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1 Introduction and summary

The notion of fermionic topological phase of matter has attracted great interest, since

fermionic systems admit novel phases that have no counterpart in bosonic systems [1–8].

On orientable spacetime, fermionic topological phases are thought to be described at

long distances by spin Topological Quantum Field Theory (spin TQFT). In [1], the authors

provided a recipe to construct a state sum definition of spin TQFT, by formulating the spin

theory called the Gu-Wen Grassmann integral on an oriented spin d-manifold M , equipped

with a (d− 2)-form Z2 symmetry, whose partition function has the form

z[M,η, α] = σ(M,α)(−1)
∫
M η∪α, (1.1)

where α ∈ Zd−1(M,Z2) is a background Z2 gauge field of the (d− 2)-form symmetry, and

η specifies a spin structure of M , which is related to a 2-cocycle w2 representing the second

Stiefel-Whitney class as δη = w2. σ(M,α) is written in terms of a certain path integral of

– 1 –



J
H
E
P
1
2
(
2
0
1
9
)
0
1
4

Grassmann variables defined by giving a triangulation of M . (In the following, when there

is no confusion, we simply write z[η, α], σ(α), instead of z[M,η, α], σ(M,α), etc.)

By studying the effect of re-triangulations and gauge transformations, this theory is

shown to have an anomaly characterized by (−1)
∫

Sq2(α), where Sq2(α) is the Steenrod

square defined as Sq2(α) := α∪d−3α. Then, one can construct a spin theory fully invariant

under the change of triangulation and gauge transformations, by coupling the Grassmann

integral with a non-spin theory Z̃[α] called a “shadow theory” [9, 10], whose anomaly is

again characterized by (−1)
∫

Sq2(α), and then gauging the (d− 2)-form symmetry,

Z[η] =
∑
α

z[η, α]Z̃[α]. (1.2)

In contrast, it is sometimes useful to consider a fermionic topological phase on an

unoriented manifold [11–15], when the system has a symmetry that reverses the orienta-

tion of spacetime. In such a situation, the corresponding theory requires a pin structure,

which encodes the orientation reversing symmetry. For instance, let us think of a (1+1)d

topological superconductor in class BDI (characterized by time reversal symmetry with

T 2 = 1), which follows a Z8 classification [16]. Cobordism theory [11, 17, 18] predicts that

the Z8 classification is diagnosed by computing the partition function of the corresponding

TQFT on an unoriented surface RP2 equipped with a pin− structure. As another exam-

ple, the (3+1)d topological superconductor in class DIII (time reversal symmetry with

T 2 = (−1)F ) is known to be classified by Z16 [5, 19–21]. The Z16 classification is detected

by the partition function of the TQFT on RP4, equipped with a pin+ structure. In this

context, it is important to ask how to formulate the pin± TQFT on a manifold which is

not necessarily oriented.

In this paper, we propose a strategy to produce a lattice definition of pin± TQFT in

general dimensions, by extending the recipe in [1]. Concretely, we obtain the extended

Grassmann integral σ(M,α) on an unoriented d-manifold M . This is done by modifying

the definition of the Grassmann integral properly, in the vicinity of the orientation reversing

wall in M , which flips the orientation as we go across the wall. We will show that the effect

of re-triangulation and gauge transformation is expressed as

σ(M̃, α̃) = (−1)
∫
K(Sq2(α)+(w2+w2

1)∪α)σ(M,α), (1.3)

where M̃ is the same manifold M with a different triangulation, α̃ is a cocycle such that

[α] = [α̃] in cohomology, and K = M × [0, 1] such that the two boundaries are given by M

and M̃ , and finally α is extended to K so that it restricts to α and α̃ on the boundaries.

Then, we can define the pin− TQFT when M admits a pin− structure, by coupling

with a bosonic shadow theory Z̃−[α] which possesses an anomaly (−1)
∫

Sq2(α),

Zpin− [M,η] =
∑
α

Z̃−[α]σ(M,α)(−1)
∫
M η∪α, (1.4)

where η specifies a pin− structure that satisfies δη = w2 + w2
1. We can also construct the

pin+ TQFT when M admits a pin+ structure, by coupling with a bosonic shadow theory
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Z̃+[α] with an anomaly (−1)
∫

Sq2(α)+w2
1∪α,

Zpin+
[M,η] =

∑
α

Z̃+[α]σ(M,α)(−1)
∫
M η∪α, (1.5)

where η specifies a pin+ structure that satisfies δη = w2.

We have several applications of our construction of pin± TQFT based on the Grass-

mann integral. First, we construct the TQFT for a subclass of fermionic SPT phases known

as pin± Gu-Wen G-SPT phases [1, 2]. In the present paper, we restrict ourselves to the case

that the structure group of the TQFT is decomposed as G0 ×O(d). We further show that

pin± Gu-Wen SPT phases always admit a gapped boundary, by explicitly constructing the

Grassmann integral for the coupled bulk and boundary system on an unoriented manifold.

In addition, we propose a lattice definition of 2d pin− TQFT whose partition function is

the Arf-Brown-Kervaire (ABK) invariant [15, 22, 23], which generates the Z8 classification

of (1+1)d topological superconductors. In (1+1)d, by stacking the above Gu-Wen SPT

phases and ABK theories with bosonic G0-SPT phases classified by H2(BG0,U(1)), we

can generate state sums for all (1+1)d G0-equivariant invertible pin− TQFTs classified by

Hom(Ω
pin−
2 (BG0),U(1)). In higher dimensions, in general we have invertible TQFTs which

cannot be generated by stacking Gu-Wen phases [9, 24]. The constructions of the state

sums for these beyond Gu-Wen phases will be discussed elsewhere. Finally, we discuss a

way to compute the Z16-valued (2+1)d pin+ anomaly from the data of (2+1)d anomalous

theory. Such a formula for the Z16 anomaly (known as the indicator formula) has been

conjectured in [25], and later proven in [21]. We compute the indicator formula when the

anomalous theory is a pin+ TQFT whose shadow theory in the bulk is given by the (3+1)d

Walker-Wang model [26]. Our indicator formula is expressed in terms of the data of the

shadow TQFT.

This paper is organized as follows. In section 2, we review the construction of the

Grassmann integral for the oriented case, and describe the spin TQFT for the Gu-Wen SPT

phase. In section 3, we construct an extended Gu-Wen integral for unoriented manifolds,

and describe the Gu-Wen G-SPT phase based on the pin± structure. In section 4, we

propose a lattice construction of the ABK invariant based on the Grassmann integral. In

section 5, we construct gapped boundary theories for the Gu-Wen pin± G-SPT phases.

Finally, in section 6, we compute the indicator formula for Z16-valued anomaly of (2+1)d

pin+ TQFT.

2 Review: Grassmann integral and Gu-Wen spin SPT phases

In this section, we first recall the construction of the Grassmann integral on an oriented

spin d-manifold M formulated in [1]. Next, we describe the spin TQFT for fermionic

Gu-Wen G-SPT phases.

2.1 Review of the Gu-Wen Grassmann integral for spin case

We first endow M with a triangulation. In addition, we take the barycentric subdivision

for the triangulation of M . Namely, each d-simplex in the initial triangulation of M is

– 3 –
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subdivided into (d+1)! simplices, whose vertices are barycenters of the subsets of vertices in

the d-simplex. We further assign a local ordering to vertices of the barycentric subdivision,

such that a vertex on the barycenter of i vertices is labeled as i.

Each simplex can then be either a + simplex or a − simplex, depending on whether

the ordering agrees with the orientation or not. We assign a pair of Grassmann variables

θe, θe on each (d − 1)-simplex e of M such that α(e) = 1, we associate θe on one side of

e contained in one of d-simplices neighboring e (which will be specified later), θe on the

other side. Then, σ(M,α) is defined as

σ(M,α) =

∫ ∏
e|α(e)=1

dθedθe
∏
t

u(t), (2.1)

where t denotes a d-simplex, and u(t) is the product of Grassmann variables contained in

t. For instance, for d = 2, u(t) on t = (012) is the product of ϑ
α(12)
12 , ϑ

α(01)
01 , ϑ

α(02)
02 . Here, ϑ

denotes θ or θ depending on the choice of the assigning rule, which will be discussed later.

The order of Grassmann variables in u(t) will also be defined shortly. We note that u(t) is

ensured to be Grassmann-even when α is closed.

Due to the fermionic sign of Grassmann variables, σ(α) becomes a quadratic function,

whose quadratic property depends on the order of Grassmann variables in u(t). We will

adopt the order used in Gaiotto-Kapustin [1], which is defined as follows.

• For t = (01 . . . d), we label a (d − 1)-simplex (01 . . . î . . . d) (i.e., a (d − 1)-simplex

given by omitting a vertex i) simply as i.

• Then, the order of ϑi for + d-simplex t is defined by first assigning even (d − 1)-

simplices in ascending order, then odd simplices in ascending order again:

0→ 2→ 4→ · · · → 1→ 3→ 5→ . . . (2.2)

• For − d-simplices, the order is defined in opposite way:

· · · → 5→ 3→ 1→ · · · → 4→ 2→ 0. (2.3)

For example, for d = 2, u(012) = ϑ
α(12)
12 ϑ

α(01)
01 ϑ

α(02)
02 when (012) is a + triangle, and

u(012) = ϑ
α(02)
02 ϑ

α(01)
01 ϑ

α(12)
12 for a − triangle. Then, We choose the assignment of θ and θ

on each e such that, if t is a + (resp. −) simplex, u(t) includes θe when e is labeled by an

odd (resp. even) number, see figure 1.

Based on the above definition of u(t), the quadratic property of u(t) is given by

σ(α)σ(α′) = σ(α+ α′)(−1)
∫
α∪d−2α

′
, (2.4)

for closed α, α′. To see this, we just have to bring the product of two Grassmann integrals

σ(α)σ(α′) =

∫ ∏
e|α(e)=1

dθedθe
∏

e|α′(e)=1

dθedθe
∏
t

u(t)[α]
∏
t

u(t)[α′] (2.5)
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Figure 1. Assignment of Grassmann variables on 1-simplices in the case of d = 2. θ (resp. θ) is

represented as a black (resp. white) dot.

into the form of σ(α+α′) by permuting Grassmann variables, and count the net fermionic

sign. First of all, each path integral measure on e picks up a sign (−1)α(e)α′(e) by permuting

dθ
α(e)
e and dθ

α′(e)
e . For integrands, u(t) on different d-simplices commute with each other

for closed α, so nontrivial signs occur only by reordering u(t)[α]u(t)[α′] to u(t)[α + α′] on

a single d-simplex. The sign on t is explicitly written as

(−1)
∑e>e′
e,e′∈t α(e)α′(e′)

, (2.6)

where the order e > e′ is determined by u(t). Hence, the net fermionic sign is given by

σ(α)σ(α′) = σ(α+ α′)
∏
t

(−1)ε[t,α,α
′], (2.7)

with

ε[t, α, α′] =
∑

e,e′∈t,e>e′
α(e)α′(e′) +

∑
e∈t,e>0

α(e)α′(e), (2.8)

where e > 0 if u[t] includes a θe variable. Then, the sign ε[t, α, α′] has a neat expression

in terms of the higher cup product. For later convenience, we compute ε[t, α, α′] including

the case that α, α′ are not closed.

At a + simplex, after some efforts we can rewrite ε[t, α, α′] as

ε[t, α, α′] =
∑
i

α2i+1 · δα′(t) +
∑
i<j

α2i+1α
′
2j+1 +

∑
i>j

α2iα
′
2j

= α ∪d−2 α
′ + α ∪d−1 δα

′.

(2.9)

At a − simplex, similarly we have

ε[t, α, α′] =
∑
i

α2i · δα′(t) +
∑
i<j

α2i+1α
′
2j+1 +

∑
i>j

α2iα
′
2j

= δα(t)δα′(t) + α ∪d−2 α
′ + α ∪d−1 δα

′.

(2.10)

We can see the quadratic property (2.4) when α, α′ are closed.
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The change of σ(α) under the gauge transformation α→ α + δγ or under the change

of the triangulation is controlled by the formula

σ(M̃, α̃) = (−1)
∫
K(Sq2(α)+w2∪α)σ(M,α), (2.11)

where M̃ is the same manifold M with a different triangulation, α̃ is a cocycle such that

[α] = [α̃] in cohomology, and K = M × [0, 1] such that the two boundaries are given by M

and M̃ , and finally α is extended to K so that it restricts to α and α̃ on the boundaries.

The derivation was given in [1].

We note that due to the Wu relation [27], we have

(−1)
∫
K(Sq2(α)+w2∪α) = +1, (2.12)

when K is an oriented closed manifold and α is a cocycle. This means that
∫
K(Sq2(α) +

w2∪α) represents a trivial phase in d+1 dimensions, and therefore there should be a trivial

boundary in d dimensions. We can think of the Gu-Wen Grassmann integral σ(M,α) as

providing an explicit formula for such a trivial boundary.

2.2 Gu-Wen spin G-SPT phase

The Gu-Wen spin invertible theories form a subgroup of Hom(Ωspin
d (BG),U(1)) and is

specified by a pair (md−1, xd) ∈ Zd−1(BG,Z2)×Cd(BG,U(1)) satisfying Sq2(md−1) = δxd,

where Sq2(m) := m ∪d−2 m. For a given g : M → BG where M is a spin d-manifold, the

action of the invertible theory is given by [1, 2]1

σ(g∗md−1) exp

(
πi

∫
M

(η ∪ g∗md−1 + g∗xd)

)
(2.13)

where σ(g∗md−1) = ±1 is the Grassmann integral of Gu-Wen [2] as formulated by Gaiotto

and Kapustin [1], and δη = w2 specifies the chosen spin structure.

3 Grassmann integral for pin case

Now let us construct the Grassmann integral σ(M,α) on a d-manifold M which might be

unoriented. We construct an unoriented manifold by picking locally oriented patches, and

then gluing them along codimension one loci by transition functions. The locus where the

transition functions are orientation reversing, constitutes a representative of the dual of

first Stiefel-Whitney class w1. We will sometimes call the locus an orientation reversing

wall. Again, we endow M with a barycentric subdivision for the triangulation of M . We

then assign a local ordering to vertices of the barycentric subdivision, such that a vertex

on the barycenter of i vertices is labeled as i.

For the oriented case, we have placed a pair of Grassmann variables θe, θe on each

(d−1)-simplex e, whose assignment is determined by the sign of d-simplices (+,−) sharing

e. We remark that the assigning rule fails, when e lies on the wall where we glue patches

of M by the orientation reversing map. In this case, we would have to assign Grassmann

1For a more mathematical treatment, see papers by Brumfiel and Morgan [28].
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(a) (b)

Figure 2. (a): the signs of d-simplices near the orientation reversing wall, which is represented as

a red line. (b): assignment of Grassmann variables on the wall specifies a deformation of the wall

that intersects the wall transversally at (d− 2)-simplices.

variables of the same color on both sides of e (i.e., both are black (θ) or white (θ)), since

the two d-simplices sharing e have the identical sign when e is on the orientation reversing

wall, see figure 2(a). Hence, we need to slightly modify the construction of the Grassmann

integral on the orientation reversing wall. To do this, instead of specifying a canonical rule

to assign Grassmann variables on the wall, we just place a pair θe, θe on the wall in an

arbitrary fashion. Then, we define the Grassmann integral as

σ(M,α) =

∫ ∏
e|α(e)=1

dθedθe
∏
t

u(t)
∏
e|wall

(±i)α(e), (3.1)

where the
∏
e|wall(±i)α(e) term assigns weight +iα(e) (resp. −iα(e)) on each (d− 1)-simplex

e on the orientation reversing wall, when e is shared with + (resp. −) d-simplices. There is

no ambiguity in such definition, since both d-simplices on the side of e have the same sign.

This factor makes the Grassmann integral a Z4 valued quadratic function. The quadratic

property is expressed as

σ(α)σ(α′) = σ(α+ α′)(−1)
∫
α∪d−2α

′
. (3.2)

Basically, the quadratic property is derived in the similar fashion to the oriented spin case.

In this case, the net sign consists of three parts;

• the fermionic sign that occurs when reordering u(t)[α]u(t)[α′] to u(t)[α + α′] on a

single d-simplex. The sign on t is expressed as

(−1)
∑e>e′
e,e′∈t α(e)α′(e′)

. (3.3)

• the fermionic sign by permuting the path integral measure, (−1)α(e)α′(e) on each

(d− 1)-simplex.

– 7 –
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• the sign that comes from iα(e) factor on the wall, which is given by compar-

ing iα(e)iα
′(e) with iα(e)+α′(e), with the sum of α taken mod 2. This part counts

(−1)α(e)α′(e) on the orientation reversing wall.

Analogously to what we did to the second term in (2.8) for the oriented case, we try to re-

distribute the fermionic sign from the measure
∏
e(−1)α(e)α′(e) to d-simplices, by assigning

(−1)α(e)α′(e) to a + simplex (resp. − simplex) t sharing e, when e is labeled by an odd (resp.

even) number. However, such a distribution fails when e is on the orientation reversing

wall, due to the mismatch of the sign of two d-simplices on the side of e. Such a distribution

counts no sign on the orientation reversing wall. But, this lack of the sign on the wall is

complemented by the factor (−1)α(e)α′(e) from the contribution of the iα(e) term, making

the re-distribution possible after all. Hence, we can express the net sign in exactly the

same fashion as the oriented case (2.7), which proves (3.2).

3.1 Effect of re-triangulation

Next, we move on to discuss the effect of re-triangulation. Suppose we have two configura-

tions of α, orientation reversing walls and triangulations on M × {0} and M × {1}. Then,

we will see that

σ(M × {0}) = (−1)
∫
K(Sq2(α)+(w2+w2

1)∪α)σ(M × {1}), (3.4)

where K = M × [0, 1], and α on M × {0}, M × {1} is extended to K. To see this, we first

observe the quadratic property of σ̃(α) := σ(M × {0})σ(M × {1})−1,

σ̃(α)σ̃(α′) = σ̃(α+ α′)(−1)
∫
∂K α∪d−2α

′
. (3.5)

Since (3.5) is satisfied for σ̃′(α) = (−1)
∫
K Sq2(α), we can express σ̃(α) as (−1)

∫
K Sq2(α) up

to linear term,

σ̃(α) = (−1)
∫
K Sq2(α)(−1)

∑
e∈K χ(e)α(e). (3.6)

The linear term is fixed by computing σ̃(α) in the simplest case; α = δλ on ∂K, and λ(v) =

1 on a single (d− 2)-simplex of ∂K, otherwise 0. Once we take a barycentric subdivision,

when λ is nonzero away from the orientation reversing wall, one can see that σ̃(δλ) = −1,

by imitating the logic of section 4.1. of Gaiotto-Kapustin [1]. See also figure 3(a). In the

case that λ is nonzero on the orientation reversing wall, the value of σ̃(δλ) depends on the

way of assigning Grassmann variables to (d − 1)-simplices on the wall such that δλ = 1.

For simplicity, we examine the case that δλ is nonzero on two (d−1)-simplices on the wall.

(In general, there are even number of such (d − 1)-simplices. It is not hard to generalize

for these situations.) Then, we have two Grassmann variables attached on each side of

the orientation reversing wall. When the two Grassmann variables on one side of the wall

share the same color (i.e., both are black (θ) or white (θ)), we can show that σ̃(δλ) = −1

(see figure 3(b’)).

On the other hand, if the Grassmann variables on one side have different colors (i.e.,

one θ and one θ), we have σ̃(δλ) = +1 (see figure 3(b)). (In these computations, the∏
(±i)δλ(e) term spits no sign, (+i) · (−i) = 1.)

– 8 –
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(a) (b) (b’)

Figure 3. When λ(v) = 1 on a single (d−2) simplex v, Grassmann variables on (d−1)-simplices sur-

rounding v are counted in the integral. In the expression of the integral, we encounter ±dϑ2idϑ2i+1

measure factors from (d − 1)-simplices, and ±ϑ2i+1ϑ2i+2 integrand factors from d-simplices. The

sign ± from the measure (resp. integrand) is expressed by the orange (resp. green) arrow. For

instance, the arrow is directed from ϑ2i to ϑ2i+1 if we have a + sign on the measure, otherwise

directed in the opposite direction. (a): if v is away from the orientation reversing wall, we can see

that all the signs from the measure share the same sign. We can also check that signs from the

integrand have the same sign. In such a situation, we have σ(δλ) = −1. (b): if v is placed on the

orientation reversing wall (red thick line), we have to flip the direction of all arrows on one side

of the wall. The total number of flipped arrows is odd; odd number of orange arrows and even

number of green arrows. Thus, the value of the integral in (b) has the opposite sign from that of

(a). Hence, we have σ(δλ) = +1, when the two Grassmann variables attached on one side of the

wall have different colors. (b’): on the other hand, we have σ(δλ) = −1, when the two Grassmann

variables attached on one side of the wall have the same color.

Now let us determine the linear term. First, let us recall that the set of all (d − 2)-

simplices of the barycentric subdivision gives the representative of the dual of w2. Thus,

we can express σ̃(α) as

σ̃(α) = (−1)
∫
K(Sq2(α)+w2∪α)(−1)

∑
e∈K χ′(e)α(e). (3.7)

Here, (−1)
∑
e∈K χ′(e)α(e) = 1 if λ is nonzero away from the orientation reversing wall. When

λ is nonzero on the wall, (−1)
∑
e∈K χ′(e)α(e) = 1 (resp. −1) if the two Grassmann variables

on one side of the wall have the same (resp. different) color. We can express such a linear

term as (−1)
∫
K w2

1∪α. To see this, first we observe that the choice of the assignment of

Grassmann variables on the wall corresponds to choosing the slight deformation of the

wall, such that the deformation intersects transversally with the wall at (d− 2)-simplices.

Concretely, we deform the wall on each (d − 1)-simplices of the wall to the side where θ

(black dot) is contained, see figure 2(b). Now we can see that (−1)
∑
e∈K χ′(e)α(e) = −1 when

λ = 1 at the intersection of these two walls, otherwise 1. Here, both walls before and after

deformation give a representative of the dual of w1, and thus the intersection of two walls

gives a representative of the dual of w2
1. Hence, we have (−1)

∑
e∈K χ′(e)α(e) = (−1)

∫
K w2

1∪α,

proving (3.4).

3.2 Gu-Wen pin SPT phase

In this subsection, we discuss the fermionic SPT phases on an unoriented spacetime. To

do this, let us begin with recalling the construction of bosonic SPT phases on unoriented
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manifolds, following [13]. Here, we limit ourselves to the case that the structure group is

decomposed as G0 × O(d). Then, the G0 connection g0 : M → BG0 together with w1

defines a connection of G0 × ZR2 , g : M → B(G0 × ZR2 ), where ZR2 is the Z2 subgroup of

O(d) generated by the orientation reversing element. From now, we will simply write G :=

G0 × ZR2 . We denote ρ as a G-action on U(1), such that ρg(a) = ar(g) for g ∈ G, a ∈ U(1),

where r(g) = −1 when g ∈ G reverses the orientation, otherwise +1.

Then, a well-understood class of d-dimensional bosonic SPT phases is classified by

the ρ-twisted cohomology group Hd(BG,U(1)ρ) [29]. For a given ω ∈ Zd(BG,U(1)ρ), the

action of the SPT phase on an unoriented d-manifold M is given by a certain product of

weights g∗ω on each d-simplex of M , which is constructed as follows.

First, let us consider the case that the d-simplex t is away from the orientation reversing

wall. In this case, we simply define the weight as g∗ωs(t), where s(t) = +1 if t is a + simplex,

and s(t) = −1 if t is a − simplex, which is identical to the definition of the oriented case.

However, when the d-simplex t traverses the orientation reversing wall, the definition of

the weight described above should be modified, since the choice of the sign s(t) has an

ambiguity. To resolve such ambiguity, we first assign +1 to every vertex of t on one side

of the wall, and assign −1 on the other side. Then, we define s(t) as the sign given by

comparing the ordering on t and the orientation of M on the side of vertices labeled by

+1. Let us denote ε as the number ±1 assigned on the vertex of the smallest ordering in

t. Then, we define the weight on t as g∗ωε·s(t).

We note that this definition is independent of the choice of assigning ±1 to one side

of the wall, since flipping the sign of ±1 on vertices changes the sign of ε and s(t) simul-

taneously, which leaves g∗ωε·s(t) invariant. Then, let us write the action as the product of

weights for all d-simplices in M . We simply denote the action as
∫
M g∗ω. One can see that

such defined action is invariant under re-triangulation [13]. If we take a general cochain

x ∈ Cd(BG,U(1)ρ) which is not necessarily a cocycle, we can see that
∫
M g∗x is no longer

invariant under re-triangulation, whose variation is controlled by
∫
g∗(δρx).

Now, we are ready to consider the fermionic case. The Gu-Wen SPT phase based on

pin− structure is specified by a pair (md−1, xd) ∈ Zd−1(BG,Z2)×Cd(BG,U(1)ρ) satisfying

Sq2md−1 = δρxd. For a given g : M → BG where M is a pin− d-manifold, the action of

the invertible theory is given by

σ(g∗md−1) exp

(
πi

∫
M

(η ∪ g∗md−1 + g∗xd)

)
, (3.8)

where δη = w2 + w2
1 specifies the chosen pin− structure.

On the other hand, the pin+ Gu-Wen SPT phase is given by (md−1, xd) such that

Sq2md−1 + ρ2
1 ∪md−1 = δρxd. Here, we define ρ1 ∈ Z1(BG,Z2) such that w1 = g∗ρ1, as a

map that sends ZR2 odd element of G to 1, otherwise 0. Then, the action of the invertible

theory is given in the form of (3.8), where δη = w2 specifies the chosen pin+ structure.

4 Arf-Brown-Kervaire invariant in (1+1)d

In this section, we construct the 2d pin− invertible TQFT [23] for the Arf-Brown-Kervaire

(ABK) invariant via the Grassmann integral on lattice, whose state sum definition was
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initially given in [15]. In condensed matter literature, this invertible theory describes

(1+1)d topological superconductors in class BDI [16]. Here, we construct the Z8-valued

ABK invariant by coupling the 2d state sum shadow TQFT with the Grassmann integral,

which was performed for the Z2-valued Arf invariant of the spin case in [1].

The weight for the state sum is assigned in the same manner as the case of the Arf

invariant of the spin case [1], described as follows. For a given configuration α ∈ C1(M,Z2),

we assign weight 1/2 to each 1-simplex e, and also assign weight 2 to each 2-simplex f when

δα = 0 at f , otherwise 0. Let us denote the product of the whole weight as Z̃[α]. Then,

we can see that the partition function is given by the ABK invariant up to Euler term,

Z[M,η] =
∑

α∈Z1(M,Z2)

σ(M,α)(−1)
∫
M η∪αZ̃[α]

= 2|F |−|E| ·
∑

α∈Z1(M,Z2)

σ(M,α)(−1)
∫
M η∪α

= 2χ(M)−1 ·
∑

[α]∈H1(M,Z2)

σ(M,α)(−1)
∫
M η∪α

=
√

2
χ(M)

ABK[M,η],

(4.1)

where |F |, |E| denotes the number of 2-simplices, 1-simplices in M , respectively. χ(M)

denotes the Euler number of M , and ABK[M,η] is the ABK invariant,

ABK[M,η] =
1√

|H1(M,Z2)|

∑
[α]∈H1(M,Z2)

iQη [α]. (4.2)

Here, iQη [α] = σ(M,α)(−1)
∫
M η∪α is a Z4-valued quadratic function that satisfies

Qη[α] +Qη[α
′] = Qη[α+ α′] + 2

∫
M
α ∪ α′. (4.3)

The ABK invariant determines the pin− bordism class of 2d manifolds Ω
pin−
2 (pt) = Z8,

which is generated by RP2 [30]. To see this, let α be a nontrivial 1-cocyle that generates

H1(RP2,Z2) = Z2. Then, using the quadratic property for α = α′ in (4.3), one can see

that Qη[α] takes value in ±1, since Qη[0] = 0 and
∫
M α ∪ α′ = 1. Qη[α] = ±1 corresponds

to two possible choices of pin− structure on RP2. Then, the ABK invariant is computed

as an 8th root of unity,

ABK[M,η] =
1± i√

2
= e±2πi/8. (4.4)

5 Gapped boundary of Gu-Wen pin SPT phase

In this section, we demonstrate that Gu-Wen pin G-SPT phases admit a gapped boundary,

by writing down the explicit d dimensional action on the boundary of (d+ 1) dimensional

Gu-Wen pin G-SPT phase specified by the Gu-Wen data (nd, yd+1). To construct the

gapped boundary, we prepare a symmetry extension by a (0-form) symmetry K̃ [31],

0→ K̃ → H̃
p̃−→ G→ 0, (5.1)
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such that nd trivializes as an element of Hd(BH̃,Z2); [p̃∗nd] = 0 ∈ Hd(BH̃,Z2). When G

is finite, such an extension can be prepared by generalizing the argument of [32].

We now take m̃d−1 ∈ Cd−1(BH̃,Z2) such that p̃∗nd = δm̃d−1. In pin− case, we see that

zd+1 = p̃∗yd+1−Sq2(m̃d−1) is a (ρ-twisted) cocycle, where Sq2(m̃d−1) = m̃d−1∪d−3 m̃d−1 +

δm̃d−1∪d−2m̃d−1. Therefore, the bulk Gu-Wen data pull back to (δm̃d−1, Sq2(m̃d−1)+zd+1).

In pin+ case, we instead define the ρ-twisted cocycle zd+1 = p̃∗yd+1−Sq2(m̃d−1)−(p̃∗ρ1)2∪
m̃d+1. Then, one can see that the Gu-Wen data pull back to (δm̃d−1, Sq2(m̃d−1)+(p̃∗ρ1)2∪
m̃d−1 + zd+1).

Without loss of generality we can assume that zd+1 =δρxd for some xd∈Cd(BH̃,U(1)ρ),

by a further extension of the symmetry

0→ K → H
p−→ H̃ → 0. (5.2)

Again, such an extension for twisted cocycle can be prepared by generalizing the argument

of [32]. We set md−1 = p∗m̃d−1. We now expect that the action on the boundary is given

by the K-gauge theory,

Zboundary gauge ∝
∑
p(h)=g

σ(h∗md−1) exp

(
πi

∫
M

(η ∪ h∗md−1 + h∗xd)

)
, (5.3)

with h : M → BH. But to make sense of this expression we have to extend the definition

of the Gu-Wen Grassmann integral σ(αd−1) to the case when αd−1 ∈ Cd−1(M,Z2) is not

necessarily closed. This generalization was performed for the spin case in [33]. By slightly

generalizing the analysis in [33] to the pin case, we will see that the extended Gu-Wen

integral nicely couples to the bulk in a gauge invariant fashion.

5.1 Bulk-boundary Gu-Wen Grassmann integral for the pin case

When we naively use the above definition (2.1) when α is not closed: δα = β, the resulting

expression is problematic since u(t) can become Grassmann-odd. Following [33], we avoid

this conundrum by coupling with the Gu-Wen integral σ(N, β) in (d+ 1) dimensional bulk

N such that ∂N = M , making all components in the path integral Grassmann-even.

Now let us write down the boundary Gu-Wen integral coupled with bulk; we denote

the entire integral by σ(α;β). We assign Grassmann variables θe, θe on each (d−1)-simplex

e of M , and θf , θf on each d-simplex f of N \M . We define the Gu-Wen integral as

σ(α;β) =

∫ ∏
f |β(f)=1

dθfdθf

∫ ∏
e|α(e)=1

dθedθe
∏
t

u(t)
∏
f |wall

(±i)β(f)
∏
e|wall

(±i)α(e), (5.4)

where we assume that the orientation reversing wall in N intersects M transversally at

(d − 1)-simplices, which are regarded as making up the wall in M . u(t) is a monomial

of Grassmann variables defined on a (d + 1)-simplex of N . u(t)[β] is defined in the same

fashion as in the case without boundary if t is away from the boundary, but modified when

t shares a d-simplex with the boundary. For simplicity, we assign an ordering on vertices

of such t = (01 . . . d+ 1), so that the d-simplex shared with M becomes f0 = (12 . . . d+ 1);

the vertex 0 is contained in N \M . For instance, we can take a barycentric subdivision on
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N , and assign 0 to vertices associated with (d+ 1)-simplices. We further define the sign of

d-simplices on M , such that f0 and t have the same sign.

Then, u(t) neighboring with M is defined by replacing the position of ϑf0 in u(t)[β]

with the boundary action on f0, u(f0)[α] =
∏
e∈f0 ϑ

α(e)
e . We then have: on a + simplex,

u(t) = u(f0)[α] ·
∏

f∈∂t,f 6=f0

ϑ
β(f)
f . (5.5)

On a − simplex,

u(t) =
∏

f∈∂t,f 6=f0

ϑ
β(f)
f · u(f0)[α]. (5.6)

One can check that u(t) defined above becomes Grassmann-even. Then, using the exactly

same logic as section 4.3. of [33], one can obtain the quadratic property of σ(α;β) as

σ(α+ α′;β + β′) = σ(α;β)σ(α′;β′)(−1)
∫
M (α∪d−2α

′+α∪d−1δα
′)+

∫
N β∪d−1β

′
. (5.7)

5.2 Effect of re-triangulation

We can determine the effect of re-triangulation on σ(α;β) from the quadratic property. To

compare the value of the Gu-Wen integral on N with different triangulations, we consider

K = N × [0, 1], with the Gu-Wen integral on ∂K = (N × {0}) t (M × [0, 1]) t (N × {1}),
see figure 4(a). Suppose we have two triangulations and configurations of (α, β) we want

to compare, on N ×{0} and N ×{1}, respectively. Roughly speaking, we will compute the

effect of re-triangulations by showing that

σ(N × {0})σ(M × [0, 1])σ−1(N × {1}) = (−1)
∫
K(Sq2(β)+(w2+w2

1)∪β), (5.8)

and

σ(M × [0, 1]) = (−1)
∫
M×[0,1](Sq2(α)+(w2+w2

1)∪α)
. (5.9)

To demonstrate these relations, we need to modify slightly the definition of σ(N × {0})
and σ(N × {1}) on the boundary M tM . First, for (d − 1)-simplices e in M tM , we

change the role of θe and θe in integrands, when e is not contained in the orientation

reversing wall. By this redefinition, the color of Grassmann variables away from the wall

in ∂(N × {0}) t ∂(N × {1}) match with that of ∂(M × [0, 1]), see figure 4(b). Such a

redefinition changes σ(N) only by a linear and gauge invariant counterterm,

σ(N)→ σ(N) · (−1)
∑
f+∈M

β(f+)
, (5.10)

where f+ denotes + simplices on M .

In addition, when e is placed on the wall, we have to choose the assignment of Grass-

mann variables deliberately. Concretely, let e be a (d− 1) simplex of M × {0} on the side

of N × {0}. Then, we denote e′ as a (d− 1) simplex of M × {0} on the side of M × [0, 1],

which matches with e by gluing N × {0} and M × [0, 1] together. We also denote f (resp.

f ′) as a d-simplex on the orientation reversing wall contained in N ×{0} (resp. M × [0, 1])

respectively, which shares e (resp. e′). Then, we choose the assignment of ϑe, ϑe′ , such that

(see figure 4(b’))
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(a) (b) (b’)

Figure 4. (a): an example of K such that ∂K = (N × {0}) t (M × [0, 1]) t (N × {1}). (b): away

from the orientation reversing wall, the colors of Grassmann variables on M match those of M .

(b’): on the orientation reversing wall (red plane), the Grassmann variable is assigned such that

(1) the color of the Grassmann variable of e′ on one side of the wall is the same as that of f , and

(2) the color of the Grassmann variable of e on one side of the wall is different from that of e′.

• we place θe′ , θe′ on e′ such that the color of the Grassmann variable on e′ on one side

of the orientation reversing wall coincides with that of f .

• we place θe, θe on e such that the color of the Grassmann variable on e on one side

of the orientation reversing wall differs from that of e′.

We emphasize that such redefinition or a specific choice of assignment does not affect

the quadratic property (5.7). After these preparations, to see (5.8), we first observe the

quadratic property of σ̃(α;β) := σ(N × {0})σ(M × [0, 1])σ−1(N × {1}),

σ̃(α;β)σ̃(α′;β′) = σ̃(α+ α′;β + β′)(−1)
∫
∂K β∪d−1β

′
, (5.11)

which can be seen by applying quadratic property of σ (5.7) on N×{0}, M×[0, 1], N×{1}.
Note that (5.11) is satisfied for

σ̃′(α;β) = (−1)
∫
K Sq2(β), (5.12)

where we set Sq2(β) := β∪d−2 β+δβ∪d−1 β. Thus, we can express σ̃(α;β) as (−1)
∫
K Sq2(β)

up to linear term,

σ̃(α;β) = (−1)
∫
K Sq2(β)(−1)

∑
f∈K χ(f)β(f). (5.13)

The linear term is fixed by computing σ̃(α;β) explicitly in the simplest case; β = δλ on

∂K, and λ(e) = 1 on a single (d− 1)-simplex of ∂K, otherwise 0. If we take a barycentric

subdivision on ∂K, we can see that σ̃(α = 0; δλ) = −1 when λ is nonzero on the dual of

w2 +w2
1 described in section 3.1, at least if nonzero λ is away from the boundary of N×{0},

M × [0, 1], N × {1}. When λ is nonzero on the boundary, we should be more careful. For

instance, let λ be nonzero on M × {0}. First, we discuss the case when λ is nonzero away

from the orientation reversing wall of M . Thanks to the above redefinition of σ(M× [0, 1]),

we can see that σ(N × {0}) and σ(M × [0, 1]) have the opposite sign. Hence, we have
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σ̃(α;β) = −1. Next, let us examine the case when λ(e) = 1 on the orientation reversing

wall. Let f , f ′ be two d-simplices on the side of e in the wall, which is contained in N×{0},
M × [0, 1], respectively. Then, one can see that σ̃(λ; δλ) = −1, if the Grassmann variables

on f, f ′ on one side of the wall have the same color, otherwise +1. Thus, now we can say

that σ̃(λ; δλ) = −1 when λ(e) is nonzero on the dual of w2 +w2
1 of ∂K, even when e lies in

M × {0}. Thus, we can fix the linear term as (5.8) up to linear and gauge invariant term.

Next, we demonstrate (5.9). Note that (5.7) is satisfied for

σ′(M × [0, 1]) = (−1)
∫
M×[0,1] Sq2(α)

. (5.14)

Thus, we can express σ(M × [0, 1]) as (−1)
∫
M×[0,1] Sq2(α)

up to linear term,

σ(M × [0, 1]) = (−1)
∫
M×[0,1] Sq2(α)

(−1)
∑
e∈M×[0,1] λ(e)α(e). (5.15)

Note that we are assuming that α extends to M × [0, 1]. The linear term is again fixed

by computing σ(M × [0, 1]) explicitly in the simplest case; α(e) = 1 on a single (d − 1)-

simplex, otherwise 0. If we take a barycentric subdivision on M × [0, 1], we can see that

σ̃(α; δα) = −1 when λ is nonzero on the dual of w2 + w2
1 described in section 3.1, at least

if α is nonzero away from the boundary of M × [0, 1]. When α is nonzero on the boundary,

it requires more careful treatment. In this situation, by arranging the sign of f0 chosen to

be identical to t, we can see that σ(α; δα) = −1 when α is nonzero in M × {0} away from

the orientation reversing wall. Next, let us examine the case that α(e′) is nonzero for e′

contained in the orientation reversing wall. Let f , f ′ be two d-simplices on the side of e′

in the wall, which is contained in N ×{0}, M × [0, 1], respectively. Then, one can see that

σ̃(α; δα) = −1, if the Grassmann variables on f, f ′ on one side of the wall have the same

color, otherwise +1, thanks to the choice of assignment of Grassmann variables in M×{0}.
Thus, now we can say that σ̃(α; δα) = −1 when α(e) is nonzero on the dual of w2 + w2

1 of

∂K, even when e lies in M × {0}. Thus, we have the fixed the linear term as (5.9).

Combining (5.8) with (5.9), the variation of σ(N) under re-triangulation and gauge

transformation is given by

(−1)
∫
M×[0,1](Sq2(α)+(w2+w2

1)∪α)+
∫
N×[0,1](Sq2(β)+(w2+w2

1)∪β)
. (5.16)

On the other hand, the variation of (−1)
∫
M η∪α+

∫
N η∪β is given by

(−1)
∫
M×[0,1](w2+w2

1)∪α+
∫
N×[0,1](w2+w2

1)∪β
, (5.17)

where η specifies a pin− structure. Hence, the variation of the Grassmann integral

z[η;α, β] = σ(α;β)(−1)
∫
M η∪α+

∫
N η∪β becomes

(−1)
∫
M×[0,1] Sq2(α)+

∫
N×[0,1] Sq2(β)

. (5.18)

In the pin+ case, the variation of z[η;α, β] is instead given by

(−1)
∫
M×[0,1](Sq2(α)+w2

1∪α)+
∫
N×[0,1](Sq2(β)+w2

1∪β)
. (5.19)
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5.3 Gapped boundary for the Gu-Wen pin phase

After all these preparations, it is a simple matter to show that the boundary gauge the-

ory (5.3) correctly couples to the bulk Gu-Wen pin SPT phase. Indeed, the partition

function of the coupled system has the action

z[η;α, β](−1)−
∫
M h∗xd+

∫
N g∗yd+1 (5.20)

for both pin− and pin+ case, where we take α = h∗md−1 and β = g∗nd. The first term

in (5.20) has the variation (5.18) (resp. (5.19)) in pin− (resp. pin+) case, whereas the second

term in (5.20) has the variation

(−1)
∫
M×[0,1](h

∗δρxd−g∗yd+1)−
∫
N×[0,1] g

∗δρyd+1 . (5.21)

These two variations cancel since we have δρyd+1 = Sq2(nd) (resp. δρyd+1 = Sq2(nd) + ρ2
1 ∪

nd) and yd+1 pulls back to Sq2(md−1) + δρxd (resp. Sq2(md−1) + (p∗ρ1)2 ∪md−1 + δρxd) in

pin− (resp. pin+) case. This is what we wanted to achieve.

6 Time reversal anomaly of (2+1)d pin+ TQFT

In this final section, we apply our construction to the analysis of (2+1)d time reversal

anomaly of class DIII, which is classified by Ω
pin+

4 (pt) = Z16 [30].

In [19], the authors provided (presumably a bosonic shadow of) an anomalous the-

ory based on the (3+1)d Walker-Wang model [26]. Their (3+1)d Walker-Wang model is

constructed from a data of (2+1)d TQFT characterized by a premodular braided fusion

category equipped with a transparent fermion, whose line operator generates a Z2 1-form

symmetry. By construction, the resulting (3+1)d Walker-Wang model admits a gapped

boundary described by the given (2+1)d TQFT. Later, [25] conjectured the indicator for-

mula that determines the Z16-valued (2+1)d pin+ anomaly, from the data of (2+1)d TQFT

realized on a boundary of the (3+1)d Walker-Wang model. The conjectured formula was

demonstrated in [21], based on the argument that prepares the Hilbert space of pin+TQFT

on a boundary of a non-orientable manifold.

The above background motivates us to revisit the indicator formula of the time-reversal

anomaly in (2+1)d, by coupling the Walker-Wang model with the Grassmann integral we

have constructed above. We aim to obtain the indicator formula for the Z16 anomaly, in

terms of the data of the shadow TQFT. Suppose we have constructed the shadow of a

(3+1)d pin+ SPT phase, described by a (3+1)d Walker-Wang model. Then, the Walker-

Wang model is equipped with a line operator f , which generates an anomalous Z2 2-form

symmetry characterized by

(−1)
∫

(Sq2(α)+w2
1∪α), (6.1)

where α is the background gauge field. Then, the invertible pin+ theory for an SPT phase

is given by coupling with the Grassmann integral as

Z[M,η] =
∑

[α]∈H3(M,Z2)

ZWW[M,α] · σ(M,α)(−1)
∫
M η∪α, (6.2)
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where ZWW[M,α] denotes the partition function of the Walker-Wang model in the presence

of the background 3-form gauge field. η specifies a pin+ structure that satisfies δη = w2.

Since Ω
pin+

4 (pt) = Z16 is generated by RP4 equipped with a pin+ structure, one should be

able to construct the indicator formula by evaluating (6.2) for M = RP4. In this case, we

sum over [α] ∈ H3(RP4,Z2) = Z2, where a nontrivial element of Z3(RP4,Z2) corresponds

to the insertion of a single line operator f along a homotopically nontrivial line of RP4.

The Grassmann integral iQη [α] = σ(M,α)(−1)
∫
M η∪α is again computed via the quadratic

property (3.2),

Qη[α] +Qη[α
′] = Qη[α+ α′] + 2

∫
M
α ∪2 α

′. (6.3)

When α is a nontrivial element of Z3(RP4,Z2), one can see that

2

∫
RP4

α ∪2 α = 2 mod 4. (6.4)

Thus, we can show that Qη[α] = ±1 mod 4, for a nontrivial α. Such two choices of Qη[α]

correspond to different choice of pin+ structure. Hence, the indicator formula has the

form of

Z[RP4] = ZWW[RP4, 0]± i · ZWW[RP4, α], (6.5)

for nontrivial α ∈ Z3(RP4,Z2). Fortunately, the partition function of the Walker-Wang

model on RP4 was explicitly computed in [34]. The result is expressed via the data of

(2+1)d TQFT on boundary,

ZWW[RP4, 0] =
1

D
∑

p=R(p)

ηpdpe
iθp , (6.6)

where dp is quantum dimension of p, D is total dimension characterized by D2 :=
∑

p d
2
p,

and θp is R/2πZ-valued topological spin of p. R denotes an orientation reserving symmetry,

and ηp is a quantity that characterizes the symmetry fractionalization of an anyon p; ηp is

defined as the R eigenvalue of the R symmetric state |p,R(p)〉 constructed on the Hilbert

space on S2 = ∂D3, where R is implemented as the antipodal map of D3, and two anyons

p, R(p) are located on S2 in an R symmetric (i.e., antipodal) fashion. Namely, we have

R |p,R(p)〉 = |R2(p),R(p)〉 =: ηp · |p,R(p)〉 . (6.7)

In the first equation in (6.7), we note that R permutes the position of two quasiparticles.

The state |p,R(p)〉 exists only when p,R(p) fuse into vacuum; p = R(p), otherwise ηp
becomes ill-defined. Accordingly, the summation runs over quasiparticles such that p̄ =

R(p) in (6.6).

By imitating the logic in [34], we can also compute ZWW[RP4, α] for nontrivial back-

ground gauge field α. In such a situation, the background field is realized as a single

insertion of the transparent line operator f , along a homotopically nontrivial loop in RP4.

As we examine in detail in appendix A, the single insertion of an f line amounts to evalu-

ating the symmetry fractionalization on the Hilbert space on S2 = ∂D3, in the presence of

a single f particle at the center of D3; concretely, we prepare a R symmetric state |p,R(p)〉
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constructed on the Hilbert space on S2 = ∂D3, where p and R(p) lines fuse into an f parti-

cle. The corresponding f line ends at the center of D3. If we also denote the R eigenvalue

of such state |p,R(p)〉 as ηp, the partition function in the presence of nontrivial background

field is expressed as

ZWW[RP4, α] =
1

D
∑

p=f ·R(p)

ηpdpe
iθp , (6.8)

where we sum over p such that p,R(p) fuse into f . After all, the indicator is expressed as

Z[RP4] =
1

D

 ∑
p=R(p)

ηpdpe
iθp ± i ·

∑
p=f ·R(p)

ηpdpe
iθp

 , (6.9)

which reproduces the indicator formula proposed in [25], if we identify the above definition

of ηp as T 2
p in [25].2 The validity of such identification should be demonstrated for explicit

lattice models, which is left for future work.
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A Partition function of the (3+1)d Walker-Wang model

In this appendix, following the logic of [34], we compute the partition function ZWW[RP4, α]

of the Walker-Wang model on RP4, with or without background gauge field.

A.1 Gluing relation

We compute the partition function on a 4-manifold by decomposing the manifold into

simpler manifolds for which partition functions are easier to evaluate and computing the

partition function part by part. This procedure is performed via applying the gluing

relation for the path integral. Here, let us review the application of the gluing relation to

the Walker-Wang model, which is required for explicit computations, following refs. [34, 35].

The data of (2+1)d TQFT (a braided fusion category B) defines a (3+1)d TQFT

known as the Walker-Wang model. To consider the path integral of the Walker-Wang

model on a 4d manifold M4, we first specify the configuration of fields on the boundary

c ∈ C(∂M4), where C(∂M4) denotes a set of boundary conditions.

Here, the set of boundary conditions on a 3-manifold M3, C(M3), is defined as the set

of all configurations of anyon diagrams on M3, based on the braided fusion category B.

2Our definition of the total dimension D is related to that of [25] by D =
√

2D, since our total dimension

D counts the contribution of the transparent particle f , while D in [25] does not.
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If M3 has boundary, we denote C(M3; c) as the configuration space of anyon diagrams on

M3, under the boundary condition c on ∂M3.

Then, the Hilbert space V(M3; c) of the bulk-boundary coupled system is defined as

the formal linear superposition of anyon diagrams C[C(M3; c)], modded out by equivalence

relations (e.g., fusions, F and R moves in B),

V(M3; c) := C[C(M3; c)]/ ∼ . (A.1)

Then, the path integral Z(M4) is a map from V(∂M4) to a number,

Z(M4) : V(∂M4) 7→ C. (A.2)

We will write the value as Z(M4)[c], for c ∈ V(∂M4). The inner product in V(M3; c) is

defined via the bulk partition function as

〈x|y〉V(M3;c) := Z(M3 × I)[x ∪ y], (A.3)

where M3 × I is a 4-manifold pinched at ∂M3 × I by the identification (b, s) ∼ (b, t) for

b ∈ ∂M3 and s, t ∈ I, so that ∂(M3× I) = M3∪M3
. Furthermore, x, y specifies boundary

conditions on M
3
, M3 respectively, where x denotes the field configuration on M

3
given

by reversing the orientation of x.

Now, let us describe the gluing relation. Let M4 be a 4-manifold whose boundary is

∂M4 = M3 ∪M3 ∪W , and M4
gl be a 4-manifold which is given by gluing the boundary of

M4 along M3 and M
3
. Then, the partition function Z(M4

gl)[c] on M4
gl with a boundary

condition c ∈ V(W ) on W = ∂M4
gl is evaluated via the following gluing relation,

Z(M4
gl)[c] =

∑
ei

Z(M4)[ccut ∪ ei ∪ ei]
〈ei|ei〉V(M3;c2cut)

, (A.4)

where ccut is the boundary condition inherited from c after the cut, and c2
cut is the restriction

of ccut to ∂M3. We denote an orthonormal basis of V(M3; c2
cut) as {ei}. We illustrate the

situation of the gluing relation in figure 5.

A.2 Handle decomposition of RPRPRP4

Let us turn to the explicit computations of Z(RP4). We can compute the partition function

on RP4 via gluing relations, by decomposing RP4 into simpler manifolds for which partition

functions are easier to evaluate. To do this, we employ handle decomposition on RP4, which

takes RP4 apart into 4-balls.

For 1 ≤ k ≤ d, a k-handle in d dimension is defined as a pair (Dk×Dd−k, Sk−1×Dd−k).

Sk−1 ×Dd−k ⊂ ∂(Dk ×Dd−k) is called an attaching region of the k-handle. The 0-handle

is defined as Dd. We think of attaching a k-handle to a d-manifold M0 with boundary, by

an embedding of attaching region φ : Sk−1 × Dd−k 7→ ∂M0 such that the image of φ is

contained in ∂M0. It is known that every compact d-manifold M without boundary allows

a handle decomposition, i.e., M is developed from a 0-handle by successively attaching to

it handles of dimension d.

We can see that RP4 is composed of single k-handles for each k = 0, 1, 2, 3, 4 by the

following steps.
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Figure 5. Illustration of the gluing relation.

1. To see this, it is convenient to think of RP4 as D4 with its boundary ∂D4 = S3 iden-

tified by an antipodal map. First, we begin with locating a small 0-handle containing

the center of D4.

2. Next, we attach a 1-handle (D1×D3, S0×D3) to the 0-handle. The attaching region

of a 1-handle consists of two 3-balls, S0 × D3 = D3 ∪ D3. We attach one of these

D3s to the boundary S3 of 0-handle, by identifying with a small D3 in S3. Then, we

radially extend a 1-handle from the attached D3, which tunnels through the antipodal

map and returns to the 0-handle again. Eventually, we attach the other D3 of the

1-handle to the 0-handle. We denote the composition of the 0, 1, . . . k handles in RP4

as RP4
k. At this point, we have constructed RP4

1.

3. Then, we attach a 2-handle (D2 × D2, S1 × D2) to RP4
1. We note that RP4

1 =

(D3 × S1)/σ, where σ is the Z2 action on D3 × S1 defined as the composite of

antipodal maps. The attaching region D2×S1 is embedded in ∂(RP4
1) = (S2×S1)/σ,

via embedding a small D2 in S2.

4. Likewise, we attach a 3-handle (D3×D1, S2×D1) to RP4
2 = (D2×S2)/σ by embedding

the attaching region in ∂(RP4
2) = (S1 × S2)/σ,3 via embedding a small D1 in S1.

5. Finally, we complete RP4 with attaching a 4-handle (D4, S3) to RP4
3 = (D1 × S3)/σ,

by identifying the attaching region with ∂(RP4
3) = (S0 × S3)/σ = S3.

A.3 Partition function on RPRPRP4

Now we can compute Z(RP4)[α] by successively applying gluing relations in each process

of the handle decomposition. In the presence of nontrivial background gauge field α ∈
Z3(RP4,Z2), α amounts to inserting a single Wilson line lf of f , along a loop in RP4 that

3We note the abuse of notation; σ always denotes the composite of antipodal maps in this context.
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intersects the crosscap of RP4 once. Here, we choose the configuration of lf , such that lf
is contained in RP4

1 = (D3 × S1)/σ. lf runs in the S1 direction of (D3 × S1)/σ, living at

the center of D3 of (D3 × S1)/σ. We denote the partition function on M in the presence

of such a line operator, simply as Z(M ; lf ).

Then, the computation of Z(RP4; lf ) proceeds as follows.

1. First, we decompose RP4 into RP4
3 and a 4-handle, along the attaching region S3.

Since there is no nontrivial anyon diagram on S3 up to equivalence relations, only the

empty diagram ∅ contributes to the boundary condition. Hence, the gluing relation

becomes

Z(RP4) =
Z(RP4

3; lf )[∅]Z(D4)[∅]

〈∅|∅〉V(S3)
. (A.5)

As shown in [34], we can see that Z(D4)[∅] = 1/D and 〈∅|∅〉V(S3) = Z(S3×D1)[∅] =

1/D2, where D is the total dimension of anyons. Thus,

Z(RP4) =
Z(RP4

3; lf )[∅] · 1/D
1/D2

= D · Z(RP4
3; lf )[∅]. (A.6)

2. Next, we decompose RP4
3 into RP4

2 and a 3-handle, along the attaching region S2×D1.

Similarly, only the empty diagram ∅ contributes to the bounndary condition on the

cut S2 ×D1. Gluing relation becomes

Z(RP4
3; lf )[∅] =

Z(RP4
2; lf )[∅]Z(D4)[∅]

〈∅|∅〉V(S2×D1;∅)
. (A.7)

As shown in [34], we have Z(D4)[∅] = 1/D and 〈∅|∅〉V(S2×D1;∅) = Z(S2×D2)[∅] =

1. Thus,

Z(RP4
3; lf )[∅] = 1/D · Z(RP4

2; lf )[∅]. (A.8)

Combining this expression with (A.6), we have

Z(RP4; lf ) = Z(RP4
2; lf )[∅]. (A.9)

3. Then, we decompose RP4
2 into RP4

1 and a 2-handle, along the attaching region S1×D2.

The boundary condition on the cut S1×D2 is labeled by the loop la of anyon a going

around the S1. Gluing relation becomes

Z(RP4
2; lf )[∅] =

∑
a

Z(RP4
1; lf )[l

(+1)
a ]Z(D4)[la]

〈la|la〉V(S1×D2;∅)
. (A.10)

Here, we have an la line on ∂(RP4
1) = (S2 × S1)/σ going along ({p} × S1)/σ, where

p denotes some point of S2. The notation l
(+1)
a means that the la diagram has +1

framing, as demonstrated in [34]. For Z(D4)[la], we have a bubble of la loop on

S3 = ∂D4 weighted by quantum dimension da. Hence, Z(D4)[la] = daZ(D4)[∅]. As

shown in [34], we have Z(D4)[∅] = 1/D, 〈la|la〉V(S1×D2;∅) = 1. Therefore,

Z(RP4
2; lf )[∅] =

1

D
∑
a

da · Z(RP4
1; lf )[l(+1)

a ]. (A.11)
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Figure 6. Configuration of anyons on the cut section D3. The antipodal map of D3 acts on the

state with particles a,R(a), f .

4. Finally, we evaluate Z(RP4
1; lf )[l

(+1)
a ]. RP4

1 = (D3 × S1)/σ is a twisted solid torus

D3 o S1, where the twist is defined as an antipodal map of D3.

Let us recall the configuration of line operators for Z(RP4
1; lf )[l

(+1)
a ]. First, we

have an la line on the boundary. The la line on the boundary S2 o S1 of D3 o S1

looks like a worldline of a pair of anyon a,R(a) living in north and south pole of S2

respectively, which is identified with each other at the twist. (Here, note that the

antipodal map acts on anyon label as a→ R(a).)

Moreover, we have an lf line in the bulk living at the center of D3. To apply the

gluing relation, we cut RP4
1 = D3oS1 at a point of S1 where we twist D3. On the cut

section D3, we have a pair of anyons a,R(a) located in the antipodal fashion on the

boundary, and also a single f particle at the center of D3, see figure 6. We write the

Hilbert space on the cut with such a configuration of anyons as V(D3; a,R(a), f). We

note that such a state exist iff a and R(a) fuse into f . Then, the boundary condition

on the section D3 is a diagram e which joins a,R(a) and f together.

Now, recall that we have defined ηa as the eigenvalue of the antipodal map on

the state in V(D3; a,R(a), f). Since we operate the antipodal map when gluing the

cut section D3, it picks up the eigenvalue ηa by acting on the state of the section.

After all, when ā = f · R(a), the gluing relation becomes

Z(D3 o S1; lf )[l(+1)
a ] = eiθa · ηa ·

Z(D3 × I)[e ∪ e]
〈e|e〉V(D3;a,R(a),f)

= eiθa · ηa,
(A.12)

otherwise we have Z(D3 o S1, lf )[l
(+1)
a ] = 0. Here, the framing +1 contributes as

topological spin eiθa of a.

Combining (A.9), (A.11) with (A.12), we eventually obtain the partition function as

Z(RP4; lf ) =
1

D
∑

ā=f ·R(a)

daηae
iθa . (A.13)
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On the other hand, when the background gauge field is trivial, we just have to discard the

f line in the argument described above, and we have

Z(RP4; 0) =
1

D
∑

ā=R(a)

daηae
iθa . (A.14)
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