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1 Introduction

In this paper we extend the study of form factors of the operator Tr(F 3) initiated in [1, 2] at

two loops with an external state containing three gluons of positive helicity. The importance

of these form factors arises from their connection to the effective theory for Higgs plus many

gluon processes. In this approach, the one-loop gluon-fusion diagram involving a loop of
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top quarks is replaced by a set of local interactions in an expansion in 1/mt where mt is

the top mass. This expansion has the form [3, 4]

Leff = Ĉ0O0 +
1

m2
t

4∑
i=1

ĈiOi + O
(

1

m4
t

)
, (1.1)

whereOi, i = 1, . . . , 4 are dimension-7 operators made of gluon field strengths and covariant

derivatives, and O0 := H Tr(F 2). Ĉ0, Ĉi are the matching coefficients and are proportional

to 1/v, where v is the Higgs field vacuum expectation value. Due to the equations of

motion, in pure Yang-Mills one can eliminate two of the four operators in the sum [4, 5],

and the remaining two operators can be chosen to be H Tr(F 3) and H Tr
(
DµF νρDµFνρ

)
.

One is then led to the study of the form factors of the two operators

Tr(F 3) = Tr(F 3
ASD) + Tr(F 3

SD) ∝ OC +OC , OM ∝ Tr
(
DµF νρDµFνρ

)
, (1.2)

where ASD stands for the anti-selfdual part of the gluon field strength (which is the only

part contributing at two loops for our external state).

Our main goal is to identify some universal structures in the expressions of such form

factors, in particular across different classes of operators and for various amounts of super-

symmetry. Several hints of this universality have already been found in related investiga-

tions. In particular, in [6] it was found that the form factor remainder for the half-BPS

bilinear scalar operator Tr(X2) in N =4 super Yang-Mills (SYM) captures the maximally

transcendental part of the remainder computed in pure Yang-Mills of the operator Tr(F 2)

with a state of three gluons [7].1 In turn, these particular form factors compute the leading-

order Higgs plus gluon amplitudes in the 1/mt expansion, related to the term O0 in (1.1).

This surprising coincidence was the motivation for the study begun in [8–10] of form

factors of operators containing three scalar fields in N = 4 SYM. In particular, it was

found in [10] that at two loops, the minimal form factor for the non-protected operator

Tr(X[Y,Z]) has the same maximally transcendental part of the minimal form factor re-

mainder of the protected operator Tr(X3). The Tr(X[Y, Z]) operator (or more precisely a

certain admixture of it with a fermion bilinear) is a descendant of the simplest non-protected

operator, namely the Konishi. While the form of universality we alluded to earlier is across

different theories, this new appearance is across different types of operators. Other purely

transcendental terms of decreasing transcendentality three to zero (which we will refer to

as “pure” terms) were found in the remainder for Tr(X[Y,Z]), and unexpected connec-

tions of these terms to certain spin-chain remainder densities in the SU(2) sector [11] were

identified. This was quite surprising since the operator Tr(X[Y,Z]) belongs to a different

sector, namely the SU(2|3) sector [12].

The calculation of [10] was a stepping stone for the computations of the form factors of

the operator OC in N =4 SYM in [1]. More precisely, in that paper two different operators

were considered: OC and a particular supersymmetric completion thereof denoted by OS ,

belonging to the Konishi supermultiplet, whose MHV form factors have recently been

computed [13]. It was found in [1] that the maximally transcendental part of these form

1Here X denotes one of the three complex scalar fields of the N =4 theory.
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factors with an external state of three gluons is one and the same across theories with

any amount of supersymmetry, including pure Yang-Mills (or QCD), and also identical for

OS and OC . These form factors in turn describe the first subleading corrections to Higgs

+ many gluons in the 1/mt expansion. Unlike the case of the operator Tr(X[Y,Z]), the

remainders for OS and OC show a new feature in that they are accompanied by “non-pure”

terms, i.e. terms of transcendentality degree ranging from three to zero which are further

multiplied by ratios of kinematic invariants. Interesting relations across terms with varying

degree of transcendentality were observed in [2] as a consequence of requiring the absence

of unphysical singularities in soft/collinear limits.

In this paper we quantify these findings by providing explicit expressions for the re-

mainder functions in N =2, 1 SYM, both for the component operator OC and for its super-

symmetric version OS , whose form factors can be simply obtained by a truncation [14] of

the result of [13] (we note in passing that we will never need to know the explicit expression

of the operator OS , only of its MHV super form factors).

An important disclaimer is in order here. Throughout our calculations we use four-

dimensional expressions of amplitudes and form factors as input in the unitarity cuts. As

mentioned in [2], there are examples in N = 4 SYM where it has explicitly been observed

that four-dimensional cuts are sufficient for computing finite remainders, namely for four-

[15], five- [16] and six-point [17] two-loop remainders of MHV amplitudes. This happens

because of the absence of so-called µ2-terms (that can only be detected by performing cuts

in D dimensions) at four points, and because of remarkable cancellations in the five- and

six-point cases which occur thanks to the particular definition of the remainder function. To

the best of our knowledge, no such examples exist with N <4 supersymmetry. We cannot

a priori exclude the presence of such µ2-terms, and the potential modifications to the

finite remainder function they could induce, however we do mention that our result passes

several consistency checks. These include reproducing the correct infrared and ultraviolet

divergences, and soft/collinear factorisation at two loops. Furthermore, we observe that the

relevant one-loop form factor used throughout this paper as obtained from four-dimensional

cuts is also correct in D dimensions [18], i.e. its expression has no additional µ2-terms. This

quantity plays a twofold rôle, in that it enters cuts of two-loop form factors, and is also

used in the definition of our two-loop remainders.

The results of our investigation can be summarised as follows:

1. The maximally transcendental part of the form factors of the operators OS and OC is

the same as that of the half-BPS operator Tr(X3) in theN =4 SYM theory, regardless

of the amount of supersymmetry (including N = 0) [1]. The latter statement was

confirmed by a recent explicit computation in [19].

2. The non-pure terms of our remainders are identical to those computed in the maxi-

mally supersymmetric theory.

3. The only differences arise in the pure terms at transcendentality below four, and

are limited to a very restricted type of terms involving ζ2, ζ3 and simple powers
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of logarithms (after disentangling the mixing). The results of our calculations are

collected in tables 4 and 5.

The rest of the paper is organised as follows. In section 2 we briefly discuss the opera-

tors studied in this paper and their tree-level form factors, while in section 3 we summarise

the one-loop calculation. In section 4 we move on to calculate the two-loop minimal form

factors in theories with less than maximal supersymmetry. In section 5 we compute the

Catani two-loop form factor remainder functions in N =2, 1 SYM. We conclude in section 6

with a discussion of our results, their implications, and a number of consistency checks.

2 Operators and tree-level form factors in N = 1, 2, 4

As explained in detail in [1, 2], a central point of our discussion consists of appropriately

translating the operator OC ∝ Tr(F 3
ASD) to a supersymmetric completion OS=OC +O(g).

In [1] we have identified OS for the case of N = 4 SYM as a Supersymmetric descendant

of the Konishi, generated by acting with tree-level supercharges on the lowest-dimensional

operator in the multiplet. Notably, the Component operator OC is contained within OS .

The key point to make here is that similar supersymmetric completions of OC can be

obtained in N = 2, 1 SYM by an appropriate truncation [14]. We will see shortly that for

the concrete calculations in this paper, we will only need OS for N =2 SYM.

We now review some of the ingredients of the calculations. For both operators, the tree-

level minimal form factor with the external state of three positive-helicity gluons is given by

F
(0)
OS ,OC

(1+, 2+, 3+; q) = −[12][23][31] . (2.1)

Next, we recall the tree-level MHV super form factors [20] of the full Konishi multiplet in

N =4 SYM have been constructed and expressed in a compact formula in [13],

〈1, 2, . . . , n|K(θ, θ̄)|0〉(0)
MHV =

e
∑n

l=1[l|θ̄θ|l〉+ηl〈θl〉

〈12〉 · · · 〈n1〉
×

∑
i≤j<k≤l

(2−δij)(2−δkl)εABCDη̂iAη̂jB η̂kC η̂lD〈jk〉〈li〉 ,
(2.2)

where η̂A := ηA + 2[λ̃ θ̄A] and ηA are the usual on-shell superspace coordinates labelling

the external on-shell states. The θAα and θ̄Aα̇ label the components of the Konishi super-

multiplet. MHV form factors of OK are obtained by setting θ = θ̄ = 0, while the form

factors of OS are obtained by setting θ̄ = 0 and extracting the θ8-term:

F
(0)

OS ,MHV
(1, 2, . . . , n; q) =

1

144

δ(8)(
∑n

i=1 ηiλi)

〈12〉 · · · 〈n1〉
×

∑
i≤j<k≤l

(2−δij)(2−δkl)εABCDηiAηjBηkCηlD〈jk〉〈li〉 .
(2.3)

More details on the form of the operator OS can be found in section 2.2 of [2] and in

particular a number of examples of four-point tree-level form factors relevant to unitarity

cuts below are given in (2.13)-(2.20) of [2], describing the differences between OS and OC .
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Truncation to N =2 and N =1 SYM. Following [14], we can truncate formula (2.3)

to find the corresponding quantity in N = 2 SYM. This will contain the operator Tr(F 3),

with appropriate additional N =2 completion terms. In order to do so, we first recall the

form of the Nair on-shell superfields for N =4, N =2 and N =1 SYM. These are given by:

N =4 : g(+)(p) + ψA(p)ηA +
1

2
φAB(p)ηAηB +

1

3!
ψ̄ABC(p)ηAηBηC + g(−)(p)η1 · · · η4 ,

N =2 : g(+)(p) +

2∑
I=1

ψI(p)ηI + Sη1η2 +
(
S̄ +

2∑
I=1

ψ̄I34(p) ηI + g(−)(p)η1η2

)
η3η4 ,

N =1 : g(+)(p) + ψ1(p) η1 +
(
ψ̄234(p) + g(−)(p)η1

)
η2η3η4 , (2.4)

where in the first line A,B,C = 1, . . . , 4.

In order to reduce (2.3) to the form appropriate for N =2 SYM we have to project the

superfields for each external particle. In practice this means that we drop all terms which

are linear in η3 or η4 for each particle in an N =4 super form factor and super amplitude.

The state sums in unitarity cuts are still performed using
∫
d4η for each internal leg.

We can apply the same procedure to the case of N =1 SYM, however the supersymmet-

ric completion of Tr (F 3) would only introduce additional four-gluino terms which at our

perturbative order and with our external state cannot contribute and hence are dropped.

3 One-loop minimal form factors

For the reader’s convenience we quote here the one-loop correction to the minimal form

factor of the operators OS and OC , calculated in [2, 18]:2

F
(1)
OS ,OC

(1+,2+,3+;q) = iF
(0)
OS ,OC

2× + s23× + cyclic(1,2,3)

 .

(3.1)

For the purpose of the current discussion an important observation is in order here. The

result for the one-loop form factor of the two operators OC and OS is not only operator-

independent, but also theory-independent, i.e. the same whether computed in pure or

supersymmetric Yang-Mills. This is due to the fact that both the tree-level form factor (2.1)

and the four-gluon tree-level amplitude entering the one-loop cut are identical in any Yang-

Mills theory. Theory-dependence will manifest itself at two and higher loops where the

differences in matter content of the theories will become important.

4 Two-loop minimal form factors in N <4 SYM

We now compute the minimal form factors FOS (1+, 2+, 3+; q) and FOC(1+, 2+, 3+; q) at

two loops and in theories with less-than-maximal supersymmetry.

2Expressions for the one-loop master integrals can be found in appendix A.
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Figure 1. Four unitarity cuts used to construct the integrand for the two-loop form factor of

FOS ,OC (1+, 2+, 3+; q). Cut (i) and (iii) are both operator- and theory-independent. Cut (ii) is

operator-independent, but theory dependent due to the presence of a one-loop sub-amplitude. Fi-

nally, cut (iv) probes both the specific operator and the theory, see also table 1.

4.1 An effective supersymmetric decomposition

There are two modifications one needs to take into account when decreasing the number

of supersymmetries, N , from the maximal value of N =4.

First, in computing the two-loop remainder functions the subtraction of the universal

infrared divergences for theories with less-than-maximal supersymmetry must be substi-

tuted by a more general formula introduced by Catani [21], featuring the non-zero beta

function of the theory.

Second, the two-loop integrand constructed in [2] using the generalised unitarity cuts

presented in figure 1 above may receive contributions from different states depending on the

field content of the theory. The various supersymmetric and non-supersymmetric theories

differ by the number of scalars and fermions in the vector multiplet. Hence, the key

to understanding the difference between two-loop form factors in these theories lies in

computing the individual contributions of scalars and fermions to the two- and three-

particle cuts shown in figure 1.

However, inspecting the cuts in figure 1 carefully, it is clear that only (ii) and (iv) are

sensitive to the field content of the theory since they feature a non-minimal form factor

or a one-loop amplitude. Indeed, cut (iii) involves only a tree-level form factor and an

amplitude with gluons as external states, rendering it independent of the field content of

the theory. Cut (i) is slightly more subtle as it features a one-loop form factor which can in

principle involve fermions and scalars running in the loop. For this particular configuration

of external states, however, the cut of the one-loop form factor consists solely of tree-level

quantities with gluons as external states, as shown in figure 2.

Thus we conclude that only cuts (ii) and (iv) are sensitive to the amount of supersym-

metry. Even so, cut (ii) depends on the field content only through the one-loop amplitude,

whose cut-constructible part receives additional contributions proportional to bubble in-

tegrals compared to the N = 4 SYM case [22]. We will show this explicitly for different

values of N in section 4.2.
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Figure 2. Two-particle cut of the one-loop form factor F
(1)
OS ,OC

(1+, 2+, 3+; q).

Theory-independent? OS same as OC?

Two-particle cut
(i) : F (1)×A(0) 3 3

(ii) : F (0)×A(1) 7 3

Three-particle cut
(iii) : q2-channel 3 3

(iv) : s23-channel 7 7

Table 1. Summary of the theory- and operator-dependence of the unitarity cuts of the two-loop

form factor.

Finally, the last cut, (iv), also depends on the particular matter content due to the

nontrivial sum over internal fermions and scalars running in the loops. However, the story

for the two operators OS and OC unfolds in two different ways. For OC , the only possible

matter-dependent contributions to cut (iv) involve an internal state with a positive-helicity

gluon and two adjacent scalars or fermions. Hence, the situation is entirely parallel to that

of cut (ii), in that the matter content dependence is restricted to one-loop sub-diagrams.

This allows us, for the case of OC , to use a supersymmetric decomposition of the calculation

as done in [22] for one-loop amplitudes. This is a remarkable and important simplification

which does not apply to a generic two-loop amplitude computation. In the following we

will obtain the result of this cut as a function of cB (the number of complex scalar fields)

and cF (the number of Weyl fermions) in each theory. This computation will be presented

in detail in section 4.3.

The situation for OS is different because this operator contains additional terms giving

rise to modifications to tree-level form factors due to the length-four terms inside OS ;

furthermore, OS depends on whether we consider the N = 4 or N = 2 theory due to

the state sum reduction. We also recall that there is no distinction between the OC and

OS cases in N = 1 SYM — the only possible differences between the two operators are

four-gluino terms, which cannot contribute to the process under consideration.

We briefly summarise in table 1 what we know about the contributions from the

individual cuts so far, and next we discuss modifications arising from the two- and three-

particle cuts in turn.

4.2 Modifications to the two-particle cut

The two-particle cut with F (0) × A(1), presented in figure 1(ii) contains a four-point one-

loop amplitude. If the matter content is changed compared to that of N = 4 SYM the

– 7 –
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amplitude will be modified by additional bubble integrals [22–24]. Fortunately, for the

four-point amplitude the modification is very simple. Explicitly, we have [22, 25]

A
(1)
N≤4(`−1 , `

−
2 , 2

+, 3+) = A
(1)
N=4(`−1 , `

−
2 , 2

+, 3+)− β0A
(1)
N=1 chiral(`

−
1 , `
−
2 , 2

+, 3+) , (4.1)

where β0 is the first coefficient of the beta function of the theory in question (see table 2

for its values in our conventions), and

A
(1)
N=1 chiral(`

−
1 , `
−
2 , 2

+, 3+) = A(0)(`−1 , `
−
2 , 2

+, 3+)× . (4.2)

Once multiplied by the usual tree-level form factor (2.1), this additional contribution gives

rise to a new topology, absent in N =4 SYM:

β0
Tr+(1`2`1132)

s12s13
× . (4.3)

We note that this integral is free of any ambiguities as numerator terms involving powers

of `21 or `22 would lead to scaleless integrals. Moreover, we do not expect to observe this

integral in any of the other cut channels we considered — thus, we can simply add it to the

integrand of the two-loop form factor. Finally, as indicated in table 1, this cut is universal

for both operators OS and OC and therefore its contribution to the integrands of both form

factors is the same.

The important point we wish to make here is that, upon integral reduction, such an

additional contribution can only produce two-loop integrals of sub-maximal transcenden-

tality. As a consequence, the maximally transcendental part of the result remains unaltered

by modifications of this cut, as already observed in [1].

4.3 Modifications to the three-particle cut

Having considered all modifications to two-particle cuts arising from studying different

supersymmetric Yang-Mills theories, it remains to inspect more closely the individual con-

tributions of scalars and fermions to the calculation of the s23-channel three-particle cut,

presented in figure 1(iv). We do this in detail for the component operator OC , which is the

case compatible with a supersymmetric decomposition, as discussed earlier in section 4.1.

Using the relevant expressions for tree-level form factors and amplitudes explicitly

quoted in (4.20)-(4.26) of the companion paper [2], and leaving the R-symmetry multi-

plicities unspecified as cF for fermions and cB for scalars, after some manipulation we can

bring all the scalar and fermion terms to a compact form:

〈46〉
〈23〉〈34〉〈62〉

[
1

s56

(
[1|54|1]

(
−cF s45 +

1

2
cBs46

)
+ [1|64|1]

(
−cF s46 +

1

2
cBs45

))
(4.4)

+
1

s45

(
[1|65|1]

(
−cF s56 +

1

2
cBs46

)
+ [1|64|1]

(
−cF s46 +

1

2
cBs56

))]
.

– 8 –
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We can then draw the corresponding integrals in this expression term-by-term:

First term = ×
F

(0)
OS

s12s23s31

(
−cF s45 +

1

2
cBs46

)
Tr+(26431541) , (4.5)

Second term = ×
F

(0)
OS

s12s23s31

(
cF s46 −

1

2
cBs45

)
Tr+(16413462) , (4.6)

Third term = ×
F

(0)
OS

s12s23s31

(
cF s56 −

1

2
cBs46

)
Tr+(24631651) , (4.7)

Fourth term = ×
F

(0)
OS

s12s23s31

(
−cF s46 +

1

2
cBs56

)
Tr+(14613462) . (4.8)

The reduction of these integrals with complicated-looking numerators leads to surprisingly

simple results. For example, the term in (4.5) reduces to

− cB(6d+4d2−5d3 +d4)+cF (40d−40d2 +14d3−2d4)

24(d−4)2(d−3)(d−2)(d−1)(p2 ·p3)
× (4.9)

− cB(−96+137d−53d2 +6d3)+cF (−96+84d−12d2)

12(d−4)(d−1)(3d−8)
× ,

which, after explicit evaluation, turns out to be of transcendentality three and lower. Again,

we see that regardless of the number of fermions and scalars present in the theory, their
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contribution is submaximal in transcendentality. As a result, we arrive at the important

conclusion that the maximally transcendental part of the two-loop form factor is universal

for Yang-Mills theories with any amount of supersymmetry, as anticipated in [1]. As far as

QCD is concerned the same conclusion holds — the presence of fermions in the fundamental

representation only alters group theory factor and does not lead to new types of integrals.

A final observation is in order. In (4.9), which is the result of the integral reduction

of (4.5), we see two two-loop master topologies arising. While the first topology is perfectly

consistent with the cut we are considering — three-particle in the s23-channel, the second

topology arising from the reduction does not have a cut in this channel. Demanding

consistency of the cut and the topology it gives rise to, we conclude that such contribution

is inconsistent and therefore we drop it from the result.

5 Remainder functions in N <4 SYM

5.1 Catani form factor remainder and renormalisation

For theories with N < 4 supersymmetry, which have non-vanishing beta function, one must

take into account renormalisation. Catani’s remainder is expressed in terms of renormalised

quantities, and hence we need to first discuss how these are related to the bare quantities

(which is what we calculate).

We begin by noting that in the MS scheme, the bare coupling constant as a function

of the renormalised coupling at a scale µ, denoted by a(µ), is given by [21]

aUSε =

(
µ

µ0

)2ε

a(µ)

[
1− a(µ)

β0

ε
+ a2(µ)

(
β2

0

ε2
− β1

2ε

)]
+O(a4(µ)) , (5.1)

where Sε := (4π)εe−γEε and β0, β1 are the first two coefficients of the beta function for the

’t Hooft coupling,

β(a(µ)) := µ
∂a(µ)

∂µ
, (5.2)

and β(a) = −2aε− 2a2β0 − 2a3β1 +O(a4). Note that we define the ’t Hooft coupling as

a =
g2N

(4π)2
.

The values of β0 are well-known for any SU(N) gauge theory [26]

β0 =
11

3
− 1

6

∑
i

Ci
N
− 2

3

∑
j

C̃j
N
, (5.3)

where the first sum is over all real scalars and the second sum over all Weyl fermions with

quadratic Casimirs Ci and C̃j respectively. Since we are dealing with Yang-Mills theories

without matter, all fields are in the adjoint representation and thus Cj = C̃j = N . For

convenience, we list in table 2 below the values of β0 and β1 for N =0, 1, 2, 4.
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N # real scalars # Weyl fermions β0 β1

4 6 4 0 0

2 2 2 2 0

1 0 1 3 6

0 0 0 11/3 34/3

Table 2. Field content and values for β0 and β1 for Yang-Mills theories with N = 0, 1, 2, 4

supersymmetry.

Form factors can be interpreted as amplitudes in theories where an additional operator

O with coupling λ has been added to the Lagrangian. If the operator is multiplicatively

renormalisable, then the coupling λ is renormalised as3

λU = λ(µ)

[
1− a(µ)

γ0

ε
+
a2(µ)

2

(ρ2

ε2
− ρ1

ε

)]
+O(a4(µ)) . (5.4)

Thus, we can write a renormalised form factor in two ways, either as functions of bare or

renormalised quantities. Up to two loops we have

FRO = λ(µ)
[
(FRO )(0) + a(µ)(FRO )(1) + a2(µ)(FRO )(2)

]
+O

(
a4(µ)

)
= λU

[
(FUO )(0) + aU (FUO )(1) + (aU )2(FUO )(2)

]
+O

(
(aU )4

)
.

(5.5)

Using (5.1) and (5.4) in the above equation, we can solve for the renormalised form factors

in terms of the bare ones, arriving at the following relations:

(FRO )(0) = (FUO )(0) , (5.6)

(FRO )(1) =

(
µ

µ0

)2ε (FUO )(1)

Sε
− γ0

ε
(FUO )(0) , (5.7)

(FRO )(2) =

(
µ

µ0

)4ε (FUO )(2)

S2
ε

− 1

ε

[
(β0 + γ0)

(
µ

µ0

)2ε (FUO )(1)

Sε
+
ρ1

2
(FUO )(0)

]
+ (FUO )(0) ρ2

2ε2
, (5.8)

where the superscripts U and R stand for unrenormalised and renormalised.

An important comment on operator mixing is in order here. As fully discussed in

section 5.1 in the companion paper [2] for the case of N = 4 SYM the operator Tr(F 3)

and its supersymmetric completion mix with the operator OM ∼ Tr(DµFνρD
µF νρ). The

mixing manifests itself in the non-vanishing off-diagonal term of the mixing matrix in

eq. (5.12) in [2]. However this term is directly related to the UV divergence of the sub-

minimal two-loop form factor of Tr(F 3) computed in section 4.7 of [2]. Importantly, this

quantity turns out to be theory independent since it only gets a contribution from a triple

3We will find later in (6.4) that the quantity ρ2 appearing in (5.4) can be re-expressed in terms of γ0
and β0 as a simple consequence of µ∂λU/∂µ = 0.
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cut involving a minimal three-point form factor and a five-particle gluon amplitude (see

figure 16 of [2]). Hence, for all practical purposes this mixing effect is identical in all cases

and, hence, the corresponding UV divergence can be removed universally. The remaining

UV divergences can then be removed by multiplicative renormalisation as described above.

We are now ready to use these expressions and define finite remainders. Having re-

moved ultraviolet divergences, the final step is to remove the universal infrared ones. At

one loop, the finite remainder is defined as

R(1)(ε) := (FRO )(1) − I(1)(ε) , (5.9)

where FR (L)
O := (FRO )(L)/(FO)(0), (FRO )(1) is the one-loop renormalised remainder defined

in (5.7), and the expression for I(1)(ε) for n gluons is [27–30]

I(1)(ε) = − eεγ

Γ(1− ε)

(
1

ε2
+
β0

2ε

) n∑
i=1

(
−sii+1

µ2

)−ε
. (5.10)

Next we introduce the two-loop Catani remainder [21] in the formulation of [31]. This is

given by

R(2)(ε) := (FRO )(2)(ε)− 1

2

[
(FRO )(1)(ε)

]2
+
β0

ε
(FRO )(1)(ε)

− e−γEε Γ(1− 2ε)

Γ(1− ε)
(FRO )(1)(2ε)

(
β0

ε
+K

)
+

n eγEε

4εΓ(1− ε)
H(2) , (5.11)

where n is the number of legs (n = 3 for the case in question). The particular values of K

and H(2) required in order to guarantee the infrared finiteness of the remainder are

KSYM = 2 [(4−N )− ζ2] , (5.12)

H
(2)
SYM = 2 ζ3 +

(4−N )

2
ζ2 , (5.13)

where N > 0 is the number of supersymmetries.4

Away from N = 4 SYM, the values of parameters γ0, ρ1 and ρ2 appearing in (5.7)

and (5.8) are not yet determined. We are now going to fix γ0, which in turn is related to

the one-loop anomalous dimensions of the operators. We will fix the remaining parameters

in the next sections as they require two-loop data.

The constant γ0 can be determined by requiring the finiteness of the one-loop remain-

der (5.9) with the one-loop unrenormalised minimal form factor (3.1) as an input. This

leads to the relation

γ0 = −6 +
3

2
β0 . (5.14)

Note that this result is the same for the two operators OS and OC . The one-loop anomalous

dimension of the corresponding operators γ
(1)
OS,C

is simply

γ
(1)
OS,C

= −2 γ0 = 12 − 3β0 . (5.15)

4This choice is not unique however. Compared with the conventions of (A.27) and (A.32) of [31] for

N =1 SYM, we have shifted an O(ε) term from KSYM to H
(2)
SYM. Therefore the latter is shifted by a rational

constant with respect to [31].
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Figure 3. One of the cuts of the maximal topology used to solve the s23-channel triple cut. Note

that p6 is part of a one-loop sub-amplitude.

In pure Yang-Mills β0 = 11/3 and we get γ
(1)
OS

= 1, in agreement with [32]. For N = 4 we

get γ
(1)
OS

= 12, which is also the correct result [33, 34].

5.2 N =2 SYM

In this section we evaluate the two-loop form factors and the Catani remainder functions

of the operators OS and OC in N =2 SYM.

5.2.1 The N =2 SYM form factors

As indicated by the summary in table 1, we need to reconsider two types of cuts as they

are theory-dependent: the two particle cut involving a one-loop amplitude and the three-

particle cut in the s23-channel.

There are two possible ways of finding the contribution of the s23-channel three-particle

cut to the two-loop integrand in N <4 SYM. We can either follow the strategy described in

section 4 of [2] and solve this cut numerically, or we can use the result for N =4 SYM and

appropriately subtract the contributions of scalars and fermions described in section 4.3.

In the case of N =2 SYM we subtract the contribution of 2 Weyl fermions and 4 real scalars

from the N =4 SYM integrand, which amounts to subtracting the integral topologies (4.5)–

(4.8) with cF =2 and cB=4. We have performed the calculation using both methods, arriv-

ing at the same result. For convenience, we present below the outcome of the first method.

The procedure follows that of section 4 of [2], with an important modification of the

power counting imposed on the numerator loop momenta. Specifically, the no-triangle

property ofN =4 SYM strongly restricts the power counting of the loop momenta belonging

to a one-loop sub-amplitude. For example, for the cut topology presented in figure 3, p6

cannot feature in the numerator since the sub-amplitude can only contain scalar boxes.

In N < 4 SYM the no-triangle property does not apply, and p6 can now appear in

the numerator. Solving for the N = 2 SYM integrand, we indeed observe new integral

topologies which were previously forbidden by the no-triangle property of N = 4 SYM.

These are shown as I13 and I14 in table 3. The last topology, I15 arises from the one-loop

amplitude with N < 4 supersymmetry, cf. (4.3).

The full integrand for the two-loop form factor of OS computed in N = 2 SYM,

including the additional contributions from the modified two- and three-particle cuts, can

be expressed in terms the N =4 SYM result plus an offset term:

F
(2)
N=2OS

= F
(2)
N=4OS

+ ∆N=2OS , ∆N=2OS =

15∑
i=5

N ′i × Ii , (5.16)
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I1 I2 I3 I4

I5 I6 I7 I8

I9 I10 I11 I12

I13 I14 I15

Table 3. Integral basis for the two-loop form factor F
(2)
OS ,OC

(1+, 2+, 3+; q) in N <4 SYM.

with the numerators presented in (B.1) and the integrals listed in table 3. Note in particular

the appearance of two new topologies in table 3, and denoted as I13 and I14. As discussed

in section 4.2, the modification identified from two-particle cuts is directly added to the

integrand and is denoted as topology I15. Similarly, the full integrand for the two-loop

form factor of OC computed in N =2 SYM can be expressed as

F
(2)
N=2OC

= F
(2)
N=4OC

+ ∆N=2OC , ∆N=2OC =

15∑
i=5

N̂i × Ii , (5.17)

with the numerators presented in (B.2).

Having obtained the integrand for the two-loop form factors of OS and OC in N =

2 SYM, we follow the usual procedure of reduction to master integrals with the help

of LiteRed [35, 36] and evaluation using the known expressions of the master integrals

of [37, 38].
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Transc. R(2)
N=2OS

−R(2)
N=4OS

R(2)
N=2OC

−R(2)
N=4OC

4 0 0

3 −5
2 ζ2[log(uvw) + 3 log(−q2)]− 11

2 ζ3 −5
2 ζ2[log(uvw) + 3 log(−q2)]− 11

2 ζ3

2 18 ζ2 18 ζ2

1 14
3 [log(uvw) + 3 log(−q2)] 3[log(uvw) + 3 log(−q2)]

0 −65
2 −45

4

Table 4. Difference between two-loop Catani remainders of operators OS and OC when calculated

in N =4 and N =2 SYM, split by transcendentality degree.

5.2.2 The N =2 SYM remainders

We now evaluate the two-loop remainder function given in (5.11) for the operators OS and

OC , using the renormalised form factors (5.6)–(5.8) as input.

The first observation to make is that demanding the finiteness of the two-loop re-

mainder, we can fix the parameters appearing in the renormalised expressions, with the

results:

γ0 = −3 , ρ2 = 3 , ρ1 ,OS = −2 , ρ1 ,OC = −3 . (5.18)

Next we move on to the finite N = 2 SYM remainder. In order to present it efficiently

and at the same time highlight its main features, in table 4 below we quote the difference

between the N =2 and N =4 SYM remainders, slice by slice in transcendentality degree.5

Table 4 immediately shows the main feature of our result: it is almost identical to that

of the remainder obtained in N =4 SYM! In more detail:

1. The transcendentality-four slices of the remainders for OS and OC are identical and

equal to that in the N = 4 SYM theory, i.e. this quantity is universal, with the

universality extending also to pure Yang-Mills and QCD [1].

2. The difference between the remainders of operators when computed in N < 4 and

N =4 SYM is limited to a small number of terms as detailed in the table. Recalling

the result of [1] for the N =4 SYM remainder, also quoted in appendix C, we see that

this expression contains “pure” terms, i.e. purely transcendental functions, as well as

“non-pure” terms, which have rational prefactors. For instance, at transcendentality

three we found the prefactors {u
v
,
v

u
,
v

w
,
w

v
,
u

w
,
w

u

}
, (5.19)

while at transcendentality two the list of prefactors is{
u2

v2
,
v2

u2
,
u2

w2
,
v2

w2
,
w2

u2
,
w2

v2

}
. (5.20)

5For the reader’s convenience we also write in appendix C the complete N =4 SYM remainder.
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Strikingly, such non-pure terms in the N = 2 SYM remainder are exactly the same

as in N =4 SYM quoted in (C.4) and (C.7). As table 4 shows, only pure logarithms,

and ζ2 and ζ3 terms appear in the difference, without any rational prefactor. In [2]

it was shown that these rational prefactors in the N = 4 SYM result do not lead

to unphysical soft/collinear singularities in the remainder function. That discussion

applies also to the present context, since the additional terms we find for reduced

supersymmetry do not have any new pole singularity in such kinematic limits.

3. Inspecting table 4 we can further infer that the difference between the remainders of

OS and OC when computed in N =2 SYM only contains terms of transcendentality

degree 1 and 0.

4. A final comment is in order. Throughout this paper we have used four-dimensional

amplitudes and form factors as inputs to the unitarity cuts. Consequently our in-

tegrands might miss so-called “µ2-terms”, which might survive loop integration and

could affect some of the rational numbers quoted in table 4 (see [39, 40] for recent

examples of the appearance of such terms in N =2 SQCD).

5.3 N =1 SYM

5.3.1 The N =1 SYM form factors

For N = 1 SYM, the operators OS and OC have the same (non-minimal) tree-level form

factors and as such their remainders are identical. As a result, the integrand for the two-

loop form factor of OS , OC computed in N = 1 SYM can be expressed in terms of its

difference with respect to the N =4 SYM result for OC , as

F
(2)
N=1OS ,OC

= F
(2)
N=4OC

+ ∆N=1 , ∆N=1 =

15∑
i=5

N ′′i × Ii , (5.21)

with the numerators listed in (B.3).

5.3.2 The N =1 SYM remainders

Similarly to the N = 2 SYM case, by demanding the finiteness of the remainder function

we can fix the parameters γ0, ρ1 and ρ2 appearing in the renormalised remainders, with

the result:

γ0 = −3

2
, ρ2 = −9

4
, ρ1 = −9

2
. (5.22)

Next, we present our result in terms of the difference between the remainder computed in

N =1 SYM and those computed in N =4 SYM, see table 5.

Inspecting table 5, we realise that the discussion in section 5.2.2 can be repeated almost

verbatim.6 The transcendentality-four part of the N = 1 remainder is identical to that in

the N =4 SYM theory, confirming its universality [1]. The difference between the remain-

ders of operators is limited only to a small number of pure terms, i.e. terms without rational

prefactors of the type u/v or u2/v2 (and permutations thereof), with all the non-pure terms

6Including the potential modifications to the rational numbers in table 5 due to the omission of µ2-terms.
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Transc. R(2)
N=1OS ,OC

−R(2)
N=4OS

R(2)
N=1OS ,OC

−R(2)
N=4OC

4 0 0

3 −15
4 ζ2[log(uvw) + 3 log(−q2)]− 33

4 ζ3 −15
4 ζ2 log(uvw)− 33

4 ζ3

2 243
8 ζ2

243
8 ζ2

1 13
2 [log(uvw) + 3 log(−q2)] 9

2 [log(uvw) + 3 log(−q2)]

0 −339
8 −135

8

Table 5. Difference between two-loop Catani remainders of operators OS and OC when calculated

in N =4 and N =1 SYM, split by transcendentality degree.

in the N = 1 SYM remainder being the same as in N = 4 and N = 2 SYM, given in (C.4)

and (C.7). Only pure logarithms, and ζ2 and ζ3 terms make an appearance in the differ-

ence, without rational prefactors. Again, this is consistent with the absence of unphysical

soft/collinear singularities in the remainder function, as discussed in section 5.2.2.

6 Discussion

We conclude with a discussion of our results for the remainder functions of the operators

OS and OC in the various supersymmetric theories, and of some consistency checks of our

calculations.

1. The striking property of our result for the remainders in N = 1, N = 2 and pure

Yang-Mills is that their transcendentality-four part is universal and equal to that in

the N = 4 SYM theory [1]. The difference between the remainders of operators is

restricted to pure terms — terms without rational prefactors of the type u/v or u2/v2

(and permutations). Such differences for the N =2 SYM and N =1 SYM remainders

are listed in tables 4 and 5. Terms which are allowed in the difference are logarithms,

ζ2 and ζ3 terms.

2. We note that the only multi-scale integrals in our basis in table 3 are I2, I3 and I4,

and these are all determined by the three-particle cut in figure 1 (iii). Since this

cut is theory and operator independent, it follows that differences between theories

and operators are confined to single-scale integrals, which can only produce logarith-

mic terms. This partially explains the structural similarities between remainders in

different theories and with different operators.

3. The similarity between the remainders in the N =2, N =1 and N =4 SYM theories

must have a reflection in their behaviour under soft/collinear limits for consistency

with factorisation theorems, as we now discuss. In section 6 of [2] it was shown that

the two-loop form factors of OS and OC in N = 4 SYM factorise onto a subminimal

form factor with two positive-helicity gluons, and importantly this quantity is the-

ory independent. This can be seen by looking at the only contributing cut, shown
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Figure 4. Triple cut of the two-loop subminimal form factor F
(2)
OS ,OC

(1+, 2+; q). This cut is

independent of the theory and the operator chosen, because the three cut legs can only be gluons.

in figure 4 for convenience (the full calculation is presented in section 4.7 of [2], to

which we refer the reader for further details). Hence, the expectation is that soft and

collinear factorisation for this particular form factor is independent of the theory and

choice of operator. In order to confirm this from our calculation, we recall that the

differences between remainder functions in different theories or for different operators

is confined to logarithmic terms and numerical constants, i.e. the non-pure part of the

two-loop remainder is universal and identical to that of N =4 SYM (shown for conve-

nience in appendix C). These differences cannot develop any additional soft/collinear

singularities, thereby satisfying the same factorisation properties as in the maximally

supersymmetric theory. This is an important consistency check of our results.

4. An additional consistency check on our result can be performed by computing the

values of the parameters γ0 and ρ2 entering the Catani remainder (5.11) through the

renormalised form factors. In our calculation these parameters can be determined by

requiring the finiteness of the remainder. To this end, we consider the beta function

for the operator coupling λ introduced in (5.4). Since the left-hand side of that ex-

pression is independent of µ, the following renormalisation group equation must hold:

0 = µ
∂

∂µ

{
λ(µ)

[
1− a(µ)

γ0

ε
+
a(µ)2

2

(ρ2

ε2
− ρ1

ε

)]
+O(a(µ)3)

}
. (6.1)

Defining γλ through

µ
∂λ(µ)

∂µ
:= λ(µ) γλ , (6.2)

we find that (6.1) leads to the two relations

γλ = −2 a(µ)
[
γ0 + a(µ)ρ1

]
, (6.3)

and

γ2
0 + β0γ0 = ρ2 . (6.4)

Here (6.4) follows from demanding the cancellation of the ε−1 poles in the expression

for γλ and is a general relation that must be obeyed by the one-loop quantities β0 and

γ0 and the two-loop quantity ρ2. The values we have determined, quoted in (5.18)

and (5.22) for N = 2 and N = 1 SYM, respectively, obey (6.4), thereby providing a

strong consistency check of our result.
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5. Next we comment that our calculation has independently confirmed for N = 1, 2, 4

SYM the values for K and H(2) which enter the two-loop Catani remainder (5.11)

obtained in [41, 42], see e.g. (5.12) and (5.13) of [31]. The particular values of these

constants are crucial to ensure the infrared finiteness of the renormalised remainder.

6. The constant ρ1 is the two-loop anomalous dimension of the operators considered

here (divided by −2) provided that the µ2-terms do not alter the O(1/ε) part of our

result (note that we have used four-dimensional generalised unitarity throughout).

Similar calculations making use of four-dimensional cuts done in N =4 SYM [1, 10]

led to the correct Konishi anomalous dimension in that theory [43]. It would be

interesting to check the values of ρ1 (and the corresponding anomalous dimensions)

determined in this paper with an independent calculation.

The beautiful simplicity of our results for any amount of supersymmetry clearly calls

for a deeper explanation going beyond brute-force perturbative calculations. We will come

back to this in future work.
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A One-loop integral functions

Throughout the paper, we use the following conventions for the one-loop massless

scalar integrals in dimensional regularisation (upper/lower-case letters correspond to mas-

sive/massless momenta) [22]:

=

∫
d4−2εp

(2π)4−2ε

1

p2(p− P )2
= i

cΓ

ε(1− 2ε)

(
−P

2

µ2

)−ε
,
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=

∫
d4−2εp

(2π)4−2ε

1

p2(p− q)2(p− P )2
= −i cΓ

ε2

(
−P 2/µ2

)−ε
(−P 2)

,

=

∫
d4−2εp

(2π)4−2ε

1

p2(p−Q)2(p− P )2

= −i cΓ

ε2
(−P 2/µ2)−ε − (−Q2/µ2)−ε

(−P 2)− (−Q2)
,

=

∫
d4−2εp

(2π)4−2ε

1

p2(p− q)2(p− q − r)2(p− P )2

= −i 2cΓ

st

{
− 1

ε2

[(
− s

µ2

)−ε
+

(
− t

µ2

)−ε
−
(
− P 2

µ2

)−ε]
+ Li2

(
1− P 2

s

)
+ Li2

(
1− P 2

t

)
+

1

2
log2

(
s

t

)
+
π2

6

}
.

where

cΓ =
1

(4π)2−ε
Γ(1 + ε)Γ(1− ε)2

Γ(1− 2ε)
.

B Numerators

In this appendix we present the numerators of the integral topologies which constitute the

two-loop integrands for minimal form factors of OS and OC in N =2, 1 SYM. The integral

topologies, denoted as Ii, i = 1, . . . , 15 are presented in table 3.

B.1 Two-loop integrand for the OS form factor in N =2 SYM

The integrand for the two-loop form factor of OS computed in N =2 SYM can be expressed

in terms of its difference with respect to the N =4 SYM result presented in appendix B.1

of [2], as

F
(2)
N=2OS

= F
(2)
N=4OS

+ ∆N=2OS , ∆N=2OS =

15∑
i=5

N ′i × Ii ,
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with the numerators

N ′5 =
2s3ks2`

3s23
− s1ks2`

s12
+

5s3k

3
− 4s23s1k

3s12
− s1ks3k

3s12
+

s2
2`

3s23
+

2s23

3
+ (p2 ↔ p3, k ↔ `) ,

N ′6 =
s2ks1` + s12s2k + s12s3k − s23s1k

3s13
− s3ks1`

3s12
+
s2k + s3k

3
− s23s1`

s12
,

N ′7 = N ′6

∣∣∣
p2↔p3

,

N ′8 = 3− s1`

3s12
+
s1`

s13
+

4s12

3s13
+

2s2k + s3k + 4s3`

3s23
,

N ′9 = N ′8

∣∣∣
p2↔p3

,

N ′10 = 1 +
2(s2k + s3k)

3s23
+
s12s2k + s12s3k

3s13s23
+
s13s2k + s13s3k

3s12s23
− s1k + 3s13

3s12
− s1k + 3s1`

3s13
,

N ′11 = N ′10

∣∣∣
p2↔p3

,

N ′12 =
2

s23
+

4s12

3s13s23
+ (p2 ↔ p3, k ↔ `) ,

N ′13 = s2` +
(s1k + s13)s2` − (s2k + s23)s1`

s12
− s1`(s2k + s23)

s13
,

N ′14 = N ′13

∣∣∣
p2↔p3

,

N ′15 = 2
Tr+(1`k132)

s12s13
. (B.1)

B.2 Two-loop integrand for the OC form factor in N =2 SYM

The integrand for the two-loop form factor of OC computed in N =2 SYM can be expressed

in terms of its difference with respect to the N =4 SYM result presented in appendix B.2

of [2], as

F
(2)
N=2OC

= F
(2)
N=4OC

+ ∆N=2OC , ∆N=2OC =
15∑
i=5

N̂i × Ii ,

with the numerators

N̂5 =
s1ks2`s3k

s12s23
+
s1ks3k

s12
+ (p2 ↔ p3, k ↔ `) ,

N̂6 = −s23s1`

s12
,

N̂7 = N̂6

∣∣∣
p2↔p3

,

N̂8 =
2s1`

s12
+
s1k + s1`

s13
− s2k + s3k + s3`

s23
− s1`s2k

s12s23
− (s1` + s12)s2k + (s3k + s3`)s12

s13s23
,

N̂9 = N̂8

∣∣∣
p2↔p3

,

N̂10 = 1− s1`

s13
+
s13

s12
,

N̂11 = N̂10

∣∣∣
p2↔p3

,
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N̂12 =
s1`

s12s23
− s12

s13s23
− 1

s23
+ (p2 ↔ p3, k ↔ `) ,

N̂13 = s2` +
s1ks2` − s1`s2k − s1`s23 + s13s2`

s12
− s1` (s2k + s23)

s13
,

N̂14 = N̂13

∣∣∣
p2↔p3

,

N̂15 = 2
Tr+(1`k132)

s12s13
. (B.2)

B.3 Two-loop integrand for the OS and OC form factors in N =1 SYM

Finally, we quote the result for the two-loop form factors calculated in N = 1 SYM. As

explained in section 2, there is no difference between the form factors of the supersymmetric

and component operators for our particular external state. As a result, the integrand for

the two-loop form factor of OS , OC computed in N =1 SYM can be expressed in terms of its

difference with respect to the N =4 SYM result for OC presented in appendix B.2 of [2], as

F
(2)
N=1OS ,OC

= F
(2)
N=4OC

+ ∆N=1 , ∆N=1 =
15∑
i=5

N ′′i × Ii ,

with the numerators

N ′′i =
3

2
N̂i, i = 5, . . . , 15 . (B.3)

C The N =4 SYM remainder functions

In this appendix we quote the expression of the N =4 SYM remainder function computed

in [1]. In fact we will need a small modification of that result, since in this paper we

are using the Catani definition of the remainder function, while in [1] we used the BDS

definition (which is standard in N =4 SYM). The N =4 SYM Catani remainder is related

to the BDS remainder as

R(2)
O,Catani = R(2)

O,BDS − ζ3

[
3 log(−q2) + log(uvw)− 6

]
− 33

8
ζ4 , O = OS ,OC . (C.1)

Finally we quote the N =4 two-loop BDS remainder of OS and OC obtained in [1]. At each

transcendentality degree k < 4, denoted by R(2)
O;k, there are pure terms and terms that are

multiplied by rational prefactors that depend on the kinematics, that is

R(2)
O;k = R(2)

O;k

∣∣∣
pure

+R(2)
O;k

∣∣∣
non-pure

. (C.2)

Explicitly we have that at transcendentality four there is only a pure term which is identical

to the BPS two-loop remainder of [9],

R(2)
OS ;4 = R(2)

BPS = −3

2
Li4(u) +

3

4
Li4

(
−uv
w

)
− 3

2
log(w) Li3

(
−u
v

)
+

1

16
log2(u) log2(v)

+
log2(u)

32

[
log2(u)− 4 log(v) log(w)

]
+
ζ2

8
log(u)

[
5 log(u)− 2 log(v)

]
+
ζ3

2
log(u) +

7

16
ζ4 + perms (u, v, w) . (C.3)
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At transcendentality three, there is a pure term and a non-pure term, namely

R(2)
OS ;3

∣∣∣
pure

= Li3(u) + Li3(1− u)− 1

4
log2(u) log

(
vw

(1− u)2

)
+

1

3
log(u) log(v) log(w)

+ ζ2 log(u)− 5

3
ζ3 + perms (u, v, w) , (C.4)

R(2)
OS ;3

∣∣∣
non-pure

=
u

w

{[
− Li3

(
− u
w

)
+ log(u)Li2

(
v

1− u

)
+

1

2
Li3

(
−uv
w

)
+

1

12
log3(w)

− 1

2
log(1− u) log(u) log

(
w2

1− u

)
+

1

2
log(u) log(v) log(w) + (u↔ v)

]
+ Li3(1− v)− Li3(u) +

1

2
log2(v) log

(
1− v
u

)
− ζ2 log

(uv
w

)}
+ perms (u, v, w) . (C.5)

Likewise, at transcendentality two, we have

R(2)
OS ;2

∣∣∣
pure

=−Li2(1−u)− log2(u)+
1

2
log(u) log(v)− 13

2
ζ2 + perms(u,v,w) (C.6)

R(2)
OS ;2

∣∣∣
non-pure

=
u2

v2

[
Li2(1−u)+Li2(1−v)+log(u) log(v)−ζ2

]
+ perms(u,v,w) . (C.7)

Finally, the transcendentality one and zero are simply

R(2)
OS ;1 =

(
−4 +

v

w
+

u2

2vw

)
log(u) + perms (u, v, w) , (C.8)

R(2)
OS ;0 = 7

(
12 +

1

uvw

)
. (C.9)

For OC we have

R(2)
OC ;i = R(2)

OS ;i , i = 4, 3, 2 ,

R(2)
OC ;1 = R(2)

OS ;1 + 2 log(uvw) ,

R(2)
OC ;0 = R(2)

OS ;0 −
51

2
.

(C.10)
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