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1 Introduction

Since the turn of last century, the pure spinor formalism has emerged as a powerful alter-
native to the RNS and Green Schwarz formalisms for superstring theory [1-3]. The main
advantage of the pure spinor formalism over RNS is that it maintains manifest spacetime
super-Poincaré covariance at all stages. There are several general arguments demonstrating
how the cohomology of the pure spinor formalism is equivalent to the cohomology of the
RNS and Green Schwarz formalisms [4-6]. For massless states several explicit calculations
of scattering amplitude in pure spinor formalism have allowed a direct comparison with
the corresponding amplitude calculation in RNS formalism [7-10]. This direct comparison
fixed the relative normalization between the vertex operators in PS and RNS formalism
for the massless states.

In this paper we extend such explicit direct comparison for the first massive states

(m? = %) of open superstring. We explicitly compute all possible tree level 3 point



functions for a fixed ordering of vertex operators in PS formalism involving 2 massless and
1 massive state and compare them directly with their RNS counterparts. The massless
spectrum contains a bosonic gluon field a,, (with 8 degrees of freedom) and a fermionic
gluino field x*(with 8 degrees of freedom). The first massive states include a bosonic 3
form field by, (with 84 degrees of freedom), a bosonic symmetric rank 2 tensor field gy,
(with 44 degrees of freedom) and a fermionic spin 3 field ¢y, (With 128 = 84+44 degrees
of freedom).

The computation of the above mentioned 3 point functions in PS formalism requires
the massless unintegrated vertex and its covariant § expansion [1, 11-13] along with the
massive unintegrated vertex and its covariant € expansion [14, 15]. While the tree level
amplitude prescription in PS is straightforward, one typically encounters a large number
of terms in 6 expansion of massive vertex and the calculation becomes cumbersome to
compute solely by hand. For this reason, the computation was done using Cadabra [16, 17]
and benchmarked by computing 3-point massless-massless-massless amplitudes which are
already known in literature (see, e.g. [18]). For use of Cadabra in pure spinor calculations,
also see [19]. The final amplitudes were computed directly using this code and compared
with their corresponding RNS results. After fixing the normalization of the three massive
vertex operators by comparing three correlators (for three massive states), we find that
the rest of the correlators agree perfectly. Moreover, while doing the calculations, we have
not fixed the positions of the vertex operators to some specific values but evaluated the
correlation functions for general positions x1, 22, 3 and have checked that their dependence
drops out in the final result which is expected from the SL(2,R) invariance.

The rest of the paper is organized as follows. In section 2, we review the tree level
amplitude prescription in PS. In section 3, we summarize the 6 expansion procedure for
massive states given in [15] and give the result for the 6 expansion to the relevant order
we need in this work. Section 4 gives the detailed derivation and results of 3-point am-
plitudes in PS formalism. In section 5, we compare our results obtained in PS formalism
directly with the amplitudes computed using RNS formalism. We conclude in section 6
with some brief discussion. In appendix A, we give our conventions for the PS formalism.
In appendix B, we give our conventions for the RNS calculations and summarize the re-
sults for 3-point functions in the RNS formalism. Finally, in appendix C, we give the theta
expansion of the massless vertex operator in our conventions.

2 Tree amplitude prescription in pure spinor formalism

Both minimal as well as the non minimal pure spinor formalisms give the same amplitude
prescription at tree level. In this section, we shall review this prescription [1, 2]. In
particular, we shall focus on 3-point functions on the disk with a specific ordering of
vertex operators on the boundary. To evaluate any 3-point correlator, the knowledge
of the unintegrated form of the vertex operator for external states is sufficient. All the
amplitudes of interest in this paper are of the form

As = (ViVaVy) (2.1)

where (V1V5V3) denotes 3-point function on the disk with a fixed ordering.



In this paper, V1 and V5 will be taken to be unintegrated vertex operators creating
massless states (gluon or gluino) and V3 will be the unintegrated vertex operator creating a
massive state (bpmnp, gmn OF Ymq). However, we must emphasize, none of the strategy that
we shall outline below is particular to this specific kind of 3-point functions. The tree-level
amplitude prescription will be equally valid for any 3-point functions of open strings states
(massive or massless).

Our choice of normalization of pure spinor measure is the standard one in the literature

<(/\739)(Afytﬁ)(Aq/“H)(nystue)>PSS =1 (2.2)

The process of 3-point amplitude computation can be succinctly summarized in a series of
steps that is given below.

e Step 1: assume a particular order of the vertex operator inserted on the disk and
make use of the OPEs between various conformal weight 1 objects to reduce the
three point function to a correlation function involving only the three superfields and
three pure spinor ghost A\¢ coming from the three vertices. The correlation function
which contains 00% terms do not contribute since they always fail to have the correct
number of # zero modes to give non-zero answer as required by 2.2. Now perform the
0 expansion for each of the vertex, viz. Vi, Vo and V3, explicitly. Although one can
do the full  expansion, but that is rendered redundant due to 2.2 which states that
only terms involving exactly five fs can give a non-zero contribution. The relevant
order of 6 expansion for each of the vertex for a given amplitude can therefore be
deduced from this consideration.

e Step 2: from the product V;V5V3, retain only the terms which have precisely five s
as all other terms will give zero contribution trivially due to 2.2.!

e Step 3: expand the physical fields appearing in various vertices in a basis of plane
waves with polarizations as the coefficients

HylDk(X) = hytopk e

Here hf,ll,’j,’g,’j are the constant tensor-spinor of appropriate index structure denoting

the polarizations for the physical field Hff,’,‘ff (X).

The correlation function (V1V2V3) at this stage factorizes completely into two separate
correlation functions, one involving X" fields and the other involving pure spinor
fields. These can be evaluated independently and their result can be multiplied to
obtain the final answer for a given ordering.

e Step 4: evaluate the 3-point function on disk by the usual methodology of
bosonic open strings. Typically these correlation functions can be put into the
schematic form (: e*rX(@) .. gtk X(@2) o F(OX™(13)) 3 X(@3) )b where
FOX™(x)) =1, 0X™ (x).

'Notice that 2.2 also suggests we should retain only terms with exactly three number of \s. But this is
automatically ensured by the fact that by construction all unintegrated vertex in PS formalism have ghost
number 1 and therefore they each carry exactly a single factor of A\. Consequentially the product V;V2V3
always goes as A%



e Step 5: the correlators living on pure spinor superspace can be evaluated following
the list of identities first derived in [8, 20]. We list in appendix A.3 the subset of
those identities that were needed in evaluating the 3-point functions in our case.

e Step 6: multiply the results obtained from step 4 and step 5 to obtain the full
contribution for a given order in theta expansion of the 3 vertices.

Once the answer has been obtained for a given order, the final answer for all other
inequivalent orders can be readily obtained by suitable permutation of momenta and po-
larization labels. Since each ordering carries different Chan-Paton factors, the full am-
plitude cannot be obtained by simply adding the contribution coming from different or-
dering before multiplying them by Chan-Paton factors. Therefore, to compare our result
with the result obtained in RNS formalism, we shall directly compare each inequivalent
ordering separately.

While the algorithm described above is quite straightforward in principle, the growing
number of terms in 6 expansion of the vertex operators implies that the cleanest way to
perform these amplitude calculations beyond a point is to employ the help of an available
computer algebra system. As mentioned in the introduction, we used Cadabra [16, 17]
which is an open source computer algebra system developed to aid in field-theoretic com-
putations. For our present purpose, we found Cadabra to be unparalleled in implementing
the algorithm described above.

3 First massive vertex operator and its 6 expansion

At the 1st mass level of the open string, there are 128 fermionic and 128 bosonic degrees of
freedom. The fermionic degrees of freedom are contained in a spin-3/2 field 1,4 satisfying

am¢ma =0 ; Vmaﬁwmﬂ =0. (31)

The bosonic degrees of freedom are contained in a traceless symmetric tensor ¢,,, and a
3-form field by, satisfying

8mbmn]o =0 5 nmngmn =0 ) 8mgmn = 0. (32)

The constraints (3.1) and (3.2) ensure that the number of independent components in
the fields ¥y,8, bynp and gy, are 128,84 and 44 respectively. These fields form a massive
spin-2 supermultiplet in 10 dimensions. In pure spinor formalism, we use the language of
superspace to describe the system in a manifestly supersymmetric invariant manner. This
is done by introducing three basic superfields Vo, Bpnp and Gy, whose theta indepen-
dent components are V¥mq; bmnp and gmy respectively. These basic superfields satisfy the
superspace equations? [15]

DaGsm =16 8p(’7p(5\1fm))a (3.3)

*We use the same conventions as in the reference [15]. Thus, e.g., our convention for the anti-
symmetrization and symmetrizations are
1

1

Apmn) =



Daanp = 12(7[mn\1’p])a — 24a’8t6[m(fy|t‘n\llp]) (34)

1 1
7Gsm’y% + ﬂamB"PS('Ymnp)aﬂ - 78mBnp (Ysmnpg)ap (3.5)

DU, =
a®sh T 16 144

and the constraints

(Y)W =0 5 "5 =0 ; 0 Buup=0 ; "CGun=0 ; 7™ Gpn =0
(3.6)
where, D, = 0, + ’y%@ﬁam.

The equations (3.3), (3.4) and (3.5) give recursion relations to determine the complete
theta expansion of the superfields By,pnp, Grmpn and ¥, [15]. Before giving the theta ex-
pansion results, we note the unintegrated vertex operator for the 1st massive states of the
open string which can be expressed in terms of the basic superfields as [14]

V = 00°X*B.g + dgA\“CP + T™N"Hpe + N™XFopmn (3.7)
where [14, 15],
1 mn,
Baﬁ = 'Yag menp s Cb(; = 5(’7 pq)ﬂaa[mBnpq}
Hpo = ~T20 00, Famn = =9(T00mWnjoc + 0 (gpm)a g ). (38)

For calculating any amplitude involving the massive states in pure spinor formalism, we
shall need the theta expansion result of the above vertex operator. Clearly, the theta
expansion of the basic superfields B,,,, and ¥,,, automatically implies the theta expansion
of the full vertex operator. For our purposes, we shall need the theta expansion results
of W, upto order 62 and that of B,g upto order 6*. We used the mathematica package
GAMMA to do this computation [21]. Using equations (3.3), (3.4) and (3.5), we obtain
(for details, please see [15])

e )

1 i
=g+ — —(Y"™"P0) gk bpps —

iy
16 24 144
7, 7,

K03 (W Top®) — gy pew[smm—ﬂw P10) gl (1)

; .
_Ea,kmkrks('ymnpe)ﬁ(@bp'}/rn ) + %O‘ ( mnpe)ﬁk,mk,’/‘k,s(e,yane) 9pq

( 0)5 gsm — /Bk bpqr

1
192(

m 1 mn, uvw
_%k,p(,y Q)ﬁ(Qqu(se) 9m)q — ﬁ('y pe)ﬁk’m(efyt npse)ktbuvw

mnpe)ﬂk (97 [npe)gs} @(’Y&mnpqg)ﬁkm(a%zpte) gq

~Soi (750) 3(07™P10) by — ﬁ (Y ™"90) g (0 rvnompg®) KB
8254( "0)(07"10) bripghimis — %(VSmnpqe),Bkm(Q’Vtun@)buqu:t
5 "8 OF Dby + 5 (05O Ok
916< "0) gl (07 41 bpags K + O(0) (3.9)



Similarly, the 6 expansion of the superfield B,g is given by

mn r 3 3t ”
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(3.10)
where,
by = Emmpe™ X | e = e X Yoma = emaeFX (3.11)

Using these theta expansion results in (3.7) we get the theta expansion of the uninte-
grated vertex operator.

4 Three point functions using pure spinor formalism

In this section, we calculate the 3-point functions involving two massless and one massive
state using the pure spinor formalism. In subsection 4.1, we simplify the pure spinor
correlators and set up the problem at the superfield level and in subsection 4.2, we evaluate
the resulting correlators.

4.1 Simplifying 3-point correlator

Since we are only interested in the 3-point functions on the disk, the location of all the
vertex operators can be fixed and hence we only need to consider the unintegrated vertex



operators. Thus, the correlator we need to evaluate is given by
1 2 3
Ay = (VO @)V @) (ws) ) (4.1)

where, V4 4, denotes the massive vertex operator (3.7) and V4 denotes the unintegrated
vertex operator of the massless states given by?

Vi = A4, (4.2)

The unintegrated vertex operators in (4.1) are fixed at some arbitrary locations ;. The
SL(2,R) invariance on the disc guarantees that the 3-point function is independent of
the choices of z;. Using the expressions of the unintegrated vertex operators, the desired
3-point function is given by
As = <AaAg}>(x1)AﬂA§f) (z2) (89")\"3@ + d A\ CP 4 TN Hypy + Nm“AUan) (x3)>
(4.3)
We have suppressed the superscript 3 from the massive superfields since there is only one

massive state and hence there is no chance of any confusion. We now manipulate each
term of (4.3) one by one.

First term. The first term is given by
Ty = (AYAW (21)A° AT (22)90° X7 Byp(3))
_ (Ammp a AW\ AP 99r 2\ B ik1-X (x1) ko X (w2) ik3-X (z3)
(’7 )Up A A B 00° \ mnp e e e

a

- ~ - T13T

_ (,ymnp)ap</\aAgl1))\ﬁA(;)89p)\aanp> 1;)1223 ' (4.4)
where, the superfields with tilde denote the same superfields with e*X factor stripped off.
Thus, e.g., in the theta expansion of anp, we just write the polarization tensor €,q, €mnp
and e, instead of Yma, bmnp and gmy, respectively. We have also used the momentum
conservation to write

Ik . ks T13T23
‘201 k1 k2’x23’2a ko k3|$13|2a k1-ks — o~ ) (45)
1

<eik1-X(x1)eikQ-X(xz)eikg-X(xg)> — ‘xIQ

The T does not contribute to any of the amplitude since it does not provide the 5 zero
modes of % which is required for the non vanishing of pure spinor correlators.
Second term. The 2nd term is given by
Ty = (A AD (@)X AL (22)d A7 CY (23))
To simplify this term, we use the OPE of d, with superfields to obtain
Ty = (WAL @)N AL (22)d, A7 (23))

-4 W\ () AD (1) VP (22) AP (1) (1) (5 % (5))

w — T3

3The theta expansion of the massless superfields in our conventions is given in appendix C.



_ f duw <Aa<x1>[0"DPASW]Aﬁ<x2>A§><x2w<x3>c€,<x3>>

w — X3 2 w—uz
dw /., o DpAD (22)7
+ f;2 w— 73 <)\ (1'1)14&1)($1))\5(I2) |:2’LU—IL‘2:| A (23)0’;(563)> (4.6)

In going to the last line, we have unwrapped the contour to enclose the points x; and xs.
This gives a sign. A further sign comes while moving d, across A,. The signs in front
of the individual terms in the last line are net effect of these sign factors. We now use
equations (3.4), (3.8) and (C.1), the identity QV = O‘%XJDQV for an arbitrary superfield
V and unwrap the contour of (). After using the on-shell condition and the pure spinor
fierz identity

AN =

1
=1 3 Tnpar DY) (4.7)

we obtain (after some simplification using the gamma matrix identities)

Ty =Ty + Ts (4.8)
where,
~ 31 x93 F(1 i(2) T
T = - mstuv 7 m 4 uv 7 S A( ) ﬁA stuvw ‘ija
2= o | Ot (ks + 430 (k)| (AN AP ()
3ia/ 13 ao ac B i) 5(2) stuvw y \1T,
- 64 = [('Ymstuv) (k3)m+4(7tuv) (k3)s:| <)\ AB Aa (A’Y )\)\I/wcf (4-9)
and
ia! @3 ¢ ()8 7
T, = = 723 msuv 5 aA()BA Buv
T iy e he)e (AN AP N
i z13 stuv iWva 12)vo
9 ) ( m ) O(k?))s A Aﬁ A Am A Btuv> (410)
Third term. The 3rd term is given by
Ty = A*AW (4 APA2) o) I N Hppr (23
o 8
_ 7{ diw<)\°‘Ag1)(331)>\614(52)(xg)Hm(w))\”(azg)ng(x;;»
x3 w — T3

— % dw <>\”‘(:c1)[iaf(kl)mf‘lg)(xl)},\B(xQ)A(ﬁ2)(m))\"(xg)Hma(mg)>

w — I3 w — I

(2)
dw . Ay’ (22)
- f i <)\a(:n1)A8)(x1)>\5(22) o (ko)™ ]A”(xg)ng(x3)>
T2
727;al ao m/ A 1 stuvw T,

Again, in going to the 3rd equality, we have unwrapped the contour and used the OPE
between II" and superfields. In going to the last line, we have performed the contour
integration and used the momentum conservation and the identity (4.7).



Fourth term. Finally, the 4th term is given by

Ty = (AAD (@) A AD (22) NN Frpp (23))

_ 7{ W 30 AD (21)A8 AD (22) N™ (1) 7\ (25) Foman (23))

w— z3
== f; 1 wd_wm < [Z’W]Ag)(wl)/\ﬁ (mg)Ag”(xg)v(xg)an(xg,)>
- 74 T <Aa("’”1>f“9)<“> [ZW} A <x2>Af’<x3>Fm<x3>>
= ?’éj’ii [(%Sm)aa(kg) + 4(Youn)* (k3)s KA( ))\,BA( )yt )b m>
?)éz/zi [(vmstuv)”(kg) + 4(Yup)® ] < A8 A(l) A@) (st A)@wo>

(4.12)

In going to the 3rd equality, we have unwrapped the contour and used the OPE of N™"

with \* whereas in going to the 4th equality, we have used the expression of F,,, in terms

of U, as given in (3.8). We note that T} is exactly minus of the T} as given in (4.9).
Combining all the terms, we find that the total 3-point function is given by

Az = (ViWLVs) = Th + T3 (4.13)

where Ty and T3 are given in equations (4.10) and (4.11) respectively. Below, we shall
give the results for the correlators (V1V,V3) for different choices of the 2 massless and one
massive external states.

4.2 Evaluation of correlators

The two terms T, and T3 given in (4.13) are at the superfield level. To compute some
specific 3-point function, we need to keep only the fields of interest to be non zero in the
superfields. After specializing to some specific amplitude, Az can be evaluated using the
theta expansion results given in section 3 and appendix C and the pure spinor correlators
listed in appendix A.3. We use the symbolic computer programme Cadabra to do this
calculation [16, 17]. An important point to note is that 75 as given in equation (4.10)
depends upon the world-sheet coordinates z; but 73 does not. However, the dependence
of Ty on the world sheet coordinates automatically drops out on evaluating it using the
theta expansion of the superfields as expected from the SL(2,R) invariance. We now give
the results for different 3-point correlators.

2 gluon and 1 by, field. For this case, we have

293 134
T, — mnp Ty — mnp 1 271
2= 210¢ el e2(k)p 3= 310¢ emen(k )p
This gives
(aab) = Ty + T3 = ;—Oemnpe}ne%(kl)p (4.14)



2 gluon and 1 g,y field. For the (aag) amplitude, we have

Ty = el g ) (@ k(e g k) — (el R g k)
&0 160 160
3a/ o 3o/
Ty = 3% (22 g k) - (e ) g k) + S (2 k(e g kY

160 40 160

This gives,
(aag) = To + T3
1
= ——[2d/(e! - k*)(e? - g- k) + 20/ (e* - kY (e' - g - K?)

80
/(e (K g kD) 4+ (el g 62)] (4.15)
2 gluino and 1 b,y field. For the (xxb) amplitude, we have
23 1
TzilmTLPZmn Tzilmanmn
2= 13208 VT Jemmp 3= 151 & 7"E ) emnp
This gives
1
() = T+ Ty = on(E89E%) ey (4.16)
2 gluino and 1 gy, field. For the (xxg) amplitude, we have
i/ m n
=0 ,  Ty= (€7 gkt
This gives,
i/ 1. mg2 n
(xg) = To+ Ty = oo (€978 ) emnhy (4.17)

1 gluon, 1 gluino and 1 v,,, field. In this case, since all the external states are
different, the two orderings (axw) and (yaw) are different. We give the result for both
cases. For the (axz/)> correlator, we have

31 / 9 mipn
Ty = 21 €1 (5 Vm) — ma (527%)(6’1 ) k‘Q)]% - EO‘ (527"1”%)61 kiky
19
T3 = 1056§n(€2¢m) - ma (5 wn)( ! k2)kn - ma (52’7mn¢p)egnk?kg

This gives
(ax) = Ty + T3
= é[egn(g%pm) - 20/(527/)71)(61 : k2)k§ — o/(fzfymnd;p)egnk?kg (4-18)

On the other hand, for the <Xaw> correlator, we have

T = 21 e5' (£ m) — IO o (') (e? - KR — 170@ (€ mntp)es ks kY
Ty = —e5'('m) — ma (' hn)(e? - KR — ma "(Emntbp)es ki kY
This gives
(xay) = Tp + T3

- %[egb(flwm) — 20/ (M) (2 - kMY — o/ (€ ymnthp) e KO EY (4.19)

~10 -



3 massless fields. For comparing the pure spinor results with the corresponding RNS
results, we also need the massless amplitudes. For (aaa) correlator, the pure spinor calcu-
lation gives the following result in our conventions

i

(aaa) = 50 [(e' - e?)(e® k') + (' - e®)(e® - k) + (e - €®) (e - k)] (4.20)
On the other hand, for the (axy) correlator, we get
1 m

(axx) = 55507 e - (4.21)

From the explicit expression of all massless-massless-massive amplitudes obtained in
this section, we observe that all such 3-point functions are symmetric under a change of
cyclic order. Therefore the inclusion of Chan-Paton factors (denoted by ¢, ¥ t¢) will
make the full amplitude proportional to Tr(t%, {t®,t°}). Compare this with the 3-point
functions involving all massless states, which are antisymmetric under a change of cyclic
order and therefore after taking into account the Chan-Paton factors, the final answer
becomes proportional to Tr(t?, [t°,t]). Another point to note is that all the amplitudes
considered in this section are invariant under the gauge transformations e — e’ 4 k*. We
now turn to comparing the RNS and PS results.

5 Comparing pure spinor and the RNS results

By comparing the pure spinor results given above with the corresponding RNS results
given in appendix (B.2), we see that the tensor structures of the 3-point functions match
perfectly. Moreover the relative coefficients of the various terms in the correlators (aag)
and (ax®) which have more than one terms, also match exactly. This is a non trivial test.
We shall now show that the overall numerical factors (i.e. normalizations) of the different
3-point functions in pure spinor and RNS are also in perfect agreement with each other.

We have denoted the overall normalization of the vertex operators in the RNS calcu-
lations relative to those in PS calculations by g4, gy etc. (see appendix B.2). For example,
if Ngns and Npg denote the normalizations of the gluon vertex operator in the RNS and
PS respectively, then for the (V,V,V,) correlator, we have (denoting V = N'V)

(NPS)3<‘~/a‘7a‘~/a>PS = (NRNS)3<VaVaVa>RNS (51)

From this, it is clear that only the relative normalization between RNS and PS vertex
operators have any physical significance. To exploit this fact, we define

NrNs = ga Nps (5.2)

In our calculations, we have set the overall normalization of the PS vertex operators to be
1 and kept the relative normalization factor g,, g, etc. to be in the RNS vertex operators.

With the above convention, the overall RNS and the pure spinor numerical factors for
each correlator is given in the table 1. By comparing the RNS and pure spinor numerical
factors for (aaa) and (axx), we find

(9a)® = (5.3)

—
180v2a/
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Correlator RNS PS
aaa) —g3v/2a/ %0

{
{axx) 75995 | 30
(aab) 692 V2! 2%

{(xxb) —55%% | 1
(aag) ~929q —%
(xx9) Va'gle, | %
(axv) |~ gagx90 | 3
(xay) | —gugv90 | %

Table 1. Numerical factors of RNS and pure spinor correlators.

In terms of g, and g, the numerical factors for (aab), (aag) and (axy) give

_ 7 _ 1 _ V2
P o0vew 2 T T R02 0 T TR0 gagy

The above values of g;, g, and g, agree perfectly with the value obtained using (xxb),

(5.4)

(xxg) and (xat) correlators. This is a non trivial consistency check.

6 Discussions

In this paper we have explicitly shown the equivalence of all massless-massless-massive
3-point functions for each given ordering of vertex operators on the boundary for open su-
perstrings computed in PS and RNS formalisms. For the massive states, the normalization
factors, which are fixed, using say (aab), (aag) and (ax1)) correlators, match perfectly with
the (xxb), (xxg) and (xat) correlators which establishes the consistency of the relative
normalization determined in this paper and establishes firmly the equivalence between RNS
and PS formalism for first massive states.

Once the vertex for open superstring is known, its extension to closed strings can be
obtained in a straightforward manner by taking appropriate tensor products of left and
right moving sectors [22].

To compare loop amplitudes one needs to compute the amplitude in PS formalism using
integrated vertex constructed for massive states in [23]. With the relative normalization
now fixed, they should match exactly with the corresponding RNS result. Also as argued
in [23], the strategy behind constructing massive vertex (integrated or unintegrated) is not
sensitive to mass level in question and is expected to be identical for all higher massive
states. Therefore, one can reasonably expect that all 3-point functions involving higher
massive states can also be directly compared with RNS results and yield a consistent set

of normalizations for each mass level.
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A Some pure spinor results
In this appendix, we note some pure spinor results which are used in this work.

A.1 Pure spinor conventions

In this section, we give our conventions for the pure spinor calculations. For the tree
amplitude calculations, both the minimal as well as the non minimal formalisms give the
same prescription. For convenience, we shall only consider the minimal formalism. The
world sheet action of the minimal formalism is given by

1 1 _ _ _
S=— / d?z [ 20X™O X, + Pa0f® — waON* (A1)
o/ 2
where, m =0,1,,--- ,9and a =1,--- , 16.

The p, and w, are the conformal weight one conjugate momenta of the conformal
weight zero fields ¢ and A% respectively. The fields with upper (lower) spinor indices
transform as right (left) handed Weyl spinor. The A% satisfy the pure spinor constraint

AN =0 (A.2)

The BRST operator is defined to be

Q= ]{ dz (A\*dy) (A.3)

Due to pure spinor constraint, the world-sheet fields can only appear in the following gauge

invariant combinations?

1
Npn = iwa(fymn)aﬁﬂ ;T =wa A, T = wad\®

4The coincident operators are normal ordered via
1 d
: A(2)B(z) i= — v

T 2mi J,w—z

A(w)B(z) (A.4)

where, A and B are any two operators and the contour surrounds the point z. However, we shall suppress
the normal ordering symbol : : throughout this draft.
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Any other gauge invariant combination can be expressed in terms of these objects. The
ghost current is given by J = A%w, which implies that the A* carries the ghost number
+1 and the rest of the fields carry zero ghost number.

Before proceeding ahead, we note down some important OPEs of the theory which
arise frequently in calculations

M) = 5 M) ol ) = %aeﬁ<w> +
V(W) = 5 T DV W) b, IV () =~ omV ) +
) = 5 T e NN ) = G )+
s =~ TENw) = 3w
N2 NP () :_Mnm[qnpln - f’w) (s — i) . (A.5)

In the above OPEs, 0y, is the derivative with respect to the spacetime coordinate X™, 9 is
the derivative with respect to the world-sheet coordinate, V' denotes an arbitrary superfield.
The d, and II"" denote the supersymmetric combinations

1 1
da = Pa — 57%50/88)(771 - g’Yglﬂ’Ymaé@ﬁeoaa(S

1
m— 9xX™ 4 iﬁﬁaaaaﬁ (A.6)
The D, is the supercovariant derivative given by
Do = 00 + 70500, = {Da, Dg} = 2(7™)agOm (A.7)

For calculating the scattering amplitudes, we need to know the number of zero modes of
the world-sheet fields. Due to the pure spinor constraints, it follows that all the world-
sheet ghost sector fields, namely A\* and w, have 11 independent components. Now, it is a
result from the theory of Riemann surfaces that the number of zero modes of the conformal
weight one and conformal weight zero objects on a genus g Riemann surface is g and 1
respectively. Thus, the number of zero modes of A* on a genus g Riemann surface is 11
whereas the number of zero modes of w, on a genus g Riemann surface is 11g. On the
other hand, the matter sector fields 6% and p, have 16 and 16g zero modes respectively
on a genus g Riemann surface. As in RNS formalism, the integration over the zero modes
give divergences and we need some way to absorb these zero modes. For details, see the
original literatures.

Before moving further, we describe an important identity on the world sheet which
is needed while solving the BRST equations of motion. The open string vertex operators
live on the boundary, i.e., along the real axis on the complex plane. This implies that in
the BRST equation QU = 0rV/, the derivative in the right hand side is along the real axis
(and hence the subscript R in the right hand side). However, for doing calculations, it is
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convenient to convert it into the holomorphic derivative using the chain rule. If x denotes
the coordinate along the real axis, then for an arbitrary function f on the real axis, we have

of _ (0=0f  0z0f _ (9f , of
9r (83: 9z Oz az) — <az * az) — (A.8)
Now, using the chain rule, we have
g_ af oX™  Of 06“ g_ af oxXm ﬁ@ (A.9)
0z 0Xm 0z 00> 9z 0z  0Xm 09z 00> oz '

Using the equation of motion for p,, namely, 9% = 0 and the above two equations, we
obtain

3l _of ox™ N af oxm™ n ﬁ&ﬁ
or  OX™ 9z 0X™ 0z lz=2 00% 9z
of oxXm n of 00“

= %oxm 0. T o6 o (A.10)
Finally, using (A.6) and (A.7), we can express this as
gf = 2[1"'0p, f + 00* D, f (A.11)
x

In the above derivation, we have used the world sheet fields defined using the doubling trick.
For a derivation without using doubling trick and more details, please see the section 2
of [23].

A.2 Hodge duality of gamma matrices in d=10

In 10 dimensions, the 16 x 16 gamma matrices satisfy the following Hodge dualities

) = (10—12n)!<_1)(n+1)emlmm%pl'”pm_zn('Ypl---mo2n)aﬁ (A.12)
G = - (10 —12n)! (—1){ntlemimenpi-proan(y, L0 (A13)
R e T e O (A.14)
(T gy = g (AT )y (A15)

where, €17 ig the 10 dimensional epsilon tensor defined as

€1..9=1 — . | (A.16)

Due to the above dualities, not all the antisymmetrized product of gamma matrices are
independent. We shall take ™1, 172 AM1M2M3 = ~MIM2MIMN apd ~M1M2MIMAMS glong
with the identity matrix I16x16 as the linearly independent basis elements for vector spaces
of 16 x 16 complex matrices.
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A.3 Pure spinor superspace identities

While computing the scattering amplitudes in pure spinor formalism, the last step re-
quires evaluation of integration over the zero modes of A* and 6%. Due to the pure spinor
constraints and the symmetry properties of 8% and A%, there are only a finite number of
these basic pure spinor correlators which are non zero. Below, we list those pure spinor
correlators which are used in this note [8]

1 mn
("0 (X" 0) (N"0) (O7stu)) = T35 (A7)
1 r
(AP ) M) (A7) (0s10)) = =507, s7, (A.18)
1 1
mnpqr — _ _— smnpgr _ mnpqr
<(A'}/ 0)()\730)()\’}%9)(07“1”00)) 426Stu1}w 50406 stuvw (A]‘g)
1

<(>\,yq9)()\,Ymnpg)()\,yrste)(g,ymwg» - [nq[unz[r(;int][m(gg](gg] _ nq[unz[m(;gnpﬂr(gfu](si]}

280

+% (ol ap Pl sie, — of o n 8t

— L cammrtuvs (A.20)
(O™ 6) (s) 0 0) By ) = 155 €™™ i (;nv[géﬁéznu] w015,

2 9shsi i sk]gv
— gl e, 0

1 m sn P 7] 2 (M oncp cq or] v
+£n”[ 00} w020, — =010, 5u]5[w5,)5y]
(A.21)

B RNS results

In this section, we summarize the results of the 3-point functions involving two massless
and one massive states computed using the RNS formalism. In subsection B.1, we state our
conventions and in subsection B.2, we give the results of 3-point computations. A useful
reference for this section is [24] (also see [25, 26]).

B.1 Conventions for RNS calculations

Due to the picture number anomaly on a genus g Riemann surface, a non vanishing RNS
correlator must have the picture number 2g — 2. This is ensured by working with vertex
operators in appropriate picture number and the insertions of appropriate number of picture
changing operators (PCOs). For the 3-point functions on Riemann sphere, we can avoid
the insertions of PCOs by working with vertex operators of the appropriate picture number
so that the total picture number adds up to —2 (which is the picture number anomaly on
Riemann sphere).

We start by writing down the vertex operators for the massless states in various picture
numbers. The gluon vertex operator in the —1 and 0 picture numbers is given by

V(_l) (J;) = gq emwm(x)e_(ﬁ(m)e"kx(x)

a

Va(o) (x) = 7\/92(1;/67% (i@Xm(x) + 2a/kn¢”(x)¢m(x)>eik’x(x) (B.1)
a
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The gluino vertex operator in the —1/2 picture number is given by
VI (@) = gy €S (x)e P/ 2k X (@) (B.2)
The polarization vectors of the gluon and gluino satisfy the transversality conditions
emk™ =0 fa'ygzékm =0 (B.3)

Now, we turn to the vertex operators for the first massive states [27, 28]. The vertex
operators for the anti-symmetric 3-form field by, in the picture numbers —1 and 0 are
given by

V(@) = g emnpt™ (@) (@)P (a)e 0N
VO(w) = V20 ey (g OX ™00 + kgt yp ) X (B.4)

The vertex operators for the symmetric traceless massive graviton field g¢,,, are given by

Vi) = e epnidX™ (@) (@) e

1 .
Vg(o)(x) = Gg €mn (Ta,iaXmiaX" + oYY + iakapwpwn) otk X (B.5)
Finally, the vertex operators for the massive gravitino field 1, in the —1/2 picture number
is given by

_ o m of m,n @ - ¢
Vi) = D (GnioX™ = S kak ) Sae~? 2N (2) (B6)

v
Vo
The polarization vectors of the 1st massive states satisfy the conditions

K™ emnp = k™ emn = k", =0 (B.7)
For comparison with PS result, it is useful to parametrize the massive tensor spinor &, as

S I T (B.8)

We now turn to the OPEs and correlation functions of the world-sheet matter and
ghost sector fields. The important correlators of the open string X™ fields are given by

<H eik:j.X(yj)> —_ H |yz _ yj|2a’k:i.kj (Bg)
7j=1

i<j
q n ) p 20/ mim; P n .
=) 255 o)
=1 j=1 g (W1 — Wi 2 j=1
" 2« k;’“ ey X
+ 10X (w etki- X (y5)
= (w1 =) <H ? H

(B.10)
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This can be evaluated recursively using (B.9). We shall encounter the situation where some
wy may coincide with some y;. E.g., we shall need the following correlator

= <6ik1-X(zl)6ik2~X(z2)aXm(Z3)eik3vX(z3) >

_ %dw<eik1'X(Z1)eik:2~X(zz)eikg‘X(z;;)aXm(w)>
w — 23

2i’k™  2id’ kT
( 1Ry + L Ry > ’212|2a’k1~k;2|223|2a’k2-k3‘213’2a’k1~k3 (B.ll)
213 223

In going to the 2nd line, we have used the definition of the normal ordering (A.4) and in
going to the 3rd line, we have used (B.10) for ¢ =1 and n = 3.
Similarly, we also need

<6ik1~X(21)eik2'X(22)iaXp(23)Z'8Xq(23)6ik3'X(Z3)>
K (kY kq Ky (ki kd / / g
= 4(0/)2 [1< > +< + >] |212|2o¢ kl-k2|223‘2a k2~k3|213|2a k1-ks
213 \#13 223 223 \#13 %23
Next, we consider the world-sheet correlators involving the ¢™ fields

<H ¢mz‘(y,~)> = Z(— e <H D™ () > (B.12)
i=1

= (yl —Yj) o

This expression can also be evaluated recursively. In the final step, the two point function
can be evaluated by using the OPE
mn

PP (w) =

zZ—Ww

(B.13)

Next, we consider the ghost sector. The basic correlator involving the reparametriza-
tion ghost ¢(x) is given by

(c(z1)c(z)e(s)) = 12223213 (B.14)

The basic correlator involving the bosonized ghost field ¢(z) is given by

n n 1 n
$lar) | — : _
<H6qk (k>> =11 AT : ;qk = -2 (B.15)

k=1 k<t

Finally, we consider the spin fields. The basic OPEs involving the spin fields are given by
(a consistent set of these OPEs can be found in [29])

P(2) S (w)e W2 = ( i (B.16)
Y (2) 8% (w)e A2 = ﬁ(i_w)l/z +oe (B.17)
ot . ot Cfe*z‘f’(w)

Sa(2)e /288 (y)e=3¢w)/2 = N e 4. (B.18)
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(’Ymc)aﬂwm(w)eiqs(w)
V2(z —w)

() yS° (w)e 012
V2(z —w)

(") & Sp(w)
2(z —w) ’

Sa(z)e‘¢(z)/255(w)e_¢(w)/2 — 4. (B.19)

U (2)e 3 S (w)e ¢W)/2 = 4. (B.20)

7" (2)Sa(w) = — =™t (B.21)
Using the above OPEs, we can work out the following useful correlators which are needed
in our calculations

<1/)m(x1)6_¢($1)Sa($2)€_¢($2)/255($3)€_¢($3)/2> _ M
\/5212213223
(B.22)

§5<wm(x )e*¢(m)5 (x )e*¢(x2)/2¢q(aj VP (z )7305 (@ )67¢(13)/2> 8 fﬁlCaB
1 all2 3 3 o\«43 = —_—
q " \@2%233

(B.23)

B.2 3-point functions

We are now ready to give the results of 3-point functions of two massless and one massive
field (for the computation of 3-point functions of states in leading Regge trajectory in
RNS, see [30]). These are straightforward to evaluate using the vertex operators and the
correlators given in the previous subsection. Hence, we just state the final results below.
For our calculations, we shall take the bosonic massless and massive fields to be either
in the —1 or 0 picture numbers. On the other hand, the fermionic massless or massive
fields will always be taken in the —1/2 picture. The picture numbers will be shown by a
superscript on the vertex operators inside correlators. Thus, the 3-point amplitudes are
given by

As = ( e(z) VD (@1)e(m2) Vi (w2)e(as) V2, (as) ) (B.24)

We start by considering the 3-point functions involving all massless fields. The two
possible correlators in this case are (aaa) and (axx). Using the world-sheet correlators
given above, these 3-point functions can be evaluated to be

(aaa) = (e(w)Vi (@1)e(w2) Vi (@2)e(ws) Vi (w3) )
- —gg\/ﬂ[@l Ce2)(e® kL) + (e €3) (e k) + (€2 €B) (et - k2)] (B.25)

As an amplitude this vanishes on summing (k; <> k2) term if the gauge group is abelian.
Similarly, the axx correlator can be worked out to be

(@) = (elen) Vi @n)e(e2) Vi e)e(es) Vi (@)
= égagiefn (527’”053) (B.26)

Again, for the abelian gauge group, the corresponding amplitude vanishes.
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Next, we consider the two massless and one massive field. We start with two gluons
and one by, field

(aab) = <C(ZL’1)V(_1)(:E1)C(:L’2)V(_1)(:L"z)c(:ng)Vb(O)(xg)>
= GQangB emnp f (B27)

Next, we consider the 3-point function of two gluons and one massive g, field which
is given by

(aag) = (elwn)VE D @1)e(e2) VD (@2)e(s)V® (x3) )
= g2, [20/7]’"” L e2ep kPES + ezl)egepq + 2a'e}negequrfk’2 —2d/ e e equ:mk:p}
(B.28)

Next, we include gluino and consider the (xxb) and (xxg) correlators which can be
worked out to be

bocd) = (elen) V2 @)e(@a) VD @) e(as) VD (s))

1 2 1. mn 2
—mgxgb(ﬁ Y CE ) emnp (B.29)

and,
(xxg) = <C($1)VX(_1/2) (I1)0($2)V>§_1/2) ($2)C($3)Vg(_1)($3)>
= V' g2 ggemn (£ " CE KT (B.30)

Finally, we consider the massive fermion. The two different 3-point functions with one
massive fermion and two massless fields are (axt) and (yat) which are given by

(axt) = (elen) Vi @)e(e) V2 @)elws)V T (@s))
160/
—Wgagxgw

[ — e €0y KR 7y (o) 5 C
20/ KR D€ 0,5 C + € pmsCh|  (B3Y)
and,
(vat) = (ele) VYD (@n)e(en) Vi (w2)e(as) Vi (2s))
o e2) €8 KIRDD, 5 ()5 C
—20/ kK e D€ 5,505 + e f(l)meC’] (B.32)

To compare the results involving the fermionic fields with the PS results, we need to first
convert the RNS gamma matrix conventions into the PS gamma matrix conventions. This
mainly involves setting the charge conjugation matrix to be the Kronecker delta 50‘5 which
implies (for details, see e.g., [24, 25])

(Y"Clag =70 5 (O =l . (Y"™C)ap = (Y™™ )ap (B.33)

and so on.
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C Theta expansion of massless vertex operator

Theta expansion of the massless vertex operator is known and has been extensively used
in the literature (see, e.g., [18]). However, some of our conventions (e.g., equation (A.7))
are different from the literature in which the theta expansion of massless vertex operator is
used. Below, we derive the results in our convention briefly indicating the steps. We start
by recalling the N'=1 SYM equations in 10 dimensions [31].

N =1 SYM equations in 10 dimensions. In 10 dimensions, the open string massless
states are described by the 10 dimensional N' = 1 super Yang Mills equations. The field
strengths describing the theory are given by

FOA,B = {vaavﬁ} - 27;nﬁvm y Fom= [Vouvm] =—Fnoa , Fan= [Vmavn]

where Vy, = 0 + Ay Vo = Do + Ay and Dy, is defined in (A.7).
The 10 dimensional Yang-Mills equations of motion follow from

Faﬁ =0 — DaA/g + DﬁAa = QV%Am (Cl)

Using this along with the Bianchi identities, we obtain the following equations at lin-
earized level

Frna = (Ym)asW”, DW? = —%(ymn)aﬁan = D,W*=0
DaFmn = Om(mW)a = On(1mW )a; DoA™ = " WP + 0™ A,
O F™™ = 0, V0 WP =0 (C.2)
Further, the superfields A,,, W% and F,,, can be expressed as
Ay = %ygﬁpaAﬁ . Fon = 0y — 0pAn
W = (") (DA — O Ay) (©3)

N =1 SYM equations from pure spinor formalism. The pure spinor formalism
gives the ' = 1 SYM equations through its BRST equations of motion. To obtain the
correct normalization of the superfields, we derive these equations using the BRST equation
of motion QU = OrV and match with the equations given above. At the massless level,
the unintegrated vertex operator is constructed from the ghost number 1 and conformal
weight 0 objects. The most general object with this property has the form V = A%A,.
Similarly, the most general integrated vertex operator has the form

U=00%Ay +TI" A, + dg W + N™F,p, (C.4)
Using the OPEs given in section 2, we obtain
/ /
Q(80%A,) = f%aeaAﬂpﬁAa + %aA&Aa

~ o/ ~ O/ ~
QUIMAp) = ST X* Do A + 589“/\5147,;@6
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/
Q(daW*) = —%da)\ﬁDgWa -3 O rpmyayir VT + (a ) 9N, WA

(a')?

mn 17 o mn I o n mn\o « n mn
Q(N™E,.,) = 5N N Dg oy, — ZdaAﬁan(y )% — ONDg Ep(Y™)P,
We also have,
OR(AN*Ay) = ONYAy + N\ 0r A
= ON*A, + 009X Dg A, + 21T A0, A, (C.5)

where we have used the pure spinor open string identity (A.11) in going to the second line.
The BRST equation of motion now gives,

0=QU — RV
ay [ o A o + m mya o A Fvdel
o Fyae o - a o mn r-
+ do N <—2D5W = Fon(y™) B) + 5N N DgFrn

(a')?

« O/A (O/> 178..m n mn\ 3 A
+ 0 DY at 5 oW Yas D,Ban('7 ) o — Aa (C.6)

To match these equations with the 10 dimensional SYM equations, we rescale the fields as

9 . 4 . 4 = 4
Aa = 7/Aa y Am = 7/A’m ; W= —-—w¢e ; an = 7an (07)
6] [0

o o

After this rescaling, the BRST equation gives
1
DgAa + DoAg = 24570, DoApm = WPy + 00Aa,  DgW® = =5 Fn(17") "
B.m 1 mn\ 3 mn\ 3
—O0mW 05 = ZDgan(fy ) 0 N"™NDgFpp =0

The first 4 equations are precisely satisfied by the 10 dimensional N'= 1 SYM equations
given in appendix C whereas the last equation is satisfied by the pure spinor constraint. The
correctly normalized vertex operators of the massless states in our conventions thus become

V = A4,
2 4 4 4
U= Z06"Aa+ ST Ay — —daW® + S N™ Fynp
4 (1
== (280‘%4@ + ™ Ay — dg WO + Nm”an> (C.8)

Theta expansion of massless superfields. Finally, we turn to the theta expansion.
We shall follow the steps outlined in [13]. We shall need the following equations for doing
the theta expansion

DoAg + DgAa = 24,775 Do Ay = —WPyT5 + O Aa
1
DgW* = =2 Fun(y"™) 5%, Fon = Om Ay — 0 Am, (C.9)
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Before proceeding to do the theta expansion, we need to fix a gauge. We shall choose the
gauge 0“A, = 0. In this gauge choice, we have

0= D/g(eaAa) = Aﬁ — HQDBAQ - Ag = QaDﬁAa (C.l())

Now, multiplying by 67 in the 1st equation and by #® in the 2nd and 3rd equations of (C.9)
and using the above identity along with the gauge choice 6%A, = 0, we obtain

1
(1+D)A, =24A,(v"0)s , DA, =—-(0v,W) , DW*= §an(7m”9)a (C.11)

where we have defined D = %D, = 040,,.
We can use the above 3 equations along with the 4th equation of (C.9) to do the theta
expansion. If we denote the /" order component of the superfield M by M then we have

M(z) = mal---ageal <o gt - DM(Z) =/ M(K) (012)

Using this, the 3 equations of (C.11) and the 4th equation of (C.9) give the following
recursive relations

A = 2 p1)mg)

(0) — g g(t=1) (\m
(1 +E)Aa 2Am (7 6)06 = (e 1 —|—€ m
CAD = — (6, WD) = AQ = )
(0% 1 - mn (0% (0% 1 mn (0% —
Wy = §Fr(rfn RICED) = Wi =5,0""0) FiY
FY = 9,AD — 5,40 (C.13)

Denoting the theta independent components of the superfields A,, and W% to be
AV =g, | W) = x* (C.14)

the above recursive relations give

Au = (00— 27 0)al03mX) — S (m)a(0776) i
15 )l X) G710y + -
An =t = (030) = 7 O™ = 50170 B du)
+ 15 Oy ™) Orapg)0 71+ -+ (©15)

where fn = Oman — Opa,m and the plane wave expansion of the gluon and gluino are
given by

Uy = e FX , x* = faeik'X (C.16)
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