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Abstract: We investigate a simple holographic model for cold and dense deconfined QCD

matter consisting of three quark flavors. Varying the single free parameter of the model

and utilizing a Chiral Effective Theory equation of state (EoS) for nuclear matter, we find

four different compact star solutions: traditional neutron stars, strange quark stars, as well

as two non-standard solutions we refer to as hybrid stars of the second and third kind (HS2

and HS3). The HS2s are composed of a nuclear matter core and a crust made of stable

strange quark matter, while the HS3s have both a quark mantle and a nuclear crust on top

of a nuclear matter core. For all types of stars constructed, we determine not only their

mass-radius relations, but also tidal deformabilities, Love numbers, as well as moments of

inertia and the mass distribution. We find that there exists a range of parameter values in

our model, for which the novel hybrid stars have properties in very good agreement with

all existing bounds on the stationary properties of compact stars. In particular, the tidal

deformabilities of these solutions are smaller than those of ordinary neutron stars of the

same mass, implying that they provide an excellent fit to the recent gravitational wave data

GW170817 of LIGO and Virgo. The assumptions underlying the viability of the different

star types, in particular those corresponding to absolutely stable quark matter, are finally

discussed at some length.
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1 Introduction

The nature and properties of compact stars is a topic of active research both on the

observational and theoretical sides [1]. The standard picture is that all stars with densities

comparable to the nuclear matter saturation density ns are neutron stars (NS), composed

of hadronic matter of increasing density, or hybrid stars (HS) that in addition contain

deconfined quark matter in their inner cores (this class also includes so-called twin stars).

This scenario is based on the assumption of nuclear matter being absolutely stable in
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vacuum, i.e., that it has a lower energy per baryon ratio at zero pressure than quark matter.

Albeit a highly plausible assumption — after all, we know from observations that at least

most of the compact stars detected so far appear to have masses and radii in the range

predicted for NSs — the case for stable three-flavor quark matter and so-called strange

quark stars (QS) has not been settled yet [2–6]. In particular, a scenario with two separate

families of compact stars with different mass-radius (M–R) branches, one corresponding

to NSs or HSs and the other to QSs, remains viable [7–10]. Inherent in these rather exotic

proposals is the nontrivial assumption that finite-size effects resolve problems related to,

e.g., unobserved quark matter halos being formed around atomic nuclei.

On the theory side, the difficulty in excluding the existence of absolutely stable quark

matter is related to the fact that no robust first principles tools exist for studying this phase

of Quantum Chromodynamics (QCD) at moderate energy densities [11], including quark

matter in its strongly coupled regime just above the deconfinement transition density.

With the Sign Problem impeding lattice studies utilizing Monte-Carlo simulations [12],

and weak coupling methods being restricted to the ultrahigh-density regime [13–16], the

options that remain include investigating simplified models of QCD (see, e.g., [17]) or

deforming the theory to allow for a nonperturbative solution even at strong coupling. A

prime example of the latter approach is naturally the gauge/gravity duality [18–20], which

in particular allows the description of a class of strongly coupled theories with flavor degrees

of freedom [21].

Within the past two decades, the gauge/gravity duality has been frequently applied

to the description of the quark-gluon plasma (QGP) produced in heavy ion collisions (see,

e.g., [11, 22] for reviews). The models that are typically considered in this context are dual

to theories that differ from QCD in a number of ways (e.g. by exhibiting supersymmetry and

conformal invariance), and are furthermore studied in their large-N and infinitely strongly

coupled limits. Despite these unphysical features, at nonzero temperatures the holographic

systems exhibit universal properties that qualitatively match with those measured in heavy

ion collisions, including in particular a fast thermalization rate as well as a hydrodynamic

expansion with an almost perfect fluid behavior. In fact, experimental estimates of the

shear viscosity of the QGP fall remarkably close to the value predicted by holographic

models [23], which has prompted further studies of the properties of the QGP by means of

the duality.

It is worth highlighting that the holographic duality is able to capture the qualitative

and in some cases even quantitative properties of the QGP through the study of theories

that have vacuum properties very different from QCD. An obvious question then arises

concerning whether this behavior is specific to high temperatures, or if a similar universality

extends to other situations, in particular to cold and dense systems. Some reason for

optimism may be derived from the fact that the application of the duality to strongly

correlated condensed matter systems has in recent years become a very active and successful

field of research (see, e.g., [24–26] for reviews).

In the context of cold and dense QCD, the gauge/gravity duality has been applied

to mimic the confined quark matter phase [27–34] as well as the deconfined quark matter

phase [35–39]. In [37] the analysis was further extended to the description of NS matter,
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Figure 1. An illustration of the structure of two-solar mass stars obtained for different values of

m0. The chosen cases correspond to a QS, two different hybrid stars of type HS2, one HS3, and

one ordinary NS. The orange (black) color represents quark (nuclear) matter, while the radii of the

different circles are proportional to the actual sizes of the corresponding regions inside the stars. In

figure 3, these five stars are denoted by small crosses on the corresponding M–R curves.

where a holographic equation of state (EoS) for quark matter was combined with state-of-

the-art nuclear theory results from Chiral Effective Theory (CET) to construct a set of NS

matter EoSs. The holographic result was seen to contain exactly one free parameter, m0,

corresponding to the three equal (constituent) quark masses, whose value was somewhat

arbitrarily fixed to make the quark matter pressure vanish at the same baryon chemical

potential as that of nuclear matter. This resulted in a strong first order deconfinement

transition and the conclusion that the stars become unstable as soon as holographic quark

matter begins to form inside their cores, so that no “holographic HSs” exist. It should,

however, be noted that this approach neglected a number of important physical effects,

including the differing bare masses of the quark flavors as well as quark pairing [40–42],

which has recently been approached using holography [43]. In addition, the holographic

calculation was performed in the so-called probe brane limit, where the backreaction of the

geometry to the presence of the branes is not taken into account. A significant improvement

in the bottom-up holography was reported in [44], which led the authors to propose to-date

the most realistic EoS for deconfined quark matter in the Veneziano limit.

In the paper at hand, we revisit the construction of holographic compact stars by

combining the “medium stiffness” CET EoS of [45] with the quark matter EoS considered

in [37], but this time relaxing one of the assumptions made in the latter reference, namely

the fixing of the parameter m0 by the requirement that the pressures of the two phases

vanish at the same chemical potential. This is seen to lead to a rich phenomenology, with

the variation of m0 generating four distinct types of compact stars (cf. figure 1). These

include i) ordinary NSs, analogous to those constructed in [37]; ii) pure QSs, composed

of absolutely stable quark matter; and iii) and iv) hybrid stars of the second and third

kind (the first kind referring to ordinary HSs), containing a nuclear matter core and either

a quark matter crust (HS2), or a quark mantle and a nuclear matter crust (HS3). The

viability of the solutions ii)–iv) is clearly subject to highly nontrivial assumptions about

stable quark matter, and the physical nature of these star types is thus far from obvious.

In particular, as discussed below, it should be noted that as our model only describes

three-flavor quark matter, the stability of this phase as well as the nuclear matter one
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against two-flavor quark matter is an assumption of our calculation rather than a prediction

thereof. Nevertheless, we feel that it is an interesting topic of research to study, how well

the properties of these stars fit the available observational data on compact stars.

With the above caveats in mind, we find that for a range of values of m0 our novel

hybrid stars exhibit properties in excellent agreement with all known observational and

theoretical bounds, including in particular their mass-radius relations and tidal deforma-

bilities. Perhaps most interestingly, studying the tidal deformability of a 1.4 solar mass

(M�) star as a function of m0, we find the quantity to be minimized not by ordinary NSs,

but by an HS2 solution with a quark crust. As we shall explain below, this implies that

our hybrid stars are in excellent agreement with the recent gravitational wave observation

GW170817 of LIGO and Virgo [46].

Our paper is structured as follows. In section 2, we introduce the holographic setup

that we employ in the description of the quark matter phase, while section 3 contains details

of the matching procedure of the nuclear and quark matter EoSs as well as an explana-

tion of the qualitative properties of the different stellar solutions we discover. Section 4

is then dedicated to a more thorough comparison of the properties of these solutions with

astrophysical (mainly LIGO) data and an inspection of the so-called universal relations,

while conclusions are drawn in section 5. The appendices of the paper finally contain many

important computational details concerning, e.g., the stability analysis of our star config-

urations, the derivation of analytic results for quark star solutions, and the determination

of various astrophysical quantities that are used in section 4.

2 Holographic model and setup

The model we choose to describe quark matter with is based on N = 4 SU(Nc) supersym-

metric Yang-Mills theory (SYM) with Nf = 3 fundamental N = 2 matter hypermultiplets

that we treat in the quenched approximation and identify as the flavor fields [21]. By intro-

ducing additional supersymmetry-breaking couplings in the theory, and integrating out the

supersymmetric partners of gluons and quarks, this model can be continuously connected

to QCD. As supersymmetry is also broken by the chemical potential, states with a large

density could exhibit similar properties in the sectors that the two theories share, even

though the theories have very different vacua. As discussed above, this is indeed what has

been seen to happen at finite temperature and zero density.

The theory has a U(1) axial symmetry that is explicitly broken when a nonzero mass is

given to the flavor fields, in which case the chiral condensate is also non-zero. The mass is

defined in a gauge-invariant way as the coefficient of the (supersymmetrized) bilinear quark

operator q̄q in the renormalized action. In a slight abuse of language, we will refer to it as

the “quark mass”. Other definitions involving observables that are not gauge invariant (de-

riving for instance from the quark two-point function) cannot be computed using the holo-

graphic approach. Using the holographic dual description, it can be shown that the renor-

malized mass coincides with the energy gap between the vacuum and a state with a quark.

For this reason, when matching to QCD, it is natural to consider the mass in the holographic

model as closely related to the constituent quark mass, rather than to the bare quark mass.
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To mimic finite quark density, we turn on a chemical potential for a UB(1) component

of the global U(Nf ) ∼ U(1)B × SU(Nf ) flavor symmetry of the theory. For simplicity,

we set the quark masses to be all equal. Beta equilibrium and electric charge neutrality

conditions are then automatically satisfied when the chemical potentials are equal to each

other, µq ≡ µB/Nc. Clearly, this is just a rough approximation to QCD, and in particular

we do not expect the model to capture all the details of the phase diagram with nonzero

baryon density. Indeed, we restrict the application of the model to the EoS of flavor-

symmetric deconfined matter, and in particular assume that it remains stable relative to

two-flavor quark matter when the parameters of the model are extrapolated to fit QCD

values. Many improvements can be made on this approach, not only by introducing flavor-

dependent masses, but for instance considering confining models that resemble QCD much

more closely, such as the Sakai-Sugimoto model [47]. The virtue of our model is, however,

that it is the simplest and best studied holographic model, and, as we will show, it fares

no worse than any other existing model when confronted with observations.

2.1 Holographic description

In the large-Nc limit and at strong ’t Hooft coupling λYM � 1, the N = 4 SYM theory

has a holographic description in terms of classical type IIB SUGRA in an AdS5 × S5

geometry [18]. In the ’t Hooft limit Nf � Nc, the flavor sector can be introduced as Nf

D7 probe branes extended along the AdS5 directions and wrapping an S3 ⊂ S5 [21]. At

non-zero temperature T , the dual geometry is modified in the AdS5 factor to a black brane

ds2 =
R2

r2

dr2

f(r)
+
r2

R2

(
−f(r)dt2 + dx2

i

)
+R2dΩ2

5, f(r) = 1− (πR2T )2

r4
, (2.1)

where R is the AdS radius, related to the ’t Hooft coupling through the string length√
α′, λYM = R4/(α′)2. When T = 0 one recovers the usual AdS5 metric in the Poincaré

patch. In this case, a convenient set of coordinates is to combine the holographic radial

direction r with the S5 directions into R6 ' R4 ×R2 and use spherical coordinates for the

R4 component

dr2 + r2dΩ2
5 = dρ2 + ρ2dΩ2

3 + dy2 + dz2. (2.2)

Then, the AdS5 × S5 metric becomes

ds2 =GMNdX
MdXN =

ρ2+y2+z2

R2
ηµνdx

µdxν+
R2

ρ2+y2+z2

(
dρ2+ρ2dΩ2

3+dy2+dz2
)
.

(2.3)

We will use the notation where XM , M = 0, 1, . . . , 9 are the coordinates in the full ten-

dimensional space, xµ, µ = 0, . . . , 3 the coordinates along the field theory directions,

X4 = ρ, X5,6,7 the directions along the S3 and X8 = y, X9 = z.

The flavor sector is mapped to probe D7 branes in the black brane background. The

profile of the flavor branes in the background geometry is determined by the embedding

functions XM (σ), depending on the worldvolume coordinates σI , I = 0, 1, . . . , 7. The

induced metric on the D7 brane worldvolume is

gIJ = GMN (X)∂IX
M∂JX

N . (2.4)
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In addition, there is a U(Nf ) ∼ U(1)B × SU(Nf ) gauge field AI on the worldvolume of the

D7 branes. We will restrict to Abelian configurations where only the U(1)B component is

different from zero, and denote the field strength by FIJ = ∂IAJ − ∂JAI . The dynamics

of the embedding functions and the D7 gauge field are determined by the classical action

of the brane

SD7 = −TD7

∫
d8σ

√
− det (gIJ + 2πα′FIJ). (2.5)

Although there could be an additional topological Wess-Zumino term, it vanishes for the

background and configurations we are considering. The embedding is such that the world-

volume of the D7 lies along AdS5 × S3 directions

Xµ = σµ, X4 = ρ = σ4, X5,6,7 = σ5,6,7. (2.6)

The profile is given by

X8 = y(ρ), X9 = z = 0. (2.7)

In addition, the time component of the U(1)B gauge field is allowed to depend on the radial

coordinate At(ρ). At zero temperature, the D7 brane action is

SD7 = −
NcNf

λYM

V4

(2πα′)4

∫
dρL(y′, A′t), L(y′, A′t) = ρ3

√
1 + (y′)2 − (2πα′)2(A′t)

2. (2.8)

At non-zero temperature the black body factor f(r) in (2.1) forces us to work in a different

set of coordinates and both the action and the solutions become more complicated, they

have to be solved numerically or found by doing a perturbative expansion for small T .

2.2 Thermodynamics

In the absence of flavor, the free energy density can be obtained by evaluating the properly

regularized classical SUGRA action on the black brane geometry. The result takes the

form appropriate for a conformal field theory in four dimensions [48]

FN=4 = −π
2

8
N2
c T

4. (2.9)

The thermodynamics of the model including flavor have been extensively studied in a

number of previous works [49–61]. At zero temperature, there are two possible phases. At

low chemical potential, the ground state has zero baryon density, and the meson spectrum

is gapped as in the vacuum. When the chemical potential reaches a critical value equal to

the quark mass, the theory, however, undergoes a phase transition to a state with non-zero

baryon density and a gapless spectrum. In the phase with non-zero baryon density, the

cost of introducing a quark is parametrically smaller (in the ’t Hooft coupling) than in

the gapped phase. The chiral condensate jumps through the phase transition, but remains

non-zero as long as there is a non-zero quark mass.

In the dense phase, the free energy density naturally splits into two contributions,

F = FN=4 + Fflavor , (2.10)
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where only the latter part depends on the quark density. Being primarily interested in

quiescent compact stars, we set the temperature to zero, in which case the N = 4 part

above vanishes, while the flavor part takes the simple analytic form [52, 61, 62],1

Fflavor = −f0(µ2
q −m2

0)2 . (2.11)

Here, we have defined f0 =
NcNf

4γ3λYM
with γ = Γ(7/6)Γ(1/3)/

√
π, while m0 denotes the

quark mass. This result can be obtained by solving the classical equations of motion for y

and At derived from (2.8) and evaluating the action on-shell. Since the Lagrangian only

depends on derivatives of the fields, there are two conserved quantities

c =
∂L

∂y′
, d = − 1

2πα′
∂L

∂A′t
. (2.12)

One can then solve algebraically for y′ and A′t, giving

y′ =
c√

ρ6 + d2 − c2
, 2πα′A′t =

d

c
y′. (2.13)

For d = 0 and c = 0, the embedding is constant y = 2πα′m0 and At = µ, thus it remains at

a finite distance from the Poincaré horizon. This corresponds to the states with zero baryon

density and a gapped spectrum. A quark is dual to a string extended between the horizon

and the lowest point of the brane at ρ = 0, thus the constituent mass is proportional to

the length times the tension of the string mq = Tsy = m0.

For d2 − c2 > 0, the embedding can be thought of as the zero temperature limit of

D7 branes that reach the black hole horizon. The condition that the embedding reaches

the horizon fixes the integration constant y(0) = 0, and regularity at the horizon im-

poses At(0) = 0. With these conditions, the solution is proportional to an incomplete

Beta function

y =
1

6

c

(d2 − c2)1/3
B

(
ρ6

ρ6 + d2 − c2
;

1

6
;

1

3

)
, 2πα′At =

d

c
y. (2.14)

The values at the asymptotic boundary can be identified with the mass of the quarks

and the chemical potential, following the usual AdS/CFT dictionary y(∞) = 2πα′m0,

At(∞) = µq. This leads to the relations

c = (2πα′)3γ−3(µ2
q −m2

0)m0, d = (2πα′)3γ−3(µ2
q −m2

0)µ. (2.15)

The contribution of flavor to the free energy density is the D7 action (2.8) evaluated on the

solution (2.13), minus a term that we subtract to remove the infinite volume divergence2

Fflavor = − 1

V4
(SD7 − S0) = lim

Λ→∞

NcNf

λYM

1

(2πα′)4

[∫ Λ

0
dρ

ρ6√
ρ6 + d2 − c2

− Λ4

4

]
. (2.16)

1In principle this would take us beyond the regime of validity of the SUGRA approximation, as the

backreaction of the D7 brane is not negligible at the horizon when the temperature is taken to zero, so the

expression for the free energy should be taken as an extrapolation from small but nonzero temperatures.
2This term can be understood as a local counterterm on the boundary, analogous to the counterterms

that one has to introduce to renormalized field theories.
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The result is

Fflavor = −
NcNf

λYM

1

(2πα′)4

γ

4
(d2 − c2)2/3 = −

NcNf

4γ3λYM
(µ2
q −m2

0)2. (2.17)

At large values of the chemical potential, the effects of the mass are negligible and

Fflavor ∼ µ4
q has the form expected for a conformal theory. Although this form is the

same as for an ideal gas, one should note the dependence of the coefficient on the ’t Hooft

coupling. This is an indication that the theory remains strongly coupled at all values of

the chemical potential.

The pressure p and the energy density ε are further determined from eq. (2.11) as

p = −Fflavor = f0(µ2
q −m2

0)2, ε = µq
∂p

∂µq
− p = f0(µ2

q −m2
0)(3µ2

q +m2
0), (2.18)

which together lead to the EoS

ε = 3p+ 4m2
0

√
f0
√
p . (2.19)

It is worth stressing that an EoS of the above form (with a free energy as in eq. (2.11))

can also be obtained as a special case of the phenomenological model EoS of [63]. From

this perspective, it might seem natural to extend the quark matter EoS by one further

parameter, namely a constant representing the pressure difference between the confined

and deconfined vacua, in analogy with the bag constant in the MIT bag model. We

will, however, not study this possibility mainly because of the nature of the deconfinement

transition within the large-Nc holographic model. When the system moves from the gapped

to the gapless phase, the free energy changes by an O(NcNf ) contribution, while the O(N2
c )

part remains unaffected. This implies that the gapless phase describes finite charge density

states within the original vacuum, so it is actually a relative of quarkyonic matter as

introduced by McLerran and Pisarski in the context of large-Nc QCD [64]. For this same

reason, we still regard m0 as the constituent quark mass even after the transition to quark

(or quarkyonic) matter has taken place.

The above result for the free energy is strictly valid in the large-Nc limit, for fixed Nf

and very large ’t Hooft coupling. We will assume that there are no significant changes when

one moves away from this limit, in such a way that the qualitative behavior is correctly

captured by eq. (2.11). That is, the above EoS provides a zeroth order approximation to

the physical system we wish to describe.

In our earlier work [37], we fixed the parameters of the model to match the perturbative

high-density limit of QCD, setting Nc = Nf = 3 and λYM = 3π2

γ3
' 10.74, while corrections

entering with inverse powers of Nc and λYM were altogether neglected. In the present paper,

we follow the same conventions, but let the parameter m0 vary around the scale 310 MeV,

where the nuclear matter pressure, chosen to follow the “medium stiffness” EoS of [45],

vanishes. This EoS corresponds to charge neutral beta-equilibrated matter and follows

the CET result of [65] up to 1.1ns, thereafter extrapolating it with an observationally

constrained piecewise polytropic form.
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Figure 2. The pressures of the nuclear and quark matter phases as functions of the quark

chemical potential. The colored solid curves correspond to the holographic EoS for m0 =

260, 280, 300, 312, 320 MeV (top-down), while the black dashed curve denotes the hadronic EoS

taken from [45]. The transitions happen at baryon densities between n ∼ 13− 22ns at high chem-

ical potential and n ∼ 3× 10−3 − 0.15ns at low chemical potential for the different curves shown,

where ns ≈ 0.16 fm−3 is the saturation density.

3 Compact star solutions

As already noted, we construct NS matter EoSs by combining the medium stiffness nu-

clear matter EoS of [45] with a quark matter EoS obtained from the holographic model

introduced in the previous section. At each value of the quark chemical potential, the

phase that is realized is taken to be the one with lower free energy, or larger pressure, so

that potentially there can be even multiple phase transitions inside the star. These will

generically be of first order, with a latent heat that can be determined from the difference

of the energy densities of the two phases at the transition.

In figure 2, we show the pressure of the nuclear matter phase together with that of the

holographic one, giving m0 the values 260, 280, 300, 312, and 320 MeV. These numbers

have been chosen so that the cases displayed represent all of the four distinct scenarios

we discover:

1. For m0 & 313.1 MeV, the nuclear matter pressure is dominant at low densities, but

the quark matter phase takes over at a first order transition at some higher density,

or chemical potential.

2. For 310.0 MeV . m0 . 313.1 MeV, nuclear matter is still dominant at the lowest den-

sities and quark matter at the highest, but between these regions there are not one but

three first order transitions, so that counting from the lowest to the highest density,

the phases of QCD matter are nuclear, quark, nuclear, and again quark matter.

3. For 261.4 MeV . m0 . 310.0 MeV, quark matter turns out to be favored both at the

lowest and highest densities (i.e., it is stable in vacuum), but at moderate densities

there exists a density interval where the nuclear matter pressure is larger.

4. For m0 . 261.4 MeV, the pressure of quark matter is larger at all densities.
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The second and third of these scenarios are clearly nonstandard. Upon closer inspection,

their existence can be traced back to the similar functional form of our holographic EoS

for quark matter, eq. (2.19), with that of the nuclear matter phase at low densities. For

scenarios 3 and 4, we should in principle make sure that two-flavor quark matter is not

favored with respect to ordinary nuclear matter, but since our model is tuned to three

quark flavors, we simply assume this to be the case.

To study the properties of the compact stars built from the above EoSs — and to

verify the claims made in the first section — we next proceed to solve equations that

govern relativistic hydrostatic equilibrium inside the stars. To this end, the metric of a

spherically symmetric, non-rotating system can be written in the general form

ds2 = −eν(r)c2dt2 +
dr2

1− 2Gm
c2r

+ r2dΩ2 , (3.1)

while the structure of spherical stars in hydrostatic equilibrium can be solved from the

TOV equations [67]

dp

dr
=
G(ε+p)

c2r2

(
m+4πr3 p

c2

)(
1− 2Gm

c2r

)−1

,
dm

dr
= 4πr2 ε

c2
,

dν

dr
=− 2

ε+p

dp

dr
. (3.2)

Solutions to these equations can be found by specifying a value for the central pressure

p(r = 0) and integrating the equations until the surface of the star, i.e. the radius R for

which p(r = R) = 0. Varying the central pressure finally produces a continuous curve on

the mass-radius (M–R) plane, which specifies the possible masses and radii corresponding

to the EoS studied.

For each EoS, we not only solve the possible values of the stellar masses and radii,

but in addition determine the stability of the configurations against infinitesimal adiabatic

radial oscillations [68, 69], assuming the transitions to be fast, the stability analysis is

described in appendix A. The result of this exercise is shown in figure 3, where M–R

curves corresponding to the five example EoSs of figure 2 are displayed.

Following the numbering of m0 intervals introduced above, we now find:

1. For m0 & 313.1 MeV, the stars are always ordinary NSs, obeying an M–R relation

fully determined by the results of [45]. Quark cores are excluded by stability argu-

ments due to a strong first order deconfinement transition (cf. the discussion in [37]).

2. For 310.2 MeV . m0 . 313.1 MeV, the stars are always of type HS3.

3. For 264.4 MeV . m0 . 310.2 MeV, two stable solutions exist: QSs at large and HS2s

at small radii.

4. For m0 . 264.4 MeV, all the stars are QSs.

Of particular interest here are clearly those HS2s and HS3s, for which m0 is only slightly

below the critical value of 313.1 MeV. Zooming into values of m0 close to the critical one,

we observe the M–R relations to smoothly flow to that of ordinary NSs, just as expected.

It is interesting to note that qualitatively similar solutions have been found earlier based
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Figure 3. M -R curves for stellar solutions corresponding to the five values of m0 displayed in

figure 2. The solid curves represent stable configurations, whereas the dashed ones illustrate un-

stable branches, assuming fast phase transitions, meaning that the phase changes instantaneously

when the pressure fluctuates around the critical value [66]. Should this not be the case, the stability

of some configurations may change. The dot-dashed black curves finally correspond to the analytic

solutions of eq. (3.4). Note that the 312 and 320 MeV curves lie practically on top of each other.

on an MIT bag model EoS supplemented by a contribution from quark pairing [63, 70] (see

also [71]).

Finally, let us note that for small compactness C = GM/(c2R), we can analytically

solve the TOV equations (3.2) perturbatively if the EoS (2.19) is assumed, i.e. for pure

quark matter stars. More specifically, the TOV equations can be solved in an expansion in a

small parameter ε = (µc−m0)/m0 � 1, where µc is the central quark chemical potential of

the star in question. For all other chemical potentials, we then have (µ−m0)/m0 < ε, and

it will also turn out that parametrically C ∼ ε. To leading order in ε then, the EoS of the

holographic model reduces to ε ∼ √p, which corresponds to the Newtonian approximation

of a fluid with a polytropic equation of state with adiabatic index γ = 2. For such EoSs,

an analytic solution to the TOV equations can be found in textbooks [72] even for general

γ, resulting in

R ∼M (γ−2)/(3γ−4) . (3.3)

For the special case of our γ = 2, the radius is thus seen to be completely independent of

the mass of the star. This relation is modified when corrections to the leading order result

are taken into account. To streamline the discussion, we have relegated this calculation in

appendix B and just state the final result for the M–R relation:

M ' M0

c0

[
R0 −R
R0

− c1

c0

(
R−R0

R0

)2

+ · · ·

]
, (3.4)

where c0 ' 1.853, c1 ' 2.948, R0 = π/k, M0 = c2R0/G, and k2 = 32πf0m
4
0G/c

4. We have

included these analytical results for the QS in figure 3 as black dot-dashed curves and note

that they match the numerics very accurately for small compactness.
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4 LIGO constraints and universal relations

It has been suggested long ago that in a coalescing binary system of two NSs, or a black

hole and a NS, the tidal forces between the two objects affect the gravitational wave signal

in a way that can be measured using Earth-based gravitational wave detectors [73–81]. In

the fall of 2017, LIGO and Virgo were indeed able to place a quantitative limit on these

effects in their analysis of gravitational wave data that very likely had their origins in the

merger of two NSs [46] (see also the analyses of [82–93]). The limit was provided for the

tidal deformabilities of the two stars involved in the merger — a quantity related to the

Love numbers of the stars that measures their susceptibility to the tidal forces that deform

their shape. Importantly, these quantities are highly sensitive to the EoS of stellar matter,

and it is thus of great interest to compute them for different candidate EoSs, including the

ones introduced in our work.

Another reason to be interested in Love numbers is that they allow the verification of

so-called universal relations, i.e., suggested correlations between different quantities char-

acterizing compact stars that appear to be largely insensitive to the EoS of stellar matter.

These relations, due to Yagi and Yunes [94], concern dimensionless ratios of the moment

of inertia I, the quadrupolar moment of the mass distribution Q, and the electric Love

number kel2 of compact stars,

Ī =
c4

G2M3
I, Q̄ = −M

I2

Q

Ω2/c2
, λ̄ =

2

3C5
kel2 , (4.1)

where Ω is the angular velocity and C the compactness of the star. It is clearly worthwhile

to check, whether these relations hold for our family of EoSs as well.

Given a specific EoS, the determination of Love numbers involves perturbing the metric

of a spherically symmetric (non-rotating) star with a quadrupolar deformation, as firstly

introduced in [81, 95, 96]. These works were later generalized by including e.g. parity odd

modes [97, 98] and simplified [99] so that the master equation for kel2 can be written as:

rη′ + η(η − 1) +Aη −B = 0 , (4.2)

where

A =
2

f

[
1− 3

Gm

c2r
− 2π

G

c4
r2 (ε+ 3p)

]
, (4.3)

B =
1

f

[
6− 4π

G

c4
r2(ε+ p)

(
c2

c2
s

+ 3

)]
, (4.4)

c2
s = ∂p

∂ε is the speed of sound and f = 1− 2Gm
c2r

. At the center of the star η(0) = 2, and if

we define ηs ≡ η(R), then the matching condition at r = R gives us [99]

kel
2 = −1

2

ηs − 2− 4C/(1− 2C)

[ηs + 3− 4C/(1− 2C)]B1 −RB′1
, (4.5)

where B1 is a hypergeometric function:

B1(r) = 2F1

(
3, 5; 6;

2GM

c2r

)
. (4.6)

A more precise description can be found in appendix C.
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At the same time, to obtain the quantities I and Q requires considering stars rotating

with a small angular velocity Ω. The moment of inertia I can be obtained from the ratio

of the angular momentum and the angular velocity [100] which can be written as an ODE

pair: [72, 101]

dI

dr
=

8π

3c2

gj

f
r4(ε+ p) ,

d

dr

(
r4j

dg

dr

)
+ 4r3 dj

dr
g = 0 ,

(4.7)

where

j ≡ e−ν/2
√
f , (4.8)

g =
ω̃

Ω
= 1− ω

Ω
, (4.9)

and ω is the angular velocity of the local inertial frame. By using the boundary conditions

g′(r = 0) = 0 and g(R) = 1−2I/R3, the moment of inertia I can be numerically determined.

In case of Q, we must first determine the mass distribution inside the rotating star and

then compute its second moment [100]. As stated in [100], the essential interior solutions

of the Einstein field equations in this particular case are

dK2

dr
= −dh2

dr
+

(
1− 3

Gm

c2r
− 4π

G

c4
r2p

)
h2

rf
+

(
1− Gm

c2r
+ 4π

G

c4
r2p

)
m2

(rf)2
, (4.10)

dh2

dr
= −

(
1− Gm

c2r
+ 4π

G

c4
r2p

)
1

f

dK2

dr
+

(
3− 4π

G

c4
r2(ε+ p)

)
h2

rf
+ 2

K2

rf

+

(
1 + 8π

G

c4
r2p

)
m2

(rf)2
+
r3e−ν

12c2

(
dω̃

dr

)2

− 4πGr3

3c6f
(ε+ p)ω̃2e−ν , (4.11)

m2 = −rfh2 +
r4fe−ν

6c2

[
rf

(
dω̃

dr

)2

+ 16π
G

c4
r(ε+ p)ω̃2

]
, (4.12)

and the corresponding Taylor expansion around the origin of the star:

h2(r) = Br2 +O(r4) , (4.13)

K2(r) = −Br2 +O(r4) , (4.14)

m2(r) = −Br3 +O(r5) , (4.15)

where B is a constant related to the quadrupole moment. Besides, the corresponding

exterior solutions can be given in rather simple forms: [100]

hext
2 =− 3A

C(1−2C)

[
1−3C+

4

3
C2+

2

3
C3+

f(R)2

2C
lnf(R)

]
+

(
L

MRc

)2

C (1+C) , (4.16)

Kext
2 =

3A

C

[
1+C− 2

3
C2+

1−2C2

2C
lnf(R)

]
−
(

L

MRc

)2

C (1+2C) , (4.17)

mext
2 =

3AR

C

[
1−3C+

4

3
C2+

2

3
C3+

f(R)2

2C
lnf(R)

]
−
(

L

MRc

)2

C
(
1−7C+10C2

)
, (4.18)
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where L and A are angular momentum and a matching constant. By insisting that the

interior and exterior solutions of K2 and h2 match at the surface of the star, respectively,

we can derive the values of constants A and B. And by using above results, we can now

calculate the quadrupole moment Q of a star: [100]

Q = − L2

Mc2
− 8

5

G2

c4
AM3 . (4.19)

More information about I and Q can be can be found in appendix E.

We have performed numerically the calculations mentioned above for all the different

types of compact stars we have encountered, and in addition provide analytic expressions

at small compactness for the Love numbers in appendix D and for I and Q, derived in

detail in appendix E. These leading order analytical results read

Ī ' 2

3

π2 − 6

π2

1

C2
' 0.261C−2 (4.20)

Q̄ ' −
32π4

(
15− π2

)
9 + 24π (π2 − 3)

C ' −30.35C , (4.21)

together with kel2 ' 0.260− 1.994C, which agree with our numerics to a good precision.

Starting with the tidal deformability, we note that LIGO and Virgo provide the con-

straint λ̄(1.4M�) ≤ 800 for the likely case of slowly rotating stars (the low-spin prior)

at a 90% Bayesian probability level [46]. In addition to this, figure 5 of this reference

gives both 90% and 50% probability contours for the independent tidal deformabilities of

the two stars on a λ̄1-λ̄2 plane. To compare our results to these values, we first show in

figure 4, how our example EoSs from figure 2 relate to these contours. Here, the curves

have been generated by independently determining the tidal deformabilities for both stars

involved in the merger, obtaining the possible mass pairs by varying the mass of one of

the two stars within the uncertainty region reported in [46] and solving for the other using

the accurately-known chirp mass of the event, M = 1.188M�. Interestingly, the smallest

deformabilities are obtained not for ordinary NSs but for the HS2s and HS3s.

To further inspect the rather surprising results observed, we next show in figure 5 the

tidal deformability value of a star of mass 1.4M� as a function of m0. Indeed, we verify

from here that the quantity is minimized around m0 = 304 MeV, i.e., for HS2s with a ca. 2

km thick quark crust (cf. the inset of the figure). It is worth noting that the minimal

value of λ̄(1.4M�) = 301 is markedly smaller than that obtained for the NS solutions,

λ̄(1.4M�) = 471. This is very interesting to contrast with the recent claim of a lower

bound existing for this quantity [90].

Moving next on to the universal relations, we have quantitatively checked the relative

accuracy, to which the I-Love-Q relations of Yagi and Yunes [94], concerning the correlations

λ̄–Ī, Q̄–Ī, and λ̄–Q̄, are reproduced by our compact stars corresponding to different m0

values. Inspecting the results, depicted in figure 6, we find that the deviation from the

universal limit is largest for the HS2 stars with relatively thick quark crusts, but quickly

diminish as m0 tends towards the critical value of 313.1 MeV. Although the deviations are

never larger than 20%, this finding may suggest a way of distinguishing the novel hybrid

star solutions from the NS ones.
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Figure 4. The tidal deformabilities λ̄i obtained for the two stars involved in the binary NS

merger observed by LIGO and Virgo [46], corresponding to masses M1 ∈ [1.36, 1.60]M� and

M2 ∈ [1.17, 1.36]M� (low-spin prior). The curves with the three different colors stand for the

corresponding small-radius compact star solutions displayed in figure 3. The curves corresponding

to the remaining two EoSs of figure 2 fall outside the range of the plot. The gray area represents

the set of all viable deformabilities obtained by varying m0 for the type HS2 stars, whereas the

type HS3 stars fall in the pink area.
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Figure 5. The tidal deformability of a (lower-radius) 1.4M� star as a function of m0. Shown here

are also horizontal lines denoting the values λ̄(1.4M�) = 800 and 400, corresponding roughly to

the 90% and 50% probability limits of LIGO and Virgo (cf. discussion in [89]). The cusp in the

curve around m0 = 307 MeV is due to the matched EoS becoming sensitive a small discontinuity in

the hadronic EoS of [45]. Inset: internal structure of hybrid stars of mass 1.4M�, with the orange

(black) color again representing quark (nuclear) matter. Vertical lines in the main plot indicate the

transitions from HS2 to HS3 and from HS3 to NS as m0 increases. The transition from QS to HS2

happens for lower values of m0 than the ones shown in the plot.
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Figure 6. The relative accuracy, to which the I-Love-Q universal relations of Yagi and Yunes [94]

are reproduced by our five example EoSs. The subfigures present the λ̄–Ī (left), Q̄–Ī (middle), and

λ̄–Q̄ (right) relationships, where the subscript U always indicates that the value of the quantity is

taken from the corresponding universal relation. In the λ̄–Ī plot, the analytical curve is also shown

as the black dot-dashed line, while for the other two cases this approximation falls outside the range

chosen in the figure.

5 Conclusions

As of today, holography remains the only computational tool that allows nonperturbative

access to the properties of strongly coupled quantum field theories in those regions of

parameter space where lattice methods are not applicable. While the holographic dual

of QCD is still unknown, the strongly coupled regime of this theory covers practically all

energies of phenomenological interest, including in particular the densities realized inside

compact stars. Short of altogether circumventing the need to inspect the problematic

density range by interpolating between trusted low- and high-density EoSs [89, 102], it

is thus advisable to seek insights from novel directions, including theories whose strong-

coupling limits can be reliably investigated using the gauge/gravity duality.

In the paper at hand, we have approached the description of moderate-density quark

matter by studying a supersymmetric cousin of QCD. We derived a family of quark matter

EoSs parameterized by the quark mass m0, matched them with the EoS of beta-equilibrated

nuclear matter [45], and carefully applied the obtained results to the construction of com-

pact stars. Taken at face value, our results suggest the possible existence of exotic hybrid

stars, exhibiting features such as quark matter mantles or crusts. Interestingly, we found

a range of values of m0, for which these stars display both M–R relations and tidal de-

formabilities in good agreement with available observational data.

There are clearly a number of limitations in our approach, which range from the

fact that the holographic model we study is not dual to QCD to the fact that we work

in the so-called probe limit of the D3/D7 system, formally applicable only in the limit

Nf � Nc. In addition, we needed to make nontrivial assumptions about the stability of

two-flavor quark matter, and were left with a model, which is not applicable to addressing

many detailed questions about the phase diagram, such as flavor symmetry-breaking or

the chiral phase transition. Recalling the difficulties that other field theory approaches

face in the description of dense QCD matter, we believe it is nevertheless worthwhile to

address the problem with holographic machinery. In this sense, our work should be viewed

only as a first-order approximation, to be refined by future works improving and building
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on our model by e.g. considering holographic models exhibiting stiffer EoSs [38, 39, 103].

In addition, it is worth noting that we have so far only reported on results concerning

bulk thermodynamic observables, leaving the very interesting study of strongly coupled

transport phenomena for the future.
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A Stability

It has been stated that a non-rotating star is stable if it is stable against both radial oscilla-

tions and convection [104]. The convection stability criterion for spherical star is [105, 106](
dp

dε

)
star

<

(
∂p

∂ε

)
s

, (A.1)

where the left-hand side refers to the variation of energy density and pressure inside

the star at different radial positions, while the right-hand side is the adiabatic speed of

sound squared. Because we have assumed that our star is an isentropic system, then it is

marginally stable against convection.

Chandrasekhar [68, 69] was the first who derived the condition for spherical star

to be stable against infinitesimal adiabatic radial oscillations. If we introduce a radial

displacement

∆r = eν/2un(r)eiσnt/r2 , (A.2)

his results can be express in a Sturm-Liouville form [72]

d

dr

(
Π
dun
dr

)
+
(
Q+ σ2

nW
)
un = 0 , (A.3)

where

Π =
γp

r2
e(λ+3ν)/2

Q = − 4

r3

dp

dr
e(λ+3ν)/2 − 8π

r2
e3(λ+ν)/2 +

1

r2(ε+ p)

(
dp

dr

)2

e(λ+3ν)/2

W =
ε+ p

r2
e(3λ+ν)/2 .

(A.4)

– 17 –



J
H
E
P
1
2
(
2
0
1
8
)
0
7
8

The variables un and σ2
n are the amplitude, and eigenfrequency of the oscillation, respec-

tively, and

γ =

(
d ln p

d lnn

)
s

(A.5)

is the varying adiabatic index. The boundary conditions of eq. (A.3) are un ∼ r3 about

the origin and u′n(R) = 0.

It can be shown that all eigenvalues σn of the above Sturm-Liouville equation are real

and they form a monotonically increasing sequence σ2
0 < σ2

1 < σ2
2 < . . . , where σ0 is the

fundamental mode [107]. Because the time dependence of the fluctuations is eiσnt (see

eq. (A.2)), a normal mode is unstable only if σ2
n < 0. Therefore, the whole configuration

is stable if the fundamental mode is real, i.e., σ2
0 > 0.

Numerically it is more efficient to use ξ = ∆r/r and η = ∆p/p instead of the radial

displacement ∆r and the corresponding Lagrangian perturbation of the pressure ∆p. Then

the results of [68, 69] can be written as two first-order differential equations [108]

dξ

dr
= −1

r

(
3ξ +

η

γ

)
− dp

dr

η

p+ ε
,

dη

dr
= ξ

[
σ2

c2
eλ−ν

(
p+ ε

p

)
r − 4

p

dp

dr
− 8πG

c4
eλ (p+ ε) r +

(
dp

dr

)2 r

p (p+ ε)

]

+ η

[
−dp
dr

ε

p (p+ ε)
− 4πG

c4
(p+ ε) reλ

]
.

(A.6)

Demanding that ξ′ and η′ are regular, we get the boundary conditions

η(0) = −3γ(0) (A.7)

η(R) = ξ(R)

[(
1− 2GM

c2R

)−1(
−σ

2R3

GM
− GM

c2R

)
− 4

]
, (A.8)

if the eigenfunctions are normalized such that ξ(0) = 1.

The oscillation equations (A.6) were numerically integrated starting from the center of

the star with a trial value of σ2 and given initial conditions. By using shooting method we

determined the values of σ2 which satisfied the boundary condition at the surface, eq. (A.8).

The fundamental mode frequency corresponds to the eigenfunction ξ that has no nodes in

range r ∈ (0, R) [107].

B Analytic quark star solutions

In this appendix we will derive the analytical mass-radius relationship in eq. (3.4). To

avoid cluttering in the equations we will work in units with G = c = 1. It is useful to first

change the dependence of the solutions on the chemical potential to a dependence on the

deviation of µq from the critical value m0, by introducing a new variable

m =
µq −m0

m0
. (B.1)
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Then, the pressure and energy density of the holographic model can be written as

p(m) = Λ4m2(m + 2)2 , (B.2)

ε(m) = Λ4m(m + 2)
(
3m2 + 6m + 4

)
, (B.3)

where

Λ4 = f0m
4
0. (B.4)

The scaling symmetry of TOV equations p → a2p, ε → a2ε, r → r/a allows us to fix

4πGΛ4/c4 = 1. The TOV equations then become

p′ = − 1

r2

(ε+ p)(M + r3p)

1− 2M
r

, M ′ = r2ε, ν ′ = −2
p′

p+ ε
, (B.5)

where now

p(m) = m2(m + 2)2 (B.6)

ε(m) = m(m + 2)
(
3m2 + 6m + 4

)
. (B.7)

B.1 Perturbative expansion

Let us assume that the chemical potential at the center of the star µc is very close to the

critical value m0, in which case we can introduce an expansion parameter

ε = mc =
µc −m0

m0
� 1 , (B.8)

which, however, satisfies m ≤ mc. For a generic quantity X, we introduce the expansion

X =
∑
n

εnX(n) , (B.9)

obtaining for the O(ε3) the pressure and O(ε2) energy density:

p(1) = 0 , (B.10)

ε(1) = 8m(1) , (B.11)

p(2) = 4(m(1))2 , (B.12)

ε(2) = 8m(2) + 16(m(1))2 , (B.13)

p(3) = 8m(1)m(2) + 4(m(1))3 . (B.14)

Leading order solution. The TOV equations read in the Newtonian approximation

p(2)′ = − 1

r2
ε(1)M (1), M (1)′ = r2ε(1), ν(1)′ = −2

p(1)′

ε(1)
, (B.15)

or in terms of m,

r2m(1)′ = −M (1) , (B.16)

M (1)′ = 8r2m(1) , (B.17)

ν(1)′ = −2m(1)′ . (B.18)
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Equation (B.18) can be integrated to give

ν(1) = −2m(1) + ν∞
(1), ν∞

(1) = −2M (1)R(0)−1
= −2C(1) , (B.19)

where M and R are the mass and radius of the star and C = MR−1 stands for its com-

pactness. Taking a derivative of eq. (B.16) and using (B.17) yields now(
r2m(1)′

)′
+ k2r2m(1) = 0, k2 = 8 , (B.20)

from which we obtain, imposing the condition m(1)(r = 0) = 1, the solution

m(1) =
sin(kr)

kr
. (B.21)

The radius of the star is determined by the point where the pressure vanishes, or

m(1) = 0, which at this order leads to

R(0) =
π

k
. (B.22)

The mass function reads on the other hand

M (1) =
1

k
(sin(kr)− kr cos(kr)) , (B.23)

so that to the present order, the mass of the star is simply

M ' εM (1)
∣∣∣
r=R(0)

= ε
π

k
= εR(0) , (B.24)

and thus the compactness

C = MR−1 ' ε ⇒ C(1) = 1, ν∞
(1) = −2 . (B.25)

Next-to-leading order solution. At NLO, the TOV equations become

p(3)′ = − 1

r2

(
2(M (1))2ε(1)

r
+ ε(2)M (1) +M (2)ε(1) + p(2)(r3ε(1) +M (1))

)
(B.26)

M (2)′ = r2ε(2) (B.27)

ν(2)′ = −2

(
p(3)′

ε(1)
− p(2)′

(ε(1))2
(ε(2) + p(2))

)
. (B.28)

The solution of eq. (B.28) will not be necessary for our present calculation, so we will not

try to solve it. Multiplying eq. (B.26) by r2/ε(1), taking a derivative, and using eq. (B.27),

we get rid of the explicit M (2) dependence. Since all the O(ε) functions are known explicitly,

we are left with an equation that can be solved analytically. After some algebra, one finds(
r2m(2)′

)′
+ k2r2m(2) + J (2) = 0 , (B.29)

where the inhomogeneous term reads

J (2) =
3k2

2

[
3r2(m(1))2 + 2rm(1)M (1) − 2

r2
(M (1))2

]
. (B.30)
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Imposing regularity, the solution to the inhomogeneous equation is

m(2) =
1

k2r2
g(kr) , (B.31)

where we have defined

g(z) = −1

4

{
2z
[
3(Ci(z)−Ci(3z)) sin z+3(Si(3z)−3Si(z)) cos z+sin(2z)

]
−6 sin2 z

}
, (B.32)

and the cos and sin integrals are further defined as

Ci(z) = −
∫ ∞
z

dt
cos t

t
, Si(z) =

∫ z

0
dt

sin t

t
. (B.33)

The condition that the pressure vanishes at the surface of the star imposes m = 0 at

r = R ' R(0) + εR(1). Expanding in ε, one finds from here

m ' εm(1) + ε2m(2) + · · · ' −R
(1)

R(0)
ε2 − c0ε

2 +O(ε3) , (B.34)

where

c0 =
3

2π
(3Si(π)− Si(3π)) ' 1.85306 . (B.35)

Therefore, the condition m = 0 becomes

R(1) ' −c0R
(0) ⇒ ε ' R(0) −R

c0R(0)
. (B.36)

B.2 Mass versus radius formula

To leading order, the mass decreases linearly with the radius,

M ' R(0)ε ' 1

c0

(
R(0) −R

)
, (B.37)

which can be improved by considering the next order correction to the mass as well,

M (2) =

∫ R(0)

0
drr2ε(2) =

1

k

∫ π

0
dz
[
2 sin2 z + g(z)

]
, (B.38)

with a change of variable z = kr in the second integral. The correction to the mass is

proportional to the constant

c1 ≡ −
1

π

∫ π

0
dz
[
2 sin2 z + g(z)

]
' 2.948 , (B.39)

while the mass to this order becomes

M ' R(0)
(
ε− c1ε

2
)
. (B.40)

Using eq. (B.36), we can write the final result in the form

M ' 1

c0

[
R(0) −R− c1

c0R(0)

(
R−R(0)

)2
]
. (B.41)
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C Love numbers

We follow the conventions of [97]. The metric is written in terms of the advanced lightcone

coordinate v

ds2
0 = −e2ψfdv2 + 2eψdvdr + r3dΩ2 , (C.1)

where f = 1− 2m/r. In the exterior the metric is Schwarzschild’s for ψ = 0. The metric is

perturbed gµν = g0
µν+pµν keeping the light-cone gauge condition prµ = 0. The perturbation

has a multipole expansion in spherical harmonics. Denoting with A,B the indices along

the sphere directions, parity-even perturbations are

pvv = hlmvv (r)Y lm, pvA = jlmv (r)Y lm
A , pAB = r2K lm(r)ΩABY

lm + r2Glm(r)Y lm
AB , (C.2)

where Y lm are the usual scalar spherical harmonics, ΩAB is the metric on the unit ra-

dius sphere and Y lm
A = DAY

lm, Y lm
AB =

(
DADB + 1

2 l(l + 1)ΩAB

)
Y lm, with DA covariant

derivatives on the sphere compatible with ΩAB. The parity-odd perturbations take the form

pvA = hlmv (r)X lm
A , pAB = hlm2 X lm

AB , (C.3)

where the parity-odd vector and tensor harmonics are defined as X lm
A = −ε BA DBY

lm,

XAB = −1
2

(
ε CA DB + ε CB DA

)
Y lm. We will work with the gauge-independent combina-

tions defined as

h̃vv = hvv + e−ψ
(
e2ψf

)′
jv −

1

2
r2f

(
e2ψf

)′
G′, h̃v = hv . (C.4)

The perturbation has two main contributions to the physics we want to describe. The first

is an “external” quadrupolar deformation of the metric, that represents the contribution

from an incoming gravitational wave. We are neglecting the time dependence and asymp-

totically the metric is not flat, so this should be taken as an approximation to a region

around the star much smaller than the wavelength of a gravitational wave in the limit of

small frequencies. The second contribution is due to the response of the matter in the star

to the incoming wave. The matter distribution is modified and this, in turn, affects to the

gravitational field surrounding the star. This is captured in the following expansion of the

gauge-invariant variables in the region outside the star

h̃lmvv = − 2

l(l − 1)
rl

(
1 + 2kel

l

(
R

r

)2l+1

+ · · ·

)
E lm ,

h̃lmv = − 2

3l(l − 1)
rl+1

(
1− 2

l + 1

l
kmag
l

(
R

r

)2l+1

+ · · ·

)
Blm ,

(C.5)

where E lm, Blm are polarization tensors. The coefficients kel
l , kmag

l are the electric and

magnetic Love numbers that characterize the response to the incoming gravitational wave.

For parity-even, or electric, gravitational Love number kel
l the master equation

is [97, 99]

r2h′′tt +Ah′tt −Bhtt = 0 , (C.6)
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where

A =
2

f

[
1− 3m

r
− 2πr2 (ε+ 3p)

]
, (C.7)

B =
1

f

[
l(l + 1)− 4πr2(ε+ p)(c−2

s + 3)
]
, (C.8)

and f = 1− 2m/r. We may simplify this equation by setting η ≡ rh′tt/htt then [99]

rη′ + η(η − 1) +Aη −B = 0 . (C.9)

The solution of the original master equation goes as htt ∝ rl about the origin, which fixes

η(0) = l. If we define ηs ≡ η(R), then the matching condition at r = R gives us [99]

kel
l =

1

2

RA′1 − [ηs − l − 4M/(R− 2M)]A1

[ηs + l + 1− 4M/(R− 2M)]B1 −RB′1
, (C.10)

where A1 and B1 are hypergeometric functions:

A1 = 2F1

(
−l, 2− l;−2l;

2M

R

)
, (C.11)

B1 = 2F1

(
l + 1, l + 3; 2l + 2;

2M

R

)
. (C.12)

For odd-parity, or magnetic, gravitational Love number kmag
l the corresponding master

equation is [97, 99]

r2h′′t − Prh′t −Qht = 0 , (C.13)

where

P =
4πr2

f
(ε+ p) , (C.14)

Q =
1

f

[
l(l + 1)− 4m

r
+ 8πr2(ε+ p)

]
. (C.15)

As in the case of the electric Love number, we may write the corresponding gauge invariant

metric perturbation as κ ≡ rh′t/ht. Then, the master equation has the form [99]

rκ′ + κ(κ− 1)− Pκ−Q = 0 , (C.16)

and κ = l + 1 at the origin. Using the matching condition at the surface of the star, the

magnetic Love number can be written as [99]

kmag
l =

l

2(l + 1)

RA′3 − (κs − l − 1)A3

RB′3 − (κs + l)B3
, (C.17)

where κs ≡ κ(R) and

A3 = 2F1

(
1− l,−l − 2;−2l;

2M

R

)
, (C.18)

B3 = 2F1

(
l − 1, l + 2; 2l + 2;

2M

R

)
. (C.19)
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In [98] the surficial Love number in a relativistic setup was introduced. Ref. [99]

even showed that there is an simple relation between this surficial Love number and the

electric one:

hl = Γ1 + 2Γ2k
el
l , (C.20)

where

Γ1 =
l+1

l−1

(
1−M

R

)
2F1

(
−l,−l;−2l;

2M

R

)
− 2

l−1
2F1

(
−l,−l−1;−2l;

2M

R

)
(C.21)

Γ2 =
l

l+2

(
1−M

R

)
2F1

(
l+1, l+1;2l+2;

2M

R

)
− 2

l+2
2F1

(
l+1, l;2l+2;

2M

R

)
. (C.22)

D Perturbative calculation of Love numbers

D.1 Parity even modes

For electric Love numbers, the problem reduces to solving the master equation (C.6). We

will find analytic solutions at small compactness using the expansion

h̃vv = H(0) + εH(1) + · · · . (D.1)

At each order in the expansion we have to solve an equation of the form

r2H(n)′′ + rA(0)H(n)′ −B(0)H(n) + J (n) = 0 , (D.2)

where J (n) is determined by lower order solutions and coefficients, and J (0) = 0. The

coefficients in the master equation have the following expansion in the region inside the

star r ≤ R:

Ai
(0) = 2 ,

Bi
(0) = l(l + 1)− k2r2 ,

Ai
(1) = 2

[
−m

(1)

r
− 2πr2(ε+ 3p)(1)

]
,

Bi
(1) =

[
2(l(l + 1)− k2r2)

m(1)

r
− 4πr2(3(ε+ p)(1) + (c−2

s (ε+ p))
(1)

]
.

(D.3)

Outside the star we have

Ao
(0) = 2 ,

Bo
(0) = l(l + 1) ,

Ao
(1) = −2M (1)

r
,

Bo
(1) = 2l(l + 1)

M (1)

r
.

(D.4)

The first non-vanishing inhomogeneous term is

Ji
(1) = rAi

(1)∂rHi
(0) −Bi(1)Hi

(0) . (D.5)
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To leading order in the expansion, the inner and outer solutions are

Hi
(0) = ci

(0)jl(kr), r < R ,

Ho
(0) = ao

(0)rl + bo
(0)r−l−1, r > R .

(D.6)

Matching the two solutions at r = R fixes

ao
(0) =

ci
(0)

2l + 1
R−l

[
kRj′l(kR) + (l + 1)jl(kR)

]
=

ci
(0)

2l + 1

√
π

2
kRR−lJl− 1

2
(kR) ,

bo
(0) = − ci

(0)

2l + 1
Rl+1

[
kRj′l(kR)− ljl(kR)

]
=

ci
(0)

2l + 1

√
π

2
kRRl+1Jl+ 3

2
(kR) .

(D.7)

At the next order, the inner and outer solutions are

Hi
(1) =−jl(kr)

∫ kr

0

dx

(xjl(x))2

∫ x

0
dx1 jl(x1)Ji

(1)(x1), r <R,

Ho
(1) = ao

(1)rl+bo
(1)r−l−1+M (1)

(
−(l+2)ao

(0)rl−1+(l−1)bo
(0)r−l−2

)
, r >R.

(D.8)

The matching at this order gives the conditions

ao
(1) +R−(2l+1)bo

(1) = α(R) ,

lao
(1) − (l + 1)R−(2l+1)bo

(1) = β(R) ,
(D.9)

where

α(R) = ao
(0)M (1)R−1

(
(l + 2)− (l − 1)R−(2l+1) bo

(0)

ao(0)

)

−R−ljl(kR)

∫ kR

0

dx

(xjl(x))2

∫ x

0
dx1 jl(x1)Ji

(1)(x1) ,

β(R) = ao
(0)(l − 1)(l + 2)M (1)R−1

(
1 +R−(2l+1) bo

(0)

ao(0)

)

−R−lkRj′l(kR)

∫ kR

0

dx

(xjl(x))2

∫ x

0
dx1 jl(x1)Ji

(1)(x1)

− R−l

(kR)jl(kR)

∫ kR

0
dx1 jl(x1)Ji

(1)(x1) .

(D.10)

D.2 Parity odd modes

For magnetic Love numbers, the problem reduces to solving the master equation (C.13).

We will find analytic solutions at small compactness using the expansion introduced in

subsection B.1.

h̃v = H(0) + εH(1) + · · · . (D.11)

At each order in the expansion we have to solve an equation of the form

r2H(n)′′ − rP (0)H(n)′ −Q(0)H(n) + J (n) = 0 , (D.12)
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where J (n) is determined by lower order solutions and coefficients, and J (0) = 0. The

coefficients in the master equation have the following expansion in the region inside the

star r ≤ R.

Pi
(0) = 0 ,

Qi
(0) = l(l + 1) ,

Pi
(1) = 4πr2(ε+ p)(1) ,

Qi
(1) = 2

[
(l(l + 1)− 2)

m(1)

r
+ 4πr2(ε+ p)(1)

]
.

(D.13)

Outside the star we have Po = 0 and

Qo
(0) = l(l + 1) ,

Qo
(1) = 2(l(l + 1)− 2)

M (1)

r
.

(D.14)

The first non-vanishing inhomogeneous term is

Ji
(1) = −rPi(1)∂rHi

(0) −Qi(1)Hi
(0) . (D.15)

To leading order in the expansion, the inner and outer solutions are

Hi
(0) = Ho

(0) = ao
(0)rl+1 . (D.16)

At the next order, the inner and outer solutions are

Hi
(1) = −rl+1

∫ kr

0
dxx−2l−2

∫ x

0
dx1 x

l−1
1 Ji

(1)(x1), r < R ,

Ho
(1) = ao

(1)rl+1 + bo
(1)r−l −M (1) l(l + 1)− 2

l
ao

(0)rl, r > R .

(D.17)

The matching at this order gives the conditions

ao
(1) +R−(2l+1)bo

(1) = α(R) ,

(l + 1)ao
(1) − lR−(2l+1)bo

(1) = β(R) ,
(D.18)

where

α(R) =
l(l+1)−2

l
ao

(0)M (1)R−1−
∫ kR

0
dxx−2l−2

∫ x

0
dx1x

l−1
1 Ji

(1)(x1) ,

β(R) = (l(l+1)−2)ao
(0)M (1)R−1−(l+1)

∫ kR

0
dxx−2l−2

∫ x

0
dx1x

l−1
1 Ji

(1)(x1)

−(kR)−2l−1

∫ kR

0
dx1x

l−1
1 Ji

(1)(x1) .

(D.19)
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D.3 Estimates for Love numbers

We will estimate the values of Love numbers obtained from the analytic calculation.

D.3.1 Electric Love numbers

The electric love numbers are determined to NLO by the solutions found before

kel
l '

1

2R2l+1

bo
(0) + εbo

(1) + · · ·
ao(0) + εao(1) + · · ·

' 1

2R2l+1

bo
(0)

ao(0)

(
1 + ε

[
bo

(1)

bo
(0)
− ao

(1)

ao(0)

])
+ · · ·

= kel
l

(0)
+ εkel

l
(1)

+O(ε2) .

(D.20)

The leading order contribution is

kel
l

(0)
=

1

2R2l+1

bo
(0)

ao(0)

∣∣∣
R=R0

=
Jl+ 3

2
(π)

2Jl− 1
2
(π)

. (D.21)

The subleading correction is

εkel
l

(1)
= ∂R

(
1

2R2l+1

bo
(0)

ao(0)

)∣∣∣
R=R0

(R−R0) + ε∆kel
l

(1)
, (D.22)

where

∆kel
l

(1)
= −kel

l
(0)ao

(1)

ao(0)

(
1− 1

kel
l

(0)

bo
(1)

2R2l+1ao(1)

)∣∣∣
R=R0

. (D.23)

Here we can use (nl = πj′l(π) + (l + 1)jl(π))

bo
(1)

2R2l+1ao(1)

∣∣∣
R=R0

=
1

2

lα(R0)− β(R0)

(l + 1)α(R0) + β(R0)
,

ao
(1)

ao(0)

∣∣∣
R=R0

= Rl0
(l + 1)α(R0) + β(R0)

ci(0)nl
.

(D.24)

The subleading correction has a contribution of the form

∂R

(
1

2R2l+1

bo
(0)

ao(0)

)∣∣∣
R=R0

=
π

R0
∂x

(
Jl+ 3

2
(x)

2Jl− 1
2
(x)

)
x=π

. (D.25)

The remaining contribution is

∆kel
l

(1)
= −kel

l
(0) (l + 1)α̂0 + β̂0

nl

(
1− 1

2kel
l

(0)

lα̂0 − β̂0

(l + 1)α̂0 + β̂0

)

= −
[

1

nl

(
kel
l

(0)
(l + 1)− l

2

)
α̂0 +

1

nl

(
kel
l

(0)
+

1

2

)
β̂0

]
,

(D.26)

where

α̂0 =
nl

2l + 1

(
(l + 2)− 2(l − 1)kel

l
(0)
)
− jl(π)K̂1 ,

β̂0 =
nl

2l + 1
(l − 1)(l + 2)

(
1 + 2kel

l
(0)
)
− πj′l(π)K̂1 −

1

πjl(π)
K̂2 ,

(D.27)

and K1 = ci
(0) δµc

µ0
K̂1, K2 = ci

(0) δµc
µ0
K̂2 are defined as

K1 =

∫ π

0

dx

(xjl(x))2

∫ x

0
dx1 jl(x1)Ji

(1)(x1), K2 =

∫ π

0
dx1 jl(x1)Ji

(1)(x1) . (D.28)
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D.3.2 Magnetic Love numbers

The magnetic Love numbers become nonzero only at NLO

kmag
l ' − l

l + 1

1

2R2l+1

bo
(0) + bo

(1) + · · ·
ao(0) + ao(1) + · · ·

' − l

l + 1

1

2R2l+1

bo
(1)

ao(0)
+ · · · = εkmag

l
(1)

+O(ε2) ,

(D.29)

where

εkmag
l

(1)
= − l

l + 1

1

2R2l+1

bo
(1)

ao(0)

∣∣∣
R=R0

. (D.30)

Here we can use

bo
(1)

2R2l+1ao(0)

∣∣∣
R=R0

=
1

2(2l + 1)

(l + 1)α(R0)− β(R0)

ao(0)
. (D.31)

We obtain

kmag
l

(1)
= − l

l + 1

1

2(2l + 1)

(
(l + 1)α̂0 − β̂0

)
, (D.32)

where

α̂0 =
l(l + 1)− 2

l
− K̂1 ,

β̂0 = (l(l + 1)− 2)− (l + 1)K̂1 − π−2l−1K̂2 ,

(D.33)

and K1 = ao
(0) δµc

µ0
K̂1, K2 = ao

(0) δµc
µ0
K̂2 are defined as

K1 =

∫ π

0
dxx−2l−2

∫ x

0
dx1 x

l−1
1 Ji

(1)(x1), K2 =

∫ π

0
dx1 x

l−1
1 Ji

(1)(x1) . (D.34)

D.3.3 Approximate values

Evaluating the integrals that appear in the formulas for the Love numbers, we can give

a numerical estimate of their value to leading order in compactness. This is summarized

in table 1.

E Moment of inertia and quadrupolar momentum

When the star is rotating, the geometry and matter distribution are modified from the

spherical shape. If the rotation is slow, one can expand in the angular velocity Ω. To

second order, the perturbed metric in an appropriate choice of coordinates takes the form

ds2 = −eν
(
1 + 2Ω2(h0 + h2P2)

)
dt2 +

1 + 2Ω2(δm0+δm2P2)
r−2Gm

1− 2Gm
c2r

dr2

+ r2
[
1 + 2Ω2(v2 − h2)P2

] (
dθ2 + sin2 θ(dφ− ωdt)2

)
,

(E.1)
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l kel
l kmag

l

2 0.260–1.994 C 0.041 C

3 0.106–1.047 C 0.018 C

4 0.060–0.720 C 0.0094 C

5 0.039–0.551 C 0.0055 C

6 0.028–0.448 C 0.0035 C

7 0.021–0.378 C 0.0024 C

8 0.016–0.327 C 0.0017 C

9 0.013–0.288 C 0.0012 C

10 0.011–0.258 C 0.00091 C

Table 1. Electric and magnetic Love number as function of compactness C.

where P2 ≡ P2(cos θ) is the Legendre polynomial of order 2 and ω is the angular velocity

of the local inertial frame. It will be convenient to define the relative angular velocity of

the fluid respect to the inertial frame:

g =
ω̃

Ω
= 1− ω

Ω
. (E.2)

The moment of inertia I can be computed integrating the following equations [72, 101]

dI

dr
=

8π

3c2
gjr4(ε+ p)

(
1− 2Gm

c2r

)−1

,

d

dr

(
r4j

dg

dr

)
+ 4r3 dj

dr
g = 0 ,

(E.3)

where

j ≡ e−ν/2
√

1− 2Gm

c2r
, (E.4)

with the boundary conditions g′(r = 0) = 0 and g(R) = 1− 2I/R3.

The quadrupolar momentum is defined as the O(1/r3) correction to the Newtonian

potential at large radius r →∞

Ω2h2 =
Q

r3
+ · · · . (E.5)

It can be computed by integrating the following equations [109]

dv2

dr
=−dν

dr
h2+

Ω2

c2

(
1

r
+

1

2

dν

dr

)[
−1

3
r3dj

2

dr
g2+

1

6
j2r4

(
dg

dr

)2
]
,

dh2

dr
=

[
−dν
dr

+
G

c2

r

r−2Gm/c2

(
dν

dr

)−1(8π

c2
(ε+p)− 4m

r3

)]
h2

− 4v2

r(r−2Gm/c2)

(
dν

dr

)−1

+
1

6

Ω2

c2

[
1

2

dν

dr
r− 1

r−2Gm/c2

(
dν

dr

)−1
]
r3j2

(
dg

dr

)2

− 1

3

Ω2

c2

[
1

2
r
dν

dr
+

1

r−2Gm/c2

(
dν

dr

)−1
]
r2dj

2

dr
g2 ,

(E.6)

with the boundary conditions h2 = v2 = 0 at r = 0 and r →∞.
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E.1 Analytic solutions

The expansion of (E.3) to leading order shows that the moment of inertia is of O(ε), where

I(1) =
2

3

c2

Gk3

∫ π

0
dzz4m(1) =

2

3

c2

Gk3
π(π2 − 6) , (E.7)

thus (for m0 ≈ 310 MeV)

I ' 8.144× 1046C g cm2 . (E.8)

For the other functions we define the dimensionless mass parameter, angular velocity, and

radial coordinate

M̂ =
GMk

c2
, Ω̂ =

Ω

ck
, z = kr . (E.9)

We find

• Leading order solutions for g:

r ≤ R, 1− g = ω̂0 + 4M̂(1− ω̂0)

(
2

π2
+

2z cos z + (z2 − 2) sin z

z3

)
,

r > R, 1− g = ω̂0 + ω̂1
π

3

(
1− π3

z3

)
,

(E.10)

where

ω̂0 = 1− 2GI

c2R3
, ω̂1 = −4M̂(1− ω̂0)

π2 − 6

π3
. (E.11)

Then, using (E.7),

1− ω̂0 =
2GI

c2R3
' 4(π2 − 6)

3π2
C . (E.12)

• Leading order solutions for h2:

r ≤ R, Ω2h2 = ĥ0j2(z)− Ω̂2(1− ω̂0)2 z
2

3
,

r > R, Ω2h2 =
q̂

320z3
+

3M̂ q̂

2560z4
− Ω̂2π

8κ2(25M̂ + 56z)

1008z5
+O

(
M̂2
)
.

(E.13)

• Leading order solutions for v2:

r≤R, Ω2v2 =
ĥ0M̂

2z

(
j2(z)

((
z2+1

)
sinz−z cosz

)
+zj1(z)(z cosz−sinz)

)
+

2

3
M̂ Ω̂2(1−ω̂0)2z(sinz−z cosz),

r >R, Ω2v2 =
M̂ q̂

5120z4
+

M̂2q̂

10240z5
−Ω̂2 π8

24z4
ω̂2

1 +O
(
M̂3
)
.

(E.14)

Matching the solutions at r = R fixes

ĥ0 =
π4(1 + 32π)(1− ω̂0)2

9 + 24π (π2 − 3)
Ω̂2 +O(M̂), q̂ = −

2560π6
(
π2 − 15

)
(1− ω̂0)2

9 + 24π (π2 − 3)
Ω̂2 +O(M̂) .

(E.15)
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The asymptotic expansion of the Newtonian potential h2 is

Ω2h2 '
q̂

320z3
. (E.16)

Then, the quadrupolar momentum is

Q ' c2

Gk3

q̂

320
. (E.17)

In units of the angular velocity, this becomes (for m0 ≈ 310 MeV)

Q

Ω2/c2
' c2

Gk5

8π6
(
15− π2

)
(1− ω̂0)2

9 + 24π (π2 − 3)
' 1.692× 1059C2 g cm4 , (E.18)

or, by using (E.12)

Q

Ω2/c2
' G

c2
k

32π3
(
15− π2

)
9 + 24π (π2 − 3)

I2 . (E.19)
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