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1 Introduction

The gauge-gravity correspondence equates certain gravitational theories to strongly cou-

pled field theories in a lower dimensional spacetime, enabling a deeper understanding of

both. Strongly coupled field theories are notoriously hard to study directly, but it has been

proposed that in the presence of conformal symmetry they can be quantitatively “boot-

strapped” by exploiting symmetry and physical consistency principles [1]. This makes it

increasingly feasible to look “under the hood” of the duality and, following the program

initiated in [2], to develop CFT techniques to tackle problems in quantum gravity.
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A key realization of the bootstrap program is that the singularities of correlators in a

certain limit determine the large-spin behavior in the expansion around other limits [3–5].

Crucially, this works to all orders in an expansion in inverse spin [6], see also [7, 8], thus

allowing in principle the full OPE data to be reconstructed just from singular terms. When

applied to large-N theories, it turns out that, with the correct understanding of “singular”,

reviewed below, only single-trace exchanges contribute, making this procedure particularly

efficient. The part of the correlator which is analytic in spin is fully reconstructed [6, 8–11],

while any possible ambiguity is limited to the lowest few spins (` < 2) and is otherwise

constrained by crossing [9, 12]. The idea of building up all correlators from just the singular

part of single-trace exchanges is especially appealing in theories which have a low-energy

gravity dual, since the spectrum then contains a limited number of single-trace primary

operators, such as the stress tensor dual to the graviton.

The aim of this paper is to carry out this program explicitly in a concrete example

of a fully-fledged, consistent CFT. We will show how to explicitly reconstruct, from sin-

gularities, all CFT-data in N = 4 super Yang-Mills with gauge group SU(N), to order

1/N4 at strong ‘t Hooft coupling. This corresponds to one-loop in the dual gravitational

theory, namely type IIB superstring theory on AdS5×S5. Having such a specific example

at hands makes it possible to ask a variety of sharp questions. In particular, we will ana-

lyze in detail how the CFT correlator encodes the flat space S-matrix of 10D supergravity,

at both tree-level and one-loop. This will reveal a direct connection between the method

of CFT analyticity and the traditional method of S-matrix unitarity and dispersion rela-

tions. While we focus our attention on this specific example, we expect the method and

philosophy to apply more widely.

This paper is organized as follows. In section 2 we explain the general idea of the

method and summarise our results, without entering into technicalities. In section 3 we

show how to recover the CFT-data from the double-discontinuities of the correlator, using

the Froissart-Gribov inversion integral derived in [12]. In section 4 these results are recov-

ered from all order perturbation around large spin, following [6]. It is furthermore shown

that the two inversion procedures are actually equivalent. In section 5 we study a particular

limit of the CFT correlator which reproduces the S-matrix of the higher-dimensional bulk

theory. Remarkably, it is found that the limit of the discontinuity of the CFT-correlator

reproduces the discontinuity of the bulk theory S-matrix. This allows to draw a perfect

parallel between our inversion procedure in CFT and the standard S-matrix reconstruction

via dispersion relations. We also explain in detail the precise ambiguities when following

these procedures. With then end up with some conclusions, while some of the technical

details are deferred to the appendices.

2 Generalities

The stress tensor of N = 4 SYM lies in a short multiplet. The super conformal primary of

this multiplet is a scalar operator O2, of protected dimension 2 and which transforms in the

[0, 2, 0] representation of the SU(4) R−symmetry group. We will consider the correlator of

– 2 –



J
H
E
P
1
2
(
2
0
1
8
)
0
1
7

four identical such operators

〈O2(x1)O2(x2)O2(x3)O2(x4)〉 =
∑
R

G(R)(u, v)

x4
12x

4
34

(2.1)

where the sum runs over the six representations present in the tensor product [0, 2, 0] ×
[0, 2, 0] and we have introduced the cross-ratios

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

(2.2)

The superconformal Ward identities allow to write all functions G(R)(u, v) in terms of a

single unprotected function G(u, v), equal to G(105)/u2, which satisfies the following crossing

relation

v2G(u, v)− u2G(v, u) + (u2 − v2) +
u− v
c

= 0 (2.3)

with the central charge c = N2−1
4 . See [13] for the details.1 G(u, v) admits the following

decomposition

G(u, v) = G(short)(u, v) +H(u, v) (2.4)

Here G(short)(u, v) encodes the contribution from protected intermediate operators, belong-

ing to short multiplets. It does not depend on the coupling constant and has been explicitly

computed in [13]. H(u, v) encodes the dynamical contribution from long multiplets. It ad-

mits a decomposition in super-conformal blocks

H(u, v) =
∑
∆,`

a∆,` g∆,`(u, v) (2.5)

where the sum runs over super conformal primary operators in long multiplets, with dimen-

sion ∆ and spin `. Each contribution is weighted by the squared OPE coefficient a∆,` and

the function g, which includes a normalization factor which will be convenient in this work:

g∆,`(u, v) = r∆+4+`
2

r∆−`+2
2
× u−2 g̃∆+4,`(u, v), rh =

Γ(h)2

Γ(2h− 1)
. (2.6)

The standard four-dimensional block g̃∆,`(u, v) is in turn expressed most simply in terms

of cross ratios z, z̄, such that u = zz̄, v = (1− z)(1− z̄):

g̃∆,`(z, z̄) =
zz̄

z̄ − z

[
k∆−`−2

2
(z)k∆+`

2
(z̄)− k∆+`

2
(z)k∆−`−2

2
(z̄)
]
, (2.7)

where, finally, kh(z) = zh 2F1(h, h, 2h, z) is a standard hypergeometric function.

Plugging the decomposition (2.4) into (2.3) results in a crossing equation for H(u, v),

H(u, v) + G(short)(u, v) =
u2

v2
H(v, u) +

u2

v2
G(short)(v, u) +

v2 − u2

v2
+
v − u
v2

1

c
.

1We normalize G so that its disconnected part is 1 + 1
v2 . Compared with [13], Gthere = 4Ghere.
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From the explicit result for G(short)(u, v) we find the following behaviour for small v

H(u, v) + G(short)(u, v) =
u2

v2
H(v, u) +

1

v2
+

2u2 log u− 3u2 + 4u− 1

v(u− 1)3

1

c
+ regular (2.8)

where the regular terms contain at most a single logarithm as v → 0, in contrast with terms

which we will call “singular” due to either poles or double logarithms as v → 0. So far the

discussion has been general. In the present paper we will consider solutions consistent with

crossing in a large central charge expansion, in the regime of large t’ Hooft coupling λ:

H(u, v) = H(0)(u, v) +
1

c
H(1)(u, v) +

1

c2
H(2)(u, v) + · · · (2.9)

In this regime the intermediate operators contributing to H(u, v) are double trace operators

with twist four and higher. The poles at v = 0 present on the r.h.s. of (2.8) arise from

the protected, single-trace sector. Following general arguments, we see that these poles are

consistent with, and actually require, the existence of double trace operators of twist ∆−` =

4 + 2n. As we will see, their precise form at c =∞ suffices to fix the OPE coefficients to〈
a(0)
〉
n,`

= 2(`+ 1)(6 + `+ 2n) . (2.10)

We use the bracket to denote the sum over all operators of approximate twist 4 + 2n and

spin `, emphasizing the fact that in general many nearly-degenerate operators contribute.

As we take into account 1/c corrections both the scaling dimensions and OPE coefficients

of individual operators acquire corrections

∆n,` = 4 + 2n+ `+
1

c
γ

(1)
n,` +

1

c2
γ

(2)
n,` + · · · (2.11)

an,` = a
(0)
n,` +

1

c
a

(1)
n,` +

1

c2
a

(2)
n,` + · · · (2.12)

As we will see in the next two sections γ
(1)
n,` and a

(1)
n,` are again fully determined by the

singular terms in (2.8). We obtain〈
a(0)γ(1)

〉
n,`〈

a(0)
〉
n,`

= − κn
(1 + `)(6 + `+ 2n)

,
〈
a(1)
〉
n,`

=
1

2
∂n
〈
a(0)γ(1)

〉
n,`
, (2.13)

where κn = (n+ 1)(n+ 2)(n+ 3)(n+ 4). This coincides with the well known supergravity

result. In principle one could also add a solution consistent with crossing with finite sup-

port in the spin. As we will show, such solutions can be forbidden using bounds on the

Regge limit behavior.

Although in this paper we will only focus on the correlator at hand, in principle the

same can be done for more general correlators, of the form 〈OpOpOqOq〉, which on the

gravity side are interpreted as different S5 spherical harmonics. In this way one should

recover the full supergravity result from the singular contribution of the protected sector.

This is a manifestation of a more general result: correlators in large-N CFTs can be

reconstructed from singularities, due to single trace operators, see figure 1.
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=
∑

×
single
traces

Figure 1. Correlators in any large-N theories can be fully reconstructed from singularities (denoted

by the cut) that are saturated by single-trace operators. Theories with a gravity dual correspond

to the case where the sum is effectively finite.

×=
∑
single
traces

Figure 2. At one-loop order in the 1/N expansion, the singularities caused by double-trace ex-

changes are equal to products of single-trace tree amplitudes.

At order 1/c2 something interesting happens. On one hand the 1/c expansion of the

protected contribution stops at order 1/c. On the other hand, the anomalous dimensions

at order 1/c of double trace operators in the t-channel produce the following singular term

to order 1/c2:

H(2)(v, u) =
1

8
log2 v

∑
n,`

〈
a(0)
(
γ(1)

)2〉
n,`
gn,`(v, u) + regular (2.14)

In order to compute these sums one has to solve a mixing problem which can be done from

the explicit answers of the general correlators mentioned above. The result is recorded in

eq. (3.15) below. As we show in sections 3 and 4 the CFT data at order 1/c2 again follows

from this singular part. This is shown pictorially in figure 2.

According to the AdS/CFT dictionary, this 1/c2 ∼ 1/N4 CFT correction describes

one-loop effects in the dual gravitational theory. To demonstrate this more explicitly, in

section 5 we take the limit of large scaling dimension, where the CFT-data is expected to

encode the scattering amplitude of a pair of excitations with large center-of-mass energy

in AdS units
√
sL = 2n, through a simple relation [2, 14] (discussed further in section 5):

lim
n→∞

〈
ae−iπγ

〉
n,`〈

a(0)
〉
n,`

= b`(s) . (2.15)

Here b`(s) are the angular momentum partial waves of the flat-space superstring S-matrix,

and n should be large but not too large so that we are still in the regime controlled by

– 5 –



J
H
E
P
1
2
(
2
0
1
8
)
0
1
7

supergravity. We will show that the two sides of this equation agree precisely, revealing how

the operator mixing just mentioned successfully accounts for the ten-dimensional nature

of the AdS5×S5 geometry.

3 CFT data from the Froissart-Gribov inversion integral

Recently, an integral formula has been derived which reconstructs the OPE data of any

CFT from the double-discontinuity of correlators [12]. For identical external operators in

four dimensions, this inversion integral was written in that paper as

c̃(`,∆) =
1 + (−1)`

4
κ̃

(
∆ + `

2

)∫ 1

0

dz

z2

dz̄

z̄2

(
z̄ − z
zz̄

)2

g̃`+3,∆−3(z, z̄) dDisc [G(z, z̄)], (3.1)

with κ̃(h) = Γ(h)4

2π2Γ(2h−1)Γ(2h)
, and where we notice that the block has spin and dimension

interchanged compared to the one which enters the OPE above. The formula is analytic

in spin except for the (−1)` prefactor, which we’ll now set to 1 since all the exchanged

operators have even spin.

The double-discontinuity is defined as the expectation value of a squared commutator

in real Minkowski spacetime. Alternatively, it can be computed as the difference between

the Euclidean correlator and its two possible analytic continuations around z̄ = 1:

dDisc [G(z, z̄)] ≡ G(z, z̄)− 1

2
G	(z, z̄)− 1

2
G�(z, z̄). (3.2)

For the one-loop correlator in supergravity, the double-discontinuity is thus simply the

coefficient of log2 v, times 4π2. At tree-level, the coefficient of log2 v vanishes, and the

double-discontinuity comes exclusively from the polar terms as z̄ → 1, caused by protected

single-trace operators. Thus the double-discontinuity picks up precisely those terms dubbed

“singular” in the preceding section.

The function c̃(`,∆) encodes the s-channel OPE data through its poles [12, 15]: if ∆k

is the dimension of the exchanged operator, then

c̃(`,∆)→
f2
`,∆k

∆k −∆
, (3.3)

where f2
`,∆k
∼ a∆k,`. It will be convenient to switch variables to h = ∆−`+2

2 , h̄ = ∆+`+4
2 , in

terms of which the inversion integral nicely factorizes. Using the explicit form of the blocks,

including the normalization in (2.6) and the corresponding shift of ∆ by 4, and symmetry

in (z, z̄), the function which extracts the coefficients a∆,` is given by the integral:

c(h, h̄) =

∫ 1

0

dz

z2

k1−h(z)

rh

∫ 1

0

dz̄

z̄2

rh̄
h̄− 1

2

kh̄(z̄)
dDisc [zz̄(z̄ − z)G(z, z̄)]

4π2
. (3.4)

This will provide the starting point for the applications in this section. Since according

to eq. (3.3) a given double trace operator produces a pole at h = 3 + n + γ/2 and h̄ =

4+n+`+γ/2, upon summing over nearly-degenerate operators one finds, close to integer h:

c(h, h+ `+ 1) =

〈
a

2
(
3 + n+ 1

2γ − h
)〉

n,`

. (3.5)

– 6 –
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Again the bracket stands for the sum over all (superconformal primary) operators with

spin ` and approximate twist 4 + 2n (not necessarily restricted to double trace operators).

Expanding in the anomalous dimension γ ∼ 1/c, one sees that a single pole around integer

h encodes the OPE coefficient, a double pole encodes the averaged anomalous dimension,

a triple pole encodes anomalous dimensions squared, and so on.

In practice, the inversion integral (3.4) works as follows: the OPE data is encoded in

poles with respect to h, which come from the z → 0 limit of integration. Thus different

powers of z in that limit yield different twists. The z̄ integral, on the other hand, is dual

to h̄ and provides the spin dependence for each twist.

3.1 Computation of integrals: tree-level supergravity

To illustrate this formula in practice, let us immediately apply it to the singular terms

explicited in eq. (2.8), and obtain the tree-level supergravity data. When converted to z, z̄

variables, these singular terms read, for disconnected and connected (1/c) contributions:

dDisc
[
zz̄(z̄ − z)G(0)(z, z̄)

]
=

z

1− z
dDisc

[
z̄2

(1− z̄)2

]
− z2

(1− z)2
dDisc

[
z̄

1− z̄

]
, (3.6a)

dDisc
[
zz̄(z̄ − z)G(1)(z, z̄)

]
=

(
z

1− z
− 2z2

(1− z)2
− 2z3 log z

(1− z)3

)
dDisc

[
z̄

1− z̄

]
. (3.6b)

We have retained all terms with a pole at z̄ → 1, but dropped everything else.

It is convenient to isolate powers of z̄
1−z̄ because they turn out to integrate to a simple

analytic formula for generic exponent p, as recorded in eq. (4.7) of [12]. This can be derived

by starting from a standard integral representation of the hypergeometric function:∫ 1

0

dz̄

z̄2

rh̄
h̄− 1

2

kh̄(z̄)
1

4π2
dDisc

(
1−z̄
z̄

)p
=

sin(πp)2

π2

∫ 1

0

dz̄

z̄

dv

1−z̄v

(
z̄v(1−v)

1−z̄v

)h−1(1−z̄
z̄

)p
=

1

Γ(−p)2

Γ(h̄−p−1)

Γ(h̄+p+1)
, (3.7)

where the second integral was computed by means of a change of variable z̄ 7→ t = z̄(1−v)
1−z̄v ,

which nicely decouples t and v. A multiplicative factor 2 sin(πp)2 on the first line arose from

the double-discontinuity of (1− z̄)p. Note that for negative integer p, this factor produces a

double zero which is however canceled by a singularity of the integral, so the terms in (3.6)

do not integrate to zero. That the formula (3.7) can be analytically continued and trusted

for negative integer p is clear from the derivation of the Froissart-Gribov formula in [12],

which starts from a nonsingular contour integral.

The z integral can be done using the same change of variable and we find, again for

generic k:∫ 1

0

dz

z2

k1−h(z)

rh

(
z

1− z

)k
=
π sin(π(h+ k)) tan(πh)

2 sin(π(k − h)) sin2(πk)

1

Γ(k)2

Γ(h+ k − 1)

Γ(h+ 1− k)

' π cot(π(k − h))× 1

Γ(k)2

Γ(h+ k − 1)

Γ(h+ 1− k)
(3.8)

– 7 –
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where on the second line we have dropped terms with no poles near positive integer h

(for positive k), since these will not affect the OPE data extracted from the residues.

Physically, the exponent k is (one plus half) the twist of the exchanged operator and in

practice is always positive. The formula produces the poles at h = k, k + 1 . . . that one

might have expected.2

Given the double-discontinuity (3.6a), the inversion integral (3.4) factorizes and can

be done using the preceding formulas. This gives directly the disconnected OPE data:

c(0)(h, h̄) = π cot(−πh)
(
h̄(h̄− 1)− h(h− 1)

)
. (3.9)

At the zeroth order we can neglect the anomalous dimension in eq. (3.5) which thus gives〈
a(0)
〉
n,`

= −2Resh=n+3 c
(0)(h, h+ `+ 1)

= 2(`+ 1)(6 + `+ 2n) (3.10)

exactly as quoted in eq. (2.10).

For the connected tree (second line of (3.6b)) the integral is very similar but there is

an extra log. We can simplify our life somewhat by writing it using Casimir operators:(
z

1− z
− 2z2

(1− z)2
− 2z3 log z

(1− z)3

)
= −1

2
D(D − 2)

z log z

1− z
, D = z2∂z(1− z)∂z . (3.11)

The Casimir operators can be integrated by parts and simply give a multiplicative factor

equal to their eigenvalue on the blocks, namely: (h − 2)(h − 1)h(h + 1). A similar trick

will greatly simplify things at one-loop, as shown below. We do not need to worry about

boundary terms in z since poles originate only from z → 0. To perform the integral over
z log z
1−z we then simply expand it in powers of z/(1−z) and apply the formula (3.8) termwise.

Dropping terms with no poles we obtain a very simple result:

c(1)(h, h̄) =
π2

sin(πh)2

(h− 2)(h− 1)h(h+ 1)

2
. (3.12)

Comparing with (3.5) then give the (summed) anomalous dimension and OPE coefficient:〈
a(0)γ(1)

〉
n,`

= −2κn,
〈
a(1)
〉
n,`

= −∂nκn (3.13)

which again are in precise agreement with the results quoted in the preceding section.

Let us now interpret the results (3.9), (3.12). They express the result of the inversion

integral (3.4) applied to strongly coupled super Yang-Mills theory (where one has only

neglected terms with no poles at positive h). We stress that this data determines the full

tree-level supergravity correlator: plugging the resulting anomalous dimensions and OPE

coefficients into eq. (2.5) we checked that it reproduces precisely the OPE expansion of the

known result [16]:

G = 1 +
1

v2
+

1

c

(
1

v
− u2D̄2,4,2,2(z, z̄)

)
+O(1/c2). (3.14)

2The integral also gives spurious poles at half-integer h which originate from k1−h. As noted below

eq. (3.9) of [12], these should be canceled by adding a reflected block, which in our normalizations amounts

to symmetrizing in h→ 1− h. The OPE data near integer h is unaffected.

– 8 –
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∫
+ crossed =+

Figure 3. The inversion integral produces the full correlator, given on the left as a sum over

Witten diagrams, from the double-discontinuity in a single channel (and more generally, the t and

u channels).

It is remarkable that the present computation did not use any input from supergravity: the

only assumption was the sparseness of the single-trace spectrum. Specifically, we included

in the t-channel only the protected half-BPS operators (the stress tensor multiplet and its

second Kaluza-Klein excitation), which are responsible for the singular part of Gshort(v, u)

recorded in eq. (2.8).

Physically, this can be viewed as a Kramers-Kronig-type dispersion relation in the bulk

of AdS, as represented pictorially in figure 3. The discontinuity produced by single-trace

operators is drawn as a cut diagram. The inversion integral reconstructs the full OPE data

from this absorptive contribution.

As a technical comment, we note that the precise form of Gshort was never needed on

the left-hand-side of eq. (2.8), only its singular part on the right-hand-side. This is because

Gshort(u, v) contains only twists below the double-trace threshold, and in the inversion

formula these only lead to poles at h ≤ 2 which do not contaminate the unprotected data

at h ≥ 3.

Reconstructions via dispersion relations typically suffer from polynomial ambiguities.

This is reflected in the well-known fact that the Froissart-Gribov integral may fail for a

finite number of low spins, equal to the order of the ambiguity. In a full, unitary CFT, this

can only affect ` = 0, 1, as shown in [12]. Order-by-order in a perturbative 1/c expansion,

however, the situation can be worse, and a larger (but still finite) number of low spins

can be affected. Such ambiguities are still constrained by crossing and thus correspond

one-to-one to higher-dimensional operators in the bulk effective Lagrangian [2].

The fact that the tree-level supergravity result is determined, up to these ambiguities,

by the singularities caused by half-BPS single-trace operators has been understood for some

time, see [17, 18] and most recently [19–21]. A chief advantage of the present methods are

that it is not necessary to make any a-priori assumption about the space of functions.

In comparison with the Mellin space approach, where unitarity is naturally formulated

in terms of very similar pictures (see for example [22]), the method allows us to extract

directly the CFT-data for all n, which technically would seem to make the one-loop mixing

problem much easier to study. Furthermore, it is actually possible to bound, using CFT

input only, the size of the ambiguities and show that the solution given above is the correct

one in the limit of large gap, as will be discussed in detail below in section 5.3.
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∫
+ · · · =

Figure 4. The full one-loop correlator, equal to a sum over many Witten diagrams, is reconstructed

from the double-discontinuity in a single channel.

3.2 One loop

The calculation of the one-loop supergravity correlator is made possible, from the CFT

perspective, by the fact that the double-discontinuity arises from log2 terms, and therefore

solely from the square of tree-level anomalous dimensions. One only has to “square” tree-

level data. As depicted in figure 4, this is in perfect match with the unitarity method in

S-matrix theory, which bootstraps one-loop amplitudes from products of two trees. For a

theory of scalar fields without degeneracy this was used in [23] to compute loops in AdS.

In the present case one has to sum over degenerate intermediate states, which here can be

pairs of half-BPS operators of arbitrary R-charge p. This requires all tree amplitudes of

the form 〈O2O2OpOp〉, not only the p = 2 case discussed above. In CFT language, this

accounts for operator mixing between different double traces. This will be studied further

with the present methods in [24].

Our starting point here will be the following compact formula for the sum in [25] (the

mixing problem in the singlet sector has also been solved in [21] and more generally in [26]):〈
a(0)
(
γ(1)

)2〉
n,`〈

a(0)
〉
n,`

=

n+2∑
p=2

αpκ
2
n

(J2 − (n+ 2)(n+ 3))2

p−1∏
k=2

(n+ 2)(n+ 3)− k(k + 1)

J2 − k(k + 1)
(3.15)

with κn = (n+ 1)(n+ 2)(n+ 3)(n+ 4), J2 = h̄(h̄− 1) and αp = p2(p2 − 1)/12.

According to the OPE, this determines the coefficient of 1
8c2

log2 u, and therefore, using

crossing to interchange the u and v channels, we obtain the double-discontinuity mentioned

in eq. (2.14). This sum can be performed analytically by making an ansatz in terms of

transcendental weight 2 functions of z and z̄, multiplied by rational functions with powers

of (z − z̄) in the denominator, and checking that the ansatz matches the expansion to

very high order. The resulting double-discontinuity turns out to be expressible much more

simply as the derivative of a “primitive”:

1

4π2
dDisc

[
zz̄(z̄ − z)G(2)(z, z̄)

]
= D(D − 2)D̄(D̄ − 2)G(2)′(z, z̄), (3.16)

whereG(2)′(z, z̄) is recorded in appendix A and the Casimir operators are given in eq. (3.11).

Since the Casimir operators can be integrated by parts (and the primitive vanishes suf-

ficiently fast at z̄ → 1 to preclude any boundary term), the one-loop OPE data is thus

written as

c(2)(h, h̄) = (h− 2)(h− 1)h(h+ 1)J2(J2 − 2)× c(2)′(h, h̄), (3.17)
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where

c(2)′(h, h̄) ≡
∫ 1

0

dz

z2

k1−h(z)

rh

∫ 1

0

dz̄

z̄2

rh̄
h̄− 1

2

kh̄(z̄)G(2)′(z, z̄) . (3.18)

As a simple illustration, let us extract the average of (γ(1))2 from the formula. It comes

from the coefficient of log2 z, which is rather compact:

G(2)′(z, z̄) = log2(t)
t3y2(1 + ty)

16(1− ty)6
=

log2(t)

16× 120

∞∑
q=2

q(q2 − 1)(q + 2)(2q + 1)tq+1yq (3.19)

where t = z
1−z and y = 1−z̄

z̄ . The z integral can be performed using (a second derivative

of) eq. (3.8) while the z̄ integral can be performed using the following variant of (3.7):∫ 1

0

dz̄

z̄2

rh̄
h̄− 1

2

kh̄(z̄)

(
1− z̄
z̄

)p
=

Γ(p+ 1)2

2

Γ(h̄− p− 1)

Γ(h̄+ p+ 1)
. (3.20)

Performing the sum we find directly

〈
a(0)
(
γ(1)

)2〉
n,`

=

n+2∑
q=2

κ2
nq(q

2 − 1)(q + 2)(2q + 1)

60
(
q(q + 1)− J2

) q−1∏
k=2

(n+ 2)(n+ 3)− k(k + 1)

J2 − k(k + 1)
(3.21)

Remarkably, using some telescopic identities, this can be shown to be precisely equiva-

lent to (3.15), for all n! In other words, putting in the log2 v discontinuity predicted by

eq. (3.15) in the t-channel, the inversion formula recovers in the s-channel precisely the

same discontinuity, as required by crossing symmetry. Physically, this amounts to checking

crossing-symmetry of the quadruple discontinuity G(2)
∣∣
log2 u log2 v

, which is a non-obvious

but true (and necessary) fact about eq. (3.15). As shown in [25] under some mild assump-

tions (3.15) is the most general structure consistent with this symmetry. Explicit results

can then be used to fix αp.

To record the new information on the one-loop anomalous dimension and OPE coeffi-

cients, it is useful to expand c around its poles, keeping the value of h̄ fixed:

c(2)(h→ 3 + n+ δ/2, h̄) = −
S

(2)

n,h̄

8δ3
−
S

(1)

n,h̄

4δ2
−
S

(0)

n,h̄

δ
. (3.22)

The poles at fixed h̄ are advantageous because they automatically respect the reciprocity

property: the large-spin expansion is symmetrical in h̄ → 1 − h̄. The fixed-` CFT-data is

then obtained simply by expanding the h̄ dependence in eq. (3.5); for example〈
a(0)
(
γ(1)

)2〉
n,`

= S
(2)

n,h̄〈
a(0)γ(2) + a(1)γ(1)

〉
n,`

= S
(1)

n,h̄
+

1

2
∂h̄S

(2)

n,h̄
(3.23)〈

a(2)
〉
n,`

= S
(0)

n,h̄
+

1

2
∂h̄S

(1)

n,h̄
+

1

8
∂2
h̄S

(2)

n,h̄

where one sets h̄ = n+ 4 + ` after evaluating the derivatives.
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3.3 Results for one-loop anomalous dimensions

For any desired n, the one-loop anomalous dimension part can be obtained similarly by

expanding G(2)′ to the sufficient order in z̄; the result is still a polynomial in 1/z so the z

integral can be straightforwardly done using eq. (3.20). For the first few twists we find

S
(1)

0,h̄
=

96(16J2 − 635)

(J2 − 6)(J2 − 20)
(3.24)

S
(1)

1,h̄
=

480(−91710− 2403J2 + 56J4)

(−30 + J2)(−12 + J2)(−6 + J2)
(3.25)

S
(1)

2,h̄
=

1440(−12910968− 597906J2 − 6073J4 + 134J6)

(−42 + J2)(−20 + J2)(−12 + J2)(−6 + J2)
(3.26)

S
(1)

3,h̄
=

3360(−1921913280− 107519496J2 − 2335742J4 − 12349J6 + 262J8)

(−56 + J2)(−30 + J2)(−20 + J2)(−12 + J2)(−6 + J2)
. (3.27)

In fact, by series expanding in t and y as in eq. (3.19) above and keeping also the terms

with a single power of log(t), we obtained a closed formula valid for all n:

S
(1)

n,h̄
=−1

2

∂nκn
κn

S
(2)

n,h̄
+
n+2∑
q=2

κ2
nq(q+1)(q+2)

120(J2−q(q+1))

(
q−1∏
k=2

(n+2)(n+3)−k(k+1)

J2−k(k+1)

)
×Dq+

n+2∑
r=q+1

(
120(q+r+1)(r−1)∏5

m=0(r+m−q)
− q(q−1)(2q+1)

r(r−q)

)
r−1∏
k′=q

(n+2)(n+3)−k′(k′+1)

−k′(k′+1)


(3.28)

where

Dq =
5(q2 − 1)(q + 3)

12

(
(2q + 1)(q − 2)

J2 − (q + 1)(q + 2)
− (2q + 3)(q + 4)

J2 − (q + 2)(q + 3)

)
− 60− 77q − 437q2 + 274q3

60q
+ 2(q − 1)(2q + 1)

q−1∑
k′=0

1

n+ 3 + k′
. (3.29)

Possibly this could be further simplified using telescopic identities as mentioned above, but

we have not attempted this.

Let us further discuss the lowest twist n = 0, where there is no operator mixing. The

above data is then related to the observable anomalous dimension, as follows. First, we

convert the fixed-h̄ averages to fixed-` averages using eq. (3.23):

a
(0)
0,`γ

(2)
0,` + a

(1)
0,`γ

(1)
0,` = S

(1)

0,h̄
+

1

2
∂h̄S

(2)

0,h̄

=
96(16`4 + 212`3 + 311`2 − 2627`− 2322)

(`− 1)(`+ 1)2(`+ 6)2(`+ 8)
(3.30)

where we have dropped the averaging symbols since there is no mixing. We then isolate

the anomalous dimension by subtracting the product a
(1)
0,`γ

(1)
0,` , known from the tree-level

computation, giving:

γ
(2)
0,` =

24(7`4 + 74`3 − 553`2 − 4904`− 3444)

(`− 1)(`+ 1)3(`+ 6)3(`+ 8)
. (3.31)
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This is the quantity which should be compared with the discrete spectrum (and agrees

with eq. (7.86) of [21]). This gives, for example, γ
(2)
0,2 = −41/16 and γ

(2)
0,4 = −423/3125.

Re-expanding the anomalous dimension γ
(2)
0,` in N instead of c = N2−1

4 , this agrees pre-

cisely with the ` = 2, 4 values recorded in [25] (namely, ∆0,2 = 6 − 4/N2 − 45/N4 and

∆0,4 = 8− 48/(25N2)− 12768/(3125N4)).

Let us briefly comment on the ` = 1 pole visible in the preceding formulas. In (3.15)

each term labelled by p can be interpreted as the contribution from a specific KK-mode to

the whole discontinuity and in particular to the CFT-data at order 1/c2. The pole at ` = 1

reflects the fact that the p-sum diverges for ` ≤ 1, implying that the above formulas are only

valid for ` ≥ 2. In principle one could still analytically continue the result (3.31) to ` = 0, a

procedure which is closely related (up to a finite counter-term) to throwing away quadratic

divergences in the supergravity computation, as would be automatic using e.g. dimensional

regularization. However as discussed in section 5.3, the result of such a prescription would

violate unitarity and yield a theory in the “swampland”. In reality the true value of

γ0,0 can only be determined nonperturbatively, and after that,
〈
a(0)γ(2) + a(1)γ(1)

〉
n,`

is

completely fixed.

One can apply the same method to OPE coefficients S(0). Explicit results are recorded

in appendix C.

4 CFT data from large spin perturbation theory

In this section we will discuss how to compute the CFT-data from the point of view of

large spin pertubation theory, developed in [6]. After recovering the results of the previous

section, we will actually show that the two methods are equivalent. Our starting point is

the crossing relation (2.8). In the regime we are considering the non-protected operators

contributing to H(u, v) have approximate twist four and higher. As a result H(v, u) ∼ v2

for small v and the divergences explicitly shown on the r.h.s. of (2.8) have to be reproduced

by H(u, v). At zeroth order in 1/c the arguments of [3, 4] imply the existence of towers of

large spin operators, of approximate twist τ = 4 + 2n and OPE coefficients which for large

spin behave as 〈
a(0)
〉
n,`

= 2(`+ 1)(6 + `+ 2n) (4.1)

in the normalization of (2.6). The arguments of [6] allow us to make a much stronger claim.

The behaviour (4.1) should be valid to all orders in 1/`. A correction to this behaviour

would produce a divergence proportional to log2 v, not present at this order.

4.1 Supergravity CFT data

Next, let us compute the CFT data to order 1/c. Let us first focus in the anomalous

dimension. This should be such that the following divergence is reproduced, see (2.8)

H(1)(u, v)
∣∣∣
div

=
1

v

2u2

(u− 1)3
log u+ · · · (4.2)

– 13 –



J
H
E
P
1
2
(
2
0
1
8
)
0
1
7

From the conformal partial wave decomposition we find

H(1)(u, v) =
1

2

∑
n,`

〈
a(0)γ(1)

〉
n,`
gn,`(u, v) log u+ · · · (4.3)

where we have introduced a short-cut notation for the (super)-conformal block with dimen-

sion ∆ = 4 + 2n + `. Following [6] we will exploit the fact that the anomalous dimension

admits an expansion in inverse powers of the conformal spin

〈
a(0)γ(1)

〉
n,`

=
∑
m

c
(1)
m,n

J2m
(4.4)

where J2 = (n+ `+ 3)(n+ `+ 4), the conformal spin at zeroth order in 1/c. Hence

1

2

∑
n,m

c(1)
m,nH

(m)
n (u, v)

∣∣∣∣∣
div

=
1

v

2u2

(u− 1)3
(4.5)

where we have defined the twist conformal blocks (TCB), given by

H(m)
n (z, z̄) =

∑
`

gn,`(z, z̄)

J2m
. (4.6)

We will be interested in their divergent contribution as z̄ → 1. This contribution admits

the following factorized form

H(m)
n (z, z̄) =

1

zz̄(z̄ − z)
rhnkhn(z)H̄(m)

n (z̄) + regular (4.7)

where hn = τn+2
2 = 3 + n. From the results in appendix B it follows that the functions

H̄
(m)
n (z̄) are actually independent of n, so that from now on we will drop that index. We

are interested in finding the coefficients c
(1)
m,n in (4.5). First let us single out the divergent

contribution arising from a specific twist τn. This can be done with the help of the following

projectors
1

2πi

∮
dz

z2
khn(z)k1−hn′ (z) = δn,n′ (4.8)

Projecting over the contribution of each twist τn we obtain

1

2

∑
m

c(1)
m,nH̄

(m)(z̄)

∣∣∣∣∣
div

=
1

2πi

∮
dz

z2

k1−hn(z)

rhn
zz̄(z̄ − z)

1

v

2u2

(u− 1)3
= −1

2
κn

z̄

1− z̄
+ regular

(4.9)

As shown in appendix B this precise divergence leads to a very simple result, actually

independent of the conformal spin. Hence we find〈
a(0)γ(1)

〉
n,`

= −2κn (4.10)

Which agrees with the known result. In order to find the corrections to the OPE coefficients

we write the full correlator to this order as follows

H(1)(z, z̄) =
1

2

∑
m,n

∂n

(
c(1)
m,nH

(m)
n (z, z̄)

)
+
∑
m,n

d(1)
m,nH

(m)
n (z, z̄) (4.11)
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where d
(1)
m,n are related to the large J expansions of the OPE coefficients as follows

〈
a(1)
〉
n,`

=
∑ d

(1)
m,n

J2m
+

1

2
∂n

(
a

(0)
n,`γ

(1)
n,`

)
(4.12)

The coefficients d
(1)
m,n and the expression for the OPE coefficients can be fixed as before,

where now∑
m,n

d(1)
m,nH

(m)
n (z, z̄)

∣∣∣∣∣
div

=
2u2 log u− 3u2 + 4u− 1

v(u− 1)3
− 1

2

∑
m,n

∂n

(
c(1)
m,nH

(m)
n (z, z̄)

)∣∣∣∣∣
div

(4.13)

The second term on the r.h.s. contains two contributions. One proportional to log u, which

exactly cancels the corresponding piece in the first term, and an extra contribution which

can be explicitly computed, since we have already found the coefficients c
(1)
m,n. Once this is

done we can proceed as before and fix d
(1)
m,n. We find d

(1)
m,n = 0. This leads to the following

result for the OPE coefficients 〈
a(1)
〉
n,`

=
1

2
∂n
〈
a(0)γ(1)

〉
n,`

(4.14)

in full agreement with the known result.

4.2 One loop

At next order the correlator admits the following decomposition

H(2)(z, z̄) =
1

8

∑
m,n

∂2
n

(
c(2)
m,nH

(m)
n (z, z̄)

)
+

1

2

∑
m,n

∂n

(
d(2)
m,nH

(m)
n (z, z̄)

)
+
∑
m,n

e(2)
m,nH

(m)
n (z, z̄)

(4.15)

where c
(2)
m,n, d

(2)
m,n, e

(2)
m,n are the coefficients in the large J expansion of specific combinations

of CFT-data∑
m

c
(2)
m,n

J2m
=
〈
a(0)
(
γ(1)

)2〉
n,`
, (4.16)

∑
m

d
(2)
m,n

J2m
=
〈
a(0)γ(2) + a(1)γ(1)

〉
n,`
− 1

2
∂n
〈
a(0)
(
γ(1)

)2〉
n,`
, (4.17)

∑
m

e
(2)
m,n

J2m
=
〈
a(2)
〉
n,`
− 1

2
∂n

(〈
a(0)γ(2) + a(1)γ(1)

〉
n,`

)
+

1

8
∂2
n

〈
a(0)
(
γ(1)

)2〉
n,`
. (4.18)

As before, the angle brackets represent sums over all nearly-degenerate operators. The

reciprocity principle implies that these are the combinations that admit an expansion in

integer powers of J2, see [27]. In the relations above weighted averages are shown explicitly.

The unknown expansions should be such that the precise divergences are reproduced. As

already mentioned in section 2 the divergences at this order are proportional to log2 v. Let

us show in detail how to fix 〈a(0)
n,`

(
γ

(1)
n,`

)2
〉 from this perspective. By looking at the term

proportional to log2 u in (2.8) we find

1

8

∑
m,n

c(2)
m,nH

(m)
n (z, z̄)

∣∣∣∣∣
div

=
1

zz̄(z̄ − z)
D4

(
u3v2(1− u− v)

16(z − z̄)6

)
log2(1− z̄) (4.19)
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where D4 = D(D − 2)D̄(D̄ − 2). We proceed exactly as before. First we project over the

contribution for a given twist

1

8

∑
m

c(2)
m,nH̄

(m)(z̄)

∣∣∣∣∣
div

=
1

2πi

∮
dz

z2

k1−hn(z)

rh
D4

(
u3v2(1− u− v)

16(z − z̄)6

)
log2(1− z̄) (4.20)

This integral is straightforward to perform for any given integer n. For instance, for n = 0

we obtain

1

8

∑
m

c
(2)
m,0H̄

(m)(z̄)

∣∣∣∣∣
div

= 36
6− 6z̄ + z̄2

z̄2
log2(1− z̄) (4.21)

Plugging this into the formula (B.18) and dividing by a
(0)
0,` we obtain

(
γ

(1)
0,`

)2
=

576

(`+ 1)2(`+ 6)2
(4.22)

where we have dropped the expectation value since there is no mixing for n = 0. This

agrees with the correct value, for all values of the spin. We can carry on this procedure for

any desired value of n. The results are in perfect agreement with those of section 3. This

is of course fully expected, since the divergence was computed from
〈
a(0)
(
γ(1)

)2〉
n,`

, but it

is a non-trivial test of our methods and it shows how they work. Next, let us turn to the

combination containing γ
(2)
n,` , which is the main object of interest in this paper. This can

be computed by substracting the first term in (4.15) to the total discontinuity, and then

looking into the piece proportional to log u. From here we repeat exactly the same steps

as above. In order to make contact with section 3 we focus in the combination that leads

to S
(2)

n,h̄
. In the language of the expansions above this is given by

S
(1)

n,h̄
=
∑
m

(
d

(2)
m,n

J2m
+

1

2

∂nc
(2)
m,n

J2m

)
(4.23)

For the first few twists we obtain

S
(1)

0,h̄
=

96(16J2 − 635)

(J2 − 6)(J2 − 20)
(4.24)

S
(1)

1,h̄
=

480(−91710− 2403J2 + 56J4)

(−30 + J2)(−12 + J2)(−6 + J2)
(4.25)

S
(1)

2,h̄
=

1440(−12910968− 597906J2 − 6073J4 + 134J6)

(−42 + J2)(−20 + J2)(−12 + J2)(−6 + J2)
(4.26)

and so on. Again, the results are in perfect agreement with those obtained in section 3. Fol-

lowing the same procedure, we can compute the combination involving the OPE coefficients

a
(2)
n,`. In this case the relevant combination is

S
(0)

n,h̄
=
∑
m

(
e

(2)
m,n

J2m
+

1

2

∂nd
(2)
m,n

J2m
+

1

8

∂2
nc

(2)
m,n

J2m

)
(4.27)
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Our results are again in full agreement with those obtained in section 3. Since they are

quite bulky, they are given in appendix C. Let us close this discussion with the following

remark. We can rewrite the decomposition (4.15) as follows:

H(2)(z, z̄) =
∑
m,n

s(0)
m,nH

(m)
n (z, z̄)+

1

2

∑
m,n

s(1)
m,n∂nH

(m)
n (z, z̄)+

1

8

∑
m,n

s(2)
m,n∂

2
nH

(m)
n (z, z̄) (4.28)

Then the coefficients s
(p)
m,n are the ones appearing in the large J expansion of S

(p)

n,h̄
. Note that

given the factorisation properties of TCB taking the derivative w.r.t. to n is a well defined

operation and straightforward, since the n dependence is explicit. This decomposition

generalises to arbitrarily high orders in 1/c.

4.3 From large spin perturbation theory to Froissart-Gribov inversion integral

Using the method advocated in this section we can ask the following question. Which

precise OPE data an,` produces a given double discontinuity? Our approach would be to

express an,` = an(J) as a series in inverse powers of J2:

an(J) =
∑
m

cm,n
J2m

(4.29)

and use the technology developed in [6] to find all coefficients cm,n. As we have seen, the

problem can be factorised into the twist, or n, dependence and the dependence on the

conformal spin. The first step is to project over a given twist. This can be done with the

projectors introduced above and leads to∑
m

cm,nH̄
(m)
n (z̄) =

1

2πi

∮
dz

z2

k1−hn(z)

rhn
zz̄(z̄ − z)G(z, z̄) (4.30)

One can explicitly check that this procedure is equivalent to that of section 3. More

precisely if we define the following function

c(h) =

∫ 1

0

dz

z2

k1−h(z)

rh
g(z) (4.31)

then c(h) has poles at h = hn for n = 0, 1, · · · and its residues are given by

Resh=hcc(h) =
1

2πi

∮
dz

z2

k1−hn(z)

rhn
g(z) (4.32)

In cases where c(h) contains higher order poles, the subleading poles will correspond to

derivatives of TCB w.r.t. n, and the parallel between the two methods is clear.

The second step is to compute the dependence on the conformal spin. As shown in

appendix B we can invert the problem (4.30). This results in an integral expression for the

resumed an(J). This involves the double integral (B.18) and leads to

an(J) = 4

∫ 1

0
dt1

∫ ∞
0

dt2(1− t1)h̄−1(1 + t2)−h̄ dDisc [zz̄(z̄ − z)G(z, z̄)]|z̄= 1
1+t1t2

(4.33)
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−1
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−ρ

ρ

ρ

(a) (b)

Figure 5. (a) Four-point kinematics in the complex ρ-plane. (b) The kinematics on the Lorentzian

cylinder. In the “bulk-point” limit z → z̄, particles are effectively beamed onto a point in the AdS

interior of the cylinder.

where we leave implicit the projection over the twist τn and recall J2 = h̄(h̄− 1). In order

to make contact with the Froissart-Gribov inversion formula used in section 3, and prove

the equivalence between the two methods, we consider the following change of variables:

t1 = t
1− z̄
1− tz̄

, t2 =
1− tz̄
tz̄

(4.34)

The integral over t can be performed and we arrive to

an(J) = 2

∫ 1

0
dz̄z̄h̄−2 rh̄

h̄− 1/2
2F1(h̄, h̄; 2h̄; z̄)dDisc [zz̄(z̄ − z)G(z, z̄)] (4.35)

where again, the projection over the twist is implicit. This exactly reproduces the analogous

Froissart-Gribov inversion formula.

5 Analytic results in the flat space limit

In this section we study the flat space limit of the one-loop correlator obtained so far, and

compare it to flat-space ten-dimensional supergravity.

Flat space physics can be accessed using suitable wavepackets focused onto a point in

the bulk [2, 28, 29]. To be self-contained, we give a brief exposition. The kinematics are

most conveniently described using the radial coordinates introduced in [30] and depicted in

figure 5, see also section 5 of [29]. In Euclidean kinematics, ρ and ρ̄ are complex conjugate

to each other and log(1/ρρ̄) represents time in radial quantization. The bulk-point limit

exists in real Minkowski signature where that time is taken imaginary and approaches iπ.

Adding a rotation by π to the scattering angle θ, the corresponding cross-ratios are

ρ =
1−
√

1− z
1 +
√

1− z
= eiθ−2πi+ix, ρ̄ =

1−
√

1− z̄
1 +
√

1− z̄
= e−iθ+ix, (5.1)

where x → 0 in the limit (which implies z, z̄ → 2
1+cos θ with z − z̄ ∼ x). Fast particles

moving at the speed of light can then scatter in the bulk while conserving momentum.
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Since the bulk point limit lies at the boundary of the s-channel OPE radius of convergence

(|ρ| ≤ 1, |ρ̄| ≤ 1 [30]), singularities in this limit are tied to the tail of the sum.

If one were to ignore the phase e−2πi representing the time evolution, the correlator

would admit the usual decomposition in super-conformal blocks

H(u, v) =
∑
∆,`

a∆,` g∆,`(u, v) . (5.2)

The time evolution has the effect of multiplying each conformal block by a phase

Hcont.(u, v) =
∑
∆,`

e−iπ(∆−`) a∆,` g∆,`(u, v) (5.3)

To understand the tail of the sum one may use the asymptotics of the hypergeometric

functions (see [28]):

lim
h→∞

kh(z) =
(4ρ)h√
1− ρ2

(1 +O(1/h)) (5.4)

which leads to the large-n behavior (for any x)

lim
n→∞

a
(0)
n,` gn,` =

−64iπn2

zz̄(z̄ − z)

(`+ 1) sin((`+ 1)θ)√
sin2 θ − sin2 x

eix(2n+`+6). (5.5)

One sees that each block has a 1/(z̄−z) ∼ 1/x singularity. However, a stronger singularity

can be caused by the large-n tail of the sum. In a non-perturbative regime the extra

phases in Hcont.(u, v) have been conjectured to display a chaotic behaviour, ensuring that

the singularity of the correlator is not enhanced compared with that of individual blocks.

In a large N perturbative regime this is not true anymore, since phases are small and in

fact quite regular. In the following we will focus on the dominant singularity at x → 0 at

each order in the 1/c expansion. In this limit the dependence of the blocks on anomalous

dimensions can be neglected as it produces subleading d/dn terms, and the above gives

simply (see [2])

zz̄(z̄ − z)Gcont.(u, v) ≈ −64iπ
∑
n

n2 e2ixn
∑
` even

(`+ 1)2P`(cos θ)

〈
ae−iπγ

〉
n,`〈

a(0)
〉
n,`

(5.6)

where P`(θ) = sin(`+1)θ
(`+1) sin θ are a four-dimensional version of Legendre polynomials. This

formula can be readily tested at the leading order: with the anomalous dimension γ(1) ≈
−n3

2(`+1) one finds zz̄(z̄ − z)G(1)
cont. ≈ −30π2

x6 sin2θ
, which is in precise agreement with the analytic

continuation of the D̄ function in eq. (3.14).

5.1 Large-n limit of CFT-data

This discussion motivates to study the averages
〈
ae−iπγ

〉
n,`

in the large n limit. We will

do so in two different ways. First from our explicit results, and then directly from the

inversion integral.
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5.1.1 Large-n limit from explicit results

Up to order 1/c2 the average in question is equivalent to〈
ae−iπγ

〉
n,`

=
〈
a(0)
〉
n,`

+
1

c

(〈
a(1)
〉
n,`
− iπ

〈
a(0)γ(1)

〉
n,`

)
(5.7)

+
1

c2

(〈
a(2)
〉
n,`
− iπ

〈
a(1)γ(1) + a(0)γ(2)

〉
n,`
− π2

2

〈
a(0)
(
γ(1)

)2〉
n,`

)
The last term to order 1/c2 is simply S

(2)

n,h̄
. Its large n behaviour is given by

S
(2)

n,h̄
=

1

180

(
2`4 + 8`3 + 22`2 + 28`+ 15

)(
ψ(0)

(
`

2
+ 1

)
− ψ(0)

(
`

2
+

1

2

))
n12

− 4`4 + 18`3 + 50`2 + 71`+ 41

360(`+ 1)
n12 + · · · (5.8)

It is remarkable that although γ
(1)
n,` ∼ n3 the average of its square grows like n11. This is

only possible thanks to mixing and as we will see is necessary for matching with quantum

gravity in flat space. Roughly speaking the additional power of n5 stems from the S5

factor behaving like five additional flat dimensions in that limit. Next we recall the relation

between the second average and S
(1)

n,h̄
, S

(2)

n,h̄
studied in sections 3 and 4:

〈
a(0)γ(2) + a(1)γ(1)

〉
n,`

= S
(1)

n,h̄
+

1

2
∂h̄S

(2)

n,h̄
(5.9)

The large n behaviour of S
(1)

n,h̄
is more complicated. For a given n the result can be written

as a sum over poles in J2:

S
(1)

n,h̄
=

n−2∑
p=−2

κ2
nr(n, p)

J2 − (n− p)(n− p+ 1)
+

κ2
ndn

J2 − (n+ 4)(n+ 5)
(5.10)

where recall J2 = (n+ `+ 3)(n+ `+ 4), κn = (n+ 1)(n+ 2)(n+ 3)(n+ 4) and

dn = −
(
n2 + 7n+ 12

) (
n2 + 11n+ 30

)2
576(2n+ 5)

(5.11)

The form of the residues r(n, p) is much more complicated. For any fixed p they can be

expressed in terms of polygamma functions and polynomials whose degree increase with p.

In principle one could use eq. (3.28), but alternatively we have found that r(n, p) satisfies

a complicated recursion relation, relating r(n, p) to r(n− 2, p− 2). This recursion relation

has the following structure

P (8)(p, n)κnr(n, p) + P̃ (8)(p, n)κn−2r(n− 2, p− 2) +R(p, n) = 0 (5.12)

where P (8)(p, n), P̃ (8)(p, n) are polynomials in p, n of total degree 8, and R(p, n) is a rational

functions which depends on whether p is even or odd. This recursion relation allows to

write an arbitrary number of residues once the first ones are known, and hence they allow
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to reconstruct the full Sn. Before proceeding, note that the expression can also be written

as a sum over poles on `. Indeed

J2 − (n− p)(n− p+ 1) = (3 + p+ `)(4 + 2n− p+ `) (5.13)

We would like to use the above recursion relations to compute the behaviour of Sn for large

n and finite spin. This computation is not straightfoward. One of the reasons is that all

poles contribute in the large n limit and there are subtle cancelations between p odd and

even. In order to proceed, we will consider the following transform

S
(1)

n,h̄
=

∫ 1

0
dζζ`−1fn(ζ) (5.14)

we have traded the spin dependence by the dependence on ζ. Single poles on ` map to

positive powers of ζ

1

3 + p+ `
=

∫ 1

0
dζζ`−1ζp+3 (5.15)

For a fixed n, fn(ζ) is a polynomial of degree 2n + 6. Reciprocity for S
(1)

n,h̄
implies the

following symmetry

fn(ζ) = −ζ2n+7fn(1/ζ) (5.16)

One of the reasons to use this representation is that as n increases, fn(ζ) is much better

behaved that the (infinite) sum over poles. We would like to study this function in the

large n limit, in the range 0 < ζ < 1. The recursion relations above imply the following

expansion

fn(ζ) = n12f (0)(ζ) + · · · (5.17)

and we would like to find f (0)(ζ). In order to do so, we study the recursion relations for

fixed p in the large n limit. This allows to find the coefficient cp in front of ζp+3 in the

small ζ expansion of f (0)(ζ). For instance, for odd p we find

cp =
1

90

(
2p4 + 16p3 + 58p2 + 104p+ 75

)(
ψ(0)

(p
2

+ 1
)
− ψ(0)

(
p+ 3

2

))
− 12p4 + 94p3 + 296p2 + 431p+ 232

180(p+ 2)

The expression for p even is a bit more complicated. Having found cp we can perform the

sum, which leads to the final expression for f (0)(ζ)

f (0)(ζ) =
(ζ−1)5(ζ+1)5

61440ζ4
log(1+ζ)− (ζ−1)5ζ

60(ζ+1)5
log2

−
(ζ−1)7

(
ζ8+12ζ7+68ζ6+244ζ5+630ζ4+244ζ3+68ζ2+12ζ+1

)
61440ζ4(ζ+1)5

log(1−ζ)

−
(ζ−1)5

(
ζ2−1

)2
(ζ(ζ(ζ(ζ+10)+34)+10)+1)

30720ζ3(ζ+1)5
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This gives the full spin dependence of the leading term S
(1)

n,h̄
∼ n12. Combining this with

the result for S
(2)

n,h̄
give us the full spin dependence of the average

〈
a(0)γ(2) + a(1)γ(1)

〉
n,`

.

Let us quote the results for a few values of the spin

〈
a(0)γ(2) + a(1)γ(1)

〉
n,2

=

(
17411π2

147456
− 4189

8640
+

17 log2 2

12
− 707 log 2

360

)
n12 + · · · (5.18)

〈
a(0)γ(2) + a(1)γ(1)

〉
n,4

=

(
171007π2

245760
− 719657

252000
+

167 log2 2

20
− 5209 log 2

450

)
n12 + · · ·

Finally, it turns out the average
〈
a(2)
〉
n,`

is subleading for large n, and will not be important

for our purposes. This is expected since the Euclidean correlator (5.2) has no x → 0

singularity at generic angle (and only a mild one at zero angle).

5.1.2 Large-n limit from inversion integral

The simplicity of the preceding result suggests a more direct route and in fact we now

show how to take this limit directly from the Froissart-Gribov inversion integral (3.4). The

key fact is that the poles in c(h, h̄) originate only from the z → 0 limit of integration.

Therefore just by rotating the z contour clockwise by 2π, and dropping an arc at |z| = 1

which produces no pole, we can eliminate the phase:

e−2πihc(h, h̄) =

∫ 1

0

dz

z2

k1−h(z)

rh

∫ 1

0

dz̄

z̄2

rh̄
h̄− 1

2

kh̄(z̄)
dDisc [zz̄(z̄ − z)G(z�, z̄)]

4π2
+ pole-free

≡ c�(h, h̄) . (5.19)

The notation indicates that the correlator is evaluated with z rotated clockwise around the

origin. Recall that the double-discontinuity (3.2) is itself computed as an analytic contin-

uation, but with respect to the other variable (around z̄ = 1), so these two continuations

commute with each other.

Our interest is in the asymptotic spectral density of c(h, h̄)
�

. This can be defined

mathematically by taking the difference slightly above and below the real axis〈
ae−iπγ

〉
n,`
≈ 1

iπ

(
c�(h× eiα, h̄)− c�(h× e−iα, h̄)

)
(5.20)

where α > 0 is a small phase. This analytic function is what would enter, for example,

in the Watson-Sommerfeld representation in appendix B to [2]. (The spurious poles men-

tioned below eq. (3.8) can be neglected in the limit.) For the first term, one sees that

the integral (5.19) would decay exponentially if the z contour could be rotated clockwise,

however this is obstructed by the singularity at z = z̄. The second term however decays ex-

ponentially because there are no singularities obstructing a rotation in the other direction.

The conclusion is that the large-n behavior of the coefficients is controlled by the singu-

larity closest to the origin, in this case z = z̄. Near this point, setting z = z̄ + 2xz̄
√

1− z̄
with x→ 0, we find that the double-discontinuity (3.16) diverges like

dDisc
[
zz̄(z̄ − z)G(2)(z�, z̄)

]
4π2

→ 2πi× 13!

(2x)14
× g2(z̄), (5.21)
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with

g2(z) =
z(1− z)2

480

((
1− 1

z5

)
log(1− z) +

1

z
− 1

z4
+

1

2z2
− 1

2z3
+ iπ − log(z)

)
. (5.22)

Using the asymptotic formula (5.4), the integral (5.19) thus gives〈
ae−iπγ

〉(2)

n,`〈
a(0)
〉
n,`

→ 1

n2(`+ 1)

∫
C

dx

2πi

13!

(2x)14
e−2nx

∫ 1

0

dz̄

z̄2

(
1−
√

1− z̄
1 +
√

1− z̄

)`+1

g2(z̄) (5.23)

where the contour C is a “keyhole” contour encircling the origin to the right clockwise. We

see that the inversion integral is neatly factorized, in perfect parallel with the OPE (5.6):

the variable z̄ ranges between 0 and 1 and provides the angular dependence, while the

distance x to the singularity is conjugate to n. The integral over x produces a power of n,

and we thus find the following high-energy behavior:〈
ae−iπγ

〉
n,`〈

a(0)
〉
n,`

n→∞−−−→ 1 +
1

c

iπ n3

2(`+ 1)
+

1

c2

iπ n11

`+ 1

∫ 1

0

g2(z̄) dz̄

z̄2

(
1−
√

1− z̄
1 +
√

1− z̄

)`+1

+O(1/c3) .

(5.24)

This can be integrated analytically in terms of harmonic sums but we did not find the

result particularly illuminating. For the first few values of the spin the average at order

1/c2 gives

〈
ae−iπγ

〉
n,2

= iπ

(
4189

8640
− 17411π2

147456
− 17

12
log2

(
log2−iπ

)
+

707

720

(
2log2−iπ

))
n12+· · ·

〈
ae−iπγ

〉
n,4

= iπ

(
719657

252000
− 171007π2

245760
− 167

20
log2

(
log2−iπ

)
+

5209

900

(
2log2−iπ

))
n12+· · · ,

in perfect agreement with our previous results. Given that these two calculation methods

were both subtle in different ways, it is nontrivial and very reassuring that they agree! We

shall now compare this result with flat space supergravity. The latter representation (5.24)

will turn out particularly convenient for that scope.

5.2 Comparison with flat space supergravity amplitude

The relation between CFT correlators and the S-matrix of the higher-dimensional bulk

theory has been analyzed in many works, see e.g. [2, 17, 28, 29, 31]. The idea is that in the

x→ 0 limit described above, the CFT correlator effectively focuses particles at each other

in the bulk. By analyzing bulk Landau diagrams, a precise relation between the z → z̄

singularity and the high-energy behavior of the amplitude is obtained. Setting ∆ = 2 and

d = 4 in eq. (5.5) of [29] (see also [28]) this relation reads:

zz̄(z̄ − z)Gcont =
1

2

∫ ∞
0

ω2dω e2iωx√sA5(s, t) , (5.25)

where ω represents the energies of each incoming particle in units of the AdS radius L, the

Mandelstam variable s = 4ω2/L2 is the center-of-mass energy, and −t/s = 1−cos θ
2 encodes
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Figure 6. The one-loop amplitude in ten-dimensional type IIB supergravity is the sum of three

scalar box integrals.

the scattering angle. This formula gives the leading singular term at x ∼ z− z̄ → 0 for each

order in 1/c. To make contact with the OPE on the CFT side, we use the usual partial

wave expansion for the five-dimensional (flat space) amplitude A5(s, t):

iA5(s, t) =
128π√
s

∑
` even

(`+ 1)2b`(s)P`(cos θ) (5.26)

with cos θ = 1 + 2t
s and P` is as defined below eq. (5.6). The prefactor is simply one over

the phase space volume for two identical particles, ensuring that b
(0)
` = 1 in the absence of

interactions. Comparing (5.6), (5.25) and (5.26) gives a key formula, quoted in section 2,

to compare the OPE data and flat space amplitude:

lim
n→∞

〈
ae−iπγ

〉
n,`〈

a(0)
〉
n,`

= b`(s) , L
√
s = 2n . (5.27)

At energy scales between the AdS and string scales, the flat space amplitude A5(s, t)

can be reliably computed using perturbative quantum gravity in flat space, viewed as an

effective field theory. We notice that in this regime the AdS5×S5 geometry is fundamen-

tally ten-dimensional, so the relevant effective theory is ten-dimensional IIB supergravity.

Fortunately, the one-loop flat space integrand in this theory, incorporating graviton and

gravitino loops, was worked out long ago [32, 33]. It is a simple sum of scalar boxes (see

figure 6), thanks to the so-called no-triangle property of maximal supergravity:

Asugra
10 (s, t) = 8πGN

s3

tu
+

(8πGN )2

(4π)5
(Ibox(s, t) + Ibox(s, u) + Ibox(t, u)) +O(G3

N ) , (5.28)

where GN = π4L8

8c is the ten-dimensional Planck constant, with c = N2−1
4 and L the AdS

radius. To be fully precise, let us specify which polarization we have chosen for the external

gravitons: to match with the correlator G(105), which corresponds to two identical complex

scalars, one should choose the polarizations of gravitons 1 and 2 to be two identical null

tensors orthogonal to all the momenta. (By supersymmetry, all other choices are equivalent

up to an overall factor.)

The box integral has quadratic and logarithmic divergences but can be readily eval-

uated using e.g. dimensional regularization. The logarithmic divergence nicely cancels in

the sum over boxes due to the relation s+ t+u = 0, so the only ambiguity is the quadratic

divergence (which has to be restored manually in dimensional regularization), which we’ll
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interpret shortly. Note that even though the integral is computed in ten dimensions, we

need to expand the result in five-dimensional partial waves in order to compare with the

CFT4 data in eq. (5.27). We obtain A5 simply by dividing by the volume of the sphere,

vol(S5) = π3L5. Using the result for the box integral recorded in eq. (D.1), we thus obtain

√
s

64π2
Asugra

5 (s, cos θ) =
(
√
sL/2)3

c

1

2 sin2 θ
+

(
√
sL/2)11

c2
f2

(
1 + cos θ

2

)
+O(1/c3) (5.29)

where f2(x) contains the angular dependence and is given in eq. (D.2). From this, the

partial wave coefficients are obtained simply by inverting (5.27) using the orthogonality of

the polynomials P`(cos θ):

b`(s) = 1 +
iπ

`+ 1

∫ π

0

dθ

π
sin θ sin((`+ 1)θ)

√
s

64π2
Asugra

5 (s, cos θ). (5.30)

An excellent way to perform such integrals is to use the Froissart-Gribov method and

deform the contour in x = 1+cos θ
2 so that it picks the singularities of A5. Physically, this

method of reconstructing partial waves from cuts is equivalent to a dispersion relation, as

discussed for example in section 2.5 of [12]. The t- and u-channel branch cuts at x > 1 and

x < 0 give the same by symmetry, and we get

b`(s) = 1+
1

c

iπ (
√
sL/2)3

2(`+ 1)
+

1

c2

iπ (
√
sL/2)11

`+ 1

∫ 1

0

dz̄

z̄2

(
1−
√

1− z̄
1 +
√

1− z̄

)`+1

Disctf2(1/z̄), (5.31)

where z̄ = 1/x and the t-channel discontinuity is the difference between going above or

below the t-channel cut at x > 1:

Disctf2(1/z) ≡ 2

iπ

(
f (2)(1/z + i0)− f (2)(1/z − i0)

)
=
z(1− z)2

480

((
1− 1

z5

)
log(1− z) +

1

z
− 1

z4
+

1

2z2
− 1

2z3
+ iπ − log(z)

)
.

(5.32)

We have verified the agreement between (5.30) and (5.31) to high numerical accuracy for

a variety of spins `.

The discontinuity of the amplitude (5.32) is identical to the double-discontinuity of

the correlator (5.22) obtained directly from the CFT! In other words, the operations of

taking discontinuities commute with taking the flat space limit, leading to the diagram

shown in figure 7. Since the full answers are reconstructed from the singularities, the

full answers also agree. Comparing eqs. (5.24) and (5.31), we have matched not only the

answers on both sides, but also the computation techniques. This makes transparent the

relation between our computation in CFT and the standard reconstruction of S-matrices

via dispersion relations.

5.3 Local counter-terms and uniqueness of the reconstruction

As noted in section 3, reconstructions via dispersion relations typically suffer from polyno-

mial ambiguities, which are supported on finitely many spins. These represent bulk contact

interactions. Such ambiguities potentially affect both our tree and one-loop results, so let
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correlator

G(z, z̄)

amplitude

A5(s, t)

dispersion

relation

discontinuity

Disc [A5]

inversion

integral

double-disc.

dDisc [G]

flat space

flat space

Figure 7. A commutative diagram which explains the agreement between the one-loop CFT and

supergravity calculations: the discontinuities, which determine the outcome of both calculations,

match each other.

us address them quantitatively. They were classified earlier in [34] using Mellin space

technique. The simplest one is supported on spin 0. In terms of the analytic function

c(h, h + ` + 1) defined in eq. (3.5), it can be directly constructed as follows. First, single-

valuedness (from an argument similar to 5.1.2) requires it to vanish like e−2π|Imh| at large

imaginary h. Since it can have only at most double poles at the double-trace locations,

we write

δc(h, h+ 1) =
π2

sin(πh)2
δc′(n) (5.33)

where δc′(n) is a rational function of n = h−3. Second, shadow symmetry ∆→ 4−∆ forces

δc′(n) to be even under n → −6−n, and it needs double zeros at n = −1,−2,−3,−4,−5

in order to cancel the poles below the double-trace threshold. The case n = −3 requires

an extra zero to cancel a pole of the block (2.6); poles at n = −5/2 and its reflection are

exceptionally allowed, due to a zero of the block. Thus, up to an overall factor, the minimal

ambiguity is:〈
a(0)δγ

〉
n,0〈

a(0)
〉
n,0

= −δc
′(n)

n+ 3
= −c1

(n+ 1)2(n+ 2)2(n+ 3)3(n+ 4)2(n+ 5)2

960(n+ 5/2)(n+ 7/2)
, (5.34)

whereas the residue of eq. (5.33) gives the derivative relation
〈
δa
〉
n,0

= 1
2∂n
〈
a(0)δγ

〉
n,0

.

Summing up the OPE, we then find that the corresponding ambiguity in the correlator,

δG(u, v) = c1u
2D̄4,4,4,4(u, v), (5.35)

is indeed crossing-symmetric. It is possible to show that any non-minimal solution, obtained

by multiplying the above by a polynomial, would require higher spins to satisfy crossing.

We would like to explain why the coefficient c1 is small, from the CFT perspective.

We need to use supersymmetry, which relates the correlator in the 105 representation of

SU(4)R, discussed so far, to that in the singlet representation. This relation has a nontrivial

prefactor, which shifts the spin by 4 in some of the blocks, see eq. (8.1) and the third line

of eq. (8.7) of [35]. This shift is important because for spins two and higher the Froissart-

Gribov integral is guaranteed to converge to the correct CFT-data in any complete, unitary
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theory [12]. Since this could be applied to the singlet correlator, we conclude that the full

CFT-data in N = 4 SYM is reconstructed from the discontinuities. Furthermore, the

nonperturbative bound in eq. (5.4) there, applied to the singlet correlator, constrains the

contributions of heavy operators, neglected so far:∣∣∣δcsinglet
h,h+`+1

∣∣∣. 1

c

1

(∆2
gap)`−2

for `≥ 2 ⇒
∣∣∣δch,h+`+1

∣∣∣. 1

c

1

(∆2
gap)`+2

for `≥ 0 . (5.36)

This implies for example c1 . 1
c∆4

gap
∼ 1

c
1
λ where λ is the ‘t Hooft coupling. This establishes

uniqueness of the tree-level solution given above in the strong coupling limit λ→∞. Note

also that c1 is strictly positive, since it is controlled by the integral of a positive-definite

double-discontinuity. This conclusion was also reached in [36].

This bound on c1 is essentially what one would have obtained from a naive application

of the bound on chaos [37] to the singlet correlator, see also [38]. The inversion integral

however naturally builds in the fact that the bound applies not to the CFT-data itself, but

to the difference δc between the CFT-data and the analytic contribution to it from light

t-channel operators. The latter gave the supergravity result and is not small.

According to eq. (5.27), this small ∼ n9 ambiguity reduces, in the flat space limit, to

an 8-derivative contact interaction δAsugra
5 (s) = c1

π2s4L9

3840 , corresponding to an R4 contact

interaction in gravity. The fact that the simplest contact interaction has 8 derivatives

follows simply from supersymmetry, since the four-particle amplitude is proportional to

a 16-dimensional δ-function δ16(Q), which evaluates to s4 for the graviton polarizations

described above. In the CFT calculation, the role of this δ-function was effectively played by

the relation between SU(4)R representations. This explains also why there is no logarithmic

divergence at one-loop, since any crossing-symmetric 10-derivative interaction would be

proportional to s+t+u = 0. However we can see that the above bound is not optimal: the

R4 operator is known to appear with coefficient 1
c

1
(α′)3 ∼ 1

c
1

λ3/2 � 1
c

1
λ in tree-level string

theory (stringy corrections to CFT-data have been studied in [39]). The non-optimality

grows for higher-derivative contact interactions, since the bound controls the spin of the

interactions rather than their mass dimensions.

At one-loop, a quadratically divergent R4 interaction is forced on us, even at large λ,

because its coefficient is given by a positive-definite sum rule which diverges in the one-loop

approximation. Indeed the double-discontinuity vanishes at tree-level away from z̄ = 1 and

starts at one-loop, where we found a positive-definite result that for z̄ ∼ z grows like

dDisc [G] ∼ 1

c2

1

z4
. (5.37)

This growth can stop at z ∼ 1/∆2
gap, where operators neglected so far, with ∆ > ∆gap,

enter the t-channel OPE. Integrating the Froissart-Gribov formula over the region under

control gives a contribution to OPE data

c(h, h+ `+ 1)
∣∣∣
controlled

∝
∫ 1

∼1/∆2
gap

dzz`+2dDisc [G] ∼ 1

c2

1

∆
2(`−1)
gap

, (5.38)

which diverges quadratically for ` = 0 (but converges for ` > 1). By crossing, this divergent

part has to be proportional to the ambiguity (5.34). But since it comes from a positive-

definite sum rule, it cannot be canceled by any counter-term in a complete, unitary theory,
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even if we try to take the gap to infinity. In fact, the gap can’t be taken bigger than

c1/4 ∼ m2
plL

2, in order for dDisc [G] to remain locally between 0 and 1, as it must.

In this extreme case where the growth continues up to dDisc[G] ≈ 1, nonperturbative

contributions to the CFT-data can have size at most 1/c
3+`

2 . This corresponds to a sce-

nario where the dual theory lacks any separation between the string and Planck scales.

There is still a good effective theory description at the AdS scale thanks to large-N , but

higher-dimensional operators in the effective Lagrangian assume values which can only

be determined nonpertubatively (for the first operator, using dimensional analysis with

Planck-scale suppression one would expect c1 ∼ 1/c7/4, consistent with the above bounds).

It would be interesting to further study such theories of strongly coupled gravity, perhaps

by combining the present methods with the numerical bootstrap following [13].

6 Conclusions

In the present paper we have analysed the double-discontinuities of the four-point corre-

lator of the stress-tensor multiplet in N = 4 SYM at large t’Hooft coupling and at order

1/c2, with c ∼ N2. We have explicitly shown how to extract the full CFT-data from

these discontinuities. This was done by two alternative inversion procedures, one based

on a Froissart-Gribov type inversion integral for CFT, and the other based on large spin

perturbation theory. The procedures were then shown to be equivalent. Our computa-

tion makes explicit the fact that double-discontinuities contain all the relevant physical

information. In particular they also allow to reconstruct the full correlator, without any

additional assumptions about the space of functions that can appear. This is reminiscent of

the Kramers-Kronig relations that allow to reconstruct a holomorphic function that decays

at infinity from its imaginary part.

Via the AdS/CFT duality 1/c2 corrections describe one-loop effects in the dual grav-

itational theory. We have considered the limit in which the CFT correlator is expected to

reproduce the one-loop scattering amplitude of gravitons in ten-dimensional supergravity

in flat space, finding perfect agreement. An elegant way to summarise this agreement is

that the flat space limit of the discontinuity of the CFT correlator agrees with the discon-

tinuity of the flat space scattering. These discontinuities then determine both results: on

the CFT side, through the inversion procedure presented here, and on the amplitude side

through dispersion relations. The 10-dimensional nature of the underlying string theory is

realized through the mixing between CFT operators with different SU(4)R charge.

The inversion presented in this paper makes clear which ambiguities may arise and

how. In any non-perturbative theory it has been proven in [12] that proper Regge be-

haviour constraints these ambiguities to spin lower than two, and we have shown that

supersymmetry removes all such ambiguities. In a perturbative expansion however the sit-

uation can be a bit worse but we have shown that there are no ambiguities at order 1/c in

the limit of large ‘t Hooft coupling, and only a single ambiguity for spin zero at order 1/c2.

This ambiguity corresponds to an R4 counter-term, which is indeed generated at one-loop

in ten-dimensional supergravity with a quadratically divergent coefficient. Interestingly,

we find that fully cancelling this term by a negative counter-term would be inconsistent

with unitary, hence a large positive value must be assumed nonperturbatively.
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There are several open problems that would be interesting to attack. First of all, our

methods are completely general and one should be able to study amplitudes of more generic

gravitational theories. It would be interesting to study theories in different number of di-

mensions and with less super-symmetry, and more broadly to see if this method can be used

to constrain higher-dimensional supergravity theories. The interplay with new techniques

for direct computations in AdS, see [40, 41], should be pursued, as well as the prospect

of fixing nonperturbatively the coefficients of higher-dimensional contact interactions. It

would also be interesting to study higher order corrections in 1/c.
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A The double-discontinuity of the one-loop correlator

Here we record the coefficient of log2 v in the one-loop correlator, as obtained from the

squares of anomalous dimensions in eq. (3.15), and normalized as in eq. (3.16):

zz̄(z̄ − z)G(2)(u, v)
∣∣∣
log2 v

= D(D − 2)D̄(D̄ − 2)G(2)′(z, z̄) (A.1)

where:

G(2)′(z, z̄) = R0(z, z̄) +R1(z, z̄) (log z − log z̄) +R2(z, z̄) (log z + log z̄) (A.2)

+R3(z, z̄) (Li2(1− z)− Li2(1− z̄)) +R4(z, z̄)

(
Li2

(
1− 1

z

)
− Li2

(
1− 1

z̄

))
+

1− z̄
8u

Li2(1− z)− 1− z
8u

Li2(1− z̄)

where

R0(z, z̄) =
uv3(3v − 7(u+ 1))

16(z − z̄)5
+
v2(−4u− 3v + 15)

48(z − z̄)3
+
v
(

7u
3 − v − 3

)
16u(z − z̄)

− z − z̄
16u

(A.3)

R1(z, z̄) =
v2
(
u2 − u+ v − 1

)
8(z − z̄)4

+
uv3

(
u2 − uv + 5u− v + 1

)
8(z − z̄)6

+
(1− v)v

8u(z − z̄)2
(A.4)

− (1− u)2 + 5v

96(z − z̄)2
+
v(v + 1)− 2(1− u)2

64uv
+

13

192
(A.5)

R2(z, z̄) =
u
(
1− u2

)
v2

8(z − z̄)5
+

v

8u(z − z̄)
+
v(u(1− u)− 6(−u+ v + 1))

96(z − z̄)3
(A.6)

+
(2u− v − 2)(z − z̄)

64uv
+

1− u+ v

96(z − z̄)
(A.7)

R3(z, z̄) =
uv2(u− v − 1)

8(z − z̄)6
+
v(u− v − 1)

8u(z − z̄)2
+

v2

4(z − z̄)4
(A.8)

R4(z, z̄) =
u3v2(u+ v − 1)

8(z − z̄)6
(A.9)
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B Twist conformal blocks

In the body of the note we have introduced the following family of functions denoted twist

conformal blocks (TCB)3

H(m)
n (z, z̄) =

∑
`

gn,`(z, z̄)

J2m
, (B.1)

where the super-conformal blocks have been given in the body of the paper. We will be

interested in the divergent contribution to TCB as z̄ → 1. Given the specific structure of

the super-conformal blocks this contribution admits the following factorised form

H(m)
n (z, z̄) =

1

zz̄(z̄ − z)
rhnkhn(z)H̄(m)

n (z̄) + regular (B.2)

where recall hn = n + 3 and rhn and khn(z) have been defined in the body of the paper.

Regular terms behave as a finite number of conformal blocks as z̄ → 1 and will not be

important for our discussion. The functions H̄
(m)
n (z̄) satisfy the following recursive relation

D̄H̄(m)
n (z̄) = H̄(m)

n (z̄), (B.3)

with D̄ = z̄2∂z̄(1 − z̄)∂z̄. From the explicit form of the conformal blocks, or from the

correlator at zeroth order, we can compute the divergent behaviour for H̄
(0)
n (z̄). We obtain

H̄(0)
n (z̄) =

1

2

1

1− z̄
+ regular (B.4)

Due to our definition of TCB, which differs from that of [6], we see that the divergent

part of the TCB is actually independent of n, and hence the index will be dropped from

now on. In order to obtain the divergence behaviour of the correlator at zeroth order

we need to insert 〈a(0)〉n,` = 2(J2 − (n + 2)(n + 3)). This can be obtained by acting

with 2(D̄ − (n+ 2)(n+ 3)) on the function above and reinstates the n dependence. From

now on we will also drop regular terms. All equalities must be understood up to those.

Starting from H̄(0)(z̄) we can build all functions H̄(m)(z̄) by using the recursion relations

(for instance as an expansion around z̄ = 1). For m = 1, 2, · · · the structure is as follows

H̄(m)(z̄) = q(m)(z̄) log2(1− z̄), m = 1, 2, · · · (B.5)

where

D̄q(m+1)(z̄) = q(m)(z̄), q(1)(z̄) =
1

4
(B.6)

and q(m)(z̄) ∼ (1− z̄)m−1 as z̄ → 1. It is straightforward to compute the functions q(m)(z̄)

as a series around z̄ = 1. In the body of the paper we will be interested in reproducing the

divergence (1− z̄)−1: ∑
m=0

αmH̄
(m)(z̄) =

1

1− z̄
(B.7)

From the expressions above it is clear α0 = 2. Furthermore, the behaviour for q(m)(z̄)

around z̄ = 1 implies αm = 0 for m > 0.

3The conventions used in this paper are slightly different to the ones used in [6] but better suited for

our current purposes.
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B.1 From large spin perturbation theory to an inversion integral

We are interested in solving the following inversion problem. Given a divergent function,

how do we write it in terms of the basis H̄(m)(z̄). Let us first assume the divergence is

proportional to log2(1 − z̄) and the function in front admits a decomposition in terms of

q(m)(z̄). Later on we will relax this assumption. The first step is to construct the following

projectors ∮
z̄=1

dz̄P (m)(z̄)q(m′)(z̄) = δm,m′ (B.8)

for m = 1, 2, · · · . The recursion relations for q(m)(z̄) together with integration by parts

lead to the following relation for the projectors

P (m+1)(z̄) = D̄†P (m)(z̄), P (1)(z̄) = − 4

z̄(1− z̄)
(B.9)

where D̄† = ∂z̄(1− z̄)∂z̄ z̄
2. Note a nice point. Now P (m+1)(z̄) can be easily computed from

P (m)(z̄), by simply acting with a differential operator. Then, given the expansion∑
m=1

cmq
(m)(z̄) = g(z̄) (B.10)

the coefficients cm admit the following integral representation

cm =

∮
z̄=1

dz̄P (m)(z̄)g(z̄) (B.11)

Having found an integral expression for the coefficients cm we are interested in the following

resumed series:

f(J) =
∑
m=1

cm
J2m

(B.12)

For this we need to compute the following Kernel

K(J, z̄) =
∑
m=1

P (m)(z̄)

J2m
(B.13)

which plays the role of the generating function for the projectors P (m)(z̄). Remarkably,

one is able to find a closed form expression for this. We find

K(J, z̄) = −4

∞∑
m

Γ2(m+ 1)
1∏m

k=0(J2 − k(k + 1))

1

z̄(1− z̄)

(
z̄

1− z̄

)m
(B.14)

With this we can give

f(J) =

∮
z̄=1

dz̄K(J, z̄)g(z̄) (B.15)

In other words, we have found an integral expression for f(J) which is analytic in the

spin, and which can be interpolated down to finite spin! very much as in the Froissart-

Gribov inversion formula. Let us study this Kernel in greater detail. It admits several

representations. One in terms of hypergeometric functions 3F2. Another in terms of an
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infinite sum of standard hypergeometric functions 2F1, by noticing that the Kernel satisfies

the differential equation (
D̄† − J2

)
K(J, z̄) =

4

z̄(1− z̄)
(B.16)

The most convenient representation for us is as a double integral:

K(J, z̄) =
4

z̄(1− z̄)

∫ 1

0
dt1

∫ ∞
0

dt2
(1− t1)h̄−1(1 + t2)−h̄

t1t2ζ − 1
, ζ =

z̄

1− z̄
(B.17)

where we have defined J2 = h̄(h̄− 1). One can explicitly check that the large J expansion

coincides with that of (B.14) and furthermore that the differential equation (B.16) is satis-

fied. Plugging this into f(J) and deforming the contour we can integrate around the pole

at z̄ + t1t2z̄ − 1 = 0. We obtain

f(J) = 4

∫ 1

0
dt1

∫ ∞
0

dt2(1− t1)h̄−1(1 + t2)−h̄g

(
1

1 + t1t2

)
(B.18)

which is a very neat expression, analytic in the spin. So far we have considered the case of

a divergence proportional to log2(1− z̄). More generally, we need to consider the double-

discontinuity dDiscG(z̄). For divergences containing a log2(1 − z̄), this reduces to what

we did before. Let us now consider a divergence proportional to a non-integer or negative

power of (1− z̄). In this case we obtain

4

∫ 1

0
dt1

∫ ∞
0

dt2(1− t1)h̄−1(1 + t2)−h̄
1

4π2
dDisc

(
1− z̄
z̄

)p∣∣∣∣
z̄= 1

1+t1t2

= 2
Γ(h− p− 1)

Γ2(−p)Γ(h+ p+ 1)

(B.19)

One can explicitly check that this gives the precise large J expansion for a divergence

corresponding to non-integer or negative p. This is relevant to compute the contribution

to the CFT data due to an exchanged operator, in the dual channel, of arbitrary twist.

This case was analysed in [7] for leading twist operators from the point of view of large

spin expansions. The formula above fully reproduces those results.

Before proceeding Let us make an important remark regarding different representations

for the Kernel (B.14). Although all representations give the correct large J expansion for

integer p, or for a divergence proportional to log2(1− z̄), the representation we have used

extends properly to non integer p. This can be understood intuitively as follows. Other

representations involve the integral over z̄ from one to infinity. While this is well defined

for integer p it is not for general p. The representation we have used is well defined for all

p and one can check that indeed gives the correct answer in all examples.

C Results for OPE coefficients

Here we discuss a simple trick to deal with the z̄ integrations of the logarithms and poly-

logarithms in eq. (A.1), order by order in the z expansion. The idea is to expand the

polynomials multiplying these in a basis of eigenfunctions of the Casimir; this basis is
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provided by k functions with negative argument, Km(z̄) = (2m)!
(m!)2 k−m(z̄). By integrating-

by-parts the relation (Dz̄ −m(m+ 1))Km(z̄) = 0, we get an interesting result:∫ 1

0

dz̄

z̄2

rh̄
h̄− 1/2

kh̄(z̄)Km(z̄) =
2

J2 −m(m+ 1)
(C.1)

where the right-hand-side stems from a boundary term at z̄ = 1. This formula can be easily

checked against the general integral eq. (3.20) for specific polynomials. Most importantly,

the same method can be applied to polynomials times log, for example:∫ 1

0

dz̄

z̄2

rh̄
h̄− 1/2

kh̄(z̄)Km(z̄) log(z̄) =

∫ 1

0

dz̄

z̄2

rh̄
h̄− 1/2

kh̄(z̄)

(
Dz̄ −m(m+ 1)

)
(Km(z̄) log z̄)

J2 −m(m+ 1)
(C.2)

where the right-hand-side is just a polynomial in 1/z̄, which we already know how to deal

with. The same trick, applied repeatedly, takes care of the other transcendental functions

which appear in the one-loop double-discontinuity (A.1), namely Li2(1 − z̄) and log2 z̄.

In these cases, however, one finds a new integral: one with a single positive power of z̄.

Using the integral representation for the hypergeometric, we find that it integrates to an

harmonic sum:∫ 1

0

dz̄

z̄2

rh̄
h̄−1/2

kh̄(z)z̄=−4

∫ 1

0

dxxh̄−1

1+x
logx= 4ψ′(h̄)−2ψ′

(
1+h̄

2

)
≡ 4S̄−2(h̄−1) (C.3)

where ψ(x) = (log Γ(x))′ is the polygamma function. This can be regarded as an analytic

continuation of an harmonic sum: S̄−a(j) = S−a(j)− S−a(∞) from even j, where

S−a(j) =

j∑
m=1

(−1)m

ma
. (C.4)

It is worth mentioning the large J expansion of S̄−2(h̄−1) respect reciprocity and contains

only powers of 1/J2, where J2 = h̄(h̄− 1). In terms of this special function, our result is

S
(0)

0,h̄
=

48

J4
+

31672296

25025 (J2 − 56)
− 169064

195 (J2 − 30)
− 5490

J2 − 20
− 9720

(J2 − 20)2 +
2480

33 (J2 − 12)

+
121154

25 (J2 − 6)
− 624

(J2 − 6)2 −
7200

(J2 − 6)3 +
306

J2 − 2
+

648

(J2 − 2)2 +
3642

35J2

+

(
1120

13 (J2 − 30)
− 80

11 (J2 − 12)
+

96

J2 − 6
− 18144

143 (J2 − 56)

)
π2

+

(
13440

13 (J2 − 30)
− 960

11 (J2 − 12)
− 217728

143 (J2 − 56)

)
S̄−2(h̄− 1) ,

S
(0)

1,h̄
= −3000

J4
+

41435928

1001 (J2 − 72)
− 381416

11 (J2 − 42)
− 211050

J2 − 30
− 693000

(J2 − 30)2 +
5175000

1001 (J2 − 20)

+
432758

J2 − 12
+

240240

(J2 − 12)2 −
2469600

(J2 − 12)3 −
15150732

77 (J2 − 6)
+

295200

(J2 − 6)2 +
1080000

(J2 − 6)3

− 218970

7 (J2 − 2)
− 51840

(J2 − 2)2 −
6850

J2

+

(
39200

11 (J2 − 42)
− 540000

1001 (J2 − 20)
+

16800

J2 − 12
− 1108400

77 (J2 − 6)
− 604800

143 (J2 − 72)

)
π2

+

(
− 470400

11 (J2 − 42)
+

6480000

1001 (J2 − 20)
− 4800

77 (J2 − 6)
+

7257600

143 (J2 − 72)

)
S̄−2(h̄− 1) .

– 33 –
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Results for higher twists are available upon request to the authors; algorithmically, it is

relatively straightforward to obtain similar formulas for the first few hundreds of twists.

D Ten-dimensional box integral

Here we record the result for the box integral in ten-dimensions, obtained using e.g. di-

mensional regularization:

Ibox(s, t) ≡
∫
d10p

iπ5

1

p2(p− p1)2(p− p1 − p2)2(p+ p4)2

=
1

120

(
s2t2

u3

(
log2 −s

−t
+ π2

)
− (s− t)

(
st

u2
+

1

2

)
log
−s
−t

+ u log

√
−s
√
−t

Λ2
− st

u

+ C1Λ2 + C2u

)
(D.1)

where Λ is a ultraviolet cutoff and where we have re-instated the quadratic divergence

C1. C2 is a scheme-dependent constant which is unimportant in this paper (it cancels out

when summing the three boxes). Following standard notation, all logarithms are real in the

Euclidean region s, t < 0 and one adds a small imaginary part, −s 7→ −s− i0, to select the

correct branch when an invariant becomes timelike. Explicitly, adding up the three boxes

and paying due care to phases, we obtain the function of angles f2(x) entering eq. (5.29)

in the main text, where x = −u/s = 1+cos θ
2 :

f2(x) =
1

3840

{[
x

x− 1
+

x2

(x− 1)3
log x(log x+ 2πi) + x2

(
x− 3

(1− x)2
+ 3− 2x

)(
log x+ iπ

)
+ (x 7→ 1−x)

]
+ x2(1− x)2

(
log

x

1− x
+ π2

)
− x(1− x) + 3C1

Λ2

s

}
. (D.2)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in

4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].

[2] I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field

Theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].

[3] A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The Analytic Bootstrap and

AdS Superhorizon Locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].

[4] Z. Komargodski and A. Zhiboedov, Convexity and Liberation at Large Spin, JHEP 11 (2013)

140 [arXiv:1212.4103] [INSPIRE].

[5] L.F. Alday and A. Bissi, Higher-spin correlators, JHEP 10 (2013) 202 [arXiv:1305.4604]

[INSPIRE].

– 34 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1126-6708/2008/12/031
https://arxiv.org/abs/0807.0004
https://inspirehep.net/search?p=find+EPRINT+arXiv:0807.0004
https://doi.org/10.1088/1126-6708/2009/10/079
https://arxiv.org/abs/0907.0151
https://inspirehep.net/search?p=find+EPRINT+arXiv:0907.0151
https://doi.org/10.1007/JHEP12(2013)004
https://arxiv.org/abs/1212.3616
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.3616
https://doi.org/10.1007/JHEP11(2013)140
https://doi.org/10.1007/JHEP11(2013)140
https://arxiv.org/abs/1212.4103
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.4103
https://doi.org/10.1007/JHEP10(2013)202
https://arxiv.org/abs/1305.4604
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.4604


J
H
E
P
1
2
(
2
0
1
8
)
0
1
7

[6] L.F. Alday, Large Spin Perturbation Theory for Conformal Field Theories, Phys. Rev. Lett.

119 (2017) 111601 [arXiv:1611.01500] [INSPIRE].

[7] L.F. Alday and A. Zhiboedov, An Algebraic Approach to the Analytic Bootstrap, JHEP 04

(2017) 157 [arXiv:1510.08091] [INSPIRE].

[8] D. Simmons-Duffin, The Lightcone Bootstrap and the Spectrum of the 3d Ising CFT, JHEP

03 (2017) 086 [arXiv:1612.08471] [INSPIRE].

[9] L.F. Alday, A. Bissi and E. Perlmutter, Holographic Reconstruction of AdS Exchanges from

Crossing Symmetry, JHEP 08 (2017) 147 [arXiv:1705.02318] [INSPIRE].

[10] M. Kulaxizi, A. Parnachev and A. Zhiboedov, Bulk Phase Shift, CFT Regge Limit and

Einstein Gravity, JHEP 06 (2018) 121 [arXiv:1705.02934] [INSPIRE].

[11] D. Li, D. Meltzer and D. Poland, Conformal Bootstrap in the Regge Limit, JHEP 12 (2017)

013 [arXiv:1705.03453] [INSPIRE].

[12] S. Caron-Huot, Analyticity in Spin in Conformal Theories, JHEP 09 (2017) 078

[arXiv:1703.00278] [INSPIRE].

[13] C. Beem, L. Rastelli and B.C. van Rees, More N = 4 superconformal bootstrap, Phys. Rev. D

96 (2017) 046014 [arXiv:1612.02363] [INSPIRE].

[14] L. Cornalba, M.S. Costa and J. Penedones, Eikonal approximation in AdS/CFT: Resumming

the gravitational loop expansion, JHEP 09 (2007) 037 [arXiv:0707.0120] [INSPIRE].

[15] M.S. Costa, V. Goncalves and J. Penedones, Conformal Regge theory, JHEP 12 (2012) 091

[arXiv:1209.4355] [INSPIRE].

[16] G. Arutyunov and S. Frolov, Four point functions of lowest weight CPOs in N = 4 SYM(4)

in supergravity approximation, Phys. Rev. D 62 (2000) 064016 [hep-th/0002170] [INSPIRE].

[17] J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, JHEP 03

(2011) 025 [arXiv:1011.1485] [INSPIRE].

[18] F.A. Dolan, M. Nirschl and H. Osborn, Conjectures for large N superconformal N = 4 chiral

primary four point functions, Nucl. Phys. B 749 (2006) 109 [hep-th/0601148] [INSPIRE].

[19] L. Rastelli and X. Zhou, Mellin amplitudes for AdS5 × S5, Phys. Rev. Lett. 118 (2017)

091602 [arXiv:1608.06624] [INSPIRE].

[20] L. Rastelli and X. Zhou, How to Succeed at Holographic Correlators Without Really Trying,

JHEP 04 (2018) 014 [arXiv:1710.05923] [INSPIRE].

[21] F. Aprile, J.M. Drummond, P. Heslop and H. Paul, Quantum Gravity from Conformal Field

Theory, JHEP 01 (2018) 035 [arXiv:1706.02822] [INSPIRE].

[22] A.L. Fitzpatrick and J. Kaplan, AdS Field Theory from Conformal Field Theory, JHEP 02

(2013) 054 [arXiv:1208.0337] [INSPIRE].

[23] O. Aharony, L.F. Alday, A. Bissi and E. Perlmutter, Loops in AdS from Conformal Field

Theory, JHEP 07 (2017) 036 [arXiv:1612.03891] [INSPIRE].

[24] S. Caron-Huot and A.-K. Trinh, in progress.

[25] L.F. Alday and A. Bissi, Loop Corrections to Supergravity on AdS5 × S5, Phys. Rev. Lett.

119 (2017) 171601 [arXiv:1706.02388] [INSPIRE].

[26] F. Aprile, J.M. Drummond, P. Heslop and H. Paul, Unmixing Supergravity, JHEP 02 (2018)

133 [arXiv:1706.08456] [INSPIRE].

– 35 –

https://doi.org/10.1103/PhysRevLett.119.111601
https://doi.org/10.1103/PhysRevLett.119.111601
https://arxiv.org/abs/1611.01500
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.01500
https://doi.org/10.1007/JHEP04(2017)157
https://doi.org/10.1007/JHEP04(2017)157
https://arxiv.org/abs/1510.08091
https://inspirehep.net/search?p=find+EPRINT+arXiv:1510.08091
https://doi.org/10.1007/JHEP03(2017)086
https://doi.org/10.1007/JHEP03(2017)086
https://arxiv.org/abs/1612.08471
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.08471
https://doi.org/10.1007/JHEP08(2017)147
https://arxiv.org/abs/1705.02318
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.02318
https://doi.org/10.1007/JHEP06(2018)121
https://arxiv.org/abs/1705.02934
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.02934
https://doi.org/10.1007/JHEP12(2017)013
https://doi.org/10.1007/JHEP12(2017)013
https://arxiv.org/abs/1705.03453
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.03453
https://doi.org/10.1007/JHEP09(2017)078
https://arxiv.org/abs/1703.00278
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.00278
https://doi.org/10.1103/PhysRevD.96.046014
https://doi.org/10.1103/PhysRevD.96.046014
https://arxiv.org/abs/1612.02363
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.02363
https://doi.org/10.1088/1126-6708/2007/09/037
https://arxiv.org/abs/0707.0120
https://inspirehep.net/search?p=find+EPRINT+arXiv:0707.0120
https://doi.org/10.1007/JHEP12(2012)091
https://arxiv.org/abs/1209.4355
https://inspirehep.net/search?p=find+EPRINT+arXiv:1209.4355
https://doi.org/10.1103/PhysRevD.62.064016
https://arxiv.org/abs/hep-th/0002170
https://inspirehep.net/search?p=find+EPRINT+hep-th/0002170
https://doi.org/10.1007/JHEP03(2011)025
https://doi.org/10.1007/JHEP03(2011)025
https://arxiv.org/abs/1011.1485
https://inspirehep.net/search?p=find+EPRINT+arXiv:1011.1485
https://doi.org/10.1016/j.nuclphysb.2006.05.009
https://arxiv.org/abs/hep-th/0601148
https://inspirehep.net/search?p=find+EPRINT+hep-th/0601148
https://doi.org/10.1103/PhysRevLett.118.091602
https://doi.org/10.1103/PhysRevLett.118.091602
https://arxiv.org/abs/1608.06624
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.06624
https://doi.org/10.1007/JHEP04(2018)014
https://arxiv.org/abs/1710.05923
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.05923
https://doi.org/10.1007/JHEP01(2018)035
https://arxiv.org/abs/1706.02822
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.02822
https://doi.org/10.1007/JHEP02(2013)054
https://doi.org/10.1007/JHEP02(2013)054
https://arxiv.org/abs/1208.0337
https://inspirehep.net/search?p=find+EPRINT+arXiv:1208.0337
https://doi.org/10.1007/JHEP07(2017)036
https://arxiv.org/abs/1612.03891
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.03891
https://doi.org/10.1103/PhysRevLett.119.171601
https://doi.org/10.1103/PhysRevLett.119.171601
https://arxiv.org/abs/1706.02388
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.02388
https://doi.org/10.1007/JHEP02(2018)133
https://doi.org/10.1007/JHEP02(2018)133
https://arxiv.org/abs/1706.08456
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.08456


J
H
E
P
1
2
(
2
0
1
8
)
0
1
7

[27] L.F. Alday, A. Bissi and T. Lukowski, Large spin systematics in CFT, JHEP 11 (2015) 101

[arXiv:1502.07707] [INSPIRE].

[28] M. Gary, S.B. Giddings and J. Penedones, Local bulk S-matrix elements and CFT

singularities, Phys. Rev. D 80 (2009) 085005 [arXiv:0903.4437] [INSPIRE].

[29] J. Maldacena, D. Simmons-Duffin and A. Zhiboedov, Looking for a bulk point, JHEP 01

(2017) 013 [arXiv:1509.03612] [INSPIRE].

[30] M. Hogervorst and S. Rychkov, Radial Coordinates for Conformal Blocks, Phys. Rev. D 87

(2013) 106004 [arXiv:1303.1111] [INSPIRE].

[31] T. Okuda and J. Penedones, String scattering in flat space and a scaling limit of Yang-Mills

correlators, Phys. Rev. D 83 (2011) 086001 [arXiv:1002.2641] [INSPIRE].

[32] M.B. Green, J.H. Schwarz and L. Brink, N = 4 Yang-Mills and N = 8 Supergravity as

Limits of String Theories, Nucl. Phys. B 198 (1982) 474 [INSPIRE].

[33] Z. Bern, L.J. Dixon, D.C. Dunbar, M. Perelstein and J.S. Rozowsky, On the relationship

between Yang-Mills theory and gravity and its implication for ultraviolet divergences, Nucl.

Phys. B 530 (1998) 401 [hep-th/9802162] [INSPIRE].

[34] L.F. Alday, A. Bissi and T. Lukowski, Lessons from crossing symmetry at large N , JHEP 06

(2015) 074 [arXiv:1410.4717] [INSPIRE].

[35] F.A. Dolan and H. Osborn, Superconformal symmetry, correlation functions and the operator

product expansion, Nucl. Phys. B 629 (2002) 3 [hep-th/0112251] [INSPIRE].

[36] L.F. Alday and A. Bissi, Unitarity and positivity constraints for CFT at large central charge,

JHEP 07 (2017) 044 [arXiv:1606.09593] [INSPIRE].

[37] J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106

[arXiv:1503.01409] [INSPIRE].

[38] M.S. Costa, T. Hansen and J. Penedones, Bounds for OPE coefficients on the Regge

trajectory, JHEP 10 (2017) 197 [arXiv:1707.07689] [INSPIRE].
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