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1 Introduction

Since the turn of last century, the pure spinor formalism has emerged as a powerful alter-

native to the RNS and Green Schwarz formalisms for superstring theory [1–3]. The main

advantage of the pure spinor formalism over RNS is that it maintains manifest spacetime

super-Poincaré covariance at all stages. There are several general arguments demonstrating

how the cohomology of the pure spinor formalism is equivalent to the cohomology of the

RNS and Green Schwarz formalisms [4–6]. For massless states several explicit calculations

of scattering amplitude in pure spinor formalism have allowed a direct comparison with

the corresponding amplitude calculation in RNS formalism [7–10]. This direct comparison

fixed the relative normalization between the vertex operators in PS and RNS formalism

for the massless states.

In this paper we extend such explicit direct comparison for the first massive states

(m2 = 1
α′ ) of open superstring. We explicitly compute all possible tree level 3 point
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functions for a fixed ordering of vertex operators in PS formalism involving 2 massless and

1 massive state and compare them directly with their RNS counterparts. The massless

spectrum contains a bosonic gluon field am (with 8 degrees of freedom) and a fermionic

gluino field χα(with 8 degrees of freedom). The first massive states include a bosonic 3

form field bmnp (with 84 degrees of freedom), a bosonic symmetric rank 2 tensor field gmn
(with 44 degrees of freedom) and a fermionic spin 3

2 field ψmα (with 128 = 84+44 degrees

of freedom).

The computation of the above mentioned 3 point functions in PS formalism requires

the massless unintegrated vertex and its covariant θ expansion [1, 11–13] along with the

massive unintegrated vertex and its covariant θ expansion [14, 15]. While the tree level

amplitude prescription in PS is straightforward, one typically encounters a large number

of terms in θ expansion of massive vertex and the calculation becomes cumbersome to

compute solely by hand. For this reason, the computation was done using Cadabra [16, 17]

and benchmarked by computing 3-point massless-massless-massless amplitudes which are

already known in literature (see, e.g. [18]). For use of Cadabra in pure spinor calculations,

also see [19]. The final amplitudes were computed directly using this code and compared

with their corresponding RNS results. After fixing the normalization of the three massive

vertex operators by comparing three correlators (for three massive states), we find that

the rest of the correlators agree perfectly. Moreover, while doing the calculations, we have

not fixed the positions of the vertex operators to some specific values but evaluated the

correlation functions for general positions x1, x2, x3 and have checked that their dependence

drops out in the final result which is expected from the SL(2,R) invariance.

The rest of the paper is organized as follows. In section 2, we review the tree level

amplitude prescription in PS. In section 3, we summarize the θ expansion procedure for

massive states given in [15] and give the result for the θ expansion to the relevant order

we need in this work. Section 4 gives the detailed derivation and results of 3-point am-

plitudes in PS formalism. In section 5, we compare our results obtained in PS formalism

directly with the amplitudes computed using RNS formalism. We conclude in section 6

with some brief discussion. In appendix A, we give our conventions for the PS formalism.

In appendix B, we give our conventions for the RNS calculations and summarize the re-

sults for 3-point functions in the RNS formalism. Finally, in appendix C, we give the theta

expansion of the massless vertex operator in our conventions.

2 Tree amplitude prescription in pure spinor formalism

Both minimal as well as the non minimal pure spinor formalisms give the same amplitude

prescription at tree level. In this section, we shall review this prescription [1, 2]. In

particular, we shall focus on 3-point functions on the disk with a specific ordering of

vertex operators on the boundary. To evaluate any 3-point correlator, the knowledge

of the unintegrated form of the vertex operator for external states is sufficient. All the

amplitudes of interest in this paper are of the form

A3 = 〈V1V2V3〉 (2.1)

where 〈V1V2V3〉 denotes 3-point function on the disk with a fixed ordering.
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In this paper, V1 and V2 will be taken to be unintegrated vertex operators creating

massless states (gluon or gluino) and V3 will be the unintegrated vertex operator creating a

massive state (bmnp, gmn or ψmα). However, we must emphasize, none of the strategy that

we shall outline below is particular to this specific kind of 3-point functions. The tree-level

amplitude prescription will be equally valid for any 3-point functions of open strings states

(massive or massless).

Our choice of normalization of pure spinor measure is the standard one in the literature〈
(λγsθ)(λγtθ)(λγuθ)(θγstuθ)

〉
PSS

= 1 (2.2)

The process of 3-point amplitude computation can be succinctly summarized in a series of

steps that is given below.

• Step 1: assume a particular order of the vertex operator inserted on the disk and

make use of the OPEs between various conformal weight 1 objects to reduce the

three point function to a correlation function involving only the three superfields and

three pure spinor ghost λα coming from the three vertices. The correlation function

which contains ∂θα terms do not contribute since they always fail to have the correct

number of θ zero modes to give non-zero answer as required by 2.2. Now perform the

θ expansion for each of the vertex, viz. V1, V2 and V3, explicitly. Although one can

do the full θ expansion, but that is rendered redundant due to 2.2 which states that

only terms involving exactly five θs can give a non-zero contribution. The relevant

order of θ expansion for each of the vertex for a given amplitude can therefore be

deduced from this consideration.

• Step 2: from the product V1V2V3, retain only the terms which have precisely five θs

as all other terms will give zero contribution trivially due to 2.2.1

• Step 3: expand the physical fields appearing in various vertices in a basis of plane

waves with polarizations as the coefficients

Hβ1...βk
p1...pn (X) = hβ1...βkp1...pn e

ik·X

Here hβ1...βkp1...pn are the constant tensor-spinor of appropriate index structure denoting

the polarizations for the physical field Hβ1...βk
p1...pn (X).

The correlation function 〈V1V2V3〉 at this stage factorizes completely into two separate

correlation functions, one involving Xm fields and the other involving pure spinor

fields. These can be evaluated independently and their result can be multiplied to

obtain the final answer for a given ordering.

• Step 4: evaluate the 3-point function on disk by the usual methodology of

bosonic open strings. Typically these correlation functions can be put into the

schematic form 〈: eik1·X(x1) :: eik2·X(x2) :: F(∂Xm(x3)) eik3·X(x3) :〉Disk where

F(∂Xm(x)) =
∏
i ∂X

mi(x).

1Notice that 2.2 also suggests we should retain only terms with exactly three number of λs. But this is

automatically ensured by the fact that by construction all unintegrated vertex in PS formalism have ghost

number 1 and therefore they each carry exactly a single factor of λ. Consequentially the product V1V2V3

always goes as λ3.

– 3 –



J
H
E
P
1
2
(
2
0
1
8
)
0
7
1

• Step 5: the correlators living on pure spinor superspace can be evaluated following

the list of identities first derived in [8, 20]. We list in appendix A.3 the subset of

those identities that were needed in evaluating the 3-point functions in our case.

• Step 6: multiply the results obtained from step 4 and step 5 to obtain the full

contribution for a given order in theta expansion of the 3 vertices.

Once the answer has been obtained for a given order, the final answer for all other

inequivalent orders can be readily obtained by suitable permutation of momenta and po-

larization labels. Since each ordering carries different Chan-Paton factors, the full am-

plitude cannot be obtained by simply adding the contribution coming from different or-

dering before multiplying them by Chan-Paton factors. Therefore, to compare our result

with the result obtained in RNS formalism, we shall directly compare each inequivalent

ordering separately.

While the algorithm described above is quite straightforward in principle, the growing

number of terms in θ expansion of the vertex operators implies that the cleanest way to

perform these amplitude calculations beyond a point is to employ the help of an available

computer algebra system. As mentioned in the introduction, we used Cadabra [16, 17]

which is an open source computer algebra system developed to aid in field-theoretic com-

putations. For our present purpose, we found Cadabra to be unparalleled in implementing

the algorithm described above.

3 First massive vertex operator and its θ expansion

At the 1st mass level of the open string, there are 128 fermionic and 128 bosonic degrees of

freedom. The fermionic degrees of freedom are contained in a spin-3/2 field ψmα satisfying

∂mψmα = 0 ; γmαβψmβ = 0. (3.1)

The bosonic degrees of freedom are contained in a traceless symmetric tensor gmn and a

3-form field bmnp satisfying

∂mbmnp = 0 ; ηmngmn = 0 ; ∂mgmn = 0. (3.2)

The constraints (3.1) and (3.2) ensure that the number of independent components in

the fields ψmβ , bmnp and gmn are 128, 84 and 44 respectively. These fields form a massive

spin-2 supermultiplet in 10 dimensions. In pure spinor formalism, we use the language of

superspace to describe the system in a manifestly supersymmetric invariant manner. This

is done by introducing three basic superfields Ψmα, Bmnp and Gmn whose theta indepen-

dent components are ψmα, bmnp and gmn respectively. These basic superfields satisfy the

superspace equations2 [15]

DαGsm = 16 ∂p(γp(sΨm))α (3.3)

2We use the same conventions as in the reference [15]. Thus, e.g., our convention for the anti-

symmetrization and symmetrizations are

A[mn] =
1

2
(Amn −Anm) , A(mn) =

1

2
(Amn +Anm) .
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DαBmnp = 12(γ[mnΨp])α − 24α′∂t∂[m(γ|t|nΨp])α (3.4)

DαΨsβ =
1

16
Gsmγ

m
αβ +

1

24
∂mBnps(γ

mnp)αβ −
1

144
∂mBnpq(γsmnpq)αβ (3.5)

and the constraints

(γm)αβΨmβ = 0 ; ∂mΨmβ = 0 ; ∂mBmnp = 0 ; ∂mGmn = 0 ; ηmnGmn = 0

(3.6)

where, Dα = ∂α + γmαβθ
β∂m.

The equations (3.3), (3.4) and (3.5) give recursion relations to determine the complete

theta expansion of the superfields Bmnp, Gmn and Ψmα [15]. Before giving the theta ex-

pansion results, we note the unintegrated vertex operator for the 1st massive states of the

open string which can be expressed in terms of the basic superfields as [14]

V = ∂θβλαBαβ + dβλ
αCβα + ΠmλαHmα + NmnλαFαmn (3.7)

where [14, 15],

Bαβ = γmnpαβ Bmnp , Cβα =
1

2
(γmnpq)βα∂[mBnpq]

Hmα = −72Ψmα , Fαmn = −9
(

7∂[mΨn]α + ∂q(γq[m) β
α Ψn]β

)
. (3.8)

For calculating any amplitude involving the massive states in pure spinor formalism, we

shall need the theta expansion result of the above vertex operator. Clearly, the theta

expansion of the basic superfields Bmnp and Ψmα automatically implies the theta expansion

of the full vertex operator. For our purposes, we shall need the theta expansion results

of Ψmα upto order θ3 and that of Bαβ upto order θ4. We used the mathematica package

GAMMA to do this computation [21]. Using equations (3.3), (3.4) and (3.5), we obtain

(for details, please see [15])

Ψsβ = ψsβ +
1

16
(γmθ)β gsm −

i

24
(γmnpθ)βkmbnps −

i

144
(γ npqr
s θ)βknbpqr

− i
2
kp(γmθ)β(ψ(mγs)pθ)−

i

4
km(γmnpθ)β(ψ[sγnp]θ)−

i

24
(γ mnpq
s θ)βkm(ψqγnpθ)

− i
6
α′kmk

rks(γ
mnpθ)β(ψpγrnθ) +

i

288
α′(γmnpθ)βkmk

rks(θγ
q
nrθ) gpq

− i

192
(γmnpθ)βkm(θγq[npθ)gs]q −

i

1152
(γsmnpqθ)βk

m(θγnptθ) g
qt

− i

96
kp(γmθ)β(θγpq(sθ) gm)q −

1

1728
(γmnpθ)βkm(θγtuvw npsθ)ktbuvw

− 1

864α′
(γsθ)β(θγnpqθ)bnpq −

1

10368
(γ mnpq
s θ)βkm(θγtuvwnpqθ)k

tbuvw

− 1

864
(γmθ)β(θγnpqθ)bnpqkmks −

1

576
(γsmnpqθ)βk

m(θγtunθ)b pq
u kt

− 1

96α′
(γmθ)β(θγqr(sθ)bm)rq +

1

96
(γmθ)β(θγnqrθ)knk(sbm)qr

+
1

96
(γmnpθ)βkm(θγrq[nθ)bps]rk

q +O(θ4) (3.9)
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Similarly, the θ expansion of the superfield Bαβ is given by

Bαβ = γmnpαβ

[
bmnp+12(ψpγmnθ)+ 24α′krkm(ψpγrnθ)+

3

8
(θγ q

mn θ) gpq−
3i

4
(θγtumθ)ktbunp

+
3

4
α′krkm(θγ q

rn θ) gpq −
i

24
(θγtuvwmnpθ)k

tbuvw − 1

6
iks (ψvγtuθ) (θγstuvmnpθ)

−4iαksktkm (θγtunθ) (ψpγsuθ) + iks (θγtmnθ) (ψpγstθ) + iks (θγtmnθ) (ψtγspθ)

+2iks (θγstmθ) (ψnγtpθ)− iks (θγstmθ) (ψtγnpθ) +
1

64α′
(θγsmnθ)(θγtupθ)bstu

− 1

288α′
(θγstuθ)(θγmnpθ)bstu +

1

64α′
(θγstuθ)(θγunpθ)bstm

+
1

32
(θγsuxθ)(θγtxpθ)bsmnktku −

1

16
(θγsunθ)(θγtxpθ)bstmkukx

+
1

64
(θγstxθ)(θγunpθ)bstmkukx +

1

192
(θγxzmθ)(θγstuyznpθ)bstukxky

+
1

192
(θγuyzθ)(θγstxzmnpθ)bstukxky +

1

3456
(θγstuwxyzθ)(θγvxyzmnpθ)bstukvkw

+
1

32
(θγsvnθ)(θγtupθ)bstukvkm +

1

64
(θγtuvθ)(θγsnpθ)bstukvkm

− 1

96
(θγstuθ)(θγvnpθ)bstukvkm −

1

32
(θγstvθ)(θγuvpθ)bstmkukn

+
1

384
i (θγtvwθ) (θγsuvwmnpθ) kugst +

1

32
i (θγsunθ) (θγtupθ) ktgsm

+
1

64
i (θγstuθ) (θγunpθ) ktgsm +

1

64
i (θγsmnθ) (θγtupθ) kugst

+
1

64
i (θγsumθ) (θγtnpθ) kugst −

iα′

16
(θγsuvθ) (θγtvpθ) ktkukngsm + O(θ5)

]
(3.10)

where,

bmnp = emnpe
ik·X , emn = emne

ik·X , ψmα = emαe
ik·X (3.11)

Using these theta expansion results in (3.7) we get the theta expansion of the uninte-

grated vertex operator.

4 Three point functions using pure spinor formalism

In this section, we calculate the 3-point functions involving two massless and one massive

state using the pure spinor formalism. In subsection 4.1, we simplify the pure spinor

correlators and set up the problem at the superfield level and in subsection 4.2, we evaluate

the resulting correlators.

4.1 Simplifying 3-point correlator

Since we are only interested in the 3-point functions on the disk, the location of all the

vertex operators can be fixed and hence we only need to consider the unintegrated vertex
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operators. Thus, the correlator we need to evaluate is given by

A3 =
〈
V

(1)
A (x1)V

(2)
A (x2)V

(3)
b,g,ψ(x3)

〉
(4.1)

where, Vb,g,ψ denotes the massive vertex operator (3.7) and VA denotes the unintegrated

vertex operator of the massless states given by3

VA = λαAα (4.2)

The unintegrated vertex operators in (4.1) are fixed at some arbitrary locations xi. The

SL(2,R) invariance on the disc guarantees that the 3-point function is independent of

the choices of xi. Using the expressions of the unintegrated vertex operators, the desired

3-point function is given by

A3 =
〈
λαA(1)

α (x1)λβA
(2)
β (x2)

(
∂θρλσBσρ + dρλ

σCρσ + ΠmλσHmσ +NmnλσFσmn

)
(x3)

〉
(4.3)

We have suppressed the superscript 3 from the massive superfields since there is only one

massive state and hence there is no chance of any confusion. We now manipulate each

term of (4.3) one by one.

First term. The first term is given by

T1 = 〈λαA(1)
α (x1)λβA

(2)
β (x2)∂θρλσBσρ(x3)〉

= (γmnp)σρ

〈
λαÃ(1)

α λβÃ
(2)
β ∂θρλσB̃mnp

〉〈
eik1·X(x1)eik2·X(x2)eik3·X(x3)

〉
= (γmnp)σρ

〈
λαÃ(1)

α λβÃ
(2)
β ∂θρλσB̃mnp

〉x13x23

x12
. (4.4)

where, the superfields with tilde denote the same superfields with eik·X factor stripped off.

Thus, e.g., in the theta expansion of B̃mnp, we just write the polarization tensor emα, emnp
and emn instead of ψmα, bmnp and gmn respectively. We have also used the momentum

conservation to write〈
eik1·X(x1)eik2·X(x2)eik3·X(x3)

〉
= |x12|2α

′k1·k2 |x23|2α
′k2·k3 |x13|2α

′k1·k3 =
x13x23

x12
. (4.5)

The T1 does not contribute to any of the amplitude since it does not provide the 5 zero

modes of θα which is required for the non vanishing of pure spinor correlators.

Second term. The 2nd term is given by

T ′2 = 〈λαA(1)
α (x1)λβA

(2)
β (x2)dρλ

σCρσ(x3)〉

To simplify this term, we use the OPE of dα with superfields to obtain

T ′2 = 〈λαA(1)
α (x1)λβA

(2)
β (x2)dρλ

σCρσ(x3)〉

=

∮
x3

dw

w − x3
〈λα(x1)A(1)

α (x1)λβ(x2)A
(2)
β (x2)dρ(w)λσ(x3)Cρσ(x3)〉

3The theta expansion of the massless superfields in our conventions is given in appendix C.
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= −
∮
x1

dw

w − x3

〈
λα(x1)

[
α′

2

DρA
(1)
α (x1)

w − x1

]
λβ(x2)A

(2)
β (x2)λσ(x3)Cρσ(x3)

〉

+

∮
x2

dw

w − x3

〈
λα(x1)A(1)

α (x1)λβ(x2)

[
α′

2

DρA
(2)
β (x2)

w − x2

]
λσ(z3)Cρσ(x3)

〉
(4.6)

In going to the last line, we have unwrapped the contour to enclose the points x1 and x2.

This gives a sign. A further sign comes while moving dα across Aα. The signs in front

of the individual terms in the last line are net effect of these sign factors. We now use

equations (3.4), (3.8) and (C.1), the identity QV = α′

2 λ
αDαV for an arbitrary superfield

V and unwrap the contour of Q. After using the on-shell condition and the pure spinor

fierz identity

λαλβ =
1

5!× 32
γαβmnpqr(λγ

mnpqrλ) (4.7)

we obtain (after some simplification using the gamma matrix identities)

T ′2 = T̃2 + T2 (4.8)

where,

T̃2 ≡ −
3iα′

64

x23

x12

[
(γmstuv)

ασ(k3)m + 4(γtuv)
ασ(k3)s

]〈
Ã(1)
α λβÃ

(2)
β (λγstuvwλ)Ψ̃wσ

〉
−3iα′

64

x13

x12

[
(γmstuv)

ασ(k3)m + 4(γtuv)
ασ(k3)s

]〈
λβÃ

(1)
β Ã(2)

α (λγstuvwλ)Ψ̃wσ

〉
(4.9)

and

T2 ≡ −
iα′

2

x23

x12
(γmγ

stuv)ασ(k3)s

〈
λαÃ(1)

m λβÃ
(2)
β λσB̃tuv

〉
+
iα′

2

x13

x12
(γmγ

stuv)ασ(k3)s

〈
λβÃ

(1)
β λαÃ(2)

m λσB̃tuv

〉
(4.10)

Third term. The 3rd term is given by

T3 = 〈λαA(1)
α (x1)λβA

(2)
β (x2)ΠmλσHmσ(x3)〉

=

∮
x3

dw

w − x3
〈λαA(1)

α (x1)λβA
(2)
β (x2)Πm(w)λσ(x3)Hmσ(x3)〉

= −
∮
x1

dw

w − x3

〈
λα(x1)

[
−iα′(k1)m

A
(1)
α (x1)

w − x1

]
λβ(x2)A

(2)
β (x2)λσ(x3)Hmσ(x3)

〉

−
∮
x2

dw

w − x3

〈
λα(x1)A(1)

α (x1)λβ(z2)
[
−iα′(k2)m

A
(2)
β (x2)

w − x2

]
λσ(x3)Hmσ(x3)

〉
=

72iα′

5!× 32
(γstuvw)ασ(k1)m

〈
Ã(1)
α λβÃ

(2)
β (λγstuvwλ)Ψ̃mσ

〉
(4.11)

Again, in going to the 3rd equality, we have unwrapped the contour and used the OPE

between Πm and superfields. In going to the last line, we have performed the contour

integration and used the momentum conservation and the identity (4.7).
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Fourth term. Finally, the 4th term is given by

T4 = 〈λαA(1)
α (x1)λβA

(2)
β (x2)NmnλσFσmn(x3)〉

=

∮
x3

dw

w − z3
〈λαA(1)

α (x1)λβA
(2)
β (x2)Nmn(w)λσ(x3)Fσmn(x3)〉

= −
∮
x1

dw

w − x3

〈[α′
4

(γmn)αρλ
ρ(x1)

w − x1

]
A(1)
α (x1)λβ(x2)A

(2)
β (x2)λσ(x3)Fσmn(x3)

〉
−
∮
x2

dw

w − x3

〈
λα(x1)A(1)

α (x1)
[α′

4

(γmn)βρλρ(x2)

w − x2

]
A

(2)
β (x2)λσ(x3)Fσmn(x3)

〉
=

3iα′

64

x23

x12

[
(γmstuv)

ασ(k3)m + 4(γtuv)
ασ(k3)s

]〈
Ã(1)
α λβÃ

(2)
β (λγstuvwλ)Ψ̃wσ

〉
+

3iα′

64

x13

x12

[
(γmstuv)

ασ(k3)m + 4(γtuv)
ασ(k3)s

]〈
λβÃ

(1)
β Ã(2)

α (λγstuvwλ)Ψ̃wσ

〉
(4.12)

In going to the 3rd equality, we have unwrapped the contour and used the OPE of Nmn

with λα whereas in going to the 4th equality, we have used the expression of Fαmn in terms

of Ψmα as given in (3.8). We note that T4 is exactly minus of the T̃2 as given in (4.9).

Combining all the terms, we find that the total 3-point function is given by

A3 = 〈V1V2V3〉 = T2 + T3 (4.13)

where T2 and T3 are given in equations (4.10) and (4.11) respectively. Below, we shall

give the results for the correlators 〈V1V2V3〉 for different choices of the 2 massless and one

massive external states.

4.2 Evaluation of correlators

The two terms T2 and T3 given in (4.13) are at the superfield level. To compute some

specific 3-point function, we need to keep only the fields of interest to be non zero in the

superfields. After specializing to some specific amplitude, A3 can be evaluated using the

theta expansion results given in section 3 and appendix C and the pure spinor correlators

listed in appendix A.3. We use the symbolic computer programme Cadabra to do this

calculation [16, 17]. An important point to note is that T2 as given in equation (4.10)

depends upon the world-sheet coordinates xi but T3 does not. However, the dependence

of T2 on the world sheet coordinates automatically drops out on evaluating it using the

theta expansion of the superfields as expected from the SL(2,R) invariance. We now give

the results for different 3-point correlators.

2 gluon and 1 bmnp field. For this case, we have

T2 =
29i

840
emnpe1

me
2
n(k1)p , T3 =

13i

840
emnpe1

me
2
n(k1)p

This gives

〈aab〉 = T2 + T3 =
i

20
emnpe1

me
2
n(k1)p (4.14)
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2 gluon and 1 gmn field. For the 〈aag〉 amplitude, we have

T2 = − 1

80
(e1 · g · e2) +

α′

160
(e2 · k1)(e1 · g · k1)− α′

160
(e1 · k2)(e2 · g · k1)

T3 = − 3α′

160
(e1 · k2)(e2 · g · k1)− α′

40
(e1 · e2)(k1 · g · k1) +

3α′

160
(e2 · k1)(e1 · g · k1)

This gives,

〈aag〉 = T2 + T3

= − 1

80

[
2α′(e1 · k2)(e2 · g · k1) + 2α′(e2 · k1)(e1 · g · k2)

−2α′(e1 · e2)(k1 · g · k2) + (e1 · g · e2)
]

(4.15)

2 gluino and 1 bmnp field. For the 〈χχb〉 amplitude, we have

T2 =
23

11340
(ξ1γmnpξ2)emnp , T3 =

1

18144
(ξ1γmnpξ2)emnp

This gives

〈χχb〉 = T2 + T3 =
1

480
(ξ1γmnpξ2)emnp (4.16)

2 gluino and 1 gmn field. For the 〈χχg〉 amplitude, we have

T2 = 0 , T3 =
iα′

80
(ξ1γmξ2)gmnk

n
1

This gives,

〈χχg〉 = T2 + T3 =
iα′

80
(ξ1γmξ2)emnk

n
1 (4.17)

1 gluon, 1 gluino and 1 ψmα field. In this case, since all the external states are

different, the two orderings 〈aχψ〉 and 〈χaψ〉 are different. We give the result for both

cases. For the 〈aχψ〉 correlator, we have

T2 =
4

21
em1 (ξ2ψm)− 31

210
α′(ξ2ψn)(e1 · k2)kn2 −

9

140
α′(ξ2γmnψp)e

m
1 k

n
1 k

p
2

T3 =
1

105
em1 (ξ2ψm)− 53

210
α′(ξ2ψn)(e1 · k2)kn2 −

19

140
α′(ξ2γmnψp)e

m
1 k

n
1 k

p
2

This gives

〈aχψ〉 = T2 + T3

=
1

5

[
em1 (ξ2ψm)− 2α′(ξ2ψn)(e1 · k2)kn2 − α′(ξ2γmnψp)e

m
1 k

n
1 k

p
2

]
(4.18)

On the other hand, for the 〈χaψ〉 correlator, we have

T2 =
4

21
em2 (ξ1ψm)− 31

210
α′(ξ1ψn)(e2 · k1)kn1 −

9

140
α′(ξ1γmnψp)e

m
2 k

n
2 k

p
1

T3 =
1

105
em2 (ξ1ψm)− 53

210
α′(ξ1ψn)(e2 · k1)kn1 −

19

140
α′(ξ1γmnψp)e

m
2 k

n
2 k

p
1

This gives

〈χaψ〉 = T2 + T3

=
1

5

[
em2 (ξ1ψm)− 2α′(ξ1ψn)(e2 · k1)kn1 − α′(ξ1γmnψp)e

m
2 k

n
2 k

p
1

]
(4.19)
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3 massless fields. For comparing the pure spinor results with the corresponding RNS

results, we also need the massless amplitudes. For 〈aaa〉 correlator, the pure spinor calcu-

lation gives the following result in our conventions

〈aaa〉 =
i

180

[
(e1 · e2)(e3 · k1) + (e1 · e3)(e2 · k3) + (e2 · e3)(e1 · k2)

]
(4.20)

On the other hand, for the 〈aχχ〉 correlator, we get

〈aχχ〉 =
1

360
(χ2γmχ3)e1

m . (4.21)

From the explicit expression of all massless-massless-massive amplitudes obtained in

this section, we observe that all such 3-point functions are symmetric under a change of

cyclic order. Therefore the inclusion of Chan-Paton factors (denoted by ta, tb tc) will

make the full amplitude proportional to Tr(ta, {tb, tc}). Compare this with the 3-point

functions involving all massless states, which are antisymmetric under a change of cyclic

order and therefore after taking into account the Chan-Paton factors, the final answer

becomes proportional to Tr(ta, [tb, tc]). Another point to note is that all the amplitudes

considered in this section are invariant under the gauge transformations ei → ei + ki. We

now turn to comparing the RNS and PS results.

5 Comparing pure spinor and the RNS results

By comparing the pure spinor results given above with the corresponding RNS results

given in appendix (B.2), we see that the tensor structures of the 3-point functions match

perfectly. Moreover the relative coefficients of the various terms in the correlators 〈aag〉
and 〈aχψ〉 which have more than one terms, also match exactly. This is a non trivial test.

We shall now show that the overall numerical factors (i.e. normalizations) of the different

3-point functions in pure spinor and RNS are also in perfect agreement with each other.

We have denoted the overall normalization of the vertex operators in the RNS calcu-

lations relative to those in PS calculations by ga, gχ etc. (see appendix B.2). For example,

if NRNS and NPS denote the normalizations of the gluon vertex operator in the RNS and

PS respectively, then for the 〈VaVaVa〉 correlator, we have (denoting V ≡ N Ṽ )

(NPS)3〈ṼaṼaṼa〉PS = (NRNS)3〈ṼaṼaṼa〉RNS (5.1)

From this, it is clear that only the relative normalization between RNS and PS vertex

operators have any physical significance. To exploit this fact, we define

NRNS = ga NPS (5.2)

In our calculations, we have set the overall normalization of the PS vertex operators to be

1 and kept the relative normalization factor ga, gχ etc. to be in the RNS vertex operators.

With the above convention, the overall RNS and the pure spinor numerical factors for

each correlator is given in the table 1. By comparing the RNS and pure spinor numerical

factors for 〈aaa〉 and 〈aχχ〉, we find

(ga)
3 =

−i
180
√

2α′
, (gχ)2 =

√
2

360 ga
. (5.3)
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Correlator RNS PS

〈aaa〉 −g3
a

√
2α′ i

180

〈aχχ〉 1√
2
gag

2
χ

1
360

〈aab〉 6g2
agb
√

2α′ i
20

〈χχb〉 − 1
2
√

2
g2
χgb

1
480

〈aag〉 −g2
agg − 1

80

〈χχg〉
√
α′g2

χgg
iα′

80

〈aχψ〉 −16α′√
2
gagχgψ

1
5

〈χaψ〉 −16α′√
2
gagχgψ

1
5

Table 1. Numerical factors of RNS and pure spinor correlators.

In terms of ga and gχ, the numerical factors for 〈aab〉, 〈aag〉 and 〈aχψ〉 give

gb =
i

120
√

2α′ g2
a

, gg =
1

80 g2
a

, gψ = −
√

2

80α′gagχ
(5.4)

The above values of gb, gg and gψ agree perfectly with the value obtained using 〈χχb〉,
〈χχg〉 and 〈χaψ〉 correlators. This is a non trivial consistency check.

6 Discussions

In this paper we have explicitly shown the equivalence of all massless-massless-massive

3-point functions for each given ordering of vertex operators on the boundary for open su-

perstrings computed in PS and RNS formalisms. For the massive states, the normalization

factors, which are fixed, using say 〈aab〉, 〈aag〉 and 〈aχψ〉 correlators, match perfectly with

the 〈χχb〉, 〈χχg〉 and 〈χaψ〉 correlators which establishes the consistency of the relative

normalization determined in this paper and establishes firmly the equivalence between RNS

and PS formalism for first massive states.

Once the vertex for open superstring is known, its extension to closed strings can be

obtained in a straightforward manner by taking appropriate tensor products of left and

right moving sectors [22].

To compare loop amplitudes one needs to compute the amplitude in PS formalism using

integrated vertex constructed for massive states in [23]. With the relative normalization

now fixed, they should match exactly with the corresponding RNS result. Also as argued

in [23], the strategy behind constructing massive vertex (integrated or unintegrated) is not

sensitive to mass level in question and is expected to be identical for all higher massive

states. Therefore, one can reasonably expect that all 3-point functions involving higher

massive states can also be directly compared with RNS results and yield a consistent set

of normalizations for each mass level.
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A Some pure spinor results

In this appendix, we note some pure spinor results which are used in this work.

A.1 Pure spinor conventions

In this section, we give our conventions for the pure spinor calculations. For the tree

amplitude calculations, both the minimal as well as the non minimal formalisms give the

same prescription. For convenience, we shall only consider the minimal formalism. The

world sheet action of the minimal formalism is given by

S =
1

πα′

∫
d2z

(
1

2
∂Xm∂̄Xm + pα∂̄θ

α − wα∂̄λα
)

(A.1)

where, m = 0, 1, , · · · , 9 and α = 1, · · · , 16.

The pα and wα are the conformal weight one conjugate momenta of the conformal

weight zero fields θα and λα respectively. The fields with upper (lower) spinor indices

transform as right (left) handed Weyl spinor. The λα satisfy the pure spinor constraint

λαγmαβλ
β = 0 (A.2)

The BRST operator is defined to be

Q =

∮
dz
(
λαdα

)
(A.3)

Due to pure spinor constraint, the world-sheet fields can only appear in the following gauge

invariant combinations4

Nmn =
1

2
wα(γmn)αβλ

β , J = wαλ
α , T = wα∂λ

α

4The coincident operators are normal ordered via

: A(z)B(z) :≡ 1

2πi

∮
z

dw

w − z
A(w)B(z) (A.4)

where, A and B are any two operators and the contour surrounds the point z. However, we shall suppress

the normal ordering symbol : : throughout this draft.
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Any other gauge invariant combination can be expressed in terms of these objects. The

ghost current is given by J = λαwα which implies that the λα carries the ghost number

+1 and the rest of the fields carry zero ghost number.

Before proceeding ahead, we note down some important OPEs of the theory which

arise frequently in calculations

dα(z)dβ(w) = −
α′γmαβ

2(z − w)
Πm(w) + · · · , dα(z)Πm(w) =

α′γmαβ
2(z − w)

∂θβ(w) + · · ·

dα(z)V (w) =
α′

2(z − w)
DαV (w) + · · · , Πm(z)V (w) = − α′

(z − w)
∂mV (w) + · · ·

Πm(z)Πn(w) = − α′ηmn

2(z − w)2
+ · · · , Nmn(z)λα(w) =

α′(γmn)αβ
4(z − w)

λβ(w) + · · ·

J(z)J(w) = − (α′)2

(z − w)2
+ · · · , J(z)λα(w) =

α′

2(z − w)
λα(w) + · · ·

Nmn(z)Npq(w) =− 3(α′)2

2(z − w)2
ηm[qηp]n − α′

(z − w)

(
ηp[nNm]q − ηq[nNm]p

)
+ · · · (A.5)

In the above OPEs, ∂m is the derivative with respect to the spacetime coordinate Xm, ∂ is

the derivative with respect to the world-sheet coordinate, V denotes an arbitrary superfield.

The dα and Πm denote the supersymmetric combinations

dα = pα −
1

2
γmαβθ

β∂Xm −
1

8
γmαβγmσδθ

βθσ∂θδ

Πm = ∂Xm +
1

2
γmαβθ

α∂θβ (A.6)

The Dα is the supercovariant derivative given by

Dα ≡ ∂α + γmαβθ
β∂m =⇒ {Dα, Dβ} = 2(γm)αβ∂m (A.7)

For calculating the scattering amplitudes, we need to know the number of zero modes of

the world-sheet fields. Due to the pure spinor constraints, it follows that all the world-

sheet ghost sector fields, namely λα and wα have 11 independent components. Now, it is a

result from the theory of Riemann surfaces that the number of zero modes of the conformal

weight one and conformal weight zero objects on a genus g Riemann surface is g and 1

respectively. Thus, the number of zero modes of λα on a genus g Riemann surface is 11

whereas the number of zero modes of wα on a genus g Riemann surface is 11g. On the

other hand, the matter sector fields θα and pα have 16 and 16g zero modes respectively

on a genus g Riemann surface. As in RNS formalism, the integration over the zero modes

give divergences and we need some way to absorb these zero modes. For details, see the

original literatures.

Before moving further, we describe an important identity on the world sheet which

is needed while solving the BRST equations of motion. The open string vertex operators

live on the boundary, i.e., along the real axis on the complex plane. This implies that in

the BRST equation QU = ∂RV , the derivative in the right hand side is along the real axis

(and hence the subscript R in the right hand side). However, for doing calculations, it is
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convenient to convert it into the holomorphic derivative using the chain rule. If x denotes

the coordinate along the real axis, then for an arbitrary function f on the real axis, we have

∂f

∂x
=

(
∂z

∂x

∂f

∂z
+

∂z̄

∂x

∂f

∂z̄

) ∣∣∣
z̄=z

=

(
∂f

∂z
+

∂f

∂z̄

) ∣∣∣
z̄=z

(A.8)

Now, using the chain rule, we have

∂f

∂z
=

∂f

∂Xm

∂Xm

∂z
+

∂f

∂θα
∂θα

∂z
,

∂f

∂z̄
=

∂f

∂Xm

∂Xm

∂z̄
+

∂f

∂θα
∂θα

∂z̄
(A.9)

Using the equation of motion for pα, namely, ∂̄θα = 0 and the above two equations, we

obtain

∂f

∂x
=

∂f

∂Xm

∂Xm

∂z
+

∂f

∂Xm

∂Xm

∂z̄

∣∣∣
z̄=z

+
∂f

∂θα
∂θα

∂z

= 2
∂f

∂Xm

∂Xm

∂z
+

∂f

∂θα
∂θα

∂z
(A.10)

Finally, using (A.6) and (A.7), we can express this as

∂f

∂x
= 2Πm∂mf + ∂θαDαf (A.11)

In the above derivation, we have used the world sheet fields defined using the doubling trick.

For a derivation without using doubling trick and more details, please see the section 2

of [23].

A.2 Hodge duality of gamma matrices in d=10

In 10 dimensions, the 16× 16 gamma matrices satisfy the following Hodge dualities

(γm1...m2n)αβ =
1

(10− 2n)!
(−1)(n+1)εm1...m2np1...p10−2n(γp1...p10−2n)αβ (A.12)

(γm1...m2n) β
α = − 1

(10− 2n)!
(−1)(n+1)εm1...m2np1...p10−2n(γp1...p10−2n) β

α (A.13)

(γm1...m2n+1)αβ =
1

(9− 2n)!
(−1)nεm1...m2n+1p1...p9−2n(γp1...p9−2n)αβ (A.14)

(γm1...m2n+1)αβ = − 1

(9− 2n)!
(−1)nεm1...m2n+1p1...p9−2n(γp1...p9−2n)αβ (A.15)

where, εm1···m9 is the 10 dimensional epsilon tensor defined as

ε0 1 ··· 9 = 1 =⇒ ε0 1 ··· 9 = −1 (A.16)

Due to the above dualities, not all the antisymmetrized product of gamma matrices are

independent. We shall take γm1 , γm1m2 , γm1m2m3 , γm1m2m3m4 and γm1m2m3m4m5 along

with the identity matrix I16×16 as the linearly independent basis elements for vector spaces

of 16× 16 complex matrices.
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A.3 Pure spinor superspace identities

While computing the scattering amplitudes in pure spinor formalism, the last step re-

quires evaluation of integration over the zero modes of λα and θα. Due to the pure spinor

constraints and the symmetry properties of θα and λα, there are only a finite number of

these basic pure spinor correlators which are non zero. Below, we list those pure spinor

correlators which are used in this note [8]

〈(λγmθ)(λγnθ)(λγpθ)(θγstuθ)〉 =
1

120
δmnpstu (A.17)

〈(λγpqrθ)(λγmθ)(λγnθ)(θγstuθ)〉 =
1

70
δ

[p
[mηn][sδ

q
t δ
r]
u] (A.18)

〈(λγmnpqrθ)(λγsθ)(λγtθ)(θγuvwθ)〉 = − 1

42
δmnpqrstuvw −

1

5040
εmnpqr stuvw (A.19)

〈(λγqθ)(λγmnpθ)(λγrstθ)(θγuvwθ)〉 = − 1

280

[
ηq[uη

z[rδsvη
t][mδnw]δ

p]
z − ηq[uηz[mδnv ηp][rδsw]δ

t]
z

]
+

1

140

[
δ[m
q δn[uη

p][rδsvδ
t]
w] − δ

[r
q δ

s
[uη

t][mδnv δ
p]
w]

]
− 1

8400
εqmnprstuvw (A.20)

〈(λγmnpqrθ)(λγstuθ)(λγvθ)(θγwxyθ)〉 =
1

120
εmnpqr ghijk

(
1

35
ηv[gδh[sδ

i
tηu][wδ

j
xδ
k]
y]

− 2

35
δ

[g
[sδ

h
t δ
i
u]δ

j
[wδ

k]
x δ

v
y]

)
+

1

35
ηv[mδn[sδ

p
t ηu][wδ

q
xδ
r]
y] −

2

35
δ

[m
[s δ

n
t δ

p
u]δ

q
[wδ

r]
x δ

v
y]

(A.21)

B RNS results

In this section, we summarize the results of the 3-point functions involving two massless

and one massive states computed using the RNS formalism. In subsection B.1, we state our

conventions and in subsection B.2, we give the results of 3-point computations. A useful

reference for this section is [24] (also see [25, 26]).

B.1 Conventions for RNS calculations

Due to the picture number anomaly on a genus g Riemann surface, a non vanishing RNS

correlator must have the picture number 2g − 2. This is ensured by working with vertex

operators in appropriate picture number and the insertions of appropriate number of picture

changing operators (PCOs). For the 3-point functions on Riemann sphere, we can avoid

the insertions of PCOs by working with vertex operators of the appropriate picture number

so that the total picture number adds up to −2 (which is the picture number anomaly on

Riemann sphere).

We start by writing down the vertex operators for the massless states in various picture

numbers. The gluon vertex operator in the −1 and 0 picture numbers is given by

V (−1)
a (x) = ga emψ

m(x)e−φ(x)eik·X(x)

V (0)
a (x) =

ga√
2α′

em

(
i∂Xm(x) + 2α′knψ

n(x)ψm(x)
)
eik·X(x) (B.1)
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The gluino vertex operator in the −1/2 picture number is given by

V (−1/2)
χ (x) = gχ ξ

αSα(x)e−φ(x)/2eik·X(x) (B.2)

The polarization vectors of the gluon and gluino satisfy the transversality conditions

emk
m = 0 , ξαγm

αβ̇
km = 0 (B.3)

Now, we turn to the vertex operators for the first massive states [27, 28]. The vertex

operators for the anti-symmetric 3-form field bmnp in the picture numbers −1 and 0 are

given by

V
(−1)
b (x) = gb emnpψ

m(x)ψn(x)ψp(x)e−φ(x)eik·X(x)

V
(0)
b (x) = gb

√
2α′ emnp

( 3i

2α′
∂Xmψnψp + kqψ

qψmψnψp
)
eik·X(x) (B.4)

The vertex operators for the symmetric traceless massive graviton field gmn are given by

V (−1)
g (x) =

gg√
2α′

emni∂X
m(x)ψn(x)e−φ(x)eik·X(x)

V (0)
g (x) = gg emn

( 1

2α′
i∂Xmi∂Xn + ∂ψmψn + i∂Xmkpψ

pψn
)
eik·X (B.5)

Finally, the vertex operators for the massive gravitino field ψmα in the −1/2 picture number

is given by

V
(−1/2)
ψ (z) =

gψ√
α′

(
ξαmi∂X

m − α′

4
ξβmψ

mγn
ββ̇
γβ̇αp knk

p
)
Sαe

−φ/2eik·X(z) (B.6)

The polarization vectors of the 1st massive states satisfy the conditions

kmemnp = kmemn = kmξαm = 0 (B.7)

For comparison with PS result, it is useful to parametrize the massive tensor spinor ξαm as

ξαm = −8α′ρ̄mβ̇k
pγ̄β̇αp , kmρ̄mβ̇ = ρ̄mβ̇γ

β̇α
m = 0 (B.8)

We now turn to the OPEs and correlation functions of the world-sheet matter and

ghost sector fields. The important correlators of the open string Xm fields are given by〈
n∏
j=1

eikj ·X(yj)

〉
=

n∏
i<j

|yi − yj |2α
′ki·kj (B.9)〈

q∏
`=1

i∂Xm`(w`)

n∏
j=1

eikj ·X(yj)

〉
=

p∑
i=2

2α′ηm1mi

(w1 − wi)2

〈
p∏

`=2
` 6=i

i∂Xm`(w`)
n∏
j=1

eikj ·X(yj)

〉

+

n∑
`=1

2α′km1
`

(w1 − y`)

〈
p∏
`=2

i∂Xm`(w`)

n∏
j=1

eikj ·X(yj)

〉
(B.10)
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This can be evaluated recursively using (B.9). We shall encounter the situation where some

w` may coincide with some yj . E.g., we shall need the following correlator

Γm ≡
〈
eik1·X(z1)eik2·X(z2)∂Xm(z3)eik3·X(z3)

〉
=

∮
dw

w − z3

〈
eik1·X(z1)eik2·X(z2)eik3·X(z3)∂Xm(w)

〉
=

(
2iα′km1
z13

+
2iα′km2
z23

)
|z12|2α

′k1·k2 |z23|2α
′k2·k3 |z13|2α

′k1·k3 (B.11)

In going to the 2nd line, we have used the definition of the normal ordering (A.4) and in

going to the 3rd line, we have used (B.10) for q = 1 and n = 3.

Similarly, we also need〈
eik1·X(z1)eik2·X(z2)i∂Xp(z3)i∂Xq(z3)eik3·X(z3)

〉
= 4(α′)2

[
kp1
z13

(
kq1
z13

+
kq2
z23

)
+
kp2
z23

(
kq1
z13

+
kq2
z23

)]
|z12|2α

′k1·k2 |z23|2α
′k2·k3 |z13|2α

′k1·k3

Next, we consider the world-sheet correlators involving the ψm fields〈
n∏
i=1

ψmi(yi)

〉
=

n∑
j=2

(−1)j
ηm1mj

(y1 − yj)

〈
n∏

`=2
` 6=j

ψm`(y`)

〉
(B.12)

This expression can also be evaluated recursively. In the final step, the two point function

can be evaluated by using the OPE

ψm(z)ψn(w) =
ηmn

z − w
+ · · · (B.13)

Next, we consider the ghost sector. The basic correlator involving the reparametriza-

tion ghost c(x) is given by

〈c(x1)c(x2)c(x3)〉 = x12x23x13 (B.14)

The basic correlator involving the bosonized ghost field φ(z) is given by〈
n∏
k=1

eqkφ(zk)

〉
=

n∏
k<`

1

(zk − z`)qkq`
;

n∑
k=1

qk = −2 (B.15)

Finally, we consider the spin fields. The basic OPEs involving the spin fields are given by

(a consistent set of these OPEs can be found in [29])

ψm(z)Sα(w)e−φ(w)/2 =
(γ̄m)α̇βSβe

−φ(w)/2

√
2(z − w)1/2

+ · · · (B.16)

ψm(z)Sα̇(w)e−φ(w)/2 =
(γm)αβ̇S

β̇e−φ(w)/2

√
2(z − w)1/2

+ · · · (B.17)

Sα(z)e−φ(z)/2Sβ̇(w)e−3φ(w)/2 =
C β̇
α e−2φ(w)

(z − w)2
+ · · · (B.18)
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Sα(z)e−φ(z)/2Sβ(w)e−φ(w)/2 =
(γmC)αβψ

m(w)e−φ(w)

√
2(z − w)

+ · · · (B.19)

ψm(z)e−φ(z)Sα(w)e−φ(w)/2 =
(γ̄m)αβ̇S

β̇(w)e−3φ(w)/2

√
2(z − w)

+ · · · (B.20)

jmn(z)Sα(w) = −
(γmn) βα Sβ(w)

2(z − w)
, jmn ≡ : ψmψn : (B.21)

Using the above OPEs, we can work out the following useful correlators which are needed

in our calculations

〈ψm(x1)e−φ(x1)Sα(x2)e−φ(x2)/2Sβ(x3)e−φ(x3)/2〉 =
(γmC)αβ√
2z12z13z23

(B.22)

ξβq

〈
ψm(x1)e−φ(x1)Sα(x2)e−φ(x2)/2ψq(x3)ψp(x3)γβ̇σp Sσ(x3)e−φ(x3)/2

〉
=

8 ξβmC
β̇
α√

2z2
13z

2
23

(B.23)

B.2 3-point functions

We are now ready to give the results of 3-point functions of two massless and one massive

field (for the computation of 3-point functions of states in leading Regge trajectory in

RNS, see [30]). These are straightforward to evaluate using the vertex operators and the

correlators given in the previous subsection. Hence, we just state the final results below.

For our calculations, we shall take the bosonic massless and massive fields to be either

in the −1 or 0 picture numbers. On the other hand, the fermionic massless or massive

fields will always be taken in the −1/2 picture. The picture numbers will be shown by a

superscript on the vertex operators inside correlators. Thus, the 3-point amplitudes are

given by

A3 =
〈
c(x1)V (1)

a,χ (x1)c(x2)V (2)
a,χ (x2)c(x3)V

(3)
b,g,ψ(x3) 〉 (B.24)

We start by considering the 3-point functions involving all massless fields. The two

possible correlators in this case are 〈aaa〉 and 〈aχχ〉. Using the world-sheet correlators

given above, these 3-point functions can be evaluated to be

〈aaa〉 ≡
〈
c(x1)V (−1)

a (x1)c(x2)V (−1)
a (x2)c(x3)V (0)

a (x3)
〉

= −g3
a

√
2α′
[
(e1 · e2)(e3 · k1) + (e1 · e3)(e2 · k3) + (e2 · e3)(e1 · k2)

]
(B.25)

As an amplitude this vanishes on summing (k1 ↔ k2) term if the gauge group is abelian.

Similarly, the aχχ correlator can be worked out to be

〈aχχ〉 ≡
〈
c(x1)V (−1)

a (x1)c(x2)V (−1/2)
χ (x2)c(x3)V (−1/2)

χ (x3)
〉

=
1√
2
gag

2
χe

1
m

(
ξ2γmCξ3

)
(B.26)

Again, for the abelian gauge group, the corresponding amplitude vanishes.
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Next, we consider the two massless and one massive field. We start with two gluons

and one bmnp field

〈aab〉 ≡
〈
c(x1)V (−1)

a (x1)c(x2)V (−1)
a (x2)c(x3)V

(0)
b (x3)

〉
= 6g2

agb
√

2α′e1
me

2
nemnpk

p
1 (B.27)

Next, we consider the 3-point function of two gluons and one massive gmn field which

is given by

〈aag〉 ≡
〈
c(x1)V (−1)

a (x1)c(x2)V (−1)
a (x2)c(x3)V (0)

g (x3)
〉

= −g2
agg

[
2α′ηmne1

me
2
nepqk

p
1k

q
1 + e1

pe
2
qepq + 2α′e1

me
2
qepqk

p
1k

m
2 − 2α′e1

qe
2
mepqk

m
1 k

p
1

]
(B.28)

Next, we include gluino and consider the 〈χχb〉 and 〈χχg〉 correlators which can be

worked out to be

〈χχb〉 ≡
〈
c(x1)V (−1/2)

χ (x1)c(x2)V (−1/2)
χ (x2)c(x3)V

(−1)
b (x3)

〉
= − 1

2
√

2
g2
χgb(ξ

1γmnpCξ2)emnp (B.29)

and,

〈χχg〉 ≡ 〈c(x1)V (−1/2)
χ (x1)c(x2)V (−1/2)

χ (x2)c(x3)V (−1)
g (x3)〉

=
√
α′g2

χggemn(ξ1γnCξ2)km1 (B.30)

Finally, we consider the massive fermion. The two different 3-point functions with one

massive fermion and two massless fields are 〈aχψ〉 and 〈χaψ〉 which are given by

〈aχψ〉 ≡
〈
c(x1)V (−1)

a (x1)c(x2)V (−1/2)
χ (x2)c(x3)V

(−1/2)
ψ (x3)

〉
= −16α′√

2
gagχgψ

[
− α′e(1)

m ξα(2)k
q
2k
p
1 ρ̄qβ̇(γ̄mp)

β̇
σ̇C

σ̇
α

−2α′kq2k
m
2 e

(1)
m ξα(2)ρ̄qβ̇C

β̇
α + e(1)

m ξα(2)ρ̄mσ̇C
σ̇
α

]
(B.31)

and,

〈χaψ〉 ≡
〈
c(x1)V (−1/2)

χ (x1)c(x2)V (−1)
a (x2)c(x3)V

(−1/2)
ψ (x3)

〉
= −16α′√

2
gagχgψ

[
− α′e(2)

m ξα(1)k
q
1k
p
2 ρ̄qβ̇(γ̄mp)

β̇
σ̇C

σ̇
α

−2α′kq1k
m
1 e

(2)
m ξα(1)ρ̄qβ̇C

β̇
α + e(2)

m ξα(1)ρ̄mσ̇C
σ̇
α

]
(B.32)

To compare the results involving the fermionic fields with the PS results, we need to first

convert the RNS gamma matrix conventions into the PS gamma matrix conventions. This

mainly involves setting the charge conjugation matrix to be the Kronecker delta δαβ which

implies (for details, see e.g., [24, 25])

(γmC)αβ → γmαβ , (γ̄mC)α̇β̇ → γαβm , (γmnpC)αβ → (γmnp)αβ (B.33)

and so on.
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C Theta expansion of massless vertex operator

Theta expansion of the massless vertex operator is known and has been extensively used

in the literature (see, e.g., [18]). However, some of our conventions (e.g., equation (A.7))

are different from the literature in which the theta expansion of massless vertex operator is

used. Below, we derive the results in our convention briefly indicating the steps. We start

by recalling the N = 1 SYM equations in 10 dimensions [31].

N = 1 SYM equations in 10 dimensions. In 10 dimensions, the open string massless

states are described by the 10 dimensional N = 1 super Yang Mills equations. The field

strengths describing the theory are given by

Fαβ = {∇α,∇β} − 2γmαβ∇m , Fαm = [∇α,∇m] = −Fmα , Fmn = [∇m,∇n]

where ∇m ≡ ∂m +Am , ∇α ≡ Dα +Aα and Dα is defined in (A.7).

The 10 dimensional Yang-Mills equations of motion follow from

Fαβ = 0 =⇒ DαAβ +DβAα = 2γmαβAm (C.1)

Using this along with the Bianchi identities, we obtain the following equations at lin-

earized level

Fmα = (γm)αβW
β , DαW

β = −1

2
(γmn) β

α Fmn =⇒ DαW
α = 0

DαFmn = ∂m(γnW )α − ∂n(γmW )α, DαA
m = −γmαβW β + ∂mAα

∂mF
mn = 0, γmαβ∂mW

β = 0 (C.2)

Further, the superfields Am,W
α and Fmn can be expressed as

Am =
1

16
γαβm DαAβ , Fmn = ∂mAn − ∂nAm

Wα = − 1

10
(γm)αβ(DβAm − ∂mAβ) (C.3)

N = 1 SYM equations from pure spinor formalism. The pure spinor formalism

gives the N = 1 SYM equations through its BRST equations of motion. To obtain the

correct normalization of the superfields, we derive these equations using the BRST equation

of motion QU = ∂RV and match with the equations given above. At the massless level,

the unintegrated vertex operator is constructed from the ghost number 1 and conformal

weight 0 objects. The most general object with this property has the form V = λαAα.

Similarly, the most general integrated vertex operator has the form

U = ∂θαÃα + ΠmÃm + dαW̃
α +NmnF̃mn (C.4)

Using the OPEs given in section 2, we obtain

Q(∂θαÃα) = −α
′

2
∂θαλβDβÃα +

α′

2
∂λαÃα

Q(ΠmÃm) =
α′

2
ΠmλαDαÃm +

α′

2
∂θαλβÃmγ

m
αβ
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Q(dαW̃
α) = −α

′

2
dαλ

βDβW̃
α − α′

2
ΠmλαW̃ βγmαβ +

(α′)2

2
∂λα∂mW̃

βγmαβ

Q(NmnF̃mn) =
α′

2
NmnλβDβF̃mn −

α′

4
dαλ

βF̃mn(γmn)αβ −
(α′)2

8
∂λαDβF̃mn(γmn)βα

We also have,

∂R(λαAα) = ∂λαAα + λα∂RAα

= ∂λαAα + ∂θβλαDβAα + 2Πmλα∂mAα (C.5)

where we have used the pure spinor open string identity (A.11) in going to the second line.

The BRST equation of motion now gives,

0 = QU − ∂RV

= ∂θαλβ
(
−α
′

2
DβÃα −DαAβ +

α′

2
Ãmγ

m
αβ

)
+ Πmλα

(
α′

2
DαÃm −

α′

2
W̃ βγmαβ − 2∂mAα

)
+ dαλ

β

(
−α
′

2
DβW̃

α − α′

4
F̃mn(γmn)αβ

)
+
α′

2
NmnλβDβF̃mn

+ ∂λα
(
α′

2
Ãα +

(α′)2

2
∂mW̃

βγmαβ −
(α′)2

8
DβF̃mn(γmn)βα −Aα

)
(C.6)

To match these equations with the 10 dimensional SYM equations, we rescale the fields as

Ãα =
2

α′
Aα , Ãm =

4

α′
Am , W̃α = − 4

α′
Wα , F̃mn =

4

α′
Fmn (C.7)

After this rescaling, the BRST equation gives

DβAα +DαAβ = 2Amγ
m
αβ , DαAm = −W βγmαβ + ∂mAα, DβW

α = −1

2
Fmn(γmn) α

β

−∂mW βγmαβ =
1

4
DβFmn(γmn)βα, NmnλβDβFmn = 0

The first 4 equations are precisely satisfied by the 10 dimensional N = 1 SYM equations

given in appendix C whereas the last equation is satisfied by the pure spinor constraint. The

correctly normalized vertex operators of the massless states in our conventions thus become

V = λαAα

U =
2

α′
∂θαAα +

4

α′
ΠmAm −

4

α′
dαW

α +
4

α′
NmnFmn

=
4

α′

(
1

2
∂θαAα + ΠmAm − dαWα +NmnFmn

)
(C.8)

Theta expansion of massless superfields. Finally, we turn to the theta expansion.

We shall follow the steps outlined in [13]. We shall need the following equations for doing

the theta expansion

DαAβ +DβAα = 2Amγ
m
αβ , DαAm = −W βγmαβ + ∂mAα

DβW
α = −1

2
Fmn(γmn) α

β , Fmn = ∂mAn − ∂nAm (C.9)
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Before proceeding to do the theta expansion, we need to fix a gauge. We shall choose the

gauge θαAα = 0. In this gauge choice, we have

0 = Dβ(θαAα) = Aβ − θαDβAα =⇒ Aβ = θαDβAα (C.10)

Now, multiplying by θβ in the 1st equation and by θα in the 2nd and 3rd equations of (C.9)

and using the above identity along with the gauge choice θαAα = 0, we obtain

(1 +D)Aα = 2Am(γmθ)α , DAm = −(θγmW ) , DWα =
1

2
Fmn(γmnθ)α (C.11)

where we have defined D ≡ θαDα = θα∂α.

We can use the above 3 equations along with the 4th equation of (C.9) to do the theta

expansion. If we denote the `th order component of the superfield M by M (`), then we have

M (`) = mα1···α`
θα1 · · · θα` =⇒ DM (`) = ` M (`) (C.12)

Using this, the 3 equations of (C.11) and the 4th equation of (C.9) give the following

recursive relations

(1 + `)A(`)
α = 2A(`−1)

m (γmθ)α =⇒ A(`)
α =

2

1 + `
A(`−1)
m (γmθ)α

`A(`)
m = −(θγmW

(`−1)) =⇒ A(`)
m = −1

`
(θγmW

(`−1))

`Wα
(`) =

1

2
F (`−1)
mn (γmnθ)α =⇒ Wα

(`) =
1

2`
(γmnθ)α F (`−1)

mn

F (`)
mn = ∂mA

(`)
n − ∂nA(`)

m (C.13)

Denoting the theta independent components of the superfields Am and Wα to be

A(0)
m ≡ am , Wα

(0) ≡ χ
α (C.14)

the above recursive relations give

Aα = am(γmθ)α −
2

3
(γmθ)α(θγmχ)− 1

8
(γmθ)α(θγmpqθ)fpq

− i

15
(γmθ)α(θγpχ)(θγmpqθ)kq + · · ·

Am = am − (θγmχ)− 1

4
(θγmnpθ)f

np − 1

6
(θγmγ

pqθ)(θγ[m∂n]χ)

+
1

48
(θγmγ

rnθ)(θγnpqθ)∂rf
pq + · · · (C.15)

where fmn = ∂man − ∂nam and the plane wave expansion of the gluon and gluino are

given by

am = eme
ik·X , χα = ξαeik·X (C.16)
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