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bDipartimento di Fisica, Università degli Studi di Milano-Bicocca,
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Abstract: Theoretical predictions for tt̄bb̄ production are of crucial importance for tt̄H

measurements in the H → bb̄ channel at the LHC. To address the large uncertainties

associated with the modelling of extra QCD radiation in tt̄bb̄ events, in this paper we

present a calculation of pp → tt̄bb̄j at NLO QCD. The behaviour of NLO corrections is

analysed in a variety of observables, and to assess theoretical uncertainties we use factor-

two rescalings as well as different dynamic scales. In this context, we propose a systematic

alignment of dynamic scales that makes it possible to disentangle normalisation and shape

uncertainties in a transparent way. Scale uncertainties at NLO are typically at the level of

20–30% in integrated cross sections, and below 10% for the shapes of distributions. The

kinematics of QCD radiation is investigated in detail, including the effects of its recoil on

the objects of the tt̄bb̄ system. In particular, we discuss various azimuthal correlations

that allow one to characterise the QCD recoil pattern in a precise and transparent way.

In general, the calculation at hand provides a variety of precise benchmarks that can be

used to validate the modelling of QCD radiation in tt̄bb̄ generators. Moreover, as we will

argue, pp → tt̄bb̄j at NLO entails information that can be used to gain insights into the

perturbative convergence of the inclusive tt̄bb̄ cross section beyond NLO. Based on this idea,

we address the issue of the large NLO K-factor observed in σtt̄bb̄, and we provide evidence

that supports the reduction of this K-factor through a mild adjustment of the QCD scales

that are conventionally used for this process. The presented 2 → 5 NLO calculations have

been carried out using OpenLoops 2 in combination with Sherpa and Munich.
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1 Introduction

The associated production of top- and bottom-quark pairs at hadron colliders is an espe-

cially interesting process. From the theoretical point of view, it offers rich opportunities to

investigate the dynamics of QCD in the presence of multiple scattering particles and en-

ergy scales. In particular, higher-order calculations of pp→ tt̄bb̄ raise non-trivial questions

related to the mass gap between mb and mt, the choice of QCD scales, and the convergence

of the perturbative expansion. Further strong motivation for a deeper understanding of

tt̄bb̄ production comes from its critical role as irreducible background to tt̄H production

with H → bb̄ at the LHC [1–3]. In this context, the modelling of pp → tt̄bb̄ represents

the main source of uncertainty in tt̄H(bb̄) measurements. Thus, improving the theoretical

description of the tt̄bb̄ background is of great importance for the sensitivity of tt̄H(bb̄) anal-

yses at the High-Luminosity LHC [4]. Precise theoretical calculations for tt̄bb̄ production

are relevant also for direct experimental studies of this process, and recent measurements

of the tt̄bb̄ cross section [5–7] tend to exceed theory predictions by 30–50%.
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At leading order (LO) in QCD, the tt̄bb̄ cross section is proportional to α4
S and suffers

from huge scale uncertainties. Next-to-leading order (NLO) QCD calculations [8–10] reduce

scale uncertainties to 20–30%, but the level of precision and the size of the corrections

depend in a critical way on the choice of the renormalisation scale µR. In this respect,

in order to avoid an excessively large NLO K-factor, it was found that the value of µR

should be chosen in the vicinity of the geometric average of the energy scales of the tt̄ and

bb̄ systems [10].

Calculations of pp→ tt̄bb̄ based on the five-flavour (5F) scheme [8–10], where b-quarks

are treated as massless partons, are applicable only to the phase space with two resolved

b-jets, while including b-mass effects in the four-flavour (4F) scheme makes it possible to

obtain NLO predictions in the full tt̄+ b-jets phase space [11], including regions where one

b-quark is unresolved. The choice of the 4F scheme as opposed to the 5F scheme is also

supported by the fact that initial-state g → bb̄ splittings play a marginal role in tt̄+ b-jets

production, while the vast majority of b-jets originate via initial-state gluon radiation with

subsequent g → bb̄ splittings [12].

In order to be applicable to tt̄H(bb̄) measurements, NLO calculations of pp→ tt̄bb̄ need

to be matched to parton showers. Nowadays, this can be achieved within various Monte

Carlo frameworks [11–16], using different matching methods and parton showers. Some

of these generators are in good mutual agreement, but the overall spread of Monte Carlo

predictions suggests that tt̄bb̄ modelling uncertainties may significantly exceed the level of

QCD scale variations, thereby spoiling NLO accuracy [17]. In this context, the uncertainties

related to the modelling of extra QCD radiation that accompanies tt̄bb̄ production play a

dominant role.

Motivated by these observations, in this paper we present a NLO QCD calculation of

tt̄bb̄ production in association with one additional jet at the LHC.1 Bottom-mass effects

are included throughout using the 4F scheme. For the calculation of the required 2 → 5

one-loop amplitudes, which involve up to 25’000 diagrams in a single partonic channel, we

use the latest version of the OpenLoops program [20], where scattering amplitudes are

computed with the new on-the-fly reduction method presented in [21]. For the calculation of

hadronic cross sections, OpenLoops 2 is interfaced with Sherpa [22–25] and, alternatively,

with Munich.2

We discuss NLO predictions for pp→ tt̄bb̄j at 13 TeV with emphasis on the assessment

of perturbative uncertainties. To this end, we study conventional scale variations as well

as different dynamic scales, and we point out that the effects of these two kinds of scale

uncertainties are largely correlated. Based on this observation, we propose the idea of

aligning dynamic scales to a natural scale, which can be defined using the maxima of the

NLO variation curves as a reference. This prescription makes it possible to disentangle the

effects of factor-two variations and dynamic scale variations in a way that provides a more

transparent picture of normalisation and shape uncertainties.

1Preliminary results of this project have been presented at QCD@LHC 2018 [18] and HP2 2018 [19].
2Munich is the abbreviation of “MUlti-chaNnel Integrator at Swiss (CH) precision” — an automated

parton-level NLO generator by S. Kallweit.
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To characterise the behaviour of QCD radiation in tt̄bb̄ events, we consider kinematic

distributions in the hardest light jet as well as recoil effects on the various objects of

the tt̄bb̄ system. To this end, we introduce azimuthal angular correlations that provide a

transparent and perturbatively stable picture of recoil effects. Our NLO predictions for

these and various other observables can be used as precision benchmarks to validate the

modelling of QCD radiation in tt̄bb̄ generators.

Finally, we exploit the calculation at hand to address the issue of the large NLO K-

factor observed in the integrated tt̄bb̄ cross section [12]. In this respect, we note that the

NLO corrections to pp→ tt̄bb̄j correspond to the same order in αS as the NNLO corrections

to inclusive tt̄bb̄ production, i.e. O(α6
S). Thus they entail (partial) information on the

behaviour of σtt̄bb̄ beyond NLO. Based on this idea, we use the tt̄bb̄j cross section at NLO

to identify an optimal scale choice for the process pp → tt̄bb̄. The results of this analysis

support a slight adjustment of the conventional tt̄bb̄ scale choice, which results in a reduction

of the tt̄bb̄ K-factor and is also expected to attenuate NLO matching uncertainties.

The paper is organised as follows. In sections 2–3 we outline the main ingredients of

pp → tt̄bb̄j at NLO, and we document the employed input parameters, scale choices and

acceptance cuts. In section 4 we study the integrated cross sections and their scale depen-

dence, and we check the safeness of our predictions with respect to Sudakov logarithms

beyond NLO. Moreover, we propose the idea of disentangling shape and normalisation

uncertainties by means of an alignment prescription for dynamic scales. Differential ob-

servables and shape uncertainties are presented in section 5, where we also discuss recoil

effects. Finally, in section 6 we use tt̄bb̄j NLO predictions to identify an improved scale

choice for inclusive tt̄bb̄ production. Our main findings are summarised in section 7.

2 Ingredients of the calculation

2.1 tt̄bb̄j production in the 4F scheme

We investigate NLO QCD corrections to hadronic tt̄bb̄j production in the 4F scheme, i.e.

we treat not only top quarks, but also bottom quarks with a finite mass throughout. The

non-vanishing bottom mass renders g → bb̄ splittings finite, which allows us to investigate

also observables with unresolved b-jets and to apply the experimentally favoured definition

of b-jets as all hadronic jets that contain at least one bottom (anti-)quark at the parton

level. In particular, jets resulting from the clustering of b and b̄ partons are considered b-jets

as well. Accordingly, only hadronic jets that are constituted from light quarks q = d, u, s, c

and gluons are considered light jets. In the 4F scheme, since no bottom (anti-)quarks

appear as proton constituents, no further bottom (anti-)quarks are generated at NLO

QCD. Thus all b-jets are generated by Feynman diagrams that contain exactly one bb̄ pair.

Input parameters, renormalization scheme and parton-distribution functions (PDFs) are

chosen according to the 4F scheme, as detailed in section 3.1.

The independent partonic channels contributing to pp→ tt̄bb̄j at NLO are summarised

in table 1 together with the number of Feynman diagrams and crossing/flavour symmetries.

At LO, tt̄bb̄j production involves the two crossing-independent channels gg → tt̄bb̄g and
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order type channel # diagrams # crossings × flavours

LO trees gg → tt̄bb̄g 393 1× 1

qq̄ → tt̄bb̄g 66 6× 4

NLO loops gg → tt̄bb̄g 25431 1× 1

qq̄ → tt̄bb̄g 3534 6× 4

NLO trees gg → tt̄bb̄gg 5190 1× 1

qq̄ → tt̄bb̄gg 795 7× 4

qq̄ → tt̄bb̄qq̄ 204 4× 4

qq̄ → tt̄bb̄q′q̄′ 102 4× 12

Table 1. Independent partonic channels contributing to pp → tt̄bb̄j at NLO. For each class

of crossing-related processes we indicate a representative process, the number of colour-stripped

diagrams, and the number of crossings and quark-flavour assignments, q, q′ = u, d, c, s, q 6= q′. In

OpenLoops, each Feynman diagram corresponds to 3n4 colour-stripped diagrams, where n4 is the

number of quartic gluon vertices in the diagram at hand (typically n4 = 0).

b

b̄

t̄

t
t

b

b̄

t

t̄
t

b

b̄

t

t̄
t

b

Figure 1. Selected Born diagrams in the gg → tt̄bb̄g channel.

qq̄ → tt̄bb̄g with q = d, u, s, c, where the latter gives rise to six quark-anti-quark and gluon-

(anti)quark channels via permutations of q, q̄, g.

Figure 1 illustrates sample diagrams for the gluon-gluon channel, which is by far the

dominant channel, with a contribution of about 77% (qg: 21%, qq̄: 2%). The dominant

gg → tt̄bb̄g topologies are those where the bb̄ pair is emitted from a g → bb̄ splitting and

the final-state gluon results from an initial-state g → gg splitting, while the tt̄ pair is

produced in a t-channel configuration. However, the impact of other topologies becomes

quite prominent in certain phase-space regions, like e.g. at high invariant mass or ∆R

separation of the bb̄ system. See also figure 3 for the dominant gg → tt̄bb̄ topologies.

At NLO in QCD, as usually the process receives contributions both from virtual and

real corrections, which are separately divergent. To mediate these divergences between the

different phase spaces, we rely on the dipole-subtraction formalism [26] in its extension to

massive QCD partons [27].

The virtual corrections are constituted from both diagrams with a closed quark loop

and diagrams that are generated from the LO ones by exchanging a virtual gluon between

any of the external or internal legs. Since all involved partons interact under QCD, the

number of loop diagrams is more than a factor of 50 larger than the number of Born

diagrams in the respective channels (see table 1). While the quark-loop diagrams contain
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Figure 2. Selected gg → tt̄bb̄g one-loop diagrams (first row) and gg → tt̄bb̄gg real-emission

diagrams (second row).

up to pentagon functions, the gluon-exchange diagrams require up to heptagon functions.

Some sample diagrams for the latter are shown in figure 2 (first row), again for the dominant

gg channel only.

The real-correction channels are constructed from the LO ones by either emission of

another gluon or by the splitting of a gluon into a light qq̄ pair. Including crossings of light

partons between initial and final states, the channels listed in table 1 result. In figure 2

(second row) we depict sample diagrams for the dominant all-gluon channel.

2.2 Tools and validation

The calculations presented in this paper have been performed with the automated frame-

works Sherpa+OpenLoops and Munich+OpenLoops. Each of them completes the full

chain of operations — from process definition to collider observables — that enter NLO

QCD simulations at parton level.

In both frameworks virtual amplitudes are provided by OpenLoops 2 [20], the latest

version of the OpenLoops matrix-element generator. One of the of main novelties of

OpenLoops 2, which is used for the first time in the calculation at hand, is the combination

of the original open-loop algorithm [28] with the recently proposed on-the-fly reduction

method [21]. In this approach, the construction of loop amplitudes and their reduction to

scalar integrals are combined in a single numerical recursion, which makes it possible to

generate one-loop amplitudes in a way that avoids high tensorial ranks at all stages of the

calculations. This results in a significant speed-up for multi-leg processes. Specifically, for

the process at hand, the excellent CPU performance of OpenLoops 1 is further improved

by a factor of three. For the treatment of numerical instabilities, the on-the-fly reduction

algorithm is equipped by an automated stability system that combines analytic expansions

together with a novel hybrid-precision system. The latter detects residual instabilities

based on the analytic structure of reduction identities and cures them by switching from

double (dp) to quadruple (qp) precision. Thanks to the local and highly targeted usage
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of qp, the typical qp overhead w.r.t. dp evaluation timings is reduced from two orders of

magnitude to a few percent.

The only external ingredients required by OpenLoops 2 are the scalar integrals [29],

which are provided by the Collier library [30, 31] by default, or by the OneLOop li-

brary [32] for exceptional qp evaluations. All amplitudes have been thoroughly validated

against OpenLoops 1 [28], where the reduction is carried out based on the Denner-

Dittmaier techniques [33, 34] available in Collier or, alternatively, using CutTools [35],

which implements the OPP method [36], together with the OneLOop library [32] for scalar

integrals. Additionally, matrix elements have been cross-checked against the completely

independent generator Recola [37, 38].

All remaining tasks, i.e. the bookkeeping of partonic subprocesses, phase-space integra-

tion, and the subtraction of QCD bremsstrahlung, are supported by the two independent

and fully automated Monte Carlo generators, Munich and Sherpa.

In Sherpa, tree amplitudes are computed using Comix [24], a matrix-element gen-

erator based on the colour-dressed Berends-Giele recursive relations [39], while one-loop

amplitudes are provided by OpenLoops. Infrared singularities are cancelled using the

dipole subtraction method [26, 27], as automated in Comix, with the exception of K- and

P-operators that are taken from the implementation described in [25]. Comix is also used

for the evaluation of all phase-space integrals. Analyses are performed with the help of

Rivet [40], which involves the FastJet package [41, 42] to cluster partons into jets.

The parton-level generator Munich has been applied to several multi-leg processes at

NLO QCD and EW accuracy, and as a key ingredient of the Matrix framework [43] it has

been intensively applied to boson and diboson production at NNLO QCD. Munich pro-

vides a very efficient multi-channel phase-space integration with several optimizations for

higher-order applications. All tree-level and one-loop amplitudes are supplied by Open-

Loops through a fully automated interface. The implementation of the massive dipole

subtraction formalism used in the present calculation has been extensively tested in the

context of off-shell top-pair production in the 4F scheme [44], and very recently in the

NNLO QCD production of tt̄ pairs [45, 46]. The implementation of phase-space cuts at

generation and analysis level, as well as the event selection including jet algorithms are

realized directly in Munich, without relying on external tools. Also the calculation of

arbitrary (multi-)differential observables and the setting of dynamic scales are handled in-

ternally. Thereby Munich provides an independent cross-check of basically all remaining

steps of the working chain.

Both tools have been validated extensively against each other for a representative

selection of the results presented in this paper. All cross sections binned in b-jet and

light-jet multiplicities (see tables 3 and 4) have been validated at a precision level of 0.3%

throughout for all scale choices. Moreover, most of the differential distributions presented

in section 5 have been cross-checked at the NLO level. For all compared observables we find

agreement on the level expected from the statistical uncertainties of the two independent

calculations.
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3 Technical aspects and setup

In this section we specify the input parameters, PDFs, scale choices and acceptance cuts

used in the calculations presented in sections 4–6.

3.1 Input parameters, PDFs and scale choices

Heavy-quark mass effects are included throughout using

mt = 172.5 GeV , mb = 4.75 GeV . (3.1)

All other quarks are treated as massless in the perturbative part of the calculations. Since

we use massive b-quarks, for the PDF evolution and the running of αS we adopt the 4F

scheme. Thus, for consistency, we renormalise αS in the decoupling scheme, where top- and

bottom-quark loops are subtracted at zero momentum transfer. In this way, heavy-quark

loop contributions to the evolution of the strong coupling are effectively described at first

order in αS through the virtual corrections.

We present predictions for pp → tt̄bb̄j at
√
s = 13 TeV. At LO and NLO we use

throughout the 4F NNPDF parton distributions [47] at NLO, and the corresponding strong

coupling.3 PDF uncertainties are expected to play a rather subleading role, similarly as

for pp → tt̄bb̄ [12]. Thus we will base our predictions on the nominal PDF set, restricting

our assessment of theoretical uncertainties to perturbative scale variations.4

3.2 Renormalisation and factorisation scales

Since it scales with α5
S, the tt̄bb̄j cross section is highly sensitive to the choice of the

renormalisation scale µR, and this choice plays a critical role for the stability of perturbative

predictions. Along the lines of [11, 12, 17], we adopt a dynamic scale that accounts for the

fact that tt̄bb̄ production is characterised by two widely separated scales, which are related

to the tt̄ and bb̄ systems. To this end we define

µ2
bb̄ = ET,bET,b̄, µ2

tt̄ = ET,tET,t̄, m2
bb̄ = (pb + pb̄)

2 , (3.2)

where the transverse energies ET,i =
√
m2

i + p2
T,i are defined in terms of the rest masses

mi and the transverse momenta pT,i of the bare heavy quarks, without applying any jet

algorithm at NLO. Also m2
bb̄

is defined in terms of the bare four-momenta of the (anti-)b

quarks. As default choice for the renormalisation scale we adopt the geometric average of

the various transverse energies and momenta of the tt̄bb̄j system,

µtt̄bb̄j (ξR) = ξR µtt̄bb̄j = ξR

(
µ2
tt̄ µ

2
bb̄ pT,j

)1/5
, (3.3)

3More precisely we use the NNPDF30 nlo as 0118 nf 4 parton distributions, as implemented in

LHAPDF [48], where α
(4F)
S (MZ) = 0.112, which corresponds to α

(5F)
S (MZ) = 0.118.

4Using 100 replicas of the PDF set at hand we have checked that PDF uncertainties are at the level of

10% for the integrated tt̄bb̄j cross section and grow slowly with the pT of the various final-state objects,

reaching at most 20% in the regions where event rates are suppressed by two orders of magnitude. We

refrain from reporting further details on PDF uncertainties since they are strongly correlated to the ones

observed in inclusive tt̄bb̄ production [12] and thus only marginally relevant for the theoretical questions

addressed in this paper.
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Figure 3. Generic leading-order gg → tt̄bb̄ topologies with final-state (a) and initial-state (b)

g → bb̄ splittings. The bulk of the tt̄bb̄ cross section is dominated by topologies of type (a) with

rather collinear splittings, while initial-state collinear splittings become important in the region of

large ∆Rbb [12].

where the rescaling factor ξR is typically varied in the range [0.5, 2]. This choice represents

the natural generalisation of the widely used scale [11, 12, 17]

µtt̄bb̄ (ξR) = ξR µtt̄bb̄ = ξR (µtt̄ µbb̄)
1/2 (3.4)

for tt̄bb̄ production.5 The additional light-jet pT that enters (3.3) is defined using an

auxiliary6 kT-jet algorithm with R = 0.4, which is applied only to massless partons, i.e.

excluding top and bottom quarks from the recombination, and is free from any restriction

in pT and rapidity.

In order to assess shape uncertainties, we consider three alternative dynamic scales

with different kinematic dependences. The first one is defined as

µgbb̄(ξR) = ξR µgbb̄ =
(
µ2
tt̄mbb̄ET,bb̄ pT,j

)1/5
, (3.5)

where the bb̄ system enters through its invariant mass and its total transverse energy,

ET,bb̄ =
√
m2

bb̄
+ (~pT,b + ~pT,b̄)

2. This choice is motivated by the fact that mbb̄ and ET,bb̄

correspond to the virtualities of the QCD branching processes that dominate tt̄bb̄ pro-

duction, namely initial-state g → gg splittings followed by a final-state g → bb̄ splittings

(see figure 3).

As further alternatives we consider two other dynamic scales,

µT,tot (ξR) = ξR µT,tot = ξR
HT

5
, (3.6)

and

µT,jets (ξR) = ξR µT,jets = ξR

(
µtt̄

HT,jets

3

)1/2

, (3.7)

5The choices (3.3)–(3.4) are motivated by the fact that, to lowest order in the strong coupling,

α5
S(µtt̄bb̄j) = α2

S(µtt̄)α
2
S(µbb̄)αS(pT,j) and α4

S(µtt̄bb̄) = α2
S(µtt̄)α

2
S(µbb̄). In this way, the coupling factors

associated with the production of the tt̄ and bb̄ systems, plus the additional light jet for tt̄bb̄j produc-

tion, are effectively evaluated at the corresponding characteristic scales, µtt̄, µbb̄ and pT,j , avoiding large

logarithms associated with the evolution of αS.
6For the definition of physical observables a conventional anti-kT algorithm is used (see below).

– 8 –



J
H
E
P
1
2
(
2
0
1
9
)
0
1
5

which are defined in terms of the transverse energies of the jets,

HT,jets =
∑

i=b,b̄,g,q,q̄

ET,i , (3.8)

and the total transverse energy,

HT = HT,jets +
∑
i=t,t̄

ET,i . (3.9)

Here ET,j = pT,j for massless partons, and the sums run over all final-state QCD partons,

always including NLO radiation and excluding only top quarks in the case of HT,jets.

The factorisation scale µF represents the maximum transverse momentum for initial-

state radiation that is resummed in the PDFs. Thus it is typically chosen of the order of

the halved hard-scattering energy. Following [11, 12] we use7

µF = ξF
HT

2
, (3.10)

where ξF ∈ [0.5, 2].

Our nominal predictions correspond to ξR = ξF = 1, and to quantify scale uncertainties

we take the envelope of the seven-point variation (ξR, ξF) = (0.5, 0.5), (0.5, 1), (1, 0.5),

(1, 1), (1, 2), (2, 1), (2, 2).

3.3 Jet observables and acceptance cuts

For the reconstruction of jets we use the anti-kT [49] algorithm with R = 0.4. We select

b-jets and light jets that fulfil the acceptance cuts

pT > pcut
T = 50 GeV, |η| < 2.5 . (3.11)

We define as b-jet a jet that contains at least one b-quark, i.e. jets that contain a bb̄ pair

arising from a collinear g → bb̄ splitting are also tagged as b-jets.8 Top quarks are kept

stable throughout. When studying tt̄bb̄j production, we categorise events according to the

number Nb of b-jets and the number Nj of light jets that fulfil the acceptance cuts (3.11).

We always consider inclusive phase-space regions with Nb ≥ Nmin
b and Nj ≥ Nmin

j , and we

label them as indicated in table 2. For the analysis of cross sections and distributions, we

always require one additional jet, and we consider an inclusive ttbj selection (Nmin
b = 1)

and a more exclusive ttbbj selection (Nmin
b = 2).

7To be precise, the choice (3.10) agrees with the one used in [12] but differs from the choice µF =
1
2

∑
i=t,t̄ ET,i made in [11]. However, this difference has a minor impact on our predictions.

8This prescription corresponds to a realistic experimental b-tagging, in the sense that the presence of

one (or more) b-partons is sufficient to tag a jet as a b-jet. In this respect we note that jets containing

a g → bb̄ splitting cannot be resolved in the 5F scheme, since they would lead to uncancelled collinear

singularities. For this reason, in the 5F scheme an unphysical b-tagging prescription is used according to

which jets containing a g → bb̄ splitting are regarded as light jets.
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region ttb ttbb ttbj ttbbj ttbjj ttbbjj

Nmin
b 1 2 1 2 1 2

Nmin
j 0 0 1 1 2 2

Table 2. Naming scheme for phase-space regions with different inclusive multiplicities of b-jets

(Nb ≥ Nmin
b ) and light jets (Nj ≥ Nmin

j ) that pass the acceptance cuts (3.11).
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Figure 4. Cross sections at
√
s = 13 TeV in the ttbbj phase space. Predictions at LO (blue) and

NLO (red) with scales µR = ξRµtt̄bb̄j and µF = HT/2 are plotted as a function of the renormalisation

scale factor ξR. The main frame presents absolute predictions and corresponding 7-point factor-

two variations of µR and µF, which are shown as uncertainty bands. The relative impact of such

variations at LO and NLO is displayed in the two ratio plots, which show also a second uncertainty

band corresponding to pure factor-two variations of µR at fixed µF = HT/2.

4 Integrated cross sections for pp → tt̄bb̄j at 13 TeV

In this section we present numerical predictions for pp → tt̄bb̄j at
√
s = 13 TeV in

the 4F scheme. The results have been obtained with Sherpa+OpenLoops and Mu-

nich+OpenLoops, using the setup of section 3. Top quarks are kept stable throughout,

and we study cross sections and distributions in the inclusive ttbj and ttbbj phase-space

regions as defined in table 2, applying the acceptance cuts (3.11). Perturbative scale uncer-

tainties are assessed by means of seven-point factor-two scale variations and by comparing

the various dynamic scales defined in section 3.2.

4.1 Renormalisation scale dependence

A first picture of the perturbative behaviour of the tt̄bb̄j cross section is displayed in fig-

ure 4, where LO and NLO predictions based on the nominal scale choice (3.3) are plotted

as a function of the renormalisation scale µR. For each value of µR, the effect of factor-two
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Figure 5. Renormalisation-scale dependence of the LO (dashed) and NLO (dotted) cross sections

at
√
s = 13 TeV in the ttbbj phase space. The different curves correspond to the four dynamic

scales defined in (3.3), (3.5)–(3.7). More precisely, instead of µT,tot = HT/5, the scale HT/4 is shown

in this plot. Each scale is varied around its nominal value (ξR = 1) by a factor ξR ∈ [1/16, 16],

and the factorisation scale is kept fixed at µF = HT/2. Absolute predictions are shown in the main

frame, while the ratio plot shows the NLO correction factor K(ξR) = σNLO(ξR)/σLO(ξR).

scale variations is illustrated through two bands, which correspond to the variation of µR

alone and the full 7-point variation of µR and µF. The results demonstrate that µF varia-

tions play only a marginal role, especially at NLO. Thus, in the following we will focus on

the µR dependence.

In figure 5 we plot the LO and NLO tt̄bb̄j cross section as a function of µR for all four

dynamical scales defined in (3.3), (3.5)–(3.7). For each choice the renormalisation scale is

varied around its nominal value by a factor ξR ∈ [1/16, 16], while the factorisation scale

is kept fixed at µF = HT/2. The behaviour of the LO curves in figure 5 reflects the αS-

dependence of the LO cross section, σLO ∝ α5
S, and corresponds essentially to the running

of αS to the fifth power. To discuss the qualitative behaviour of figure 5 in more detail, let

us consider the effect of µR → ξµR rescalings at LO,

αS(ξ µR) = αS(µR)
[
1 + a0(µR) ln ξ

]−1
. (4.1)

Here a0(µR) = b0αS(µR)/(2π) = ln−1(µR/ΛQCD), and for small variations δξ,

δα5
S

α5
S

= −5a0(µ)
δξ

ξ
. (4.2)

This is consistent with the LO curves of figure 5, where we observe that around the nominal

scales (ξ = 1), reducing µR by a factor 2 augments the LO cross sections by a factor close

to 2 and vice versa, which corresponds to 5a0(µ) ∼ 1.
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At NLO, the one-loop αS-counterterm cancels the ξ-dependence at O(αS ln ξ), resulting

in a significant reduction of scale variations. In the vicinity of the nominal scales, factor-

two variations go down to 10–25%, depending on the type of scale and the direction of

the variation. As usually, the various NLO curves feature a stable point, which is located

between ξR = 1/2 and 1/3. In the region below the maximum, the NLO curves start falling

quite fast, and between ξR =1/6 and 1/8 they lead to negative cross sections. To avoid

such a pathologic perturbative behaviour, the normalisation factors in the definition of

µT,tot and µT,jets have been chosen in such a way that factor-two variations of the nominal

scales do not enter the region below the NLO maximum. Concerning the NLO correction

factors, K = σNLO/σLO, at ξR ' 1 we find K ∼ 1.5 while the K-factor approaches one in

the vicinity of the NLO maxima of the respective curves.

A striking feature of figure 5 is that, in spite of the rather different kinematic de-

pendence of the various dynamic scales, the observed LO and NLO scale variations and

K-factors have a fairly similar shape. In order to gain more insights into the origin of this

behaviour, in the following we focus on the αS-dependence of the LO cross section. For

the differential and integrated cross sections let us define

dσLO

(
µdyn(Φ)

)
= α5

S

(
µdyn(Φ)

)
dσ̂LO, σ̂LO =

∫
dσ̂LO =

∫
dΦ

dσ̂LO

dΦ
, (4.3)

where µdyn(Φ) is a certain dynamic scale, Φ stands for the fully-differential final-state phase

space, and the convolution with PDFs as well as acceptance cuts are implicitly understood.

For the integrated cross section with dynamic scale µdyn we can write

σLO(µdyn) =

∫
dσ̂LO α

5
S

(
µdyn(Φ)

)
= α5

S (µ̄dyn) σ̂LO , (4.4)

where the result is expressed in terms of the αS-free cross section σ̂LO and the coupling

factor α5
S(µ̄dyn), which corresponds to the average of α5

S (µdyn(Φ)). The above identity is

nothing but a definition of the “average” scale µ̄dyn, which depends both on the functional

form of µdyn(Φ) and on the applied phase-space cuts. Let us now consider scale variations,

σLO(ξ µdyn) =

∫
dσ̂LO α

5
S

(
ξ µdyn(Φ)

)
. (4.5)

The effect of µdyn → ξ µdyn on αS

(
µdyn(Φ)

)
can be expressed as

αS

(
ξ µdyn(Φ)

)
= αS(ξ µ̄dyn)

[
1 + a0(ξ µ̄dyn) ln

(
ξ µdyn(Φ)

ξ µ̄dyn

)]−1

= αS(ξ µ̄dyn)

∞∑
n=0

[
−a0(ξ µ̄dyn) ln

(
µdyn(Φ)

µ̄dyn

)]n
, (4.6)

where the αS(ξ µ̄dyn) prefactor on the r.h.s. corresponds to a trivial rescaling of µ̄dyn,

while the term between square brackets depends on all moments of the distribution in

ln (µdyn(Φ)), 〈
lnn(µdyn)

〉
=

1

σ̂LO

∫
dσ̂LO

[
ln
(
µdyn(Φ)

)]n
. (4.7)
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Such moments may influence the scale dependence in a non-trivial way. However, their

actual impact on the integrated cross section turns out to be marginal. This is due to the

fact that QCD cross sections are typically dominated by phase-space regions with well-

defined energy scales in the vicinity of the thresholds for producing massive final states

and passing acceptance cuts. As a consequence, the distribution in ln (µdyn(Φ)) is confined

in the vicinity of its average value, ln(µ̄dyn), and its higher moments are rather strongly

suppressed. This implies 〈
lnn(µdyn)

〉
' lnn(µ̄dyn) , (4.8)

for all n ≥ 1. More precisely, let us assume9 that

Xn = an0 (ξ µ̄dyn)
〈(

ln(µdyn)− ln(µ̄dyn)
)n〉� 1 , (4.9)

for n ≥ 2. This implies that the expectation value of the r.h.s. of (4.6) is dominated by

the n = 0 term. Thus, under the above assumptions, the scale dependence of the LO cross

sections (4.5) can be approximated as

σLO(ξ µdyn) ' α5
S (ξ µ̄dyn) σ̂LO , (4.10)

i.e. by a naive rescaling of α5
S (µ̄dyn).

We have verified that this property is fulfilled with percent-level accuracy by all LO

curves of figure 5. This means that, at the level of the integrated cross section, the various

scales (3.3), (3.5)–(3.7) are equivalent to each other. More precisely, the scale dependence

of σLO with a given dynamic scale µdyn,k can be related to the one of a fixed scale µ0 by

means of a constant rescaling

µdyn,k(Φ)→ µ̃dyn,k(Φ) = χk µdyn,k(Φ) , with χk =
µ0

µ̄dyn,k
, (4.11)

which results into

σLO(ξµ̃dyn,k) ' σLO(ξµ0) . (4.12)

Therefore, as far as the scale uncertainty of σLO and its normalisation are concerned,

comparing different types of dynamic scales has no significant added value w.r.t. simple

ξR-rescalings. For this reason, we advocate the usage of “aligned” dynamic scales µ̃dyn,k,

as defined in (4.11). In this way, the various dynamic scales have the same average value,

and the uncertainties related to this common average value are accounted for by standard

ξR-rescalings, while the comparison of different scale definitions allows one to highlight the

genuine kinematic effects that are inherent in their dynamic nature. Comparing aligned

dynamic scales yields no significant effect at the level of integrated cross sections, but

provides key information on shape uncertainties, since the average scales µ̄dyn,k are sensi-

tive both to the probed phase-space regions and to the detailed kinematic dependence of

µdyn,k(Φ). Vice versa, ξ-rescalings can be used to assess uncertainties in the normalisation

of σLO, whereas their impact on shapes is typically quite limited.

9For the process at hand we have checked that, at LO, in the ttbbj phase space the moments (4.9) are

suppressed as Xn = O(10−n) for n = 2, 3, 4, 5, 6.
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At LO, the above-mentioned alignment approach misses a crucial ingredient, namely a

good criterion for the choice of a reference scale µ0. For pp→ tt̄bb̄j, due to the very strong

scale dependence induced by α5
S, the choice of a well-behaved central scale is of crucial

importance. At the same time, the presence of multiple scales, distributed from mb to mtt̄

and beyond, renders this choice non-trivial. At NLO, a natural way of addressing the scale-

choice problem is to exploit the presence of a characteristic scale given by the maximum of

the NLO scale-dependence curves, µmax. The maximum itself is not necessarily an optimal

scale choice, since its position is not guaranteed ot be stable w.r.t. higher-order corrections.

Moreover, the flatness of the scale dependence around µR = µmax tends to underestimate

scale uncertainties. A more reasonable and conservative option, that will be adopted in this

paper, is to set the central scale at µR ' 2µmax. In this way, the range of factor-two scale

variations extends over [µmax, 4µmax], covering the maximum itself as well as a relatively

broad region where σNLO is monotonically decreasing.

As observed in figure 5, the position of µmax depends on the choice of the dynamic scale.

However, for reasons similar to those discussed above at LO, also NLO scale variations and

the position of their maxima can be aligned via rescalings. This is not entirely obvious

and does not work as precisely as in the LO case. The main reason is that NLO cross

sections consist of two kind of contributions: Born and virtual parts, which are distributed

in a similar way as dσ̂LO, and real-emission parts that can be distributed in a significantly

different way. Moreover, dynamic scales can feature a different sensitivity to the kinematics

of hard jet radiation, leading to genuinely new scale-dependence effects at NLO. For these

reasons, the LO scale-dependence model (4.3)–(4.12) should be refined by splitting σNLO

into two parts with independent average scales. Nevertheless, for the process at hand and

the scale choices (3.3), (3.5)–(3.7), it turns out that a single overall rescaling can already

yield a good level of NLO alignment.

This is illustrated in figure 6, where the dynamic scales (3.5)–(3.7) have been rescaled

in such a way that the positions of the NLO maxima match the maximum of σNLO(µtt̄bb̄j),

which is located at 0.45µtt̄bb̄j , i.e. µtt̄bb̄j is rather close to 2µmax. This alignment is achieved

by setting

µ̃tt̄bb̄j = µtt̄bb̄j ,

µ̃gbb̄ = 0.806µgbb̄ ,

µ̃T,jets = 1.14µT,jets ,

µ̃T,tot = 0.853
HT

4
= 1.066µT,tot . (4.13)

The fact that the aligned scales are rather close ot the original choices (3.3), (3.5)–(3.7)

is due to the fact that the latter had already been placed on purpose about two times

above the maximum, but without tuning their position in a precise way. As a result of the

alignment of the NLO maxima, in figure 6 we observe that the predictions based on the

two scales that depend on the jet transverse energy, i.e. µT,tot and µT,jets, overlap almost

perfectly, both at LO and NLO. A similarly good alignment is observed also between the

other two scales, µtt̄bb̄j and µgbb̄, which do not depend on HT. Vice versa, the scales that

do and do not depend on HT feature a non-negligible difference. In particular, the values
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Figure 6. Renormalisation-scale dependence of the tt̄bb̄j cross section at
√
s = 13 TeV. Same

predictions and variations as in figure 5, but with the aligned central scales defined in (4.13).

of σNLO at the maxima differ by about 10%. Such differences are most likely due to the

fact that the dependence on HT, which is sensitive to NLO radiation, leads to a significant

difference between the average scales in Born-like and real-emission contributions at NLO.

Nevertheless, we observe that for all curves the position of the maximum coincides quite

precisely with the intersection of the NLO and LO curves, which corresponds to K = 1.

Moreover, the four K-factors coincide almost exactly in the whole ξR range.

In summary, applying a rescaling that aligns dynamic scales based on the positions

of the NLO maxima makes it possible to remove trivial differences related to the scale

normalisation and to highlight genuine differences related to their kinematic dependence.

Since such alignment is in part already realised in the original scale choices (3.3), (3.5)–(3.7),

in the following we will refrain from applying the small extra rescaling (4.13).

4.2 Fiducial cross sections

In this section we present detailed numerical results for integrated cross sections and scale

uncertainties.

To highlight the quantitative importance of light-jet radiation emitted by the tt̄bb̄

system, in table 3 we present tt̄bb̄+jets cross sections with variable b-jet and light-jet

multiplicities. Comparing the cross sections in the ttbbj and ttbb phase spaces, both

available at NLO, we observe that the production rate for an extra light jet is around

50%, i.e. every second tt̄bb̄ event involves a hard light jet with pT > 50 GeV. The ratio of

the cross sections in the ttbbjj and ttbbj regions is around 40%, i.e. the emission of a

second extra jet seems to be less abundant. However, one should keep in mind that this

ratio is only LO accurate. The light-jet emission rates observed in the phase space with
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µR Nmin
b Nmin

j σLO[pb] K σNLO[pb]
σ

(Nmin
j )

LO

σ
(Nmin

j −1)

LO

σ
(Nmin

j )

NLO

σ
(Nmin

j −1)

NLO

ttb 1 0 3.951+73%
−39% 1.92 7.58+32%

−27%

ttbb 2 0 0.3738+70%
−38% 1.80 0.674+27%

−25%

ttbj 1 1 2.166+97%
−45% 1.56 3.38+21%

−27% 0.55 0.45

ttbbj 2 1 0.2316+92%
−45% 1.45 0.337+15%

−25% 0.62 0.50

ttbjj 1 2 0.7812+119%
−51% 0.36

ttbbjj 2 2 0.08711+113%
−50% 0.38

Table 3. Cross sections at LO and NLO for pp→ tt̄bb̄+jets at
√
s = 13 TeV. Results are shown for

integrated regions with different numbers of b-jets, Nmin
b = 1, 2, and extra light jets, Nmin

j = 0, 1, 2.

The acceptance cuts (3.11) are applied. Predictions for Nmin
j = 0 are based on a tt̄bb̄ calculation

with µR = µtt̄bb̄ and µF = HT/2, while Nmin
j = 1, 2 cross sections correspond to a tt̄bb̄j NLO

calculation with µR = µtt̄bb̄j and µF = HT/2. Seven-point scale variations are quoted in percent.

In the last two columns, for Nmin
j = 1, 2 we report the ratios of LO (or NLO) cross sections with

Nmin
j and (Nmin

j − 1). The numerators and denominators of such ratios are computed at the

same order.

Nmin
b = 1 are comparably large to the Nmin

b = 2 case. For fixed Nmin
j , cross sections with

two b-jets are about a factor ten smaller w.r.t. the corresponding cross sections with one

b-jet. In general, LO scale uncertainties are very large, and grow by roughly 20% at each

extra emission. Instead, scale uncertainties at NLO are drastically reduced, and in tt̄bb̄j

production they are less pronounced than in tt̄bb̄ production.

In the following we focus on LO and NLO predictions for tt̄bb̄+jet production in the

ttbj and ttbbj phase-space regions. In table 4 we compare cross sections and scale

variations based on the four dynamic scale choices (3.3), (3.5)–(3.7). For what concerns

nominal predictions (without scale variations), the default scale µR = µtt̄bb̄j yields the

largest cross sections. At LO, the other predictions are between 10% and 20% lower. The

ttbbj (ttbj) cross sections based on the HT-dependent scales remain 15% (20%) lower

also at NLO. In contrast, the two HT-independent scales agree at the level of 5% at NLO.

Comparing the cross sections with one and two b-jets, using HT-independent scales we

observe a ratio very close to 1/10, while the other scale choices yield a ratio of 1/9.3.

Seven-point scale variations at LO are between around −45% and +90% for all scale

choices, both in the ttbj and ttbbj regions. At NLO they are reduced around 20%, with

significant differences depending on the scale choice and the number of b-jets. In the ttbbj

(ttbj) phase space, the half-width of the scale-variation band is around 20% (25%) for the

HT-independent scales and about 5% smaller for the HT-dependent ones.

In the last two columns of table 4, we compare LO and NLO cross sections and

seven-point variations of the various dynamic scales, normalising the results to nominal

predictions with the default scale choice. The scale-variations bands obtained with the
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µR Nmin
b σLO[pb] K σNLO[pb]

σLO

σLO,def
− 1

σNLO

σNLO,def
− 1

µtt̄bb̄j 1 2.166+97%
−45% 1.56 3.38+21%

−27% 0%+97%
−45% 0%+21%

−27%

2 0.2316+92%
−45% 1.45 0.337+15%

−25% 0%+92%
−45% 0%+15%

−25%

µgbb̄ 1 1.943+93%
−45% 1.62 3.15+23%

−28% −10%+74%
−51% −7%+14%

−33%

2 0.2041+89%
−44% 1.56 0.318+19%

−26% −11%+67%
−51% −6%+12%

−30%

µT,jets 1 1.772+91%
−44% 1.51 2.68+15%

−25% −18%+56%
−54% −21%−9%

−41%

2 0.2100+90%
−44% 1.37 0.287+7%

−22% −9%+72%
−49% −15%−8%

−34%

µT,tot 1 1.697+90%
−44% 1.60 2.71+19%

−26% −22%+49%
−56% −20%−4%

−41%

2 0.2064+89%
−44% 1.41 0.291+10%

−23% −11%+69%
−50% −13%−5%

−34%

Table 4. Cross sections at LO and NLO for pp → tt̄bb̄j at
√
s = 13 TeV. Results are shown for

the fiducial regions with Nmin
j = 1 and Nmin

b = 1 (ttbj) or Nmin
b = 2 (ttbbj). The acceptance

cuts (3.11) are applied. Four different choices of µR as defined in (3.3), (3.5)–(3.7) are compared,

while the factorisation scale (3.10) is used throughout. Columns 3–5 show absolute predictions at

LO and NLO, as well as the usual correction factor K = σNLO/σLO. Uncertainties given in percent

correspond to seven-point factor-two variations of µR and µF. Columns 6 and 7 show the relative

differences between LO and NLO cross sections, respectively, based on the default µR = µtt̄bb̄j

and the other dynamical scales. As central values we report ratios obtained with the nominal

values of the various scales, while lower (upper) values correspond to the minimum (maximum) of

σ(N)LO(ξR, ξF)/σ(N)LO,def − 1, where seven-point variations are restricted to the numerator. The

reported cross sections have been computed with Monte Carlo statistical uncertainties at the level

of three permille at NLO and below one permille at LO.

HT-dependent scales are significantly lower than the other bands. At NLO, the variation

of the default scale covers the absolute NLO maximum observed in figure 5, while the

upper variations of the HT-dependent scales are 20–30% lower. Vice versa, the lower varia-

tion of the default scale is 10–15% above the corresponding variation of the HT-dependent

scales. In the ttbbj (ttbj) phase spaces, the variations of the default scale change the

nominal cross section by [−25 (27)%,+15 (21)%], while the envelope of the four variation

bands corresponds to [−34 (41)%,+15 (21)%], which amounts to an increase of the half-

band width from 20 (24)% to 25 (31)%, i.e. by 5 (7)%. Vice versa, using the µT,tot result as

a reference gives a µT,tot variation band of [−23 (26)%,+10 (19)%] and an envelope band

of [−23 (26)%,+32 (51)%], which corresponds to an increase of the half-band width from

17 (23)% to 28 (38%)%, i.e. by 11 (15)%. We also note that the variation bands of the

HT-independent scales cover the nominal predictions of the HT-dependent scales, but not

vice versa. Based on this observations, we conclude that the somewhat larger seven-point

variation of the HT-independent scales should be regarded as a more realistic estimate of

scale uncertainties.

– 17 –



J
H
E
P
1
2
(
2
0
1
9
)
0
1
5

µR Nmin
b σLO[pb] K σNLO[pb]

σLO

σLO,def
− 1

σNLO

σNLO,def
− 1

µ̃tt̄bb̄j 1 2.166+97%
−45% 1.56 3.38+21%

−27% 0%+97%
−45% 0%+21%

−27%

2 0.2316+92%
−45% 1.45 0.337+15%

−25% 0%+92%
−45% 0%+15%

−25%

µ̃gbb̄ 1 2.291+97%
−46% 1.48 3.40+16%

−26% +6%+109%
−43% +0.4%+17%

−26%

2 0.2388+93%
−45% 1.42 0.338+13%

−24% +3%+99%
−43% +0.3%+13%

−24%

µ̃T,jets 1 1.606+89%
−44% 1.60 2.57+19%

−26% −26%+40%
−58% −24%−9%

−43%

2 0.1909+88%
−44% 1.45 0.277+12%

−24% −18%+54%
−53% −18%−8%

−37%

µ̃T,tot 1 1.621+89%
−44% 1.64 2.65+21%

−27% −25%+41%
−58% −21%−5%

−43%

2 0.1973+88%
−44% 1.44 0.285+12%

−24% −15%+60%
−52% −15%−5%

−36%

Table 5. Cross sections at LO and NLO for pp → tt̄bb̄j at
√
s = 13 TeV in the ttbj (Nmin

b = 1)

and ttbbj (Nmin
b = 2) phase spaces. Similar predictions and variations as in table 4 for the case of

the aligned central scales defined in (4.13).

In table 5 we present similar results based on the aligned scales (4.13), which correspond

to figure 6. The main effect of the alignment is that the LO and NLO cross sections based

on the two HT-independent scales become much closer to each other, while predictions

based on the HT-dependent scales change in a less significant way. This is mainly due to

the fact the original scales µT,jets and µT,tot are already very close to the corresponding

aligned scales in (4.13). In any case, predictions based on the aligned scales are independent

of the initial normalisation of the various scales.

After alignment, we still see significant differences between the predictions with

HT-dependent and HT-independent scales. More precisely, due to the fact that the align-

ment is based on the NLO maximum of the ttbbj cross sections, the spread between

K-factors in the ttbbj phase space goes down from 0.11 to 0.03. Vice versa, the K-factor

difference in the ttbj phase space increases from 0.11 to 0.16. The alignment leads also to

a slight reduction of NLO scale uncertainties, and the nominal predictions based on HT-

independent scales remain above the NLO bands of HT-dependent scales. Such differences

between aligned NLO predictions in different phase-space regions should be regarded as

genuine effects of the kinematic dependence of dynamic scales. Thus they play a largely

complementary role w.r.t. factor-two scale variations.

4.3 Sudakov effects

In this section we address the question of the safeness of the chosen transverse-momentum

cut of 50 GeV with respect to higher-order Sudakov logarithms. To investigate such Su-

dakov effects, which appear in the region where the pT of the light jet, pT,j , becomes

small, we relax the cut on pT,j and, in figure 7, we study the perturbative behaviour of

the dσ/dpT,j distribution. In the left plot, this is done by keeping the usual b-jet cuts at

pcut
T = 50 GeV, while in the right plot this threshold is lowered to pcut

T = 25 GeV.
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Figure 7. Distribution in the pT of the leading light jet in the soft region for pp → tt̄bb̄j in

the ttbbj phase space. In the left (right) plot b-jets are subject to the usual cuts with standard

(reduced) pT,b threshold of 50 GeV (25 GeV). Cuts on the jet-pT have been lowered to 5 GeV, and

all jets are subject to a pseudo-rapidity cut |η| < 2.5. The upper frames show LO (dashed) and

NLO (solid) absolute predictions with the default scale choice, µR = µtt̄bb̄j and µF = HT/2. The

bands correspond to seven-point scale variations. The ratio plots display relative differences w.r.t.

to the nominal NLO predictions.

As is well known, the dσ/dpT,j distribution is logarithmically divergent at LO, while

summing such logarithms to all orders in αS would cancel the divergence and lead to

dσ/dpT → 0 at small pT. In the fixed-order NLO calculation at hand, this behaviour

manifests itself through an increasingly strong shape difference between the LO and NLO

distributions at small pT. For pcut
T = 50 GeV, we find that at pT ' 20 GeV the NLO

curve develops a Sudakov peak, below which NLO corrections start overcompensating the

logarithmic growth of the LO distribution. In correspondence with the Sudakov peak, the

NLO cross section is already less than half of the LO one, and below 15 GeV it rapidly

falls into the unphysical regime of negative cross sections. This pathologic behaviour of the

fixed-order NLO prediction is also reflected by the rapid inflation of NLO scale uncertainties

below 40 GeV, while our choice of setting the light-jet pT cuts at 50 GeV guarantees good

stability both for the NLO predictions and their uncertainties.

As can be seen in the right plot of figure 7, reducing the b-jet threshold to 25 GeV tends

to lower the position of the Sudakov peak by 5 GeV or so. In this case, NLO predictions

feature a good perturbative convergence down to 30–35 GeV. The effect of NLO corrections

on the jet-pT distribution for selected values of pT is reported in table 6.

5 Differential observables

In this section we study differential observables for pp → tt̄bb̄j at 13 TeV restricting our-

selves to the ttbbj phase space. The main focus of our analysis is on the shapes of

distributions and related uncertainties.
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pcut
T [GeV] 50 25

pT,j [GeV] 25 50 100 25 50 100

dσLO/dpT,j

dσNLO/dpT,j
1.45 0.881 0.699 1.09 0.754 0.639

Table 6. Comparison of the LO and NLO distributions in the leading-jet pT for pcut
T = 50 GeV

and 25 GeV. The results correspond to the ttbbj phase space with the cut pT > pcut
T restricted to

b-jets. The reported values at pT,j/GeV = 25, 50, 100 correspond to the bins [22.4, 26.0], [47.3, 55.0]

and [86.0, 100].

5.1 Distributions and shape uncertainties in the ttbbj phase space

In figures 8–16 we analyse a series of differential distributions showing, for each observable,

absolute and normalised distributions as well as six different ratio plots, which quantify

the relative effects of seven-point variations and differences between the various dynamic

scales. We restrict ourselves to the three dynamic scales (3.3), (3.5)–(3.6), since including

or not the scale (3.7) does not change the overall picture of shape uncertainties. The format

of the plots is described in the following and in the caption of figure 8, and it is the same

for all figures in this section.

The left plot of each figure contains:

(L1) An upper frame with LO and NLO distributions based on the default scale choice

(µR, µF) = (µtt̄bb̄j , HT/2), as well as the corresponding seven-point variation bands.

(L2) A first ratio plot corresponding to the inverse K-factor,

K−1
(N)LO(ξR, ξF) =

σ(N)LO(ξR µtt̄bb̄j , ξF µF)

σNLO(µtt̄bb̄j , µF)
, (5.1)

where scale variations are applied only in the numerator.

(L3) A second ratio plot that features the LO and NLO ratios,

R(N)LO(µR) =
σ(N)LO(ξR µR, ξF µF)

σ(N)LO(ξR µtt̄bb̄j , ξF µF)
. (5.2)

This ratio encodes differences between the dynamic scale µR = µgbb̄, defined in (3.5),

and the default scale. Seven-point scale variations are applied in a correlated way

to the numerator and the denominator. In this way, the main effect of factor-two

variations, which amounts to a nearly constant normalisation shift, cancels out. As

a result, the ratio (5.2) is mostly sensitive to effects that arise from the different

kinematic dependence of the considered scales, and cannot be accounted for by factor-

two variations of a single scale.

(L4) A third ratio plot that shows the ratio (5.2) for µR = µT,tot.

The right plot of each figure shows the following normalised distributions and ratios thereof.
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(R1) The upper frame displays the LO and NLO normalised distributions,

dσ̂(N)LO(ξR µR, ξF µF) =
dσ(N)LO(ξR µR, ξF µF)

σ(N)LO(ξR µR, ξR µF)
, (5.3)

for the default scale µR = µtt̄bb̄j . The denominator corresponds to the integrated

cross section in the ttbbj phase space, and seven-point variations in the numerator

and denominator are correlated. In this way, distributions are always normalised to

one, i.e. normalisation effects cancel out, and only shape corrections and uncertainties

remain visible.

(R2) The first ratio plot shows the ratio of normalised distributions,

R̂(N)LO(µtt̄bb̄j) =
dσ̂(N)LO(ξR µtt̄bb̄j , ξF µF)

dσ̂NLO(µtt̄bb̄j , µF)
, (5.4)

based on the default scale. Here seven-point variations are applied only to the nu-

merator, but their normalisation effect cancels out as in (5.3). Thus the ratio (5.4)

highlights the relative effect of NLO corrections and seven-point variations on the

shape of distributions.

(R3) The second ratio plot shows the ratios of normalised distributions at LO,

RLO(µR) =
dσ̂LO(ξR µR, ξF µF)

dσ̂LO(µtt̄bb̄j , µF)
, (5.5)

for the three dynamic scales µR = µtt̄bb̄j , µgbb̄, µT,tot. This ratio highlights shape

differences between those scales (with seven-point variations) and the nominal default

scale.

(R4) The third ratio plot shows the same ratios as defined in (5.5), but at NLO,

RNLO(µR) =
dσ̂NLO(ξR µR, ξF µF)

dσ̂NLO(µtt̄bb̄j , µF)
, (5.6)

for µR = µtt̄bb̄j , µgbb̄, µT,tot.

Figure 8 presents the distribution in the pT of the leading light jet up to 400 GeV. The

corrections to the shape of this distribution indicate excellent perturbative stability in the

hard region above 150 GeV: the default scale yields a nearly constant K-factor around 1.65,

and the scale-variation band is also quite stable at the ±20% level. In the region below

150 GeV, as already observed in figure 7, NLO effects start affecting the pT-shape with a

correction of about 25% between 150 and 50 GeV. Such effects can be attributed to Sudakov

logarithms, and estimating the missing higher-order corrections via naive exponentiation,

we expect residual shape uncertainties below 5% at NLO.

Comparing predictions based on the default scale and the other dynamic scales, in

L3–L4 we observe normalisation differences at the level of 10–15%, which are compatible

with the NLO scale-variation band in L2. These differences are very stable with respect
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Figure 8. Distribution in the pT of the leading light jet for pp→ tt̄bb̄j at 13 TeV in the ttbbj phase

space with acceptance cuts (3.11). The left figure shows LO (dashed) and NLO (solid) absolute

predictions and ratios thereof. The bands correspond to seven-point scale variations. The upper

frame (L1) displays the absolute pT distribution with µR = µtt̄bb̄j , and the first ratio plot (L2) shows

the corresponding (inverse) K-factor defined in (5.1). The other ratio plots on the left display the

ratios R(N)LO(µR), defined in (5.2) for the scales µR = µgbb̄ (L3) and µT,tot (L4). Such ratios

quantify shape uncertainties due to the differences between the default scale and the alternative

dynamic scales. Seven-point variations in the numerator and the denominator are correlated. The

right plots present normalised distributions and ratios thereof. The upper frame (R1) shows the

LO and NLO normalised distributions (5.3) based on the default scale, with correlated seven-

point variations in the numerator and denominator. The first ratio plot (R2) displays the ratio

R̂(N)LO(µtt̄bb̄j), which is defined in (5.4) and highlights the relative shape distortions induced by

NLO corrections and scale variations. The last two ratio plots on the right feature the ratios

R(N)LO(µR) for µR = µtt̄bb̄j , µgbb̄ and µT,tot at LO (R3) and NLO (R4). As defined in (5.5)–(5.6),

such ratios quantify shape uncertainties associated with the kinematic dependence of the different

dynamic scales.

to correlated factor-two scale variations as defined in (5.5): at LO such variations cancel

almost exactly, and also the NLO bands in L3–L4 are suppressed at the level of 5% or

less. Comparing normalised distributions with different dynamic scales in R3–R4, we see

that LO shapes (and their seven-point variations) are almost identical, with only few-

percent differences between µT,tot and the HT-independent scales. The nominal NLO

predictions based on the various scales feature a similarly high level of agreement (see R4).

However, similarly as in R2, factor-two variations lead to shape distortions at the 20% level.

Such distortions shift the shape of the distributions in the region below 150 GeV, and are

compensated by an opposite, but pT-independent shift in the hard region. In general, the

– 22 –



J
H
E
P
1
2
(
2
0
1
9
)
0
1
5

Sherpa+OpenLoops

L1

L2

NLO µtt̄bb̄j
LO µtt̄bb̄j

10−3

10−2

10−1

η of 1st light-jet (ttbbj cuts)
d
σ
/
d
η
[p
b]

-3 -2 -1 0 1 2 3
0.2

0.4
0.6

0.8

1

1.2

1.4
1.6

η

d
σ
/
d
σ
d
ef

N
L
O

-3 -2 -1 0 1 2 3
0.6

0.8

1

1.2

1.4
η of 1st light-jet (ttbbj cuts)

η

d
σ

/
d

σ
d

ef

-3 -2 -1 0 1 2 3
0.6

0.8

1

1.2

1.4
η of 1st light-jet (ttbbj cuts)

η

d
σ

/
d

σ
d

ef

Sherpa+OpenLoops

R1

R2

NLO µtt̄bb̄j
LO µtt̄bb̄j

10−2

10−1

η of 1st light-jet (ttbbj cuts)

d
σ̂
/
d
η

-3 -2 -1 0 1 2 3
0.6

0.8

1

1.2

1.4
1.6

η

d
σ̂
/
d
σ̂
d
ef

N
L
O

-3 -2 -1 0 1 2 3
0.6

0.8

1

1.2

1.4

1.6
η of 1st light-jet (ttbbj cuts)

η

d
σ̂

/
d

σ̂
d

ef

-3 -2 -1 0 1 2 3
0.6

0.8

1

1.2

1.4

1.6
η of 1st light-jet (ttbbj cuts)

η

d
σ̂

/
d

σ̂
d

ef

Figure 9. Pseudo-rapidity of the leading light jet. Same setup and plots as in figure 8.

suppression of shape effects at LO demonstrates the importance of NLO predictions for a

more realistic assessment of shape uncertainties.

The non-negligible NLO shape effects observed in figure 8 are a specific feature of the

jet-pT distribution in the vicinity of the cut, while other distributions that involve the

leading light jet are typically more stable.

This is illustrated in figures 9–10 where we present the distributions in the pseudo-

rapidity of the leading jet and in its ∆R separation with respect to the leading b-jet. For

these observables, NLO corrections and uncertainties correspond to the ones of the inte-

grated cross section and depend only very weakly on the jet kinematics. In fact, as can be

seen from the ratio plots R2–R4, the shape of such distributions turns out to be stable at the

percent level with respect of seven-point variations and differences between dynamic scales.

In general, as found in figures 8–10 and in various other observables not shown here,

distributions in the leading light jet can be controlled with typical normalisation uncer-

tainties of order 20% and shape uncertainties of order 10% or below.

In figures 11–16 we present distributions in the top-quark and b-jet kinematics. For

the transverse momentum of the harder top quark, shown in figure 11, we find that NLO

corrections and scale variations are very stable, the only exception being a NLO shape

correction of about 15% in the region below 50 GeV, where the cross section is strongly

suppressed. For the pT of the softer top quark, shown in figure 12, NLO corrections feature

a moderate, but more significant kinematic dependence. In particular, the K-factor goes

down from about 1.5 in the bulk of the distribution to 1.2 in the tail, while seven-point

scale variations lead to a similarly large shape distortion in the tail (see R2, R4). This
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Figure 10. ∆R between the light jet and the b-jet pair. Same setup and plots as in figure 8.

behaviour is qualitatively quite similar to the Sudakov effects observed in the soft region

of the jet-pT distribution in figure 8. It can be attributed to the fact that requiring two

very hard top quarks restricts the available phase for additional radiation, confining the

light jet into the soft region close to the 50 GeV threshold.

The distributions in the pT of the harder and softer b-jets, shown in figures 13–14, fea-

ture a qualitatively very similar behaviour as the corresponding top-quark distributions.

In the case of the harder b-jet pT, NLO corrections and scale uncertainties depend rather

weakly on pT (although more significantly than for the harder top quark), while the distri-

bution in the pT of the softer b-jet features strong NLO effects, which are most likely due

to Sudakov logarithms.

Finally, in figures 15–16 we show the ∆R separation and the invariant-mass distribution

of the b-jet pair. For these observables, as far as the default scale and the scale µR = µT,tot

are concerned, NLO corrections and variations feature very little kinematic dependence,

with percent-level shape differences. On the contrary, the dynamic scale µR = µgbb̄ leads to

a very different shape in the tail of the ∆Rbb distribution, with deviations that reach −45%

at LO and remain as important as −30% at NLO. A similar, although less dramatic trend

is observed also in the tail of the invariant-mass distribution, which is clearly correlated to

the tail of the ∆Rbb distribution. These effects are most pronounced at ∆Rbb > π, where

the two b-jets are emitted in opposite hemispheres. In this region, the main mechanism of

tt̄bb̄ production via final-state g → bb̄ splittings (see figure 3a) is strongly suppressed, and

the leading role is played by topologies with initial-state g → bb̄ splittings (see figure 3b

in this paper and figure 6 in [12]). The latter are maximally enhanced at ET,b � mbb,
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Figure 11. pT of the harder top. Same setup and plots as in figure 8.
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Figure 12. pT of the softer top. Same setup and plots as in figure 8.
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Figure 13. pT of the first b-jet. Same setup and plots as in figure 8.
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Figure 14. pT of the second b-jet. Same setup and plots as in figure 8.
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Figure 15. ∆R between the two b-jets. Same setup and plots as in figure 8.
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Figure 16. Invariant mass of the b-jet pair. Same setup and plots as in figure 8.
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and their characteristic virtualities of order ET,b are correctly reflected in the definition of

the scales µtt̄bb̄j and µT,tot. Instead, the term mbb̄ in (3.5) renders µgbb̄ unnaturally hard,

leading to an unphysical suppression of the tails. It is clear that this behaviour cannot be

regarded as a theoretical uncertainty, but should simply be taken as an indication that the

scale µgbb̄, which was designed to account for final-state g → bb̄ splittings, is not applicable

to initial-state g → bb̄ splittings. On the contrary, the scales µtt̄bb̄j and µT,tot turn out to

be well behaved for both kinds of splittings.

5.2 Recoil observables

As pointed out in the introduction, the accuracy of NLO Monte Carlo simulations of tt̄bb̄

production plays a key role in tt̄H analyses. In this context, it was recently observed

that the modelling of recoil effect by the parton shower may be a dominant source of

uncertainty (see e.g. [50, 51]). This is not surprising, given that every second tt̄bb̄ event

is accompanied by QCD radiation with pT > 50 GeV (see table 3). In fact, away from

the collinear regions, the recoil prescriptions used by parton showers can easily lead to

unphysical momentum shifts of the order of 10 GeV and beyond. In the case of b-jets the

effects of recoil mismodelling can be quite significant. In particular, shifts in the transverse

momentum of the second b-jet can easily result in sizeable migration effects from the

strongly populated region with Nmin
b = 1 to the less populated Nmin

b = 2 region.10 In

this context, the accurate description of QCD radiation provided by the calculation of

pp→ tt̄bb̄j at NLO can be exploited as a benchmark to test the modelling of recoil effects

in tt̄bb̄ Monte Carlo simulations. With this motivation in mind, we study the azimuthal

angular correlations [51]

∆φrec,X = ∆φ (~pT,rec, ~pT,X) (5.7)

between the transverse momentum of the recoil,

~pT,rec =
∑

i=t1,t2,b1,b2

~pT,i , (5.8)

and the various objects X of the tt̄bb̄ system, i.e. the harder and softer top quarks (t1, t2)

and the harder and softer b-jets (b1, b2), as well as the top-quark and the b-jet pairs. These

angular observables, sketched in figure 17, reveal whether the respective object X absorbs

a significant fraction of the QCD recoil through the presence (or absence) of peaks at

∆φrec,X = ±π.

In figure 18 we present LO and NLO predictions for the azimuthal correlations between

the recoil and the various top-quark and b-jet objects. For these observables we focus on

10We have verified that in the ttbj region the second b-jet is typically slightly below the pT acceptance

cut and is almost ten times softer with respect to the leading light jet. Thus, a small fraction of the QCD

recoil is sufficient in order to shift the softer b-jet above the acceptance cut. More precisely, in the ttbj

(ttbbj) phase space with standard cuts at 50 GeV the average transverse momenta of light jets and b-jets

are 〈pT,j1〉 = 131 (137) GeV, 〈pT,b1〉 = 134 (166) GeV and 〈pT,b2〉 = 35 (86) GeV, while their average ratios

are 〈pT,j1/pT,b1〉 = 1.34 (1.09) and 〈pT,j1/pT,b2〉 = 9.15 (1.83) . In the ttbj phase space, the quoted 〈pT,b2〉
and 〈pT,j1/pT,b2〉 averages have been evaluated including only events that involve a second resolved b-jet

with pT,b2 > 0 and |ηb2 | < 2.5.
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Figure 17. Sketch of the azimuthal angular correlation ∆φrec,X between individual objects of the

tt̄bb̄ system and its recoil. See (5.7)–(5.8).

the default scale, µR = µtt̄bb̄j , with seven-point variations. The absolute distributions in

the upper frames indicate a very clear pattern: the recoil is preferentially absorbed by

the harder top quark, and consequently also by the tt̄ system, while the softer top quark

and the b-jets feature only weak angular correlations with respect to the recoil. More

precisely, in the case of the harder top, at ∆φ = ±π the cross section is almost five times

larger as compared to the central region, while in the case of the harder (softer) b-jet this

enhancement goes down to about 50% (20%). Thus it should be clear that naive shower

models that distribute the recoil in a democratic way may lead to a significant mismodelling

of the b-jet kinematics. Concerning the accuracy of NLO predictions in figure 18, we observe

that all distributions are quite stable w.r.t. to NLO corrections and scale variations. The

most significant shape effects show up in the case of top-quark observables, where scale

uncertainties can shift the level of the recoil peak by 15–20%, while for b-jets the flatness

of the azimuthal correlations is remarkably stable with respect to higher-order effects.

These results demonstrate that fixed-order NLO predictions for pp → tt̄bb̄j can be

used as a precision benchmark to validate the modelling of recoil effects in Monte Carlo

simulations of tt̄bb̄ production.

6 Tuning of QCD scale choice in tt̄bb̄ production

In the literature on pp→ tt̄bb̄ at NLO, the usage of dynamic scales of type µR = µtt̄bb̄ (3.4)

has been advocated on the basis of the moderate size of the resulting NLO correction

factor, K = σNLO/σLO. However, as pointed out in [12], the smallness of the observed K-

factor was largely due to the usage of a rather high LO value of αS as input for σLO, while

using the same αS in σLO and σNLO results in a correction factor as large as K ' 1.9 [12].

The lack of perturbative convergence, reflected by this large K-factor, may simply be the

consequence of the fact that µR = µtt̄bb̄ is a suboptimal choice. At the same time, it may

also be the origin of the discrepancies between NLOPS simulations of tt̄bb̄ production [52].

In fact, when matrix elements at NLO are matched to parton showers, the spectrum of the

hardest QCD emission receives uncontrolled corrections of order (K − 1) = O(αS). Such

effects are formally beyond NLO, but for K � 1 they can lead to sizeable distortions of

the radiation spectrum [52].
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Figure 18. Distributions in the azimuthal angular separation ∆φrec,X between individual objects

X of the tt̄bb̄ system and its recoil. See (5.7)–(5.8). The left column shows the angular correlations

between the recoil and the top-quark objects X = t1, t2, t1t2, where t1t2 denotes the top-pair system.

Corresponding observables for b-jet objects, X = b1, b2, b1b2, are shown in the right column. Same

setup and plots as in figure 7.
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In the light of these observations, and given the strong scale dependence of the tt̄bb̄

K-factor, it is clear that a relatively mild reduction of the nominal scale would automat-

ically lead to a smaller K-factor and, possibly, also to an improved behaviour of NLO

matched simulations. However, the large tt̄bb̄ K-factor may also be due to large higher-

order effects that are not related to the choice of µR. In this case, a reduction of the

K-factor via µR rescaling would only give a misleading impression of perturbative con-

vergence without curing any problem. These considerations raise the question whether a

reduction of the tt̄bb̄ K-factor through a smaller choice of µR may be supported through

solid theoretical arguments. Generic considerations based on naturalness and perturbative

convergence point towards a reduction of the standard tt̄bb̄ scale choice by a factor 1/2

to 1/3 [52]. However, only the knowledge of the next perturbative order can shed full

light on the goodness of a scale choice, i.e. on its effectiveness in capturing the dominant

higher-order effects. In the case at hand, the tt̄bb̄ scale choice could be tuned based on the

requirement that

σtt̄bb̄NLO(µopt
R , µopt

F )
!

= σtt̄bb̄NNLO(µR, µF) , (6.1)

i.e. by optimising the choice of the scales µopt
R,F in such a way that NLO tt̄bb̄ predictions

match NNLO ones.11 However, the required NNLO calculation is completely out of reach.

Nonetheless, the NLO corrections to pp → tt̄bb̄j presented in this paper represent one

of the building blocks of tt̄bb̄ production at NNLO, and as such they can provide useful

insights on how to improve the tt̄bb̄ scale choice. The idea is that the condition (6.1) can

be imposed at the level of the jet-radiation spectrum by requiring

dσtt̄bb̄NLO

dpT,j
(µopt

R , µopt
F )

!
=

dσtt̄bb̄NNLO

dpT,j
(µR, µF) =

dσtt̄bb̄jNLO

dpT,j
(µR, µF) . (6.2)

With other words, the scale choice can be tuned in such a way that the tree-level description

of the jet-pT spectrum that results from the tt̄bb̄ NLO calculation matches the more precise

prediction of the tt̄bb̄j NLO calculation. Contrary to (6.1), this procedure cannot guarantee

the correct description of higher-order effects at the level of the inclusive tt̄bb̄ cross section.12

Nonetheless it is attractive for at least two reasons. First, tuned tt̄bb̄ NLO predictions will

guarantee a much more accurate description of the jet-pT spectrum, which is known to play

a critical role in Monte Carlo simulations. Second, the shape of the jet-pT spectrum can

be used to judge the quality of the matching procedure (6.2), and the general consistency

of the procedure can be validated by comparing various other jet observables.

The results of this tuning procedure are presented in figure 19, where we show the

distribution in the pT of the hardest light jet, and in the invariant masses of the systems

formed by the hardest light jet in combination with the leading or the subleading b-jet.

11The reference scales µR,F used at NNLO can be chosen and varied in different ways. However, due the

small level of expected scale dependence at NNLO, such choices should not have a dramatic impact on the

tuned scales µopt
R,F. Note also that equation (6.1) may have no exact solution, in which case it should be

understood as the requirement of a minimal difference between the NLO and NNLO cross sections.
12We note that this approach does not improve the precision of the integrated tt̄bb̄ cross sections. Its goal

is only to optimise the choice of the central scale.
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The tuning is carried out through a constant rescaling of the standard tt̄bb̄ scale choice,

(µR, µF) = (κµtt̄bb̄, κ
HT

2
) , (6.3)

such as to match NLO predictions for the integrated ttbbj cross section based on the

default scale µtt̄bb̄j . To be conservative, we have compared two possible ways of tuning the

tt̄bb̄ scale. In the first approach, the rescaled tt̄bb̄ NLO predictions are matched to nominal

tt̄bb̄j NLO predictions, whereas in the second approach the tuning is done by matching

the average values of the respective seven-point variation bands. The outcome of these

two matching prescriptions is shown in the left and right columns of figure 19. Matching

nominal predictions leads to a reduction of the default tt̄bb̄ scale by a factor13 κ = 1/1.6,

whereas matching the scale-variation bands in a symmetric way requires a significantly

smaller rescaling, κ = 1/1.14. This large difference is mainly due to the strong asymmetry

of the factor-two variation band of the tree-level prediction, i.e. pp → tt̄bb̄ at NLO. In

this respect, we note that such asymmetry is mainly due to the logarithmic nature of the

scale dependence (4.2). Thus the asymmetry of the LO band would largely disappear on

logarithmic scale, and the prescriptions based on the central scale and the average of the

bands would be significantly closer to each other.

For all considered jet observables we find that both tuning scenarios lead to a very good

agreement, not only in the normalisation, but also at the level of shapes. The findings of this

analysis support a reduction of the standard tt̄bb̄ scale (6.3) by up to a factor κ ∼ 1/1.6. In

the ttbb (ttb) phase space, κ = 1/1.6 corresponds to a reduction of the tt̄bb̄ K-factor from

1.80 (1.92) to 1.51 (1.62) and an increase of the nominal tt̄bb̄ cross section by 18% (21%).

7 Summary

Measurements of tt̄H(bb̄) production at the LHC require very accurate theoretical simu-

lations of the irreducible tt̄bb̄ background. To address the dominant sources of systematic

uncertainties, which stem from the modelling of QCD radiation in tt̄bb̄ events, we have

presented a calculation of tt̄bb̄ production in association with one extra jet at NLO QCD.

To carry out this non-trivial calculation we used OpenLoops 2 in combination with

the Sherpa and Munich Monte Carlo frameworks. Technically, the calculation of the

required 2 → 5 one-loop amplitudes has confirmed that the new algorithms implemented

in OpenLoops 2 can tackle multi-particle and multi-scale problems with very high CPU

efficiency and numerical stability.

We have discussed pp → tt̄bb̄j at the 13 TeV LHC with emphasis on the effects of

NLO corrections and scale uncertainties. To this end, we have studied conventional factor-

two rescalings, as well as variations of the kinematic dependence of dynamic scales. In

order to disentangle normalisation and shape uncertainties in a transparent way, we have

proposed to compare dynamic scales upon alignment of the NLO maxima of the respective

scale-variation curves.

13We have checked that keeping µF = HT/2 fixed and tuning only µR would require a rescaling factor

κ = 1/1.76.
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Figure 19. Distributions in the pT of the leading jet and the mass of light-jet-b-jet systems in

the ttbbj phase space. Comparison of NLO tt̄bb̄j predictions with default scale choice, (µR, µF) =

(µtt̄bb̄j , HT/2), to NLO tt̄bb̄ predictions with (µR, µF) = (κµtt̄bb̄, κHT/2). In the left plots, the

reference curves for the matching procedure (solid, labelled NLO) correspond to the above central

scales, and the applied rescaling factor is κ = 1/1.6. In the right plots, the reference curves (solid,

labelled NLO) are the average values of the scale-variation bands, and κ = 1/1.14. The blue dashed

curves indicate the position of the NLO tt̄bb̄ reference prediction before tuning, while all other NLO

tt̄bb̄ predictions and scale-variation bands correspond to the tuned scales.
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In general, the typical level of scale uncertainties in pp→ tt̄bb̄j at NLO is 20–30% for

integrated cross sections and below 10% in the shapes of distributions. The calculation at

hand can thus be used as a precision benchmark to validate the modelling of QCD radiation

in Monte Carlo generators of tt̄bb̄ production. With this motivation in mind, we have pre-

sented NLO predictions for various azimuthal correlations that provide a transparent pic-

ture of the effects of the recoil of QCD radiation on the different objects of the tt̄bb̄ system.

Finally, we have discussed the issue of the large NLO K-factor observed in inclusive

NLO calculations of tt̄bb̄ production, and we have addressed the question of whether it

is justified to reduce this K-factor through ad-hoc scale choices. In this respect we have

argued that the NLO corrections to pp → tt̄bb̄j entail information on pp → tt̄bb̄ beyond

NLO, which can be exploited to identify an optimised scale choice. Specifically, we have

proposed the idea of adjusting the nominal tt̄bb̄ scale choice such as to match the jet

emission rate predicted by pp → tt̄bb̄j at NLO. This improved scale choice leads to a

reduction of the tt̄bb̄ K-factor, and is also expected to attenuate theoretical uncertainties

in the context of NLO matching to parton showers.
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