
J
H
E
P
1
2
(
2
0
1
8
)
1
1
5

Published for SISSA by Springer

Received: September 25, 2018

Accepted: December 11, 2018

Published: December 19, 2018

Revisiting the asymptotic dynamics of General

Relativity on AdS3

Hernán A. González,a Javier Matulich,b Miguel Pinoc and Ricardo Troncosod

aInstitute for Theoretical Physics, TU Wien,

Wiedner Hauptstr. 8-10/136, A-1040 Vienna, Austria
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1 Introduction

The dynamics of Einstein gravity in three spacetime dimensions is described by global

degrees of freedom that can be identified only once a precise set of boundary conditions is

provided. In the case of asymptotically AdS spacetimes equipped with Brown-Henneaux

boundary conditions, the asymptotic symmetry group is generated by two copies of the

Virasoro algebra [1]. Demanding that the Lagrange multipliers –given by the lapse and

shift functions in an ADM foliation– are held constant at infinity, the reduced phase space

of the Einstein field equations is described by Virasoro modes L± that evolve according to

± `∂tL± = ∂φL±, (1.1)

where ` is the AdS radius and t, φ are coordinates parametrizing the cylinder at infinity.

The symmetry algebra and the form of the latter equation is consistent with the description

in terms of the boundary theory; it is well–known that the asymptotic dynamics for these

boundary conditions is described by left and right chiral bosons [2, 3].1 The components of

1As shown in [2, 3], it is possible to rewrite the action of two chiral bosons as a Liouville theory. This

is accomplished by performing a Bäcklund transformation that excludes the zero mode sector of the chiral

bosons. Further developments about the dual theory at the boundary have been recently carried out in [4, 5].

– 1 –



J
H
E
P
1
2
(
2
0
1
8
)
1
1
5

the stress–energy tensor of the chiral bosons are given by the Virasoro modes L±, so that

equation (1.1) corresponds to its conservation law. Note that for the boundary conditions

of Brown and Henneaux, the chiral bosons and their corresponding left/right energies fulfill

the same equations.

Recently, a new family of boundary conditions connecting Einstein gravity on AdS3

with the Korteweg-de Vries (KdV) hierarchy of integrable systems has been proposed in [6].

The possible choices of boundary conditions are labeled by a nonnegative integer n, cor-

responding to the n-th representative of the hierarchy. The Brown-Henneaux boundary

conditions are recovered for n = 0, so that the modes fulfill (1.1); while for n = 1, the

modes are described by noninteracting movers, satisfying the KdV equation

± `∂tL± = 3L±∂φL± −
`

16πG
∂3
φL±, (1.2)

where G is the Newton constant. For n ≥ 1 the asymptotic symmetry algebra turns out

to be spanned precisely by the infinite set of commuting charges of KdV.

One of the main purposes of our work, is to unveil the precise form of the action

principle that describes the dynamics of the underlying fields of the dual theory at the

boundary, from which the field equations of the KdV hierarchy emerge from a conservation

law. In order to carry out this task, it is convenient to use the Chern-Simons formulation of

three-dimensional gravity [7, 8]. We then perform a Hamiltonian reduction similar to the

one of Coussaert, Henneaux and van Driel [2]. A distinguishing feature of our derivation

is that, as the boundary conditions for n > 0 actually precludes one from passing through

the standard Hamiltonian reduction of the Wess–Zumino–Witten (WZW) model [9, 10],

one has to circumvent this step through imposing the boundary conditions in the action

principle from scratch. In this way, one obtains a novel action principle for the dual theory,

whose field equations are described by two copies of the hierarchy of “potential modified

KdV” (pmKdV) equations of opposite chirality.2

The paper is organized as follows. In the next section, we revisit the boundary con-

ditions of KdV-type in the context of 3D gravity with negative cosmological constant. In

section 3, the dual theory at the boundary is obtained from the Hamiltonian reduction

of the Chern-Simons action endowed with a suitable boundary term. The field equations

are also analyzed. Section 4 is devoted to study the global symmetries of the dual action

principle at the boundary. We conclude in with some comments in section 5.

2 General Relativity on AdS3 and the KdV hierarchy

Three-dimensional gravity with negative cosmological constant can be formulated as the

difference of two Chern-Simons actions for sl(2,R)-valued gauge fields A± [7, 8]

I = ICS[A+]− ICS[A−] , (2.1)

where ICS reads

ICS[A] =
k

4π

∫
M
〈AdA+

2

3
A3〉 , (2.2)

2A list of the first four equations of the pmKdV hierarchy is given in appendix B.

– 2 –



J
H
E
P
1
2
(
2
0
1
8
)
1
1
5

and the Chern-Simons level is given by k = `
4G . Here,M is the three-dimensional manifold

with coordinates t, r, φ, where t represents time, r stands for the radial coordinate and φ

is an angle. The generators of the sl(2,R) algebra, given by L±m, with m = {−1, 0, 1}, are

chosen such that the commutators and the invariant non-degenerate bilinear form read

[L±m, L
±
n ] = (m− n)L±m+n, [L±m, L

∓
n ] = 0, (2.3)

and

〈L±0
2〉 =

1

2
, 〈L±1 L

±
−1〉 = −1, (2.4)

respectively.

In order to describe the asymptotic form of the gauge fields, it is useful to make a

gauge choice as in [2], so that the connection reads

A± = b−1
± a±b± + b−1

± db±, (2.5)

with b± = e± log(r/l)L±0 . The components of the auxiliary connection a± = a±φ dφ + a±t dt,

then depend only on time and the angular coordinate, and are generically given by [11, 12]

a±φ = L±±1 −
2π

k
L±L±∓1,

a±t = ±1

`
µ±L±±1 −

1

`
∂φµ

±L±0 ±
(

1

2`
∂2
φµ
± − 2π

k`
L±µ±

)
L±∓1 ,

(2.6)

where L±(t, φ) stand for the dynamical fields, and µ±(t, φ) correspond to the Lagrange

multipliers. In the asymptotic region, the field equations, F± = dA± + A± ∧ A± = 0,

reduce to

± `∂tL± = D±µ± , (2.7)

where the operators D± are defined by

D± ≡ (∂φL±) + 2L±∂φ −
k

4π
∂3
φ . (2.8)

The asymptotic symmetries can then be explicitly found by demanding the preservation

of the auxiliary connection a± under gauge transformations, δa± = dη± + [a±, η±], where

η± is a Lie-algebra-valued parameter. Thus, the asymptotic form of aφ is maintained for

gauge transformations spanned by parameters of the form

η± = ε±L±±1 ∓ ∂φε
±L±0 +

(
1

2
∂2
φε
± − 2π

k
L±ε±

)
L±∓1 , (2.9)

where ε± are arbitrary functions of t and φ, provided that the dynamical fields L± trans-

form as

δL± = D±ε± . (2.10)

Preserving the temporal component of the gauge field a±t then implies the following con-

dition for the variation of the Lagrange multipliers

δµ± = ±`∂tε± + ∂φµ
±ε± − µ±∂φε±. (2.11)
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It is worth stressing that the boundary conditions turn out to be fully determined

only once the precise form of the Lagrange multipliers at the boundary is specified. The

results of Brown and Henneaux [1] are then recovered when the Lagrange multipliers are

held constants at infinity µ± = 1. A simple generalization is obtained by choosing arbi-

trary functions of the coordinates, so that µ± = µ±(t, φ) are kept fixed at the boundary

(δµ± = 0) [11, 12]. Different choices of boundary conditions, in which the Lagrange mul-

tipliers are allowed to depend on the dynamical fields and their spatial derivatives, were

proposed in [6]. Hereafter, we focus in a special family of boundary conditions of KdV-

type, being labeled by a non negative integer n. In this scenario, the Lagrange multipliers

are chosen to be given by the n-th Gelfand-Dikii polynomial [13] evaluated on L±, i.e.,

µ± ≡ µ±n = R±n [L±] . (2.12)

The polynomials can be constructed by means of the following recursion relation3

D±R±n = ∂φR
±
n+1 . (2.13)

Thus, in the case of n = 0 one obtains that µ±0 = R±0 = 1, which reduces to the boundary

conditions of Brown and Henneaux [1]. In this case, equation (2.11) implies that the

parameters ε± are chiral, while the dynamical fields also do, since the field equations (2.7)

reduce to (1.1). The next case corresponds to n = 1, so that the choice of Lagrange

multipliers is given by µ±1 = R±1 = L±, and hence, the field equations in (2.7) reduce to KdV

± `∂tL± = 3L±∂φL± −
k

4π
∂3
φL± . (2.14)

In the remaining cases, n > 1, the field equations are then given by the ones of the n-th

representative of the KdV hierarchy.

Note that for n > 0, the Lagrange multipliers acquire a non-trivial variation at infinity.

Nonetheless, as shown in [6] and further explained in the next section, the action principle

can be well defined because each of the Gelfand-Dikii polynomials R±n can be expressed in

terms of the variation of a functional, i.e.,

R±n =
δH±n
δL±

, H±n =

∫
dφH±n , (2.15)

where H±n stand for the conserved quantities of KdV, and H±n are the corresponding densi-

ties.4 Furthermore, equation (2.11) becomes a consistency relation for the time derivative

of the asymptotic symmetry parameters ε±. Thus, for n ≥ 1, assuming that the parameters

depend exclusively on the dynamical fields and their spatial derivatives, but not explicitly

on the coordinates, the general solution of the consistency relation is given by a linear

combination of the form

ε± =
∞∑
j=0

ε±j R
±
j , (2.16)

3Note that the normalization of the Gelfand-Dikii polynomials used here differs from the one in [6].
4A list with the first Gelfand-Dikii polynomials, conserved quantities of KdV and the corresponding field

equations of the KdV hierarchy is given in appendix A.
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with ε±j constants. This infinite set of symmetries then gives rise to conserved charges,

which can be written as surface integrals by means of the Regge-Teitelboim approach [14].

The variation of the conserved charges associated to the gauge transformation generated

by a parameter of the form (2.9) that spans the asymptotic symmetries, is given by

δQ[ε±] = ∓
∫
dφ ε±δL± , (2.17)

which can be integrated due to (2.16) and (2.15), yielding

Q[ε±] = ∓
∞∑
j=0

ε±j H
±
j . (2.18)

The asymptotic symmetries are then canonically realized. A straightforward way to ob-

tain the asymptotic symmetry algebra in terms of Poisson brackets is given by the relation

{Q[ε1], Q[ε2]} = δε2Q[ε1] . (2.19)

The cases n = 0 and n > 0 are then very different in this context. Indeed, for n > 0 the

algebra turns out to be abelian

{H±i , H
±
j } = 0 , (2.20)

while for n=0, which corresponds to Brown-Henneaux, the algebra of the conserved charges

is given by two copies of the Virasoro algebra with a non-vanishing central extension.

Some interesting remarks about the metric formulation are in order. It is worth high-

lighting that the reduced phase space for the boundary conditions of KdV-type, for an

arbitrary non negative integer n, always contain the BTZ black hole [15, 16], which cor-

responds to the configuration with L± constants [6]. Indeed, the field equations of the

KdV hierarchy are trivially solved in this case, and the spacetime metric in the ADM de-

composition is such that the lapse and the shift correspond to a non-standard foliation,

determined by µ±n = (2n)!

2n(n!)2
(L±)

n
. Specifically

ds2 = `2

[
dr2

r2
+

2π

k
L+
(
dx̃+

)2
+

2π

k
L−
(
dx̃−

)2−(r2

`2
+

(
2π`

k

)2 L+L−

r2

)
dx̃+dx̃−

]
, (2.21)

with

dx̃± =
1

`
µ±n dt± dϕ . (2.22)

Furthermore, the boundary conditions described by (2.5) and (2.6), with µ±n given by (2.12)

are such that the fall-off of the metric somewhat resembles the one of Brown-Henneaux.

Indeed, in a Fefferman-Graham-like gauge, the spatial components of the metric and its

conjugate momenta behave as

grr =
`2

r2
, grφ = 0 , gφφ = r2 +O(1), (2.23)

πrr = O(r−1) , πrφ = O(r−2), πφφ = 0 . (2.24)
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However, the key difference arises in the asymptotic behavior of the lapse and shift func-

tions, which read

N⊥ =
1

2
(µ+
n + µ−n )

r

`
+O(r−1) ,

N r = −(∂φµ
+
n − ∂φµ−n )

r

2`
+O(r−2) ,

Nφ =
1

2`
(µ+
n − µ−n ) +O(r−2) .

(2.25)

Hence, for n > 0 they are allowed to fluctuate at leading order, in sharp contrast with the

fall-off for n = 0 that corresponds to the Brown-Henneaux boundary conditions for which

µ+
0 = µ−0 = 1.

3 Dual theory at the boundary

In this section, we perform a Hamiltonian reduction of the action (2.1) by explicitly solving

the constraints of the theory. The boundary conditions for the gauge field A± correspond

to (2.5) and (2.6), where the “chemical potentials” µ± in (2.12) are given by the n-th

Gelfand-Dikii polynomial R±n [L±]. The reduction is carried out for a generic value of n.

3.1 Hamiltonian reduction

The Hamiltonian reduction of Chern-Simons theory in the context of three-dimensional

gravity has been discussed extensively in the literature, see e.g., [2, 3, 17, 18]. For the

standard choices of boundary conditions [1, 19], the classical dynamics can be obtained from

the Hamiltonian reduction of the WZW theory at the boundary [9, 10, 20, 21]. Nonetheless,

for the boundary conditions of KdV-type, the reduction does not lead to the usual WZW

theory at the boundary, since for a generic value of n the components of the gauge field at

the boundary are no longer proportional, and hence, the Kac-Moody symmetry appears

to be manifestly broken (except when n = 0 which corresponds to Brown-Henneaux).

Nevertheless, as explained below, the reduction can still be successfully performed because

the boundary conditions can be appropriately implemented in the action principle.

The resulting reduced action at the boundary gives rise to a different hierarchy of

integrable equations, labeled by the integer n. The simplest case (n = 0) corresponds to

two chiral bosons of opposite chirality [2, 3]. For n = 1 we obtain a novel action principle,

whose field equations are given by two copies of the pmKdV equation (see e.g. [22, 23]).

In the remaining cases (n > 1) the action of the dual theory describes the other members

of the pmKdV hierarchy. The integrability of this hierarchy is explicitly checked in the

next section.

We start with the action (2.1) written in explicit Hamiltonian form

I = IH [A+]− IH [A−] , (3.1)

with

IH [A±] =
k

4π

∫
dtd2x εij〈Ȧ±i A

±
j +A±t F

±
ij 〉+B± , (3.2)
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where B± stand for appropriate boundary terms generically needed in order to have an

action principle that is well defined. It is worth pointing out that the boundary can be

located at an arbitrary fixed value of the radial coordinate. Here εij is the spatial part of

the Levi-Civita symbol, while F±ij is the curvature F±ij = ∂iA
±
j − ∂jA

±
i + [A±i , A

±
j ]. We

choose εrφ = 1, and dot stands for derivative with respect to t. The action (3.2) attains an

extremum when the field equations hold, provided that

δB± = − k

2π

∫
dφdt 〈A±t δA

±
φ 〉 . (3.3)

Note that for the Brown-Henneaux boundary conditions (n = 0), the components of the

gauge field satisfy `A±t = A±φ at the boundary, and hence, δB± can be readily integrated.

However, for the boundary conditions of KdV-type, with n ≥ 1, the temporal and angular

components of the gauge field at the boundary are not proportional (see (2.6)), and so one

might worry about the integrability of the boundary terms B±. However, as explained

in [6], since the Lagrange multipliers µ± in (2.12) are given by the variation of a functional

(see (2.15)) the boundary terms can be explicitly integrated as

B± = ∓1

`

∫
dφdt H±n . (3.4)

Therefore, the suitable action principle for the boundary conditions of KdV-type is

precisely identified, and so we are able to proceed with its Hamiltonian reduction.

The constraint εijF±ij = 0 is locally solved by A±i = G−1
± ∂iG±. For the sake of simplic-

ity, we disregard non-trivial holonomies, so that G±(t, r, φ) ∈ SL(2,R) can be assumed to be

periodic in φ. Thus, replacing back in the action (3.2), a straightforward calculation yields

IH [A±] = I±1 + I±2 +B± , (3.5)

where

I±1 =
k

4π

∫
dtdrdφ εij〈∂t(G±−1)∂iG±G

−1
± ∂jG±〉 , (3.6)

I±2 = − k

4π

∫
dφdt 〈∂tG±∂φ(G−1

± )〉. (3.7)

The first two terms I±1 + I±2 naturally appear in the standard chiral WZW action [21], but

here we have an explicit modification due to the presence of B±. As shown below, the

form of B± makes possible to recover the infinite-dimensional Abelian algebra in (2.20)

from a Noether symmetry of the full action. Furthermore, note that B± do not appear to

be expressible locally in terms of the group elements G±.

In order to reduce I±1 to a boundary integral, we use the Gauss decomposition for G±

G± = exp
[
X±L

±
±1

]
exp

[
±Φ±L

±
0

]
exp

[
Y±L

±
∓1

]
. (3.8)

Here X±, Y± and Φ± are functions of t, r, φ. Thus, I±1 can be expressed as

I±1 =
k

4π

∫
dφdt eΦ±(Y ′±Ẋ± − Ẏ±X ′±) , (3.9)
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where prime denotes derivatives with respect to φ. Thus, the action IH [A±] has now been

reduced to an integral at the boundary.

The fall-off in (2.5), (2.6) allows us to decompose the group element G± in the asymp-

totic region as a product of two group elements, according to G±(t, r, φ) = g±(t, φ)b±(r),

with b± = e± log(r/`)L±0 . Therefore, I±2 reduces to

I±2 = − k

4π

∫
dφdt 〈ġ±∂φg−1

± 〉 , (3.10)

which can be further simplified by performing the Gauss decomposition for the group

element g±

g± = ex±L
±
±1e±ϕ±L

±
0 ey±L

±
∓1 , (3.11)

where the fields x±, y± and ϕ± depend only on t and φ. Thus, we obtain

I±2 =
k

4π

∫
dφdt

(
1

2
ϕ̇±ϕ

′
± − eϕ±(y′±ẋ± + ẏ±x

′
±)

)
. (3.12)

Furthermore, consistency of (3.8) and (3.11) yields

Y± =
`

r
y± , X± = x± , eΦ± =

r

`
eϕ± , (3.13)

and hence, the action (3.5) reduces to

IH [A±] =
k

4π

∫
dφdt

(
1

2
ϕ̇±ϕ

′
± − 2eϕ±x′±ẏ±

)
∓ 1

`

∫
dφdt H±n . (3.14)

Besides, the asymptotic form of a±φ = g−1
± ∂φg± is determined by eq. (2.6), so that

g−1
± ∂φg± = L±±1 −

2π

k
L±L±∓1 , (3.15)

which by virtue of the Gauss decomposition (3.11), implies the following relations

eϕ±x′± = 1 , 2eϕ±y±x
′
± + ϕ′± = 0 , y′± + eϕ±y2

±x
′
± + y±ϕ

′
± = −2π

k
L± . (3.16)

Making use of the first equation in (3.16), it is straightforward to see that the second term

in (3.14) becomes a total time derivative that can be discarded. The remaining equations

in (3.16) then allow to obtain a crucial relationship, given by

L± =
k

4π

(
1

2
ϕ′±

2
+ ϕ′′±

)
, (3.17)

from which the reduced action (3.14) can be expressed exclusively in term of two funda-

mental fields ϕ±.

In sum, the action of the dual theory at the boundary explicitly reads

In[ϕ+, ϕ−] = In[ϕ+]− In[ϕ−] , (3.18)

– 8 –
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with

In[ϕ±] =
k

8π

∫
dφdt

(
ϕ̇±ϕ

′
± ∓

8π

`k
H±n [L±]

)
, (3.19)

where L± is given by (3.17). A complete analysis of the global symmetries of the dual

action (3.19) is performed in section 4.

For the remaining steps, it is worth highlighting that the action (3.19) possesses the

following gauge symmetry

ϕ± → ϕ± + f±(t) , (3.20)

where f± stand for arbitrary functions. Indeed, under (3.20), the kinetic term in (3.19) just

changes by a time derivative, while the Hamiltonian does not give additional contributions

since H±n only involves angular derivatives of ϕ±.

In order to familiarize with the dynamics of the theory at the boundary, it is certainly

useful to analyze its field equations. As it is shown below, the gauge freedom in (3.20) allows

to write down the equations of motion of (3.19) precisely as those of the pmKdV hierarchy.

3.2 n = 0: chiral bosons

The simplest case is given by µ±0 = 1, which corresponds to the Brown-Henneaux bound-

ary conditions. The dual theory is obtained from (3.18) and (3.19) with n = 0, so that

H±0 = L±, and hence each copy of the action reduces to the one of Floreanini and Jackiw [24]

I0[ϕ±] =
k

8π

∫
dφdt

(
ϕ̇±ϕ

′
± ∓

1

`
ϕ′±

2
)
, (3.21)

in agreement with the standard result obtained in [2, 3]. The theory describes the dynamics

of two chiral bosons of opposite chirality. The field equations in this case then read

ϕ̇′± = ±1

`
ϕ′′± , (3.22)

which can be readily integrated once, yielding

ϕ̇± = ±1

`
ϕ′± + h±(t) , (3.23)

where h± are arbitrary functions of time. Therefore, these arbitrary functions can be set

to zero by virtue of the gauge symmetry in (3.20), with h±(t) = ḟ±(t), and hence

ϕ̇± = ±1

`
ϕ′± . (3.24)

Note that, as mentioned in the introduction, the field equations for n = 0 in (3.24) coincide

with the ones of the Virasoro modes in (1.1). As it is shown below, in our context, the

fact that the field equation is equivalent to the conservation law it is actually an accident

of the particular case n = 0.
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3.3 n = 1: pmKdV movers

The next case corresponds to the choice µ±1 = L± so that H±1 = 1
2L
±2

. The chiral copies

of the action then read

I1[ϕ±] =
k

8π

∫
dφdt

(
ϕ̇±ϕ

′
± ∓

k

16π`
ϕ′±

4 ∓ k

4π`
ϕ′′±

2
)
, (3.25)

and the field equations are given by

ϕ̇′± = ± k

4π`

(
3

2
ϕ′±

2
ϕ′′± − ϕ′′′′±

)
. (3.26)

As in the previous case, the equation can be integrated once, giving

ϕ̇± = ± k

4π`

(
1

2
ϕ′±

3 − ϕ′′′±
)
, (3.27)

where the arbitrary integration function has been set to zero by virtue of an appropriate

gauge choice. This equation corresponds to two copies of the pmKdV equation.5

It is worth highlighting that in this case the dynamics of the theory at the boundary,

described by (3.27), differs from the conservation law that fulfills the KdV equation (1.2).

3.4 Generic n: pmKdV hierarchy

The generic choice of boundary conditions corresponds to µ±n = R±n = δH±n
δL± , where R±n

stand for the n-th Gelfand-Dikii polynomials. The action is then given by (3.18) and (3.19)

with (3.17).

The field equations can be readily obtained in a closed form for a generic value of n,

yielding

ϕ̇′± = ±1

`
∂φ
(
R±nϕ

′
± − ∂φR±n

)
. (3.28)

As in the previous cases, these equations can be integrated once, and by means of the

gauge symmetry of the action (3.20), they reduce to

ϕ̇± = ±1

`

(
R±nϕ

′
± − ∂φR±n

)
, (3.29)

in agreement with n-th representative of the potential form of the mKdV hierarchy.

In the next section it is shown that these equations can be manifestly seen to be

integrable, since they admit an infinite number of commuting conserved charges.

4 Symmetries of the action

This section is devoted to study the symmetries and conserved quantities of the ac-

tion (3.19). Apart from the gauge symmetry (3.20), the action (3.18) also possesses global

and kinematic symmetries, which are described in what follows.

5The name stems from the fact that under the identification u = ϕ′, equation (3.26) reduces to modified

KdV (mKdV) for u.
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4.1 Global symmetries

Here we show that the action (3.18) is invariant under the following Noether symmetries

δϕ± = ε±ϕ′± − ε′± , (4.1)

with ε± given by (2.16). It is worth stressing that these global symmetries are in one to

one correspondence with the asymptotic symmetries in the bulk. Indeed, by means of the

map in (3.17), the transformation law of L± that is given by (2.10) is precisely recovered

from (4.1). Therefore, the corresponding infinite number of commuting Noether charges H±n
can be seen to coincide with the surface integrals that come from the analysis in the bulk.

This can be explicitly shown as follows. For each copy of the action (3.18), the Hamil-

tonian is invariant under the transformation (4.1), while the kinetic term changes by a

total derivative in time. Indeed, equations (2.10) and (2.16), imply that the variation of

the Hamiltonian term can be expressed as

δ

∫
dφdt H±n =

∞∑
k=0

ε±k

∫
dφdt

δH±n
δL±

D±
δH±k
δL±

. (4.2)

Thus, the r.h.s. corresponds to the Poisson bracket {H±n , H±k }, which vanishes due to (2.13).

The variation of the kinetic term in (3.18) reduces to

δ
k

8π

∫
dφdt ϕ̇±ϕ

′
± =

∫
dφdt

(
−
∞∑
k=0

ε±k Ḣ
±
k +

k

8π
∂t(δϕ±ϕ

′
±)

)
, (4.3)

and hence the transformation (4.1) is a symmetry of the action. Therefore, the straightfor-

ward application of Noether’s theorem yields an infinite number of commuting conserved

charges given by

Q(ε±) = ∓
∞∑
k=0

ε±kH
±
k , (4.4)

which implies that the field equations in (3.29) correspond to an integrable system. Be-

sides, and noteworthy, the Noether charges associated with the global symmetries of the

dual theory in (4.4) precisely agree with the surface integrals found from the asymptotic

symmetries in the bulk (2.18).

4.2 Kinematic symmetries & Lifshitz scaling

The kinematic symmetries of the dual action (3.18) correspond to rigid displacements in

space and time, as well as global anisotropic scaling. These symmetries are spanned by a

two-dimensional vector field

X =
(
αt + γzt

)
∂t +

(
αφ + γφ

)
∂φ , (4.5)

with αt, αφ and γ constants, and z is related to the integer n through z = 2n+1. Under an

infinitesimal diffeomorphism spanned by X the scalar fields transform as δXϕ± = Xµ∂µϕ±,

which implies that left and right Hamiltonian densities change according to

δXH±n [L±] = Xµ∂µH±n + γ(z + 1)H±n , (4.6)

so that under anisotropic scaling they have weight given by 2n+ 2.
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It is simple to prove that the dual action (3.19) is invariant under the symmetries

spanned by X, and hence, the corresponding Noether charges for the chiral copies are

given by

Q±[αt, αφ, γ] =

∫
dφ

[(
αφ + γφ

)
L± ± 1

`

(
αt + γzt

)
H±n
]
. (4.7)

Thus, for each copy, the energy, the momentum, and the conserved charge associated to

anisotropic scaling are given by

H± = Q±[1, 0, 0] = ±1

`
H±n , P± = Q±[0, 1, 0] = H±0 , D± = Q±[0, 0, 1] , (4.8)

respectively. Note that D± correspond to left and right copies of the generator of

anisotropic Lifshitz scaling of the form,

t 7→ λzt, φ 7→ λφ , (4.9)

so that z = 2n+ 1 stands for the dynamical exponent. For each copy, the generators of the

kinematic symmetry then fulfill the Lifshitz algebra in two dimensions (see e.g. [25–27]).

In fact, as it can be readily obtained from relation (2.19), the algebra of the kinematic

symmetries reads6

{P±, H±} = 0 , {D±, P±} = P± , {D±, H±} = zH± . (4.10)

In summary, the only non-vanishing commutators of the infinite set of global symmetries

are given by

{D±, H±j } = (2j + 1)H±j , (4.11)

which means that the conserved charges H±j transform with weight 2j+1 under anisotropic

scaling. Thus, the dual action (3.18) is manifestly invariant under (4.9), since the densities

transform as H±j 7→ λ−(2j+2)H±j .

5 Concluding remarks

We have performed a Hamiltonian reduction of General Relativity in 3D with negative

cosmological constant in the case of a new family of boundary conditions, labeled by a non

negative integer n, which is related to the KdV hierarchy of integrable systems. We then

obtained the action of the corresponding dual theory at the boundary, being such that the

chiral copies of the reduced system evolve according to the potential form of the modified

Korteweg-de Vries equation (3.29).

The asymptotic symmetries in the bulk are then translated into Noether symmetries

of the dual theory, giving rise to an infinite set of commuting conserved charges, that imply

6In order to recover the Lifshitz algebra, it is useful to make use of the following identity [13, 28, 29]:

(2n+ 1)H±n =

∫
dφR±n+1 .
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integrability of the system. Remarkably, the dual action is also invariant under anisotropic

Lifshitz scaling with dynamical exponent z = 2n+ 1.

It is worth pointing out that, if left and right copies were chosen according to different

members of the hierarchy, the dual action turns out to be given by

I[ϕ+, ϕ−] =

∫
dφdt

(
`

32πG
(ϕ̇+ϕ

′
+ − ϕ̇−ϕ′−)−H+

n [L+]−H+
m[L−]

)
, (5.1)

where L± is defined in (3.17). The anisotropic scaling symmetry would then be generically

broken unless n = m.

It is interesting to make an interpretation of our work in the context of the fluid/gravity

correspondence [30–32]. In that setup, the asymptotic behavior of the Einstein equations,

in a derivative expansion at the boundary, implies that the fluid equations are recovered

from the conservation of the suitably regularized Brown-York stress-energy tensor. It is

then natural to wonder about the fundamental degrees of freedom and the precise form of

the theory from which the fluid is made of.

In our context, since Einstein gravity in 3D is devoid of local propagating degrees of

freedom, the identification of the fundamental degrees of freedom at the boundary can be

completely performed. Indeed, the asymptotic behavior of the Einstein equations, with the

boundary conditions in [6], is such that they reduce to the equations of the KdV hierarchy

to all orders, i.e., without the need of performing a (hydrodynamic) derivative expansion

at the boundary. Remarkably, the dynamics of the non-linear fluid, that evolves according

to the KdV equations, was shown to emerge from the conservation law of left and right

momentum densities, where the underlying fields are manifestly unveiled and fulfill the

potential modified KdV equations.

As an ending remark, it is worth mentioning that different classes of boundary condi-

tions relating pure three-dimensional gravity with integrable systems have been proposed

in [33–36]. It would then be interesting to explore whether a similar construction, as the

one performed here, could be carried out in those cases, as well as in the context of higher

spin gravity with different set of boundary conditions as in [6, 37–39].
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Tempo, for useful discussions and comments. The work of H.G. is supported by the Aus-

trian Science Fund (FWF), project P 28751-N2 and P 27182-N27. The work of J.M. was

supported by the ERC Advanced Grant “High-Spin-Grav”, by FNRS-Belgium (convention

FRFC PDR T.1025.14 and convention IISN 4.4503.15). This research has been partially

supported by FONDECYT grants N◦ 1161311, 1171162, 1181496, 1181628, and the grant

CONICYT PCI/REDES 170052. The Centro de Estudios Cient́ıficos (CECs) is funded

by the Chilean Government through the Centers of Excellence Base Financing Program

of Conicyt.

– 13 –



J
H
E
P
1
2
(
2
0
1
8
)
1
1
5

A Gelfand-Dikii polynomials and Hamiltonians

The Gelfand-Dikii polynomials can be constructed from the recurrence relation (2.13). In

our conventions, the first five polynomials are explicitly given by

R±0 = 1,

R±1 = L±,

R±2 =
3

2
L±2 − k

4π
∂2
φL±,

R±3 =
5

2
L±3 − 5k

8π
(∂φL±)2 − 5k

4π
L±∂2

φL± +
k2

16π2
∂4
φL± ,

R±4 =
35

8
L±4 − 35k

8π
L±(∂φL±)2 − 35k

8π
L±2

∂2
φL± +

21k2

32π2
(∂2
φL±)2

+
7k2

8π2
(∂φL±)(∂3

φL±) +
7k2

16π2
L±∂4

φL± −
k3

64π3
∂6
φL± .

(A.1)

Their corresponding densities (2.15) then read

H±0 = L±,

H±1 =
1

2
L±2

,

H±2 =
1

2
L±3

+
k

8π
(∂φL±)2,

H±3 =
5

8
L±4

+
5k

8π
L±(∂φL±)2 +

k2

32π2
(∂2
φL±)2 ,

H±4 =
7

8
L±5

+
35k

16π
L±2

(∂φL±)2 +
7k2

32π2
L±(∂2

φL±)2 +
k3

128π3
(∂3
φL±)2 .

(A.2)

Thus, according to eq. (2.7), with µ± = R±n , the first four equations of the KdV hierarchy

are given by

±`∂tL± = ∂φL± ,

±`∂tL± = 3L±∂φL± −
k

4π
∂3
φL± ,

±`∂tL± =
15

2
L±2

∂φL± −
5k

2π
∂φL±∂2

φL± −
5k

4π
L±∂3

φL± +
k2

16π2
∂5
φL± ,

±`∂tL± =
35

2
L±3

∂φL± −
35k

8π
(∂φL±)3 − 35k

2π
L±∂φL±∂2

φL± −
35k

8π
L±2

∂3
φL±

+
35k2

16π2
∂2
φL±∂3

φL± +
21k2

16π2
∂φL±∂4

φL± +
7k2

16π2
L±∂5

φL± −
k3

64π3
∂7
φL± .

(A.3)
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B pmKdV equations

The first four equations of the potential modified KdV hierarchy read

±`ϕ̇± = ϕ′± ,

±`ϕ̇± =
k

4π

(
1

2
ϕ′±

3 − ϕ′′′±
)
,

±`ϕ̇± =

(
k

4π

)2(3

8
ϕ′±

5 − 5

2
ϕ′±ϕ

′′
±

2 − 5

2
ϕ′±

2
ϕ′′′± + ϕ

(5)
±

)
,

±`ϕ̇± =

(
k

4π

)3( 5

16
ϕ′±

7 − 35

4
ϕ′±

3
ϕ′′±

2 − 35

8
ϕ′±

4
ϕ′′′± +

35

2
ϕ′′±

2
ϕ′′′± +

21

2
ϕ′±ϕ

′′′
±

2

+ 14ϕ′±ϕ
′′
±ϕ
′′′′
± +

7

2
ϕ′±

2
ϕ

(5)
± − ϕ

(7)
±

)
.

(B.1)
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