
J
H
E
P
1
2
(
2
0
1
8
)
0
8
8

Published for SISSA by Springer

Received: September 10, 2018

Revised: November 8, 2018

Accepted: November 28, 2018

Published: December 14, 2018

Dark matter in (partially) composite Higgs models

Tommi Alanne,a Diogo Buarque Franzosi,b Mads T. Frandsenc and Martin Rosenlystc

aMax-Planck-Institut für Kernphysik,

Saupfercheckweg 1, 69117 Heidelberg, Germany
bInstitut für Theoretische Physik, Universität Göttingen,

Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
cCP3-Origins, University of Southern Denmark,

Campusvej 55, DK-5230 Odense M, Denmark

E-mail: tommi.alanne@mpi-hd.mpg.de, dbuarqu@gwdg.de,

frandsen@cp3.sdu.dk, rosenlyst@cp3.sdu.dk
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Yukawa theories with strongly interacting fermions. The fermions are partially gauged

under the electroweak symmetry, and the dynamical electroweak symmetry breaking sec-

tor is minimal.

The pNGB dark matter particle is stable due to a U(1) technibaryon-like symmetry,

also present in the technicolor limit of the models. However, the relic density is particle

anti-particle symmetric and due to thermal freeze-out as opposed to the technicolor limit

where it is typically due to an asymmetry.

The pNGB Higgs is composite or partially composite depending on the origin of the

Standard Model fermion masses, which impacts the dark matter phenomenology. We

illustrate the important features with a model example invariant under an SU(4)×SU(2)×
U(1) global symmetry.
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1 Introduction

Gauge and gauge-Yukawa theories with strongly interacting fermion sectors at, or above,

the weak scale underly several model frameworks for dynamical electroweak symmetry

breaking (EWSB). This includes technicolor (TC) [1–5] and bosonic technicolor (bTC) [6–

11], partially composite Higgs (pCH) [12–16], and composite-Higgs (CH) models [17–21].

These models can be realized with the same underlying four-dimensional gauge theories

with fermions via different vacuum alignments — and by adding scalars in the bTC and

pCH cases.

In the TC limit the Higgs is an excitation of the vacuum [5, 6, 22], and analogously

to QCD there can be a global U(1) technibaryon symmetry which allows for the lightest

technibaryon to be an asymmetric dark matter (DM) candidate [23–28]. It must typically

be particle anti-particle asymmetric because of large annihilation cross sections from the

strong interactions at the weak scale, although symmetric candidates from thermal freeze-

out [29] or the bosonic seesaw portal production mechanism in bTC [30] can occur. This

U(1) symmetry is often anomalous under weak interactions such that Stadard Model (SM)

sphalerons may equilibrate baryon and technibaryon numbers [24] and address the origin

of the ratio of visible to dark relic densities.

In the CH vacuum, the Higgs is realized as a pseudo-Nambu-Goldstone boson (pNGB)

with properties which may be tuned close to the SM Higgs by external interactions. How-

ever, the U(1) technibaryon symmetry present in the TC limit is typically lost. Instead,
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DM candidates in CH models have typically been constructed and stabilized using Z2 sym-

metries, and the models are typically studied using purely an effective Lagrangian [31–35].

CH models with a preserved U(1) symmetry have also been considered; see e.g. refs. [36, 37],

and at the level of an effective description ref. [38] and with strongly interacting scalars [39].

Here we are interested in models with explicit four-dimensional descriptions in terms of

elementary degrees of freedom that retain particles charged under a global U(1) symmetry

in the CH vacuum. In particular, we are interested in models where the DM candidate

charged under this stabilizing U(1) symmetry is a pNGB related to the dynamical sym-

metry breaking. This is simply realized with models where only part of the fermions are

gauged under the electroweak (EW) interactions for which TC limits have been studied

in e.g. refs. [26, 28, 40, 41]. We, therefore, consider models with N1 + N2 Weyl fermions

transforming in representations R1 and R2, respectively, of a new strongly interacting

gauge group GTC. Only the R1 fermions are gauged under the SM EW gauge group and

responsible for EWSB. For fermion partial compositeness we comment on adding a third

sector of N3 QCD charged fermions in order to accomodate top partners.

The R2 sector was motivated both by achieving near-conformal dynamics [26, 40, 41]

and by allowing for light asymmetric DM [28] in the TC limit. When aligning the R1

sector into the CH regime, the R2 sector can retain a U(1)-technibaryon-like symmetry,

and thereby a composite DM candidate which, however, must now have a particle anti-

particle symmetric relic density.

The simple model we study has GTC = SU(2), N1 = 4 with R1 being the fundamental

representation, and N2 = 2 with R2 being the adjoint representation. The TC limit of

this model was studied in ref. [26], while ref. [41] considered R2 = R1 with both inert and

electroweak gauged fermions in the fundamental representation. The CH and pCH regimes

of theR1 sector only were studied in refs. [21, 42] and [13–16], respectively. Since the model

is formulated explicitly in terms of elementary constituents, the composite contributions

to the spectrum may be predicted using lattice simulations. The R1 sector has recently

been studied in e.g. refs. [43–45] and recent lattice studies have begun investigating models

with multiple fermion representations [46, 47] and composite DM candidates [48–51].

The paper is organised as follows: in section 2 we introduce the model framework,

the model example with SU(4) × SU(2) × U(1) symmetry and the effective description.

In section 3 we discuss the phenomenology of the DM candidate, the pNGB of the R2

sector, and the interplay with different possible origins of the SM-fermion masses. Finally,

in section 4 we give our conlusions.

2 The model and the effective description

The model framework we propose consist of a new strongly interacting gauge group GTC

with N1 Weyl fermions in the representation R1 and N2 Weyl fermions in the representation

R2. The R1 fermions are gauged under the EW interactions, while the R2 fermions are

inert. We also add interactions to provide SM-fermion masses and to align the vacuum into

the CH regime. We will briefly discuss elementary scalars [6] and four-fermion operators of

both the extended-TC (ETC) [1, 2] and fermion-partial-compositeness (PC) type [52] as
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SU(2)TC SU(2)W U(1)Y

(UL, DL) 0

ŨL 1 −1/2

D̃L 1 +1/2

λL Adj 1 0

λ̃L Adj 1 0

Table 1. The new fermion content and their representations under the gauge groups, as in [26].

examples of such interactions. In the latter case, we add a third sector with QCD charged

fermions to accomodate a top partner, to be discussed in more detail in section 2.3(iii).

In the minimal model example which we will study, the gauge group is chosen to be

GTC = SU(2)TC with R1 the fundamental representation and N1 = 4. We further take

R2 to be the adjoint representation and N2 = 2 as in ref. [26]. The fermion content in

terms of left-handed Weyl fields, with ψ̃L ≡ εψ∗R, along with their EW quantum numbers is

presented in table 1. The strongly interacting fermion sector features the global symmetry

SU(4)× SU(2)× U(1) at the quantum level. The spinors Q = (UL, DL, ŨL, D̃L) and Λ =

(λL, λ̃L) transform in the fundamental representations of the SU(4) and SU(2) subgroups

of the global symmetry, respectively, where we drop a L subscript on Q and Λ for simplicity.

The anomaly free1 U(1) acts on both fermion sectors as

Q→ e−iαQ, Λ→ ei
α
2 Λ . (2.1)

In the case of PC, where we need a larger gauge group, this charge assignment is different,

and we will discuss this issue in section 2.3.

The underlying fermionic Lagrangian we consider is

LUV = Q̄i /DQ+ Λ̄i /DΛ + δLm + δL , (2.2)

where δL are additional interactions including those responsible for vacuum alignment and

SM-fermion masses, and we have collected the explicit mass terms for Q,Λ in δLm with

δLm =
1

2
QT MQQ+

1

2
ΛT MΛ Λ + h.c. , MQ =

(
m1ε 0

0 −m2ε

)
, MΛ =

(
0 m

m 0

)
. (2.3)

The mass terms preserve the subgroups Sp(4) ∈ SU(4) and U(1)Λ×Z2 ⊂ SU(2)×U(1). The

EW gauging of the kinetic term of Q preserves the subgroup SU(2)W ×U(1)Y ×U(1)TB ⊂
SU(4) and the full SU(2)×U(1) part of the global symmetry.

1The U(1) charges of Q and Λ make the corresponding current anomaly free since (−1)4Tr[τaτ b] +

(1/2)2Tr[εacdεbcd] = 0.
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2.1 The condensates and electroweak embedding

The dynamical condensates of the theory are

〈QIα,cQJβ,c′εαβεcc
′〉 ∼ f3EIJQ , 〈λAα,kλBβ,k′εαβδkk

′〉 ∼ f3
ΛE

AB
Λ (2.4)

with I, J and A,B flavor indices in the two sectors while α, β are spin and c, k are gauge

indices. We expect the Goldstone boson decay constants f, fΛ to be of the same order [26,

28] and will for simplicity take them to be identical later. The condensates break the

global symmetries SU(4) to Sp(4) and SU(2) × U(1) to U(1)Λ × Z2. The orientation of

the condensate EQ relative to the EW embedding determines whether we are in the TC

limit or in the CH regime, and the orientation is in turn determined by the interactions

in δL, δLm. In the TC limit the Sp(4) is aligned such that it only contains the U(1)EM

subgroup of the electroweak symmetry group.

To describe the general vacuum alignment in the effective Lagrangian we identify an

SU(2)L × SU(2)R subgroup in SU(4) by the left and right generators

T iL =
1

2

(
σi 0

0 0

)
, T iR =

1

2

(
0 0

0 −σTi

)
, (2.5)

where σi are the Pauli matrices. The EW subgroup is gauged after identifying the generator

of hypercharge with T 3
R; see, e.g., refs. [18, 21, 53] for details.

The alignment between the EW subgroup and the stability group Sp(4) can then be

conveniently parameterized by an angle, θ, after identifying the vacua that leave the EW

symmetry intact, E±Q , and the one breaking it completely to U(1)EM of electromagnetism,

EB
Q, with:

E±Q =

(
iσ2 0

0 ±iσ2

)
, EBQ =

(
0 1

−1 0

)
, EΛ =

(
0 1

1 0

)
(2.6)

where we have also written the Λ-sector vacuum matrix, EΛ. The true SU(4) vacuum

can be written as a linear combination of the EW-preserving and EW-breaking vacua,

EQ = cθE
−
Q + sθE

B
Q. We use the short-hand notations sx ≡ sinx, cx ≡ cosx, and tx ≡ tanx

throughout. Either choice of E±Q is equivalent [54], and here we have chosen E−Q . The

vacuum alignment of the Λ-sector, described by the matrix EΛ, is kept fixed, independent

of the angle, θ.

In the CH vacuum with 0 < θ < π/2 the unbroken global symmetry group is reduced

from Sp(4) to U(1)EM ×U(1)Λ × Z2 after gauging. In the limit θ = π/2 referred to as the

TC vacuum the unbroken symmetry group is U(1)EM ×U(1)TB ×U(1)Λ × Z2. In the EW

unbroken vacuum with θ = 0 it is SU(2)W ×U(1)Y ×U(1)Λ × Z2.

The Goldstone excitations around the vacuum are then parameterized by

ΣQ = exp

[
2
√

2 i

(
ΠQ

f
− 1

3

Θ

fΘ
14

)]
EQ,

ΣΛ = exp

[
2
√

2 i

(
ΠΛ

fΛ
+

1

6

Θ

fΘ
12

)]
EΛ,

(2.7)
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U(1)TB U(1)Λ Z2

h ≡ Π4
Q ∼ ŪU + D̄D − 0 0

η ≡ Π5
Q ∼ ImUTCD − 0 0

Φ ≡ (Π1
Λ − iΠ2

Λ)/
√

2 ∼ ΛTCΛ − 1 0

Φ̄ ≡ (Π1
Λ + iΠ2

Λ)/
√

2 ∼ Λ̄CΛ̄T − −1 0

Θ ∼ i(Ūγ5U + D̄γ5D − (1/2)Λ̄γ5Λ) − 0 0

ΠUD ≡ (Π4
Q − iΠ5

Q)/
√

2 ∼ UTCD 1√
2

0 0

ΠUD ≡ (Π4
Q + iΠ5

Q)/
√

2 ∼ ŪCD̄T − 1√
2

0 0

Φ 0 1 0

Φ̄ 0 −1 0

Θ 0 0 0

Table 2. Table of pNGB states in the EW unbroken limit with sθ = 0 (upper) and the TC limit

sθ = 1 (lower).

with

ΠQ =

5∑
i=1

Πi
QX

i
Q, ΠΛ =

2∑
i=1

Πi
ΛX

i
Λ, (2.8)

where XQ,Λ are the θ-dependent broken generators of SU(4) and SU(2) and can be found

explicitly in refs. [26, 54]. The Θ state is the only state connecting the two sectors at the

level of single trace terms in the effective Lagrangian and its U(1) charges under each sector

follow from eq. (2.1).

For simplicity, we will henceforth use the notations h ≡ Π4
Q and η ≡ Π5

Q for the

composite Higgs, and the CP-odd pNGB of the Q sector, resp., and Φ ≡ 1√
2
(Π1

Λ − iΠ2
Λ),

Φ̄ ≡ 1√
2
(Π1

Λ + iΠ2
Λ) for the Λ-sector pNGBs, corresponding to ΛTCΛ and Λ̄CΛ̄T states.

The states in the EW unbroken limit with sθ = 0 (upper) and TC vacuum with sθ = 1

(lower) are given in table 2. In the composite Higgs range the states correspond to those in

the EW unbroken vacuum except h ≡ Π4
Q ∼ cθ(ŪU + D̄D)+sθ ReUTCD, see e.g. ref. [53].

Below the condensation scale, the Lagrangian of eq. (2.2), gauged under the EW

interactions, yields

Leff = Lkin − Veff , (2.9)

where the kinetic terms are

Lkin =
f2

8
Tr[DµΣ†QD

µΣQ] +
f2

Λ

8
Tr[∂µΣ†Λ∂

µΣΛ], (2.10)

with

DµΣQ = ∂µΣQ − i
(
GµΣQ + ΣQG

T
µ

)
, (2.11)
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and the EW gauge fields are encoded in the covariant derivative

Gµ = gW i
µT

i
L + g′BµT

3
R. (2.12)

The kinetic term of Θ is canonically normalized only if fΘ = f = fΛ which we will assume

for simplicity. In the general case, the kinetic terms must be renormalized but based on

Casimir scaling we expect them to be of the same size [26, 28].

The EW gauge interactions contribute to the effective potential at the one-loop level,

but the contribution is higher order as compared to the vector-like mass terms in eq. (2.3),

and numerically subleading due to the smallness of the EW gauge couplings as compared

to the top-loop contributions arising from the four-fermion interactions. We discuss the

latter below.

The effective potential, at the lowest order, is given by

V 0
eff,m = 2πcQf

3 Tr
[
MQΣ†Q + ΣQM

†
Q

]
+ 2πcΛf

3
Λ Tr[MΛΣ†Λ + ΣΛM

†
Λ], (2.13)

where cQ, cΛ are non-perturbative O(1) constants, and we use the numerical value cQ ≈ 1.5

suggested by the lattice simulations [43]. The mass terms involving MQ (as well as the

subleading EW gauge interactions) prefer the vacuum where the EW is unbroken as we

discuss below. The correct vacuum alignment must therefore be ensured by the SM-fermion

mass generation mechanism.

2.2 Interactions between the R1 and R2 sectors

From the single trace terms in eq. (2.13), the only interactions between the R1 and R2

sectors are those involving the Θ state. At the next leading order all interactions between

the R1 and R2 sectors arise from double trace terms

LQ,Λ =
c1

4π
Tr[DµΣ†QD

µΣQ]Tr[∂µΣ†Λ∂
µΣΛ]

− c2

4π
fΛTr[DµΣ†QD

µΣQ]Tr[MΛΣ†Λ + ΣΛM
†
Λ − 2MΛEΛ]

− c3

4π
fΛfTr[MQΣ†Q + ΣQM

†
Q + 2MQEQ]Tr[MΛΣ†Λ + ΣΛM

†
Λ − 2MΛEΛ]

− c4

4π
fTr[MQΣ†Q + ΣQM

†
Q + 2MQEQ]Tr[∂µΣ†Λ∂

µΣΛ] + . . . ,

(2.14)

where ci, 1 = 1, . . . , 4 are the Gasser-Leutwyler type coefficients [55], and ci ∼ O(1) by

naive dimensional analysis in analogy with QCD [56]. We have for simplicity shifted the

c2 and c3 terms such that Φ, h, and the EW gauge boson masses and kinetic terms do not

acquire additional contributions from these higher-order terms, but are instead determined

by Eqs (2.13), (2.24), and (2.10), resp.
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Expanding Eqs (2.13) and (2.14) yields

LQ,Λ ⊃
m2

Φ

f2
Λ

ΦΦ̄

(
ghh+

1

2
gZZZµZ

µ + gWWW
+
µ W

−µ +
1

2
gΘΘΘ2 +

1

2
ghhh

2 +
1

2
gηηη

2

+
1

2
g∂Θ ∂µΘ∂µΘ +

1

2
g∂h ∂µh∂

µh+
1

2
g∂η ∂µη∂

µη

)
+

1

f2
Λ

∂µΦ∂µΦ̄

(
dhh+

1

2
dZZZµZ

µ + dWWW
+
µ W

−µ +
1

2
dhhh

2 +
1

2
dηηη

2

+
1

2
d∂Θ ∂µΘ∂µΘ +

1

2
d∂h ∂µh∂

µh+
1

2
d∂η ∂µη∂

µη

)
, (2.15)

where

m2
Φ = −16πcΛfΛm, (2.16)

analogously to the Gell-Mann-Oakes-Renner relation in QCD [57]. The mass appears as a

common prefactor of all non-derivative terms as a consequence of the Goldstone nature of

Φ. The couplings involving the Θ state gΘΘ and g∂Θ are the only ones not arising from a

double trace term. We give the explicit couplings in appendix A.

Besides the anomaly-free Θ state, a Θ′ state corresponding to the U(1) which is quan-

tum anomalous is also present in the spectrum of the theory and can mix with Θ. Its mass

is generated by instanton effects related to the U(1) anomaly [58]. We provide more details

in appendix B. We assume for simplicity that Θ′ mass is large and it decouples.

The anomaly-free state Θ on the other hand receive its mass from explicit U(1) breaking

terms, like the vector-like mass terms of eq. (2.13), which also generate interactions between

Θ and other pNGBs. Explicitly, the relevant terms (excluding derivatives) up to quartic

order are given by

L ⊃ 8π

9f2
Θ

(
4cQf

3mQcθ + cΛf
3
Λm
)

Θ2 − 16
√

2π

3fΘ
cQf

2(m1 −m2)Θη

− 4

9πf2
Θ

sθmQ(8π2cQf
2 + c3fΛm)hΘ2 − 32m

9πf2
ΘfΛ

(2π2cΛf
2
Λ + c3mQfcθ)Θ

2ΦΦ̄

+
2

9πff2
Θ

{
(h2 + η2)

[
4
√

2π2cQffΘ(m1 −m2)Θη − cθmQ(8π2cQf
2 + c3mfΛ)Θ2

]
+

4
√

2

9fΘ
(m1 −m2)(8π2cQf

2 + 3c3mfΛ)Θ3η

}
(2.17)

where mQ ≡ m1 + m2. We also assume that m1 = m2 so mass mixing is absent in the

pseudoscalar sector.

The relevance of the Θ state and its interactions for our study is that the quartic term

ΦΦ̄Θ2 can erase the thermal relic density of Φ unless mΘ > mΦ or m� fΛ. In the following

we require mΘ > mΦ and this imposes non-trivial constraints on the parameter space.

2.3 SM-fermion masses and vacuum alignment

The composite sector must be extended to provide SM-fermion masses and correct vac-

uum alignment. Here we briefly comment on the three different possibilities which will
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impact the DM phenomenology. Further ways to distinguish these possibilities using the

pseudoscalars analogous to the QCD η, η′ states have been discussed in ref. [59].

(i) ETC-type four-fermion operators. One possibility is to add four-fermion opera-

tors as in ref. [17]. Such four-fermion operators could themselves arise from the exchange

of heavy scalar multiplets but also from heavy vectors as in ETC [2].

Explicitly for the top quark, after integrating out heavy states, we would have

L4f ∼−
YtYU
Λ2
t

(q̄LtR)†α(QTPαQ) + h.c., (2.18)

where the spurion, Pα, projects out the EW components such that QTPαQ transforms

as EW doublet with hypercharge +1/2. Upon the condensation of the techniquarks, this

yields a contribution to the top mass, i.e.

L4f ∼ −4πcQf
3YtYU

Λ2
t

Tr[P1Σ]t̄t = −y′tfsθ t̄t− y′tcθ h t̄t+ . . . , (2.19)

where

y′t ≡
4πcQf

2YtYU
Λ2
t

=
mt

vw
. (2.20)

This yields the Higgs-top coupling

yht̄t = y′tcθ =
mt

vw
cθ, (2.21)

and gives a contribution to the effective potential via the top loop:

Vtop = −Cty′ 2t f4
∑
α

|Tr[PαΣQ]|2 = −Cty′ 2t f4s2
θ + . . . , (2.22)

where Ct encodes the non-perturbative top-loop effects. The vacuum alignment is domi-

nantly given by balancing the top contribution and contribution from the explicit techni-

quark mass terms [21]:

cθ = −
4πcQmQ

Cty′ 2t f
. (2.23)

The Higgs mass is given by

m2
h = −2f

(
4πcQmQcθ + Cty

′ 2
t fc2θ

)
= 2Cty

′ 2
t f

2s2
θ = 2Ctm

2
t . (2.24)

Thus the correct Higgs mass is reproduced for Ct ∼ 1
4 . Furthermore, the mass of η reads

m2
η = m2

h/s
2
θ. (2.25)

We can write the mass of Θ from eq. (2.17) now as

m2
Θ =

8

9
m2
ηc

2
θ +

1

9
m2

Φ. (2.26)

Requiring that mΘ > mΦ leads to the constraint

mΦ < mηcθ, (2.27)

and further after parametrizing mΦ = εf , to a relation between sθ and ε:

ε2 <
m2
h

v2
w

(1− s2
θ) ≈

1

4
(1− s2

θ). (2.28)
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(ii) Partially composite Higgs. Alternatively we may add a multiplet of elementary

scalars containing at least an SU(2)W doublet with Yukawa couplings to SM fermions as

in refs. [6, 12–14, 16]. We will focus on the simplest example with H an SU(2)W doublet

by adding to the UV Lagrangian above the interactions:

LH = DµH
†DµH −m2

HH
†H − λH(H†H)2

− yUHα(QTPαQ)− yDH̃α(QT P̃αQ) + h.c.,
(2.29)

where the elementary Higgs doublet is given by

Hα =
1√
2

(
σh − iπ3

h

−(π2
h + iπ1

h)

)
, (2.30)

where H̃ = εH∗. The antisymmetric contractions are kept implicit.

The above Yukawa interactions induce the following lowest-order operators to the

effective potential:

VpCH = 4πcQf
3
(
yUHαTr [PαΣQ] + yDH̃αTr[P̃αΣQ] + h.c.

)
. (2.31)

This part of the potential prefers the TC vacuum such that the final vacuum alignment in

this case is given by

tθ = − (yU + yD)v√
2(m1 +m2)

= −
v yQ√
2mQ

, (2.32)

where v ≡ 〈σh〉, yQ ≡ yU + yD and again mQ = m1 +m2.

The two CP-even mass eigenstates in this partially composite Higgs case are given in

terms of the interaction eigenstates by [16]

h1 = cασh − sαh, h2 = sασh + cαh, (2.33)

where as above we have first identified h ≡ Π4, and the angle, α, is determined by

t2α =
fvs2θ

(1 + δ)f2s2
θ − v2

, where δ ≡ 2λHv
2

m2
H + λHv2

. (2.34)

The ordinary CH case corresponds to sα = −1, h1 = h. In this case, the η mass is given by

m2
η =

m2
htα

tα + cθ/tβ
, (2.35)

where the angle β is defined by

tβ =
v

fsθ
. (2.36)

The mass of Θ can now be written as

m2
Θ =

8

9
m2
η +

1

9
m2

Φ. (2.37)

Requiring that mΘ > mΦ = εf leads again to a condition between sθ and ε:

ε2 <
m2
η

v2
w

s2
θ. (2.38)
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(iii) Fermion partial compositeness. Finally in the partial compositeness scenario

we add baryon-like operators as in ref. [52]. In this case the underlying theory has to

be extended with extra QCD charged fermions in order to construct the top partners

and to enlarge the GTC gauge group to ensure asymptotic freedom as studied in e.g.

ref. [19]. The effect of the partial compositeness operators into vacuum alignment was

extensively discussed in ref. [60]. The vacuum alignment phenomemnology depends on in

which representation of the global symmetry group the top partners are embedded. For

concreteness, we will consider the top partners in the symmetric representation of SU(4).

The top mass and linear couplings to pNGBs can be written as [60]

CyS
4π

ytLytRf(Q1t
c)† Tr[P 1

QΣ†PtΣ
†] + h.c

= (Q1t
c)†
(
mtop +

mtop

v

(
c2θ

cθ
h− isθ

cθ
η

)
+ . . .

)
+ h.c ,

(2.39)

with CyS ∼ O(1), mt =
CyS
4π ytLytRcθsθf , and the contribution to the effective potential is

given by

VPC =
CtS

(4π)2
f4
(
y4
tL

Tr[PαQΣ†P βQΣ†]Tr[ΣP †QαΣP †Qβ ]

+ y4
tR

Tr[PtΣ
†PtΣ

†]Tr[ΣP †t ΣP †t ]

+ y2
tL
y2
tR

Tr[PαQΣ†PtΣ
†]Tr[ΣP †QαΣP †t ]

)
=

CtS
(4π)2

f4
(
y4
tL
s4
θ + y4

tR
c4
θ + y2

tL
y2
tR
c2
θs

2
θ

)
,

(2.40)

where

P 1
Q =

1√
2


0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

 , P 2
Q =

1√
2


0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

 , Pt =
1√
2


0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

 , (2.41)

and CtS ∼ O(1).

Now the alignment condition reads

mQ =
4πCtS

cQC4
ySy

4
tR
f3

[
m2
t

c3
θs

2
θ

(
C2
yS

(4π)2
y4
tR
f2c2

θc2θ + 2m2
t

)
− 2

C4
yS

(4π)4
y8
tR
f4c3

θ

]
, (2.42)

and the Higgs mass is given by

m2
h =

(4π)2CtS
C4
ySy

4
tR
f2

[
C2
yS

(4π)2
f2y4

tR

(
3C2

yS

(4π)2
y4
tR
f2s2

2θ + 2
(
t2θ − 5

)
m2
t

)
+m4

t

(
16/s2

2θ − 2/c4
θ

)]

=
32π2CtS
C4
yS

(
4m4

t

y4
tR
v2

w

−
5C2

yS

(4π)2
m2
t +

6C4
yS

(4π)4
y4
tR
v2

w

)
+O(s2

θ) . (2.43)
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Obtaining the correct Higgs mass, requires a small hierarchy CtS < CyS . Finally, the η

mass can be written as

m2
η =

4CtS
(4π)2

f2y4
tR
c2
θ −

8π2CtSm
2
t

C4
ySf

2y4
tR
s2
θc

4
θ

(
C2
yS

(4π)2
f2y4

tR
(c4θ + 2c2θ + 1) + 8m2

t

)
. (2.44)

One possible extension of our model to provide the top partners is to have four Weyl

fermions, Q, in the fundamental (F), another six, χ, in the two-index anti-symmetric,

A2, as detailed in ref. [20], and keep the inert sector with λ-fermions still in the adjoint

representation (G) of GTC. In this case, it is also necessary to modify the gauge group in

order to ensure asymptotic freedom, one possibility being GTC = Sp(NTC). The enhanced

global symmetry is then SU(4)/Sp(4)× SU(2)/SO(2) × SU(6)/SO(6) × U(1)2. Asymptotic

freedom is guaranteed by NTC = 2 < 3, where the first coefficient b of the beta function is

positive [26, 61], i.e.

b =
11

3
C2(G)− 2

3
(4T (F) + 2T (G) + 6T (A2)) = −10

3
(NTC − 3) > 0 (2.45)

with T (R) = 1, 2NTC−2, 2NTC+2 the index of representation R = F, A2, G respectively.

The two anomaly-free U(1) give rise to two extra pNGBs. The Q, χ and λ charges under

these U(1) are defined by the anomaly cancellation

qQT (F ) + qχT (A2) + qλT (G) = 0⇒ qλ = −1

3
qQ − qχ . (2.46)

The two states will mix but we leave a detailed study for the future and restrict to the

simple case where the χ-sector (as well as the anomalous Θ′) decouple (for instance with

an explicit χ mass) so that the lighest Θ-state can be determined by the charge assignment

qQ = −1, qλ = 1/3. All interactions of the Θ-sector then have to be modified accordingly;

in particular the mass relation between Φ and Θ is modified to

m2
Θ =

1

4q2
Q + 2qλ

(4q2
Qm

2
ηc

2
θ + 2q2

λm
2
Φ) =

1

19
(18m2

ηc
2
θ +m2

Φ) . (2.47)

Notice, however, that upon the requirement mΘ > mΦ, this leads to same constraint as in

the ETC case, eq. (2.27): mΦ < mηcθ. A more general discussion allowing a small mass

for χ is provided in appendix B.

3 Dark matter

Before studying the phenomenology of the DM state, Φ, it is illustrative to briefly discuss

the relation between the TC and CH regimes. In the TC limit the ΠUD state in table 2 is

stable due to the U(1)TB symmetry which is only violated by the EW anomaly above the

EW scale. The kinetic term in the Lagrangian in eq. (2.10) includes contact interactions

of ΠUD with the SM gauge bosons of the form

Lkin ⊃ −
g2

2
s2
θW

+
µ W

− νΠUDΠ̄UD (3.1)
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which lead to a large thermal cross section

〈σv〉 =
g4s4

θ

128πm2
ΠUD

√
1−

m2
W

m2
ΠUD

(
4m4

ΠUD

m4
W

−
4m2

ΠUD

m2
W

+ 3

)

=
g4s4

θm
2
ΠUD

32πm4
W

+O(m2
W /m

2
ΠUD

) (3.2)

' 2 · 10−24cm3/s
s4
θm

2
ΠUD

m2
W

In the TC limit where sθ = 1, the ΠUD state can therefore only be thermal dark matter

if its mass is just below the W mass threshold where the annihilation cross-section is

kinematically suppressed [29]. For mΠUD > mW the annihilation cross section is too

efficient such that ΠUD must instead be asymmetric if it is to be the DM as in [26, 29].

In the CH parameter regime, with say sθ . 0.1, the pNGB η, with a similar annihilation

cross-section and with a weak scale mass, would be a WIMP candidate if it were stable

but topological interactions make it unstable.

However the Φ state of the R2 sector in the extended models considered here remains

protected by the U(1)Λ symmetry in both the TC and CH vacua. The contact interactions

of Φ with the SM gauge bosons is not only suppressed by sθ in the CH vacuum, but also

by the fact that the interactions arise only from the double trace terms in eq. (2.14).

In the following, we will compute the thermal annihilation cross sections for the three

different cases for SM-fermion mass generation outlined in section 2.3.

3.1 Annihilation cross sections

We list the dominant annihilation cross sections for different channels below. For simplicity,

we write down explicitly here only the channels ΦΦ̄→ h1h1, V V . Notice that the condition

mΘ > mΦ implies also mη > mΦ in all the cases of SM-fermion mass generation that we

consider; see Eqs (2.26), (2.37), and (2.47). In the numerical analysis we keep all the

interactions, and take into account the richer scalar sector in the pCH case including

channels ΦΦ̄→ hihj , i = 1, 2.

〈vσ〉h1h1 =
1

16πsf4
Λ

√
1−

4m2
h1

s

[
s2
αm

2
Φghh + s2

α

s− 2m2
Φ

2
dhh + s2

α

m2
Φ(s− 2m2

h1
)

2
g∂h

+ s2
α

s− 2m2
Φ

2

s− 2m2
h1

2
d∂h − sα

(
m2

Φgh +
s− 2m2

Φ

2
dh

)
gh1h1h1
s−m2

h1

+cα

(
m2

Φgh +
s− 2m2

Φ

2
dh

)
gh2h1h1
s−m2

h2

]2

+O(c3
i ),

(3.3)
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and

〈vσ〉V V =
δV

8πsf4
Λ

√
1−

4m2
V

s

(
3 +

s(s− 4m2
V )

4m4
V

)[
m2

ΦgV V +
s− 2m2

Φ

2
dV V (3.4)

− sα
(
m2

Φgh +
s− 2m2

Φ

2
dh

)
gh1V V
s−m2

h1

+cα

(
m2

Φgh +
s− 2m2

Φ

2
dh

)
gh2V V
s−m2

h2

]2

,

for V = W,Z, and δW,Z = 1, 1
2 , resp. The couplings gi, di, i = h, ∂h, hh, V V are given ex-

plicitly in appendix A, and the coupling gh1h1h1 , gh1V V , for CH and PC, and ghih1h1 , ghiV V ,

i = 1, 2, for pCH case can be obtained from the Lagrangians given above. The CH and PC

cases correspond to sα = −1, see eq. (2.33).

Furthermore, the annihilation cross section ΦΦ̄→ tt̄ is given by

〈vσ〉tt̄ =
3

4πsf4
Λ

√
1− 4m2

t

s
(s− 4m2

t )

[
−sα

(
m2

Φgh +
s− 2m2

Φ

2
dh

)
gh1 t̄t

s−m2
h1

+cα

(
m2

Φgh +
s− 2m2

Φ

2
dh

)
gh2 t̄t

s−m2
h2

]2

,

(3.5)

where gh1,2 t̄t are the couplings of the mass eigenstates h1,2 to the top quark, and again CH

and PC cases correspond to sα = −1.

(i) ETC-type four-fermion operators. We consider first the annihilation cross section

in the purely CH case with ETC-type SM-fermion masses, described in section 2.3. The

condition mΘ > mΦ (cf. eq. (2.26)) also implies mη > mΦ, and therefore, the relevant

annihilation channels are ΦΦ̄→ hh, V V, tt.

Taking mΦ = εf , and fΛ = f = vw/sθ, and mQ = − m2
h

8πcQvw tθ
fixed by the alignment

condition eq. (2.23), we find the leading-sθ contribution to the annihilation cross section

to be

〈σv〉hh,V V =
4s2
θε

2
[
32πcQv

2
wε

2 (c2 − 16πcΛc1) +m2
h (c3 + 16πcΛc4)

]2
(4π)7c2

Qc
2
Λv

6
w

+O(s4
θ, c

3
i ). (3.6)

The leading contribution from ΦΦ̄→ h→ t̄t is O(s4
θ) and is given by

〈σv〉t̄t =
3s4
θm

4
hm

2
t (c3 + 16πcΛc4)2

(4π)7c2
Qc

2
Λv

8
w

+O(s6
θ). (3.7)

The relative contributions of 〈σv〉t̄t and the two parts 〈σv〉1,2hh,V V and 〈σv〉3,4hh,V V from

the c1,2 and c3,4 coefficients respectively are therefore

〈σv〉t̄t
〈σv〉3,4hh,V V

=
3s2
θ

4ε2
m2
t

v2
w

,
〈σv〉3,4hh,V V
〈σv〉1,2hh,V V

=
1

32πcQε2
m2
h

v2
w

(c3 + 16πcΛc4)2

(c2 − 16πcΛc1)2 (3.8)
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Figure 1. The thermal cross section in the CH case for c1 = c2 = c3 = c4 ≡ c as a function of the

DM mass, mΦ. We fix the DM mass as a function of compositeness scale, f , via mΦ = εf and let

ε vary. The purple solid line corresponds to the thermal cross section 〈σv〉 = 3 · 10−26 cm3s−1 for

ε = max ε(mΦ) for which mΘ = mΦ. We show max ε(mΦ) in blue in figure 2. In the shaded region

below the purple solid line, the relic density is too small due to the annihilation channel ΦΦ̄→ ΘΘ

opening. The upper shaded region shows the XENON1T exclusion [62, 63] for ε = max ε(mΦ);

for smaller ε, the region moves upwards, see eq. (3.14). The dot, star, and triangle correspond to

sθ = 0.3, 0.1, 0.05, respectively. Finally the blue dashed line shows the thermal cross section for a

fixed ε = 0.25.

showing how the contact interactions, in particular the V V interactions from the c1,2 terms,

dominate the annihilation cross-section parametrically in sθ. These contact interactions

are however loop-suppressed in direct-detection scattering.

Values of ε ∼ O(1) will quite naturally lead to the right thermal relic density again

with sθ . 0.1, while the requirement mΘ > mΦ sets an upper bound ε ≤ 1/2.

Setting c1 = c2 = c3 = c4 ≡ c, and cΛ = 1, we show the thermal cross section

〈σv〉 = 3 · 10−26 cm3s−1 as a function of c and mΦ for different values of ε in figure 1.

The blue dashed line corresponds to fixed value ε = 0.25, whereas on the purple solid line,

ε = max ε(mΦ) corresponding to the limit mΘ = mΦ. We show ε = max ε(mΦ) in figure 2.

On the shaded purple region mΘ < mΦ, and the relic abundance would be washed away

by the ΦΦ̄ → ΘΘ scatterings. The blue shaded region shows the current direct-detection

limits by XENON1T [62, 63] assuming ε = max ε(mΦ). The direct-detection limits are

discussed in more detail in section 3.2.

(ii) Partially composite Higgs. Including an elementary Higgs doublet changes the

picture significantly. Now CP-even states σh and h mix as described in section 2.3, and

the mass eigensates are the physical Higgs boson, h1, and a heavy scalar, h2.

In this case, the thermal annihilation cross section is determined by the scattering

channels ΦΦ̄ → hihj , V V, tt̄, where i = 1, 2. In the simplified case, where the additional
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Figure 2. The maximal value of ε = mΦ/f corresponding to mΘ = mΦ in ETC and fermion

PC scenarios (left panel), and for the benchmark cases tβ = 10, α = −0.1, tβ = 5, α = −0.2, in the

partially composite Higgs scenario (right panel) as a function of mΦ.

scalar is heavy, and only ΦΦ̄ → h1h1, V V channels contribute, we can write the cross

section as

〈σv〉 =
s2
θε

6 (16πcΛc1 + c2)2
(
s4
β + 3c4

β

)
16π5c2

Λc
2
βv

2
w

−
s4
θt

4
βε

4m2
h (16πcΛc1 + c2) (16πcΛc4 − c3)

256π6c2
ΛcQc

2
βv

4
wδ

, (3.9)

and we again take mΦ = εf , but now fΛ = f = vwcβ/sθ. We fix mQ and yQ via the vacuum

conditions, and trade m2
H and λH for δ (defined in eq. (2.34)) and m2

h.

We show the full result including the additional scalar channels, while again setting

c1 =c2 =c3 =c4 ≡ c and cΛ =1, in figure 3 for two benchmark values of the addtional angles:

(a) tβ = 10, α=−0.1 (left panel), and (b) tβ = 5, α=−0.2 (right panel). Again, the solid

purple curve represents the thermal cross section 〈σv〉=3 ·10−26 cm3s−1 for ε=max ε(mΦ)

corresponding to the limit mΘ =mΦ (see figure 2), and the dashed blue curve corresponds

to a fixed ε=1. On the shaded purple region mΘ < mΦ, and upper shaded region shows the

XENON1T exclusion [62, 63] for ε = max ε(mΦ). The associated heavy scalar spectrum

corresponding to the benchmark cases (a) and (b) is shown in figure 4 as a function of

sθ. The kink in the thermal cross section lines are due to the opening of the ΦΦ̄ → h1h2

annihilation channel which yields the right relic abundance with lower values of c.

The top channel is now very subleading

〈σv〉t̄t =
3s8
θs

8
βm

4
hm

2
t s

4
α−β (c3 − 16πcΛc4)2

16π7s10
2βc

2
Qc

2
Λδ

2v8
w

+O(s10
θ ). (3.10)

(iii) Fermion partial compositeness. Taking mΦ = εf , and fλ = f = vw/sθ, and mQ

fixed by the alignment condition eq. (2.42), we find the corresponding cross section includ-

ing ΦΦ̄→ hh, V V channels (ηη channel is again excluded by the mΘ > mΦ condition):

〈σv〉 =
64s2

θε
2

(4π)11c2
Λc

2
QC

4
ySv

6
w

[
CtS (16πcΛc4 + c3)

(
8π2m2

t − C2
ySv

2
wy

4
tR

)
−128π3cQC

2
ySv

2
wε

2 (c2− 16πcΛc1)
]2

+O(s4
θ, c

3
i )

(3.11)
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Figure 3. The thermal cross section in the pCH case with c1 = c2 = c3 = c4 ≡ c as a function of the

DM mass, mΦ = εf , for two benchmark cases: tβ = 10, α = −0.1 (left panel) and tβ = 5, α = −0.2

(right panel). The blue dashed line corresponds the thermal cross section 〈σv〉 = 3·10−26 cm3s−1 for

fixed value ε = 1, whereas on the purple solid line, ε = max ε(mΦ) corresponding to mΘ = mΦ; see

figure 2. The upper shaded region shows the XENON1T exclusion [62, 63] assuming ε = max ε(mΦ);

for smaller ε, the region moves upwards. The dot, star, and triangle correspond to sθ = 0.3, 0.1, 0.05,

respectively.

tβ = 10, α = -0.1

tβ = 5, α = -0.2

-1.5 -1.0 -0.5 0.0
log10sθ

500

1000

1500

2000

mh2
[GeV]

Figure 4. The mass of h2 as a function of sθ for the cases shown in figure 3. The masses of η and

π±,0 follow closely the mass of h2 and we have omitted those for clarity.

The leading contribution from ΦΦ̄→ t̄t is O(s4
θ) and is given by

〈σv〉t̄t =
48C2

tSm
2
t s

4
θ (16πcΛc4 + c3)2

(
8π2m2

t − C2
ySv

2
wy

4
tR

)2

(4π)11C4
ySc

2
Qc

2
Λv

8
w

+O(s6
θ). (3.12)

We show again the thermal cross section for c1 = c2 = c3 = c4 ≡ c, cΛ = 1, and

CyS = 10, CtS = 1 as a function of c and mΦ in figure 5. The blue dashed line corresponds

to fixed value ε = 0.25, and the purple solid line to ε = max ε(mΦ) for which mΘ = mΦ;

see figure 2. We note that the χ sector is assumed to be heavy.
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Figure 5. The thermal cross section in the PC case for c1 = c2 = c3 = c4 ≡ c as a function of

the DM mass, mΦ = εf . We have fixed CyS = 10, CtS = 1. The blue dashed line corresponds the

thermal cross section 〈σv〉 = 3 · 10−26 cm3s−1 for fixed value ε = 0.25, whereas on the purple solid

line, ε = max ε(mΦ) corresponding to mΘ = mΦ; see figure 2. The upper shaded region shows the

XENON1T exclusion [62, 63] assuming ε = max ε(mΦ). The dot, star, and triangle correspond to

sθ = 0.3, 0.1, 0.05, respectively.

3.2 Experimental searches

The models we describe here can be experimentally searched for in multiple experiments

including (i) via underground direct-detection experiments searching for signals of DM

scattering off nuclei, (ii) via direct production of the DM particles and other composite

states or deviations in SM measurements at the LHC experiments, or (iii) indirectly via

satellite missions looking for signals of DM annihilating into SM particles in the gamma-ray

spectrum from astrophysical objects with high DM density. We describe in this section the

expectations for each of these types of searches.

(i) Direct detection. Since the contact interactions that determine the thermal relic

density are loop suppressed in direct detection experiments, we expect the t-channel ex-

change of the (partially) composite scalars (h1,2) h (figure 6(a)) will dominate the signal

with a tree-level scattering cross-section on nuclei given by [64]:

σHnucleon =
µ2
N

4πm2
Φ

[
gHdHfNmN

vw

]2

, (3.13)

where µN is the nucleon-DM reduced mass, mN the nucleon mass, vw the electroweak vev,

gH is the effective coupling between the DM and the relevant (partially) composite Higgs,

H = h, h1, h2, dH describes the scalar exchange, and fN parametrizes the Higgs-nucleon

coupling.

We take the central value of fN = 0.3 [65, 66] but this value depends on whether

all fermion masses arise from the same mechanism or if e.g. only the top quark fermion
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(a) (b)

Figure 6. Left: Higgs exchange contribution to DD. Right: WW loop.

mass does. The effective coupling gH is given in the limit of vanishing momentum transfer,

t→ 0, by (cf. eq. (2.15))

gH =
m2

Φ

f2
Λ

(gh − g∂h) = ε2 (gh − g∂h) , (3.14)

where in the last equality we have used our assumption fΛ = f . Depending on the SM-

fermion mass mechanism, dH is given by

dCH,PC
H =

1

m2
h

,

dpCH
H =

sαcα
sβ

(
− 1

m2
h1

+
1

m2
h2

)
.

(3.15)

The direct detection cross-section from the contact interactions are loop suppressed

and the dominant ones from W (Z) exhange are shown in figure 6(b). Loop-induced direct-

detection constraints from four-particle contact interactions between DM and SM photons

and vectors bosons were evaluated in e.g. refs. [67, 68] for interactions via field strength

tensors and for inelastic transitions in ref. [69]. Here however the interaction proceeds via

the mass-like contact interaction, and we find the cross section

σV Vnucleon =
1

16π

(
(c2 − 16πc1cΛ)g2gNVmNmΦq

64
√

2π2cΛf2f2
Λ

)2

, (3.16)

where gNV (V = Z,W ) parametrizes the vector boson-nucleon couplings. For cΛ = 1,

q = 1 GeV, we get

σV Vnucleon ≈ (8.0g2
WN + 6.8g2

ZN )(c2 − 16πc1)2s6
θε

2 10−53 cm2. (3.17)

The resulting cross-section level is well below current direct-detection limits and below

the neutrino floor. While in general there could be interference between the Higgs exchange

and weak boson loop exchange, given how small the latter is, we do not consider that here.

In summary, the annihilation cross section is dominated by the contact interactions of Φ

with the SM vector bosons, while direct detection is dominated by the tree-level Higgs

exchange.

– 18 –



J
H
E
P
1
2
(
2
0
1
8
)
0
8
8

(ii) The LHC experiments. The DM sector can be searched for at the LHC via missing

energy signals. One class of such searches are the mono-X channels with missing energy

where X is a jet, photon, a vector boson V = Z,W or a Higgs boson [70–72]. The most

distinct channels for our model are the q̄q initiated mono-V channels, pp→ V ∗ → V ΦΦ̄

through the quartic couplings in Eqs (A.1) and (A.2). The CMS and ATLAS experiments

have looked at this kind of signature for a fermion DM candidate [73, 74] where dimension-

5 operators are required. These searches have been interpreted for scalar DM with a

geff,V VµV
µΦΦ̄ coupling in ref. [75] but only to derive an order-of-magnitude bound for the

effective couplings. Our case corresponds to a good approximation to

geff,Z =
m2

Φ

f2
λ

(dZZ + gZZ) = ε2(g′2 + g2)s2
θ

(
c2

4π2
+

4c1

π

)
, (3.18)

and currently only geff,Z � 1 is excluded [75]. For instance, in the ETC case where the

correct relic abundance can be obtained when ε . 0.5 (see figure 2), geff,Z = 1 corresponds

to c ∼ 80 assuming c = c1 = c2 and sθ = 0.3. Since the expression eq. (3.18) has a similar

dependence on θ and ε as the direct-detection bounds, even an optimistic bound on geff,Z

is at best comparable to the X1T limits. However, the inclusion of spin-one resonances

can produce distinct pT spectra in these searches as shown in ref. [76] and deserves to be

investigated in detail. The monojet and monophoton limits on DM coupling to the SM via

the Higgs portal, pp→ HX → ΦΦ̄X are presented e.g. in ref. [77]. Limits on the coupling

gvhΦΦ are g . 1 at mΦ ' 100 GeV and decrease at higher values of mΦ, but our equivalent

coupling is orders of magnitude smaller.

The new strong sector can also be searched for directly at the LHC and future colliders.

Depending on parameters the LHC might be able to directly produce the pNGBs η and Θ

of table 2 together with the additional h2, π±,0 in the pCH scenario (see eq. (2.33)) or the

Θ2 state in the PC scenario (see appendix B).

A new aspect of our model, which has not yet been studied in detail, is the appearance

of the light Θ boson, which is a mixture of an inert and an EW charged component. In

addition, in the PC case we expect two further pNGBs as discussed above, which might

lead to signatures not yet explored. Again they are here mixed with an inert sector and

a careful analysis must be carried out. We leave this analysis for future work. We note

that in the PC case, other (probably heavier) QCD charged pNGB are present, and their

phenomenology has been studied in ref. [78].

The phenomenology of η has been studied in ref. [79] and the partially elementary

scalars in refs. [15, 16]. Furthermore, in ref. [59], it was shown that the η and η′ corre-

sponding to the quantum anomalous U(1) could be used to disentangle the three different

fermion mass mechanisms we consider here. In refs. [58, 80], these bosonic states have been

studied in a PC scenarios with both an EW sector and a QCD-colored sector but without

inert fermions.

In summary, the model, and in particular its DM sector, leads to potentially rich

collider phenomenology, but we leave the detailed study of it for future work.

(iii) Indirect detection. Finally the Fermi-LAT limits from DM annihilations in dwarf

spheroidals [81] do not currently exclude a full thermal annihilation cross-section into WW
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and ZZ at any mass. This is in contrast to direct detection which is seen to do so, e.g.

in the right panel of figure 3. We therefore do not include indirect detection in our limit

plots. However, we note that with a order of magnitude improvement in the experimental

sensitivity, the DM mass range mW . mΦ . 500 GeV can be probed.

4 Conclusions

In this paper we have constructed new (partially) composite Goldstone Higgs models fea-

turing composite Goldstone DM candidates. The DM candidates are stabilized by U(1)

global symmetries of the underlying four-dimensional gauge and gauge-Yukawa theories

with strongly interacting fermions — analogous to the U(1) baryon symmetry responsible

for the longevity of the proton. However, differently from the proton, the thermal relic

density of the DM is particle anti-particle symmetric.

Only part of the strongly interacting fermions are gauged under the EW symmetry of

the SM and the DM particle is the lightest particle charged under the global U(1) among

the SM-inert fermions. At the effective Lagrangian level the DM relic density arises from

double trace terms between the SM-inert-sector fermions and those that are gauged under

the SM symmetry group. In particular these double trace terms provide four-point contact-

interaction terms between the DM and the SM vector bosons — as well as the Higgs and

additional pNGBs — which determine the thermal relic density.

The dominant scattering channel for direct detection is via composite Higgs exchange

arising also from double trace terms. The Higgs couplings to the DM particle is sensitive to

the origin of the SM fermion masses, either via ETC-type four-fermion operators, mixing

with elementary doublets, or via fermion partial compositeness. Therefore direct detection

is in principle able to probe this origin; however, the constraints are overall weak and only

exclude regions with unexpectedly large values of the Gasser-Leutwyler type coefficients in

the effective Lagrangian.

We eliminate the annihilation channel of the DM, Φ, into the additional pNGB, Θ,

related to the global U(1) factor by requiring that mΘ > mΦ. This is the only annihilation

channel that arises at single-trace level and which could wash out the thermal relic density.

This requirement selects vacuum angles in the region sin θ ∼ 0.01− 1 again depending on

the fermion mass mechanism and assuming that the effective Lagrangian coefficients, ci,

are O(1) as expected by naive dimensional analysis. Therefore, the requirement eliminates

the fine-tuned decoupling limit of parameter space where sin θ � 1.

The SM inert fermions may render the strong dynamics near-conformal and this may

imply that the composite spin-one spectrum exhibits nearly parity doubling. In the TC

limit this has been argued to reduce the electroweak S parameter. Although in CH models

with a large compositeness scale, f , such a dynamical reduction is not necessary to be in

agreement with experimental constraints, it would be interesting to explore in partially

composite Higgs models where the scale f can be low. The presence of an explicit under-

lying model with composite Higgs and DM opens the possibillity for the lattice to provide

crucial input to the phenomenology of these models such as a precise determination of the

spectrum.
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Finally, the unique features of the model might present yet unexplored signatures at

the LHC and future colliders.
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A Φ-interactions

Here we give explicitly the couplings in eq. (2.15),

LQ,Λ ⊃
m2

Φ

f2
Λ

ΦΦ̄

(
ghh+

1

2
gZZZµZ

µ + gWWW
+
µ W

−µ +
1

2
gΘΘΘ2 +

1

2
ghhh

2 +
1

2
gηηη

2

+
1

2
g∂Θ ∂µΘ∂µΘ +

1

2
g∂h ∂µh∂

µh+
1

2
g∂η ∂µη∂

µη

)
+

1

f2
Λ

∂µΦ∂µΦ̄

(
dhh+

1

2
dZZZµZ

µ + dWWW
+
µ W

−µ +
1

2
dhhh

2 +
1

2
dηηη

2

+
1

2
d∂Θ ∂µΘ∂µΘ +

1

2
d∂h ∂µh∂

µh+
1

2
d∂η ∂µη∂

µη

)
. (A.1)

These read

gh =
c3mQsθ
2cΛπ2

,

gZZ = −
(g2

L + g2
Y )c2s

2
θ

4π2cΛ
,

gWW = −
c2g

2
Ls

2
θ

4π2cΛ
,

gΘΘ =
8π2cΛf

2
Λ + 4c3mQfcθ

9π2cΛf2
Θ

,

g∂Θ = − 8c2

9π2cΛf2
Θ

,

ghh =
c3mQcθ
2π2cΛf

,

g∂h = − c2

π2cΛf2
,

gηη =
c3mQcθ
2π2cΛf

,

g∂η = − c2

π2cΛf2
,

dh =
8c4mQsθ

π
,

dZZ =
4(g2

L + g2
Y )c1s

2
θ

π
,

dWW =
4g2

Lc1s
2
θ

π
,

dΘΘ =
64c4mQfcθ

9πf2
Θ

,

d∂Θ =
128c1

9πf2
Θ

,

dhh =
8c4mQcθ
πf

,

d∂h =
16c1

πf2
,

dηη =
8c4mQcθ
πf

,

d∂η =
16c1

πf2

(A.2)
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B Abelian bosons

In a general underlying theory with n fermionic sectors, each one specified by a represen-

tation r and a number of fermions Nr, there is a global symmetry U(1)n one of which is

anomalous under GTC and the anomaly-free combinations are given by∑
r

qrT (r) = 0 , (B.1)

where T (r) is the index of the representation r. Each U(1) can be associated with a boson

Θr and n− 1 of them are pNGBs. The masses of these states can be parametrized by

Vm =
∑
r

1

2
m2
rΘ

2
r +

1

2
m2
AΘ′2 , (B.2)

where mA is the mass generated by the anomaly and Θ′ is the corresponding state. The

states Θr can be parametrized inside the NGB matrices of eq. (2.7) in the following way

Σr = exp

[
2
√

2 i

(
Πr

fr
+

Θr√
2NrfΘr

1Nr

)]
Er, (B.3)

which defines canonically normalised kinetic terms from eq. (2.10). 1Nr is the identity

matrix of dimension Nr. We proceed defining n−1 anomaly-free states Θi (i = 1, · · · , n−1)

and the anomalous Θ′ ≡ Θn, with

Θr =
√

2Nrfr

(∑
i

qr,i
Θi

Ni

)
, Ni =

∑
r

√
2Nrfrqr,i . (B.4)

The factor Ni guarantees a proper normalization of the fields and∑
i

qr,iqr′,i = 0 (B.5)

guarantees no kinetic mixing. The charges of Θn that defines the anomalous combination

are given by the vector perpendicular to the plane defined by the indexes,

qr,n = T (r) . (B.6)

The other charges are then defined to span the rest of the space with orthogonal basis.

These states then mass mix via the terms in eq. (B.2) to form physical states.

In ETC and pCH cases we assumed n = 2 fermion representations, Q in F and λ in G

of GTC = SU(2), which give rise to 2 external U(1) groups one of which is anomalous. The

anomalous charges are qF,2 = 1/2 and qG,2 = 2 and the anomaly-free one is the orthogonal

combination qG,1 = 1/2 and qF,1 = −1. They mix according to eq. (B.2) and in the Θ′

decoupled limit (mA → ∞) we recover eq. (3.15): m2
Θ = 1

9(8m2
F + m2

G) with mF = mηcθ
and mG = mΦ. A similar sitation with two sectors has been studied in ref. [58].
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In PC case we assumed a n = 3 fermionic sectors, Q in F, λ in G and χ in A2 of

GTC = Sp(4). The anomalous combination is qF,3 = 1, qA2,3 = 3, qG,3 = 3. In the case the

anomalous field is decoupled we have the masses of the two anomaly-free states given by

m2
Θ1,Θ2

=
1

152

{
23m2

Φ + 72m2
F + 52m2

χ ±
[
5184m4

F − 432m2
F

(
5m2

Φ + 19m2
χ

)
+529m4

Φ + 1710m2
Φm

2
χ + 3249m4

χ

]1/2}
(B.7)

with mF = mηcθ. If the χ sector decouples (mχ → ∞) then we recover the expression

in eq. (2.47): m2
Θ = 1

19(18m2
ηc

2
θ + m2

Φ). If mχ � mF then m2
Θ1
≈ 1

4(m2
Φ + 3m2

χ) and the

phenomenology changes. This situation was not considered here and we leave it for future

analysis.
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