g)

UV & (µ2
g)

IR

because gρ . 4π; while (λg)
UV ∼ (λg)

IR. Thus in general the UV contribution is not

negligible.

Fermion contributions. The fermion form factors Πq,t
0,1(p2) and M t

0,1(p2) are expressed

in terms of the resonances masses and coupling constants,

Πq,t
0 (p2) = 1−

N5∑
n=1

|y5(n)
L,R |2f2

p2 −M2
5(n)

, Πq,t
1 (p2) =

N5∑
n=1

|y5(n)
L,R |2f2

p2 −M2
5(n)

−
N1∑
n=1

|y1(n)
L,R |2f2

p2 −M2
1(n)

, (4.8)

and

M t
0(p2) = −

N5∑
n=1

y
5(n)
L (y

5(n)
R )∗f2M5(n)

p2 −M2
5(n)

,

M t
1(p2) =

N5∑
n=1

y
5(n)
L (y

5(n)
R )∗f2M5(n)

p2 −M2
5(n)

−
N1∑
n=1

y
1(n)
L (y

1(n)
R )∗f2M1(n)

p2 −M2
1(n)

.

(4.9)

Defining Q2 = −p2, now the IR-driven coefficients eq. (3.19) can be evaluated. To converge

the integrals, the following scaling is needed,

Πq,t
1 ∼

1

Q6
, M t

1 ∼
1

Q2
. (4.10)

While the second scaling is already satisfied, the first one requires two sets of sum rules

N5∑
n=1

∣∣∣y5(n)
L,R

∣∣∣2 =

N1∑
n=1

∣∣∣y1(n)
L,R

∣∣∣2 , N5∑
n=1

∣∣∣y5(n)
L,R

∣∣∣2M2
5(n) =

N1∑
n=1

∣∣∣y1(n)
L,R

∣∣∣2M2
1(n). (4.11)

Assuming the lightest resonances dominate, we consider the particle spectrum N5 = 1

and N1 = 2. In this case eq. (4.11) reduces to

∣∣y5L,R∣∣2 =
∣∣y1L,R∣∣2 +

∣∣∣y1′L,R∣∣∣2 , ∣∣y5L,R∣∣2M2
5 =

∣∣y1L,R∣∣2M2
1 +

∣∣∣y1′L,R∣∣∣2M2
1′ , (4.12)

where the heavier singlet top partner is denoted as Ψ1′ . The form factors are then

Πq,t
0 (Q2) = 1 +

|y5L,R|2f2

Q2 +M2
5

, Πq,t
1 (Q2) =

∣∣∣y1′L,R∣∣∣2 f2
(
M2

1′ −M
2
5

) (
M2

1′ −M
2
1

)
(Q2 +M2

5)(Q2 +M2
1)(Q2 +M2

1′)
, (4.13)

and

M t
1(Q2) =

y1L(y1R)∗f2M1

Q2 +M2
1

+
y1
′
L (y1

′
R )∗f2M1′

Q2 +M2
1′

−
y5L(y5R)∗f2M5

Q2 +M2
5

. (4.14)

10Actually the original expression eq. (3.7) is IR safe, while the IR divergence exists only in the pertur-

bative expansion eq. (3.8). We have numerically verified that λIR
g is not sensitive to the cutoff we choose.
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6 + 6 Gauge-induced Fermion-induced

IR
Π0(Q2) =

g2Q2f2ρ
Q2+M2

ρ
,

Π1(Q2) =
g2f2M2

ρM
2
a

(Q2+M2
ρ )(Q2+M2

a)

Πq,t
0 (Q2) = 1 +

|y5L,R|
2f2

Q2+M2
5

,

Πq,t
1 (Q2) =

∣∣∣y1′L,R∣∣∣2f2(M2
1′−M

2
5)(M2

1′−M
2
1)

(Q2+M2
5)(Q2+M2

1)(Q2+M2
1′ )

,

M t
1(Q2) =

y1L(y1R)∗f2M1

Q2+M2
1

+
y1
′
L (y1

′
R )∗f2M1′

Q2+M2
1′

− y5L(y5R)∗f2M5

Q2+M2
5

UV
cgf

4Σ†GaGaΣ, dg
16π2 f

4
(
Σ†GaGaΣ

)2
,

cg′f
4Σ†G′G′Σ, dg′

16π2 f
4
(
Σ†G′G′Σ

)2 cLf |yL|
2 f4Σ†Q6Q6†Σ,

dLf
16π2 |yL|4 f4

(
Σ†Q6Q6†Σ

)2
,

cRf |yR|
2 f4Σ†T 6T 6†Σ,

dRf
16π2 |yR|4 f4

(
Σ†T 6T 6†Σ

)2
Table 2. The contributions to the scalar potential in the 6 + 6 NMCHM. Note that this table is

a realization of table 1.

The mass of top quark can be read as

Mt =
v |sθ|√

2

M5√
M2

5 +
∣∣y5L∣∣2 f2

M5√
M2

5 +
∣∣y5R∣∣2 f2

∣∣∣∣∣y1Ly1∗R fM1
+
y1
′
L y

1′∗
R f

M1′
−
y5Ly

5∗
R f

M5

∣∣∣∣∣
√

1− v2

f2
,

(4.15)

while the bottom quark remains massless. A mass hierarchy M1′ > M5 > M1 can be

derived from eq. (4.12).

Given eq. (4.7), eqs. (4.13) and (4.14), the quantitative connection between the IR

contributions and resonances masses and couplings are known and the numerical study is

in order.11

4.2 SFOEWPT and gravitational waves

The sources of V (h, η) are summarized in table 2. Combining the IR and UV parts of µ2
h,η

and λh,η,hη, we use the MultiNest package [72] to find the allowed parameter space by the

SM mass spectrum and the conditions for SFOEWPT. For the IR parts, the variables we

use in scan are {
Mρ,Ma, f,M1,M5,M1′ , y

5
L, y

5
R, θ
}
, (4.16)

while gρ,a and y1,1
′

L,R are derived via the sum rules. The mass ranges are 2 ∼ 7 TeV for

the vector resonances and 1 ∼ 6 TeV for the fermion resonances, while f > 0.5 TeV. For

the fermion interactions, all the mixing couplings
∣∣∣y5,1,1′L,R

∣∣∣ are constrained within 5. For

the UV parts, we consider only the fermion-induced operators cL,Rf and dL,Rf , requiring the

absolute values of the Wilson coefficients to be smaller than 5. The range of mixing angle

in embedding t6R is |θ| ∈ [0, π/2], where the upper limit is due to the fact that θ exist

only as s2
θ thus (π − θ) is equivalent to θ. To satisfy the EW and Higgs measurements,

we require the derived Mh = 125.09 GeV [67], MZ = 91.1876 GeV [73], and the top mass

Mt = 172.9±0.4 GeV [74]. To really achieve a SFOEWPT, the bubble nucleation condition

eq. (2.35) should be satisfied, i.e. there should exist a nucleation temperature Tn giving

11Ref. [11] calculates the case θ = π/2, where η is a dark matter candidate. Here we consider a general θ.
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Figure 2. Left: the projections for the parameter points on the Mη − f plane. All the points can

reproduce SM mass spectrum and give degenerate vacuums at critical temperature Tc, while only

the red points give SFOEWPT. Right: the Tn−Tc values for the points with successful SFOEWPT.

S3(Tn)/Tn ∼ 140. Numerically, we use the CosmoTransitions [75] package to derive

the O(3)-symmetric classical bounce solution for VT (h, η) and get S3(T ), and then solve

Tn. The allowed parameter points distribute almost uniformly in the Mρ,a and M5,1,1′

regions we set. We also verify that the for µ2
h,η and λh,hη, the IR and UV contributions are

comparable; while for λη the UV contributions dominate. The allowed |θ| lies in 1.0 . |θ| 6
π/2, thus a dark matter scenario for η (corresponding to θ = π/2) is still possible. However,

as pointed out in ref. [28], under the requirement of SFOEWPT, such a singlet can only

contribute a subdominant component after taking into account the direct search bounds.

In figure 2, we project the surviving parameter points into the f −Mη and Tn − Tc
planes. In the left panel, all points in the figure reproduce the SM particle spectrum and

give degenerate vacuums, while only the red points can trigger SFOEWPT. The mass of

η is around 100 GeV and the decay constant f & 1 TeV. The right panel of figure 2 shows

the critical temperatures Tc and the nucleation temperatures Tn for the parameter points

with successful nucleation. One can find Tn ∼ 120 GeV and Tn 6 Tc as expected.

SFOEWPT can produce gravitational waves (GWs) in the early universe. After the

cosmological redshift, the peak of GW frequencies are typically mille-Hz [76], in the sensitive

region of a broad class of GW detectors, such as LISA [20], Tianqin [21], Taiji [22], BBO [23]

or DECIGO (Ultimate DECIGO) [24, 25]. As is pointed out in ref. [76], the GWs from

SFOEWPT can be reduced into a two-parameter problem. The first crucial parameter is

α, defined by the ratio of the phase transition latent heat to the radiative energy density

of the universe in the SFOEWPT period,

α =
ε

ρrad
, ε = −∆VT + Tn∆

∂VT
∂T

∣∣∣
Tn
, ρrad =

π2

30
g∗T

4
n , (4.17)

where vn and g∗ are respectively the Higgs VEV and the relativistic degrees of freedom at

Tn, and “∆” denotes the difference between the EW broken and symmetric phases. The
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second key parameter is β/Hn, with β−1 being the time duration of SFOEWPT, and Hn

the Hubble constant when SFOEWPT completed,

β =
d

dt

(
S3

T

) ∣∣∣
t=tn

,
β

Hn
= Tn

d

dT

(
S3

T

) ∣∣∣
T=Tn

, (4.18)

where tn is the cosmic time at Tn. The smaller β/Hn is, the stronger the phase transition

is. The signal strength of GWs is described by

ΩGW(f) =
1

ρc

dρGW

d ln f
, (4.19)

where ρc stands for the critical energy density of the universe today. There are three

sources of the phase transition GWs: bubble collision, sound waves in the fluid, and the

turbulence in plasma. They are all expressed as numerical formulae in terms of α and

β/Hn in ref. [77]. In our scenario, the velocity of the expanding bubble wall is given by

the detonation wave formula [78]

vw =
1

1 + α

(
1√
3

+

√
α2 +

2

3
α

)
, (4.20)

and the dominant source of GWs comes from sound waves, while the turbulence is sub-

dominant and the bubble collision contribution is negligible [77].12

For our study, the relativistic degrees of freedom during SFOEWPT is g∗ = 106.75+1,

i.e the number of SM plus one real singlet. For the data points with successful nucleation

in 6 + 6 NMCHM, we calculate α and β/Hn with CosmoTransitions and a homemade

codes plugin. The obtained values of α and β/Hn are projected in the left panel of figure 3.

Using the formulae in [77] we are able to calculate the GW signal strengths. The results

are presented in the right panel of figure 3, where some typical signal curves are plotted in

thin black lines while the envelope of all allowed data points are plotted in a thick black

line. One can clearly see that GW signals are testable for most future detectors.

4.3 Collider phenomenology

The NMCHM is rather predictive and they have very rich phenomenology at the LHC. On

one hand, the deviations of the Higgs couplings or oblique parameters can be probed in

the EW and Higgs precision measurements [51, 80, 81]; on the other hand, the composite

resonances can be directly discovered [80, 81]. While no excess is obtained, the experiments

have been putting stronger and stronger constrains on the model.

The discovery of composite resonances would be the smoking gun of the CHMs. In

NMCHM, the vector mass terms in eq. (2.8) induce EFT operators

Lρ⊃
M2
ρ

2g2
ρ

[(
gρρ

a
Lµ−g0W

a
µ+

i

2f2
H†σa

↔
DµH

)2

+

(
gρρ

3
Rµ−g′0Bµ+

i

2f2
H†

↔
DµH

)2
]
, (4.21)

12This conclusion might be modified because the sound wave period has to be appropriately cut when the

plasma flow becomes nonlinear. The turbulence may get a lot of remaining kinetic energy and contributes

a much stronger signal [79].
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Figure 3. Left: the α and β/Hn distribution for the parameter points with SFOEWPT. Right:

the GW signals, where the thin black lines are typical GW curves from the data points of the left

panel, while the thick black line represents the envelope of all data points.

implying the mixings ρaL−W a and ρ3
R−B before EWSB, and the mixing angles are ≈ g/gρ

and g′/gρ respectively. As a result, the ρ±,0L and ρ3
R (= ρ0

R) interact with light quarks

with couplings ≈ g2/gρ and g′2/gρ respectively and can be produced via Drell-Yan process

at the LHC and then decay to the SM di-boson channels (W±Z/W±h and W+W−/Zh).

Other vector resonances such as ρ±R, ρ±,0,0∗D , a±,0,0∗D and a0
S interact with quark partons only

after EWSB thus the couplings are suppressed by v2/f2. Therefore, it is hard to probe

them via the quark-antiquark fusion at the LHC. The ρ±R may be produced via vector

boson fusion as well, however the cross section is tiny due to the phase space suppression.

In summary, the most hopeful channel to probe the vector resonances of NMCHM is the

Drell-Yan produced ρ±,0L and ρ0
R. The dominant decay channels of ρ±,0L and ρ0

R depend

on the relation between the masses of vector and fermion resonances [82].13 In the region

Mρ < M5, the SM di-boson channels dominate. While if M5 < Mρ < 2M5, the “heavy-

light” decay modes with t/b plus a top partner (such as tΨ̄5) kinematically open and acquire

considerable branching ratios. Although di-boson channels are sub-leading here, they play

a important role in phenomenology because of the accurate measurement at the LHC, see

below. Finally, if Mρ > 2M5, the decay modes ρ±,0L , ρ0
R → Ψ5Ψ̄5 (so-called “heavy-heavy”

channels) induced by the interactions in the strong sector

LρΨ = cρΨ̄5γ
µtĀΨ5

(
gρρ

Ā
µ − eĀµ

)
, cρ ∼ O(1), (4.22)

contribute almost 100% branching ratio because of the large gρ.

For the 6+6 NMCHM, we found that almost all parameter points yielding SFOEWPT

lie in the mass region Mρ > M5, as shown in figure 4. By recasting ref. [83] we find most

13For ρ±,0L and ρ0R, the phenomenology is very similar to the case of the 5 + 5 SO(5)/SO(4) CHM (i.e.

the MCHM). Therefore, the corresponding discussions in ref. [82] also apply to here.
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Figure 4. The collider phenomenology of the parameter points with SFOEWPT. The SM di-boson

bound comes from ref. [83], while the X5/3X̄5/3 bound is taken from ref. [84].

points in region M1 < Mρ < 2M5 have been excluded by the SM di-boson searches of

ATLAS at 139 fb−1, see the red points in figure 4. For the region Mρ > 2M5, the bound

is weak that a ρ-resonances of ∼ 3 TeV is still allowed. That is because a dedicated search

for the heavy-heavy channels is still lacking (see ref. [85] for a summary of the performed

searches after LHC Run II). As in this region the ρ-resonances are typically rather broad

that Γρ/Mρ can reach ∼ 50%, the search is more challenging. In this case, the same-sign

lepton final state which doesn’t require the reconstruction of a resonant peak may be useful

to hunt the signal. The studies in refs. [82, 86, 87] show that for

pp→ ρ±L → X5/3X̄2/3 + c.c.→ `±`± + jets, (4.23)

the HL-LHC can reach a region of Mρ & 4.5 TeV for a gρ ∼ 2, 3.

At the LHC, the top partners can be either pair produced via QCD or singly produced

via EW interactions. The QCD production is model-independent but suffers from the

double-suppression in phase space; while the EW production can probe higher mass scale

but depends on the details of the fermion embedding. For the 6 + 6 NMCHM, matching

eq. (2.19) to SM EFT yields

L6+6 ⊃ −sθy5R
[
t̄R

(
H†QX − H̃†Q

)
+ t̄RT̃ π5

]
− y1Lq̄LH̃TS − icθy1Rt̄RTSπ5. (4.24)

According to the Goldstone equivalence theorem, the decay channels of the top partners are

X5/3 → tW+, X2/3, T → tZ, th, B → tW−, T̃ , TS → bW+, tZ, th, tη. (4.25)

The EW fusion production mechanism can also be read, e.g. tW → X5/3. Except for the

T, TS → tη channel, the phenomenology of top partners in the 6+6 NMCHM is quite similar

to the case of the 5 + 5 MCHM and we refer the readers to the relevant study in [82] and
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the references therein. A search based on the CMS 35.9 fb−1 data in the X5/3X̄5/3 channel

sets a bound M5 > 1.32 TeV, assuming Br(X5/3 → tW+) = 100% [84]. We plot this bound

into figure 4 as the blue shadow region. Note that for a NMCHM based on the bottom-up

model building of a specific underlying theory, there may exist extra scalars which are not

described in our top-down CCWZ approach. For instance, the NMCHM based on coset

SU(4)/Sp(4) and gauge group Sp(2NHC) (where NHC is the number of the “hyper-color”

in the strong sector) contains a real color octet π8, a complex color sextet π6, and two real

gauge singlets σ and σc [88, 89]. Some of those extra particles are expected to be light and

may be decayed from the top partners [90, 91], which would even make the bounds weaker

because there are no specific searches for those channels yet. A recent study shows that in

the same-sign lepton channel, the results from the search for pair-produced X5/3 → tW+

are robust as well for many other exotic decays such as X5/3 → b̄π6, and the HL-LHC can

reach a mass of M5 ∼ 1.6 TeV [92]. Another fresh paper [93] gives the result for the decay

T → tσ. For other non-standard decay channels, more detailed studies are still needed.

In short, we’ve found a lot of parameter points with SFOEWPT in the range Mρ,a ∈
[2, 7] TeV and M5,1,1′ ∈ [1, 6] TeV, and a considerable fraction of them lie in Mρ > 2M5, a

region that has been constrained very weakly so far. In this case, current bounds for the

vector and fermion resonances are ∼ 3 TeV and ∼ 1.3 TeV respectively. Therefore, there

is plenty of rooms for future LHC experiments to explore this scenario. The excess at the

collider can be a good crosscheck of the signals from the GW detectors.

5 Conclusion

In this article, we study the SFOEWPT scenario in the NMCHM. Within the framework

of gauge-invariant thermal corrections to the scalar potential, the SFOEWPT is realized

via a two-step phase transition. We have considered various fermion embeddings: for the

left-handed doublet qL = (tL, bL)T , we consider 6 or 15; while for the right-handed tR, we

consider 1, 6 and 15. Among the six different combinations, the 15 + 1 model fails to give

a massive top quark, while the 6 + 1 and 6 + 15 models are unable to generate a potential

for the singlet η thus cannot trigger a two-step phase transition. We then investigate the

remained three models 6 + 6, 15 + 6 and 15 + 15 in detail.

We show that if only the IR contributions to the scalar potential are considered, all

those three models cannot trigger SFOEWPT. For the 6 + 6 and 15 + 15 models, the

problem is 〈η〉 � f , which breaks the perturbativity of the theory; while for the 15 + 6

model, the issue is λ2
hη > λhλη cannot be satisfied. That means the generally-adopted

assumption called minimal Higgs potential hypothesis (MHP), which assumes the IR con-

tributions dominate the UV ones, is incompatible with the SFOEWPT in NMCHM for

fermion embeddings up to 15. We also demonstrate that the SFOEWPT is hopeful to

happen when the UV contributions are added. Taking the 6+6 model a concrete example,

we combine the IR and UV contributions and numerically derive its allowed parameter

space for SFOEWPT. The GWs from the phase transition are within the sensitive region

of the future GW detectors. In addition, the model can be explored at the LHC via the

searches for the composite resonances.
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At last, we note the conundrum on the wall velocity for EW baryogenesis (EWB) and

the GW: a significant GW signal prediction from the EWPT requires supersonic bubble

wall expansion velocities vw, but the EWB prefers subsonic wall velocities for the effective

diffusion. At present, this conundrum is still an open problem. refs. [94–96] suggest that

the relevant velocity for baryogenesis is actually not vw but v+, i.e. the relative velocity

between the expanding bubble wall and the plasma just in front of it. Hydrodynamics

analysis of the plasma shows that it is possible to have supersonic vw but sufficiently low

v+ [94–96] and hence the EWB still works. We leave the detailed study on this issue for

the future work.
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A The CCWZ formulae for NMCHM

The generators of SO(6) group. They can be written as [81]:

[T aL]IJ = − i
2

[
1

2
εabc(δbIδcJ − δbJδcI) + (δaIδ4J − δaJδ4I)

]
,

[T aR]IJ = − i
2

[
1

2
εabc(δbIδcJ − δbJδcI)− (δaIδ4J − δaJδ4I)

]
,

[T̂ i1]IJ = − i√
2

(δiIδ5J − δiJδ5I),

[T̂ r2 ]IJ = − i√
2

(δrIδ6J − δrJδ6I),

(A.1)

where (a = 1, 2, 3), (i = 1, · · · , 4), (r = 1, · · · , 5) and (I, J = 1, · · · , 6). The normalization

is tr[TATB] = δAB. We denote the 10 unbroken generators of SO(5) as T Ā = {T aL, T aR, T̂ i1},
in which the {T aL, T aR} belong to the SO(4) ∼= SU(2)L × SU(2)R subgroup.
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The d and e symbols in unitary gauge. The d symbol is

d1
µ =

g0W
1
µ√

2

h

f
, d2

µ =
g0W

2
µ√

2

h

f
, d3

µ =
g0W

3
µ − g′0Bµ√

2

h

f
,

d4
µ =

√
2

f

1

h2 + η2

[
η (h∂µη − η∂µh)− h (h∂µh+ η∂µη)√

1− (h2 + η2)/f2

]
,

d5
µ =

√
2

f

1

h2 + η2

[
h (η∂µh− h∂µη)− η (h∂µh+ η∂µη)√

1− (h2 + η2)/f2

]
.

(A.2)

The Goldstone kinetic term is given in eq. (2.6).

The e symbol has 10 components: eĀµ = {eaLµ, eaRµ, ei1µ}, corresponding to the

SO(5)→ SO(4) decomposition 10→ (3,1)⊕ (1,3)⊕ (2,2). For the (3,1) subset, we get

e1
Lµ = g0W

1
µ −

1

2
g0W

1
µ

h2

f2

(
1

1 +
√

1− (h2 + η2)/f2

)
,

e2
Lµ = g0W

2
µ −

1

2
g0W

2
µ

h2

f2

(
1

1 +
√

1− (h2 + η2)/f2

)
,

e3
Lµ = g0W

3
µ −

1

2

(
g0W

3
µ − g′0Bµ

) h2

f2

(
1

1 +
√

1− (h2 + η2)/f2

)
;

(A.3)

while for the (1,3) subset we get

e1
Rµ =

1

2
g0W

1
µ

h2

f2

(
1

1 +
√

1− (h2 + η2)/f2

)
,

e2
Rµ =

1

2
g0W

2
µ

h2

f2

(
1

1 +
√

1− (h2 + η2)/f2

)
,

e3
Rµ = g′0Bµ +

1

2

(
g0W

3
µ − g′0Bµ

) h2

f2

(
1

1 +
√

1− (h2 + η2)/f2

)
;

(A.4)

finally the (2,2) gives

e1
1µ = − 1√

2
g0W

1
µ

hη

f2

(
1

1 +
√

1− (h2 + η2)/f2

)
,

e2
1µ = − 1√

2
g0W

2
µ

hη

f2

(
1

1 +
√

1− (h2 + η2)/f2

)
,

e3
1µ = − 1√

2

(
g0W

3
µ − g′0Bµ

) hη
f2

(
1

1 +
√

1− (h2 + η2)/f2

)
,

e4
1µ =

√
2
η∂µh− h∂µη

f2

(
1

1 +
√

1− (h2 + η2)/f2

)
.

(A.5)
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The composite resonances. For the vector resonances, the full expressions of the de-

compositions in eq. (2.7) are

ρ±Lµ =
ρ1
Lµ ∓ iρ2

Lµ√
2

, ρ0
Lµ = ρ3

Lµ; ρ±Rµ =
ρ1
Rµ ∓ iρ2

Rµ√
2

, ρ0
Rµ = ρ3

Rµ;

ρDµ =

(
ρ+
Dµ

ρ0
Dµ

)
=

1√
2

(
ρ2

1µ + iρ1
1µ

ρ4
1µ − iρ3

1µ

)
,

(A.6)

for the ρ-resonances, and

aDµ =

(
a+
Dµ

a0
Dµ

)
=

1√
2

(
a2
µ + ia1

µ

a4
µ − ia3

µ

)
, aSµ = a5

µ, (A.7)

for the a-resonances. In total, we have 4 singly charged and 7 real neutral vector resonances,

in total 15 degrees of freedom.

The decomposition of the top partners are listed in eq. (2.10). For Ψ5, the result is

Ψ5 =
1√
2

(
iB − iX5/3 B +X5/3 iT + iX2/3 −T +X2/3 T̃

)T
, (A.8)

in which we can form two SU(2)L ×U(1)Y doublets

QX =

(
X5/3

X2/3

)
7/6

, Q =

(
T

B

)
1/6

, (A.9)

and one singlet T̃ : 12/3. The decomposition of Ψ10 is a little bit complicated,

Ψ10 = taLY
a + taRK

a + t̂i1J
i, (A.10)

where [taL,R]rs ≡ [T aL,R]rs, [t̂i1]rs ≡ [T̂ i1]rs with (r, s = 1, . . . , 5), and Y a, Ka and J i are

respectively (3,1)2/3, (1,3)2/3 and (2,2)2/3 in SO(4)×U(1)X . Their explicit expressions are

Y a =
1√
2

 Y5/3+Y−1/3

iY5/3−iY−1/3√
2Y2/3

 , Ka =
1√
2

 K5/3+K−1/3

iK5/3−iK−1/3√
2K2/3

 , J i =
1√
2


iJ−1/3−iJ5/3

J−1/3+J5/3

iJ2/3A+iJ2/3B

−J2/3A+J2/3B

 ,
(A.11)

where the subscripts denote the electric charges. The J can be further organized into two

SU(2)L ×U(1)Y doublets

JX =

(
J5/3

J2/3B

)
7/6

, JQ =

(
J2/3A

J−1/3

)
1/6

. (A.12)
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B ZbLb̄L coupling in the q15
L embedding

The Lagrangian of top partner eq. (2.11) can be matched to the SM EFT form, yielding

LΨ ⊃ tr

[
Ψ̄10

(
i /∇+ g′0

2

3
/B

)
Ψ10

]
⊃ Ȳ i /DY + K̄−1/3i /DK−1/3 + J̄Qi /DJQ, (B.1)

where Dµ denotes the SM gauge covariant derivative. For a fermion with SU(2)L quantum

number T 3
L and electric charge Q, the tree level coupling to Z boson is

g

cW

(
T 3
L − s2

WQ
)
. (B.2)

For the charge −1/3 particles we get

T 3
L(bL) = T 3

L(B) = T 3
L(J−1/3) = −1

2
, T 3

L(Y−1/3) = −1, T 3
L(K−1/3) = 0. (B.3)

Thus the mixing between bL and Y , K will change the ZbLb̄L coupling.14 While for the

partial compositeness interactions,

(q̄15AL )IJUJrΨ
rs
10[U †]sI ⊃ i

1

2
√

2f2
q̄Lσ

aH̃Y aπ5 − i 1

2f2
q̄LHK−1/3π

5, (B.4)

and

(q̄15BL )IJUJrΨ
rs
10[U †]sI ⊃
1√
2f
q̄Lσ

aH̃Y a

(
1− 2|H|2 + π2

5

6f2

)
− 1

f
q̄LHK−1/3

(
1− 2|H|2 + π2

5

6f2

)
. (B.5)

There is no bL − Y or bL −K mixing for the 15A embedding, as long as 〈π5〉 = 〈η〉 = 0 at

zero temperature. In contrast, those mixings are present in 15B. Since the ZbLb̄L couplings

are stringently constrained by LEP [73, 98], 15B is strongly disfavored by the experiment

and we will not use it to build the NMCHM in this paper.

C The validity of polynomial approximation

Let’s take the 6 + 6 model as an example. For the IR-driven potential, we expand the

logarithms up to quartic level to get a polynomial, see eq. (3.7) for the gauge part and

eq. (3.17) for the fermion part, respectively. For the gauge part, the polynomial approxi-

mation is valid even for h ∼ f , because the expansion is suppressed by an additional factor

of g2/g2
ρ � 1. However, for the fermion-induced potential, the corresponding factor is

|y5,1,1
′

L,R |2f2/M2
5,1,1′ , which can be O(1). Therefore, one may concern about the validity of

the polynomial approximation when η ∼ f .

First we give a quantitative illustration about the difference between the two ap-

proaches (full calculation or polynomial expansion) using the SFOEWPT parameter points

derived in section 4. The IR-driven potentials from those parameter points give |η| � f ,

14The bL − JQ mixing is safe because of the PLR symmetry [97].
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Figure 5. Left: the relative difference between potentials calculated by the complete Coleman-

Weinberg integral and the polynomial expansion. Right: the relative difference of F1 and F2.

thus we need the UV contributions to enhance λf to match the condition of SFOEWPT.

Denoting the IR fully-calculated and polynomial potentials respectively as V IR
full and V IR

poly,

the relative difference of the full calculation and the polynomial expansion along the η

direction is defined as

δVη =

∣∣∣∣∣V IR
full(0, η)− V IR

poly(0, η)

V IR
full(0, η)

∣∣∣∣∣ , (C.1)

which is a function of η/f . In left panel of figure 5 we show the envelope of δVη for all chosen

parameter points. It can be read that the relative error of the polynomial approximation is

within 0.4%, even for η/f → 1. Thus the polynomial form of the potential is trustable. This

is because of another additional factor in the logarithm expansion: Πt
1/Π

t
0 (see eq. (3.17)

for the details). Since Πt
1 scales as Q−6, Πt

1/Π
t
0 is extremely small and the polynomial

expansion works.

There is a semiquantitative way to understand the behavior of V IR
full(0, η). Eq. (3.17) is

an integral of type

V IR
full(0, η) ∼ F1(ξf ) = −2Nc

∫
Q2dQ2

16π2
ln

[
1 +

ξfM
6

(M2 +Q2)3

]
, (C.2)

where M ∼M5,1,1′ and

ξf ∼

∣∣∣y5,1,1′L,R

∣∣∣2 f2

M2
5,1,1′

η2

f2
. (C.3)

The polynomial expansion of Vf , on the other hand, is like

V IR
poly(0, η) ∼ F2(ξf ) = −2Nc

∫
Q2dQ2

16π2

[
ξfM

6

(M2 +Q2)3 −
1

2

(
ξfM

6

(M2 +Q2)3

)2
]
. (C.4)
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The integrals in eqs. (C.2) and (C.4) can be analytically evaluated, and the relative differ-

ence |(F1 − F2)/F1| depends only on ξf . The right panel of figure 5 shows this difference.

One can see that even for ξf = 4, the relative error is smaller than 9.5%. Normally ξf is

at most O(1), because we expect |y5,1,1
′

L,R |f . M5,1,1′ . For example, in the 6 + 6 model

ξf < 0.6 for all points with SFOEWPT. Therefore, the relative difference of full expression

and polynomial approximation is usually within 1%.
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