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1 Introduction

Higher-dimensional gauge theories are in general not renormalizable as the gauge cou-

pling becomes infinitely strong at high energies. However, those theories may make sense

in the ultraviolet (UV) region when they have a non-trivial fixed point in UV. Such a

phenomenon has arisen in the context of five-dimensional (5d) gauge theories with eight
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supercharges. From the field theoretic point of view, a necessary condition for the exis-

tence of UV complete 5d theories is that the metric of the Coulomb branch moduli space,

which may be computed from the effective prepotential, must be non-negative [2, 3]. The

condition revealed a possibility of the existence of some UV complete 5d gauge theories

and their existence has been also confirmed by explicitly constructing the 5d gauge theo-

ries from M-theory compactifications on non-compact Calabi-Yau threefolds [2–5] and also

from 5-brane webs in type IIB string theory [6, 7].

However, it had turned out that 5-brane web diagrams can realize 5d gauge theories

that lie beyond the bound given in [3]. For example, one can add the hypermultiplets in the

fundamental representation (flavors) up to Nf = 2N + 4 for an SU(N) gauge theory [8, 9]1

although the original bound was Nf = 2N . Recently, the field theoretic condition for the

existence of UV complete 5d gauge theories has been revisited and it was claimed in [12]

that the original condition discussed in [2, 3] should be relaxed. Namely, the metric of

the Coulomb branch moduli space should be non-negative only on a “physical” Coulomb

branch moduli space where the tension of monopole strings is non-negative. The SU(N)

gauge theory with Nf = 2N + 4 flavors, which has the 5-brane web realization, indeed

satisfies the new criteria. Not only that, the new condition in fact led to a large class of

new UV complete 5d theories in [12]. Although the criteria is a necessary condition for

the existence of UV complete 5d gauge theories, most of the new rank 2 gauge theories

found in [12] have been also constructed geometrically using M-theory compactifications

on non-compact Calabi-Yau threefolds in [1], which confirms their existence. Furthermore,

the geometric construction implies intriguing dualities including 5d G2 gauge theories. For

example, the identical physics is described by the G2 gauge theory with six flavors, the

SU(3) gauge with six flavors and the Chern-Simons (CS) level 4 and the Sp(2) gauge theory

with 4 flavors and two hypermultiplets in the antisymmetric representation.

It is then natural to ask if the 5d rank 2 gauge theories constructed by geometries in [1]

also admit a realization by 5-brane web diagrams in type IIB string theory. In this paper,

we propose 5-brane web diagrams for all the 5d rank 2 gauge theories whose existence is

geometrically confirmed in [1]. In particular, we start with a 5-brane web for the pure G2

gauge theory [13], and add more flavors to explicitly construct new 5-brane web diagrams

for the G2 gauge theory with six flavors, the SU(3) gauge theory with six flavors and the CS

level 4 and the Sp(2) gauge theory with four flavors and two antisymmetric hypermultiplets.

Their 5-brane diagrams have a periodic direction implying a 6d UV fixed point. Further-

more, the dualities among the G2, SU(3) and Sp(2) gauge theories may be understood

from S-duality by rotating the 5-brane web diagrams accompanied with Hanany-Witten

transitions by moving 7-branes. The explicit realization of the dualities gives us the duality

maps for the Coulomb branch moduli and parameters among these three theories.

It is worth noting that in constructing 5-brane webs for an SU(3) gauge theory with

higher CS level, in particular, pure SU(3) gauge theory with the CS level 7 which is dual

to pure G2 gauge theory, one may naively attempt to construct the theories with higher

CS level by increasing the charge difference of the external 7-branes. In this way, the

1The same conclusion was also obtained from the instanxton operator analysis in [10, 11].

– 2 –



J
H
E
P
1
2
(
2
0
1
8
)
0
1
6

external 7-brane inevitably collide each other as moving each 7-brane to infinity. Up to

the CS level 6, a suitable handling the monodromy cut of 7-branes would give a 5-brane

web which the resulting 7-branes are no longer collide and thus can be taken to infinity.

But for an SU(3) theory with CS level 7 or higher, such procedure involving a 7-brane

going across another 7-brane often leads to ill-defined 5-brane web such that a 7-brane

after going across monodromy cut of other 7-brane bends toward the center of the 5-brane

web due to 7-brane charge changes from the monodromy. Hence, though not conventional,

a 5-brane construction for pure SU(3) theory with CS level 7 seems best understood from

the S-duality of pure G2 gauge theory.

Starting from these 5-brane webs for the G2 theories of various flavors or their dual

SU(3) or Sp(2) theories, one can add different choices of hypermultiplets in an appropriate

representation and to build up the tree of all theories connected by flavor decoupling or

adding. In addition, a finer understanding of the 5-brane web for G2 theory without

flavor allows us to find the web for SU(3) theory without flavor and CS level 9. These

leads to the construction of the 5-brane webs for the whole family rank 2 gauge theories

constructed in [1]. A 5-brane web diagram for 5d SU(3) theory of the CS level 3
2 and

with one hypermultiplet in the symmetric representation, can be constructed with O7+-

and O7−-planes, which reveals a new 5-brane structure for this marginal theory. From the

constructed 5-brane web diagrams we can also obtain the duality map between the SU(3)

gauge theory with nine flavors and the CS level 3
2 and the Sp(2) gauge theory with eight

flavors and single antisymmetric hypermultiplet.

The organization of this paper is as follows. In section 2, we construct 5-brane web

diagrams for the G2 gauge theories with 0, 2 and 6 flavors and see the dualities to an SU(3)

or an Sp(2) gauge theory with or without flavors. The duality map is obtained in each case.

We also present a web diagram of the Sp(2) gauge theories from the viewpoint of SO(5).

In section 3, we consider deformations from the diagram in section 2 and obtain the other

SU(3) gauge theories and their dual Sp(2) gauge theories with the duality map. Section 4

is devoted for another deformation to the Sp(2) gauge theory with three hypermultiplets

in the antisymmetric representation from the viewpoint of SO(5). In section 5 we propose

a 5-brane web diagram for the pure SU(3) gauge theory with the CS level 9. We will

then summarize our results in section 6. Appendix A explains some subtle identification

of the inverse of the squared gauge coupling for SO(5) gauge theories with spinors. In

appendix B, we summarize all the 5-brane webs for rank 2 theories which were constructed

using geometries in [1].

2 G2-SU(3)-Sp(2) sequence

In this section, we first consider dualities involving G2 gauge theories with flavors. A dual

description of a G2 gauge theory is given by an SU(3) gauge theory and/or an Sp(2) gauge

theory depending on flavors [1]. We have constructed 5-brane web diagrams for G2 gauge

theories in [13] and here generalize the construction to the case for the G2 gauge theory

with six flavors which may have a 6d UV completion. We will see the dualities from the

viewpoint of 5-brane web diagrams.
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(a)

a1
a2

m0
(b)

Figure 1. (a): A 5-brane web diagram for the pure G2 gauge theory which is realized with an Õ5-

plane. The orange line represents the Õ5-plane. The convention of the Õ5-plane is different from

the one used in [13]. Here, the monodomry branch cut from a fractional D7-brane is extends from

left to right whereas it extends from right to left in [13]. (b): The gauge theory parameterization

of the pure G2 diagram.

2.1 Without matter

Before considering the duality involving G2 gauge theory with flavors, we start from the

case without matter. The pure G2 gauge theory is dual to the pure SU(3) gauge theory

with the CS level 7 [1]. We can also see the duality from the viewpoint of 5-brane webs.

Let us first review a 5-brane web diagram for the pure G2 gauge theory. Two types

of the 5-brane web diagram for the pure G2 gauge theory have been proposed in [13]. In

order to see the duality to the pure SU(3) gauge theory with the CS level 7, it is useful to

consider the pure G2 diagram with an Õ5-plane.

The strategy to realize the 5-brane web diagram for the pure G2 gauge theory was

as follows. We first start from a 5-brane web diagram for the SO(7) gauge theory with a

hypermultiplet in the spinor representation. Then the Higgsing associated to the spinor

matter yields the pure G2 gauge theory at low energies. Hence if we apply the Higgsing

procedure to the 5-brane web diagram for the 5-brane web of the SO(7) gauge theory

with one spinor, the resulting diagram should be a 5-brane web for the pure G2 gauge

theory. The diagram obtained in this way is depicted in figure 1a. Figure 1b shows the

parameterization for the Coulomb branch moduli a1, a2 and the inverse of the squared

gauge coupling m0.

From the 5-brane web for the pure G2 gauge theory in figure 1a, we can see the duality

to the pure SU(3) gauge theory with the CS level 7. To see the duality, we first take the

S-duality which corresponds to the π
2 rotation for the diagram in figure 1a. In terms of

geometry it corresponds to the fiber-base duality [1, 7, 14, 15]. Application of the π
2 rotation

to the diagram in figure 1a leads to a 5-brane web in figure 2, where we have postulated the

S-dual object of an Õ5
±

-plane as an ÕN
±

-plane [16–21]. We claim that this 5-brane web

in figure 2 represents pure SU(3) gauge theory with Chern-Simons level 7. We justify this

claim by comparing the area of the compact faces of the web diagram with the effective

prepotential or the tension of monopole string. This claim can also be justified from the

decoupling of two flavors from 5-brane description for the SU(3) gauge theory with CS

level 6 and two flavors, which has a clear 5-brane interpretation as a Higgsing of a quiver

description SU(2)− SU(3)3 − SU(2). We will discuss more detail in section 2.2.
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Figure 2. A 5-brane web diagram for the pure SU(3) gauge theory with the CS level 7. The green

line represents an ÕN-plane.

a1
a2

a3

m0

(a)

①

②

③④

(b)

Figure 3. (a): The gauge theory parameterization for the 5-brane web diagram of the pure SU(3)

gauge theory in figure 2. a1, a2, a3 are the Coulomb branch moduli of SU(3). The dotted line in the

center is the location of the origin in the vertical direction. m0 is the inverse of the squared gauge

coupling. (b): A labeling for the faces in the 5-brane web in figure 2.

We now compute the area from the 5-brane web in figure 2 and compare it with the

effective prepotential or the tension of the monopole string for the pure SU(3) gauge theory

from the diagram. For that we first assign gauge theory parameters to the diagram as in

figure 3a. a1, a2, a3 (a1+a2+a3 = 0) are the Coulomb branch moduli and m0 is the inverse

of the squared gauge coupling. Then the area of the faces in figure 3b becomes

1© = (a1 − a2)(a1 − a3), (2.1)

2© = (a1 − a2)(m0 + a2), (2.2)

3© = (a1 − a2)(a1 − a3), (2.3)

4© = (a2 − a3)(m0 − a1 + 2a2). (2.4)

We then compare the area (2.1)–(2.4) with the effective prepotential of the pure SU(3)

gauge theory with the CS level 7. In general, the effective prepotential of a 5d gauge

– 5 –
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theory with a gauge group G and matter is given by a cubic function of the Coulomb

branch moduli φi [3, 4, 22]

F(φ) =
1

2
m0hijφiφj +

κ

6
dijkφiφjφk +

1

12

 ∑
r∈roots

|r · φ|3 −
∑
f

∑
w∈Rf

|w · φ−mf |3
 ,

(2.5)

where m0 is the inverse of the squared gauge coupling, κ is the classical Chern-Simons

level and mf is the mass parameter for hypermultiplets in the representation Rf . We also

defined hij = Tr(TiTj) and dijk = 1
2Tr (Ti{Tj , Tk}) where Ti are the Cartan generators of

the Lie algebra associated to G. Then the effective prepotential for the pure SU(3) gauge

theory with the CS level 7 becomes

FSU(3)7 =
m0

2
(a21 + a22 + a23) +

1

6

(
(a1 − a2)3 + (a1 − a3)3 + (a2 − a3)3

)
+

7

6

(
a31 + a32 + a33

)
= m0

(
φ21 − φ1φ2 + φ22

)
+

4

3
φ31 + 3φ21φ2 − 4φ1φ

2
2 +

4

3
φ32, (2.6)

where we changed the basis of the Coulomb branch moduli into the Dynkin basis by using

the relation

a1 = φ1, a2 = −φ1 + φ2, a3 = −φ2, (2.7)

in (2.6). The tension of the monopole string of the pure SU(3) gauge theory with the CS

level 7 is given by taking a derivative of (2.6) with respect to the Coulomb branch moduli

φ1, φ2. Hence the tension is given by

∂FSU(3)7

∂φ1
= (2φ1 − φ2)(m0 + 2φ1 + 4φ2), (2.8)

∂FSU(3)7

∂φ2
= (−φ1 + 2φ2)(m0 − 3φ1 + 2φ2). (2.9)

We can compare the tension (2.8), (2.9) with the area (2.1)–(2.4) to see the pure SU(3)

gauge theory realized by the web in figure 2 have the CS level 7. It turns out that D3-brane

does not cover each face of the diagram in figure 3b. The comparison between the effective

prepotential of the pure G2 gauge theory and the area of the faces in [13] revealed that one

face which D3-brane is wrapped on is 1©+ 2©+2 3© and the other face is 4©. The coefficient

2 in front of 3© may be interpreted by the effect of including the mirror image. Then the

explict comparison between (2.8), (2.9) and (2.1)–(2.4) indeed gives the relations

∂FSU(3)7

∂φ1
= 1©+ 2©+ 2× 3©, (2.10)

∂FSU(3)7

∂φ2
= 4©. (2.11)

Therefore, the equalities (2.10) and (2.11) imply that the pure SU(3) gauge theory realized

by the diagram in figure 2 has the CS level 7.

Since we have a single 5-brane web diagram for the pure G2 gauge theory and the pure

SU(3) gauge theory with the CS level 7, it is also possible to obtain an explicit duality map

– 6 –
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between the parameters of the two theories. The length of a line in the diagram in figure 2

can be written by the two parameterizations. Since it is a single line the length written by

the two parameterizations should be the same. Then we obtain the following duality map

m
SU(3)
0 = −m

G2
0

3
, (2.12)

φ
SU(3)
1 = φG2

2 +
1

3
mG2

0 , (2.13)

φ
SU(3)
2 = φG2

1 +
2

3
mG2

0 , (2.14)

where we used the Dynkin basis also for the Coulomb branch moduli of the pure G2 gauge

theory by using (2.24).

2.2 With matter

In section 2.1, we saw that the 5-brane web diagram of the pure G2 gauge theory in figure 1a

is S-dual to the 5-brane web diagram of the pure SU(3) gauge theory with the CS level 7

in figure 2. In this section, we consider a 5-brane web diagram of the G2 gauge theory with

two hypermultiplets in the fundamental representation (flavors). The G2 gauge theory with

two flavors (G2 + 2F) is dual not only to the SU(3) gauge theory with two hypermultiplets

in the fundamental representation and the CS level 6 (SU(3)6 + 2F) but also to the Sp(2)

gauge theory with two hypermultiplets in the antisymmetric representation and the non-

trivial discrete theta angle (Sp(2)π + 2AS) [1]. The two dualities are also indeed seen from

the viewpoint of 5-brane webs.

The 5-brane web in figure 1a for the pure G2 gauge theory is obtained by Higgsing a

5-brane web for the SO(7) gauge theory with one spinor. In order to introduce one flavor

in the G2 gauge theory we can consider a Higgsing of an SO(7) gauge theory with a spinor

or a flavor in addition to one spinor which we use for the Higgsing. A hypermultiplet in the

vector representation of SO(7) becomes one hypermultiplet in the fundamental representa-

tion of G2 after the Higgsing, while a hypermultiplet in the spinor representation of SO(7)

becomes one flavor and a singlet of G2. For later convenience, we introduce two flavors to

the pure G2 gauge theory by considering a Higgsing of the SO(7) gauge theory with three

spinors. The 5-brane web diagram obtained by the Higgsing is given in figure 4a. One can

perform a “generalized flop transition” [13, 23] for the Sp(0) part in figure 4a and then the

diagram becomes the one in figure 4b.

We can also assign the gauge theory parameters to the length of the 5-branes as in

figure 5a. a1 and a2 are the Coulomb branch moduli of the G2 gauge theory. Since

the G2 gauge theory with two flavors originates from the SO(7) gauge theory with three

spinors where two spinors are attached to the left side and one spinor, which is used for

the Higgsing, is attached to the right side the diagram of the SO(7) diagram before the

Higgsing. Hence, the inverse of the squared gauge coupling of the G2 gauge theory with

two flavors can be read off similarly to the case of the SO(7) gauge theory with two spinors.

As explained in appendix A, the inverse of the squared gauge coupling, m0, in this case

can be computed by extrapolating the leftmost (1,−1) 5-brane and the rightmost (1, 1)

5-brane. Hence m0 of the G2 gauge theory with two flavors can be chosen in figure 5.

– 7 –
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(a) (b)

Figure 4. (a): A 5-brane web diagram for the G2 gauge theory with two flavors plus two singlets.

The matter is originated from two spinors of a SO(7) gauge theory before the Higgsing. (b): Another

5-brane web diagram for the G2 gauge theory with two flavors and two singlets, which is obtained

by performing a flop transition to the diagram in figure 4a.

a1

a2

m0
(a)

n2

n1

n1

(b)

Figure 5. (a): The parameterization for the inverse of the squared gauge coupling m0 and the

Coulomb branch moduli a1, a2. (b): Two parameters n1, n2 related to mass parameters for the

two flavors.

The diagram contains two more parameters n1, n2 depicted in figure 5b, which are

determined by the position of asymptotic 5-branes. The two parameters are related to the

mass parameters for the two flavors. From the viewpoint of the Sp(0), n1 is the inverse

of the squared gauge coupling of the Sp(0) and n2 is the mass parameter for one flavor of

the Sp(0). Hence, the two parameters are associated to the flavor symmetry U(1)×SO(3).

The SO(3) arises from the flavor D5-brane whose height is n2 on top of an Õ5
−

-plane. On

the other hand, the two flavors of the G2 gauge theory yield an Sp(2) flavor symmetry.

Therefore, we need to change the basis given by the embedding U(1) × SO(3) ⊂ Sp(2) to

obtain the mass parameters m1,m2 of G2 + 2F from n1, n2,
2

m1 =
1

2
(n1 + n2), m2 =

1

2
(n1 − n2). (2.15)

One can check the validity of the parameterization by computing the prepotential of

the G2 gauge theory with two flavors. From the parameterization, we can compute the

tension of the monopole string by the area of the faces in figure 6. The label of the faces

are given in figure 6. The area of the faces is given by

2We choose the normalization of the mass parameters m1,m2 so that they agree with the mass parameter

in the expression (2.5) of the effective prepotential.

– 8 –
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①

②

③

④

⑤

Figure 6. A labeling for the faces in the diagram of the G2 gauge theory with two flavors.

1© = (a1 − a2)(m0 −m1 −m2 + 3a1 + a2), (2.16)

2© = a2(m0 −m1 −m2 + 3a1 + 2a2), (2.17)

3© = a1a2, (2.18)

4© =
1

2

(
2m0a2 − 2m1a2 −m2

2 + 2m2a1 − a21 + 4a1a2 + 3a22
)
, (2.19)

5© =
1

2
(−m2 + a1 + a2)

2. (2.20)

We then compare the area (2.16)–(2.20) with the tension of the monopole string com-

puted from the effective prepotential (2.5). In order to compute the prepotential of the

G2 gauge theory with two flavors, we need to determine the phase corresponding to the

diagram in figure 4b. The phase can be fixed from the requirement that the length of any

5-brane in the diagram is positive. Then the parameterization given in figure 5a and (2.15)

implies the phase

a1 + a2 −m1 < 0, a1 −m1 < 0, a2 −m1 < 0,

−a2 −m1 < 0, −a1 −m1 < 0, −a1 − a2 −m1 < 0, (2.21)

for the flavor with the mass parameter m1 and

a1 + a2 −m2 > 0, a1 −m2 < 0, a2 −m2 < 0,

−a2 −m2 < 0, −a1 −m2 < 0, −a1 − a2 −m2 < 0, (2.22)

for the flavor with the mass parameter m2. The effective prepotential of the G2 gauge

theory with two flavors on this phase becomes

FG2+2F = m0(φ
2
1 − 3φ1φ2 + 3φ32) +

1

6
(−3m3

1 − 6m1(φ
2
1 − 3φ1φ2 + 3φ22) (2.23)

− 2m3
2 − 3m2

2φ2 − 3m2(2φ
2
1 − 6φ1φ2 + 5φ22) + 8φ31 − 24φ21φ2 + 18φ1φ

2
2 + 7φ32),

where we used the Dynkin basis

a1 = φ1 − φ2, a2 = −φ1 + 2φ2, (2.24)

for the Coulomb branch moduli.

– 9 –
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Figure 7. The 5-brane web diagram with an ÕN -plane obtained after performing the S-duality

to the diagram in figure 4b.

Then the tension of the monopole string of the G2 gauge theory with two flavors is

given by taking a derivative of the effective prepotential (2.23) with respect to the Coulomb

branch moduli φ1, φ2. Note that as in the case of the pure SU(3) gauge theory with the CS

level 7, a D3-brane will not be wrapped on arbitrary five faces but needs to be wrapped on

a particular linear combination. In particular we need to consider 2©+ 3©+ 2× 4©+ 5© for

the tension given by a derivative with respect to φ2. We indeed find the agreement between

the linear combination of the area (2.16)–(2.17) and the tension of the monopole string,

∂FG2+2F

∂φ1
= 1©, (2.25)

∂FG2+2F

∂φ2
= 2©+ 3©+ 2× 4©+ 5©. (2.26)

The equalities (2.25) and (2.26) implies the correctness of the parameterization in figure 5a

and (2.15) and they also reconfirm that the diagram in figure 4b gives rise to the G2 gauge

theory with two flavors.

2.2.1 Duality to SU(3)6 + 2F

As we saw the duality between the pure G2 gauge theory and the pure SU(3) gauge theory

with the CS level 7 from the 5-brane webs in section 2.1, it is also possible to see the

duality between the G2 gauge theory with two flavors and the SU(3) gauge theory with

two flavors and the CS level 6 from the 5-brane web in figure 4b. Applying the S-duality

to the diagram in figure 4b yields a diagram in figure 7. Since the diagram contains three

color D5-branes, the diagram may be interpreted as an SU(3) gauge theory.

The diagram contains two more parameters except for the gauge coupling, which are

determined by the position of asymptotic 5-branes. Hence the parameters are associated

to mass parameters of some matter of the SU(3) gauge theory. We argue that the matter

is two hypermultiplets in the antisymmetric representation, which is equivalent to the

antifundamental representation. Let us see a 5-brane web diagram for the SU(3) gauge
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Figure 8. (a): A diagram of an SU(3) gauge theory one hypermultiplet in the antisymmetric

representation and the CS level 1
2 . (b): The deformation which changes the diagram in figure 8a

into the one for an SU(3) gauge theory with one flavor. (c): A diagram for the SU(3) gauge theory

with one flavor and the CS level 1
2 . (d): A diagram of the SU(3)−1 − SU(2) quiver theory which

can be Higgsed to the diagram in figure 8a.

theory with one hypermultiplet in the antisymmetric representation and the CS level 1
2 [24],

which is depicted in figure 8a. Since the antisymmetric representation of SU(3) is equivalent

to the antifundamental representation, one can deform the diagram in figure 8a into the

one from which we can explicitly see the presence of one flavor. When we move the (0, 1)

7-brane in figure 8b according to the indicated arrow, the HW transition gives a diagram

in figure 8c. This is nothing but a diagram giving rise to the SU(3) gauge theory with one

flavor and the CS level 1
2 .

This diagram can be obtained by a Higgsing from the SU(3) − SU(2) quiver theory

where the CS level of the SU(3) is −1 [25]. The theory has an SU(2) flavor symmetry

associated to the two external NS5-branes extending in the upper direction in figure 8.

One can perform a Higgsing associated to the SU(2) flavor symmetry, which corresponds

to the tuning of the length of the 5-branes indicated by the purple × in figure 8d. The

diagram exactly reduces to the one in figure 8a. Namely, the Higgsing of the quiver

SU(3)−1−SU(2) associated to the flavor symmetry SU(2) can yield the SU(3) gauge theory

with a hypermultiplet in the antisymmetric representation and the CS level 1
2 .

Extending the idea of the Higgsing, an SU(3) gauge theory with two antisymmetric

hypermultiplets can originate from a Higgsing of the SU(2)−SU(3)3−SU(2) quiver theory.

Namely a Higgsing of the two SU(2) gauge theories may yield two hypermultiplets in the

antisymmetric representation for the SU(3). The SU(2) − SU(3)3 − SU(2) quiver theory

can be realized by using an ON−-plane [21, 26] as in figure 9a. The two color branes for

one of the SU(2) gauge group are given by the orange lines in figure 9a and the two color
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Figure 9. (a): A diagram for the SU(2)−SU(3)3−SU(2) quiver theory. (b): The first tuning. (c):

The second tuning. (d): The diagram after the two Higgsings. (e): The diagram after applying a

flop transition to the diagram in figure 9d. This diagram is equivalent to the one in figure 7.

branes for the other SU(2) gauge group are represented by red segments in figure 9a. The

theory also has an SO(4) ' SU(2)× SU(2) flavor symmetry associated to the two external

NS5-branes extending in the upper direction with an ON−-plane in figure 9a. We then

perform two Higgsings which break the SU(2)×SU(2) flavor symmetry. The first Higgsing

is realized by tuning the length of the 5-branes indicated by the purple × in figure 9b.

Then the second Higgsing is achieved by tuning the length of the 5-branes indicated by

the purple × in figure 9c. Then the resulting diagram becomes the one in figure 9d.

After the two Higgsings, only one of the two color branes for each SU(2) gauge group

remains and the two SU(2) gauge groups are broken. In order to connect to the diagram in

figure 7, we perform one flop transition and obtain the diagram in figure 9e. Although the

diagram in figure 9e is written with an ON−-plane. One can change the ON−-plane into an
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Figure 10. The gauge theory parameterization for the 5-brane web diagram of the SU(3) gauge

theory realized in figure 7. a1, a2, a3 are the Coulomb branch moduli of SU(3). The dotted line in

the center is the location of the origin in the vertical direction. l1 and l2 is related to the inverse of

the squared gauge coupling m0 by l1 + l2 = 2m0.

ÕN
−

-plane by moving a fractional D7-brane which may be put at the end of an external

NS5-brane on an ON−-plane [13, 27]. Therefore, the Higgsings of the two SU(2) in the

quiver theory SU(2)−SU(3)3−SU(2) yields the diagram in figure 7, implying that the SU(3)

theory contain two hypermultiplets in the antisymmetric representation. Furthermore, the

Higgsing of one SU(2) in figure 8d increased the CS level by 3
2 . Hence it is natural to expect

that the Higgsing of the two SU(2) through the process 9b–9d increases the CS level by
3
2 × 2 = 3. Hence, the CS level after the Higgsing will be 6. In summary, the diagram

in figure 7 may yield the SU(3) gauge theory with two antisymmetric hypermultiplets, or

equivalently two flavors, and the CS level 6.

Let us confirm that the diagram in figure 7 gives rise to the SU(3) gauge theory with

two flavors and the CS level 6 from the computation of the effective prepotential. For that

we assign gauge theory parameters for the length of 5-branes in figure 7. The inverse of

the squared gauge coupling m0 = l1+l2
2 and the Coulomb branch moduli a1, a2, a3, (a1 +

a2 +a3 = 0) are given in figure 10, which is the same parameterization as that for the pure

SU(3) gauge theory with the CS level 7 in figure 3a.

In order to see the parameterization of the mass parameters m1,m2, let us first recall

how the mass parameter for antisymmetric hypermultiplet appears in figure 8a. The length

associated to the mass parameter m is depicted in figure 11a. It is give by twice as long

as the distance between the location of an O7−-plane and the origin of the height for the

SU(3) color branes. The location of the O7−-plane can be determined by the intersection

point between the line of the (0, 1) 5-brane and the line of the (2,−1) 5-brane. In terms

of the length in the diagram for the SU(3)−1 − SU(2) quiver theory, the mass parameter

is twice as long as the distance between the origin of the height for the SU(3) color branes

and the origin of the height for the SU(2) color branes as in figure 11b. The distance

between the two origins of the SU(3) and the SU(2) is nothing but the mass parameter

for the bifundamental matter. Therefore, the antisymmetric mass is originated from the

bifundamental mass before the tuning.
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m /21m /22

~

(c)

Figure 11. (a): The mass parameter for a hypermultiplet in the antisymmetric representation in

figure 8a (b): How the mass parameter in figure 11a is related to the length in the SU(3)−1−SU(2)0
quiver theory. (c): The mass parameters for two antisymmetric hypermultiplets. The origin for

the SU(3) color branes is denoted by the black dotted line. The origin for the SU(2) realized by

orange/red lines is depicted by the orange/red dotted line.

We can now generalize the discussion for the case with two antisymmetric hypermulti-

plets. Namely, a mass parameter is twice as long as the distance between the origin of the

location of the SU(3) color branes and the origin of the location for the one of the SU(2).

The orange dotted line in figure 11c is originated from the origin for the SU(2) color branes

given by the orange lines in figure 9a. One the other hand, the red dotted line in figure 11c

is originated from the origin for the SU(2) color branes given by the red lines in figure 9a.

Therefore, the two mass parameters are related to the distance between the origin of the

SU(3) and the orange dotted line or the red dotted line as in figure 11c.

For the comparison with the effective prepotential of the SU(3) gauge theory with two

flavors and the CS level 6, we first compare the area of the faces of the diagram with the

tension of the monopole string for the SU(3) gauge theory with two flavors and the CS

level 6. We again use the labels for the faces in figure 6. Then the area of the five faces is

given by

1© =
1

2
(−φ1 + 2φ2)(2m0 +m1 +m2 − 6φ1 + 4φ2), (2.27)

2© = (2φ1 − φ2)(φ1 + φ2), (2.28)

3© =
1

2
(2φ1 − φ2)(2m0 +m1 +m2 − 2φ1 + 2φ2), (2.29)

4© =
1

2

(
−m2

1 − 2m1φ1 + 3φ21 + 2φ1φ2 − 2φ22
)
, (2.30)

5© =
1

2
(m1 + φ1)

2, (2.31)

where we used the Dynkin basis (2.7).

The area corresponds to the tension of the monopole string which can be computed by

taking a derivative of the effective prepotential with respect to Coulomb branch moduli.

The effective prepotential of the SU(3) gauge theory with two flavors and the CS level 6

may be calculated from the general formula (2.5). The condition that the length of the
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5-branes in figure 7 is positive implies the following phase

−a1 −m1 < 0, −a2 −m1 > 0, −a3 −m1 > 0, (2.32)

for one antisymmetric hypermultiplet with mass m1 and

−a1 −m2 > 0, −a2 −m2 > 0, −a3 −m2 > 0, (2.33)

for the other antisymmetric hypermultiplet with mass m2. Here we used a1 + a2 + a3 = 0

and expressed the weight of the antisymmetric representation by the weight of the antifun-

damental representation. Then the effective prepotential becomes

FSU(3)6+2F = m0(φ
2
1 − φ1φ2 + φ22) +

1

12
(m3

1 − 6m2
1φ1 + 6m1φ2(−φ1 + φ2)

+ 3m3
2 + 6m2(φ

2
1 − φ1φ2 + φ22) + 2(7φ31 + 18φ21φ2 − 24φ1φ

2
2 + 8φ32)). (2.34)

Then we find the expected relation between the area (2.27)–(2.31) and the tension of the

monopole string,

∂FSU(3)6+2F

∂φ1
= 2©+ 3©+ 2× 4©+ 5©, (2.35)

∂FSU(3)6+2F

∂φ2
= 1©. (2.36)

The equalities (2.35) and (2.36) confirms that the SU(3) gauge theory has the CS level 6

and two flavors.

By comparing the parameterization of the G2 gauge theory and that of the SU(3)

gauge theory, we can also obtain the duality map between the parameters. The duality

map is given by

m
SU(3)
0 =

mG2
F,1 +mG2

F,2

2
, (2.37)

m
SU(3)
AS,1 =

1

3

(
−mG2

0 +mG2
F,1 − 2mG2

F,2

)
, (2.38)

m
SU(3)
AS,2 =

1

3

(
−mG2

0 − 2mG2
F,1 +mG2

F,2

)
, (2.39)

φ
SU(3)
1 = φG2

2 +
1

3

(
mG2

0 −m
G2
F,1 −m

G2
F,2

)
, (2.40)

φ
SU(3)
2 = φG2

1 +
1

3

(
2mG2

0 − 2mG2
F,1 − 2mG2

F,2

)
, (2.41)

where we put the subindex standing for the representation for the matter. The labeling of

the number for the masses is the same as before. We will use this convention for writing

duality maps hereafter.

We note that if one decouples two hypermultiplets from the 5-brane web in figure 9e

(or equivalently figure 7), then the resulting diagram is same as the 5-brane web in figure 2,

which we claimed a 5-brane web for the pure SU(3) theory with CS level 7. This hence

provides a support of our construction of 5-brane web for the SU(3) gauge theory with the

CS level 7, discussed in section 2.1, as the decoupling of two flavors would increase the CS

level by 1.
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Figure 12. (a): The diagram obtained after applying three flop transitions to the diagram in

figure 4b. (b): Moving an external (1,−1) 7-brane and an external (1, 1) 7-brane.

(a) (b)

Figure 13. (a): The diagram after moving the 7-branes in figure 12b. (b): The diagram which is

S-dual to the one in figure 13a.

2.2.2 Duality to Sp(2)π + 2AS

We have seen that the 5-brane diagram of the G2 gauge theory with two flavors is S-dual

to the diagram of the SU(3) gauge theory with two flavors and the CS level 6. In fact, the

G2 gauge theory with two flavors admits another dual description given by the Sp(2) gauge

theory with two hypermultiplets in the antisymmetric representation and the non-trivial

discrete theta angle. We will argue that this duality can be also seen from the 5-brane

web diagram.

We first start from the 5-brane web for the G2 gauge theory with two flavors in figure 4b.

In order to see the duality, we first perform two flop transitions and obtain a diagram in

figure 12a. We then move a (1,−1) 7-brane and a (1, 1) 7-brane according the arrows in

figure 12b. After moving the two 7-branes the diagram becomes the one in figure 13a. At

this stage, we apply the S-duality to the diagram in figure 13a. Then the resulting configu-

ration contains a pair of a (1,−1) 7-brane and a (1, 1) 7-brane in the same 5-brane chamber

as in figure 13b. The (1,−1) 7-brane and the (1, 1) 7-brane may form an O7−-plane [28]

and we obtain the configuration in figure 14a. Since we have four color D5-branes with an

O7−-plane, the theory realized by the diagram in figure 14a may be an Sp(2) gauge theory.

A next question is whether the diagram in figure 14a contains two hypermultiplets in

the antisymmetric representation of the Sp(2). As we saw in section 2.2.1, the presence
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Figure 14. (a): Forming an O7−-plane from the (1,−1) 7-brane and the (1, 1) 7-brane in figure 13b.

(b): Moving the (1,−1) 7-brane and the (1.1) 7-brane in figure 13b to infinitely far away.

(a) (b)

Figure 15. (a): A 5-brane web for the Sp(2) gauge theory with one hypermultiplet in the anti-

symmetric representation. (b): A 5-brane web diagram for the Sp(2)0− SU(2)0 quiver. Tuning the

length of the 5-brane with the purple × yields the 5-brane in figure 15a.

of the antisymmetric hypermultiplets can be understood from a Higgsing of an SU(2)0 −
Sp(2)− SU(2)0 quiver theory also for an Sp(2) gauge theory. For that let us first see how

the antisymmetric hypermultiplet of an Sp(2) gauge theory can appear from a 5-brane web.

A 5-brane diagram for the Sp(2) gauge theory with one antisymmetric hypermultiplet and

the zero discrete theta angle is given in figure 15a [24]. The two external (1, 1) 5-branes in

figure 15a realizes an SU(2) flavor symmetry from the one antisymmetric hypermultiplet. It

is also possible to see that the diagram for the Sp(2)0 gauge theory with one antisymmetric

hypermultiplet in figure 15a can be obtained from a Higgsing of the Sp(2)0 − SU(2)0
quiver theory. A 5-brane web diagram of the Sp(2) − SU(2) quiver theory with the zero

discrete theta angle for both gauge groups is depicted in figure 15b. The diagram shows

an SU(2) × SU(2) flavor symmetry generated non-perturbatively from the viewpoint of

the quiver theory. We can then perform a Higgsing associated to one of the SU(2) flavor

symmetry by tuning the length of 5-branes indicated by the purple × in figure 15b. Then

the Higgsing precisely yields the diagram in figure 15a. Therefore, the Sp(2) gauge theory

with a hypermultiplet in the antisymmetric representation and the zero discrete theta angle

can be obtained from the Higgsing of the Sp(2)0 − SU(2)0 quiver theory.
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Figure 16. (a): A 5-brane diagram for an SU(2)0 − Sp(2)π − SU(2)0 quiver gauge theory. The

D5-branes in red yield color branes for one SU(2) and the D5-branes in orange gives color branes

for another SU(2). (b): Another description for the diagram in figure 16a after performing several

flop transitions. We can see that the Sp(2) gauge theory has the non-trivial discrete theta angle.

We now apply the Higgsing argument to a diagram with an ON−-plane. Namely we

consider a Higgsing of an SU(2)−Sp(2)−SU(2) quiver theory to obtain a 5-brane diagram

of an Sp(2) gauge theory with two hypermultiplets in the antisymmetric representation.

An SU(2)−Sp(2)−SU(2) quiver theory is realized by a diagram in figure 16a. In figure 16a,

the two SU(2) gauge theories are realized from an ON−-plane. The D5-branes in the red

color represents one SU(2) and the D5-branes in the orange color gives another SU(2).

From the parallel external (0, 1) 5-branes, the diagram exhibits an SO(4) × SO(4) flavor

symmetry. It turns out that we need to consider the Sp(2) gauge theory with the discrete

theta angle π in order to connect to the diagram in figure 14a. The discrete theta angle

of the Sp(2) gauge group can be more easily seen from the diagram in figure 16b. When

we take the length of the middle (4,−1) 5-brane to be infinitely large, then the diagram is

decomposed into two parts. The left part gives an Sp(2) gauge theory and the right part

yields the two disconnected SU(2) gauge theories. Then the Sp(2) gauge theory realized

in the left part of the diagram in figure 16b has the discrete theta angle π [24, 25]. On

the other hand, the diagram for the two disconnected SU(2) gauge theories exhibits an

SO(4) ' SU(2) × SU(2) flavor symmetry. Therefore the two SU(2) gauge theories both

have the zero discrete theta angle.

From the diagram in figure 16a, we consider two Higgsings which break the two SU(2)

gauge groups. The Higgsing will also reduce the flavor group from SO(4)×SO(4)→ SO(4).

We in particular consider a Higgsing which breaks the SO(4) flavor symmetry associated to

the parallel (0, 1) 5-branes going in the upper direction. The Higgsing can be understood

by two steps where each step is associated to each SU(2) in the SO(4). The first Higgsings

is carried out by tuning the length of the 5-branes with the purple × in figure 17a and the

second Higgsing is done by setting the length of the 5-branes with the purple × in figure 17b

to be zero. The two Higgsings leave only one color brane for each SU(2) gauge groups

and the two SU(2) gauge groups are broken. The resulting diagram after the Higgsing

is depicted in figure 17c. The diagram in figure 17c is in fact equivalent to the diagram
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Figure 17. (a): Tuning for the first Higgsing. (b): Tuning for the second Higgsing. (c): The

diagram after the two Higgsings.
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m0
a1
a2

-a2
-a1

n1
n2

Figure 18. The gauge theory parameterization for the Sp(2) gauge theory with two antisymmetric

hypermultiplets.

in figure 14a by moving an (0, 1) 7-brane which may be put at the end the external (0, 1)

5-brane extending in the upper direction [13, 27]. Since the original Sp(2) gauge theory has

the non-trivial discrete theta angle, the theory after the Higgsing will also has the discrete

theta angle π. Therefore, we can conclude that the diagram in figure 14a may realize the

Sp(2) gauge theory with two hypermultiplets in the antisymmetric representation and the

discrete theta angle π. Namely, the deformation of the diagram also shows that the G2

gauge theory with two flavors is dual to the Sp(2) gauge theory with two antisymmetric

hypermultiplets and the discrete theta angle θ = π.

Let us also check if the diagram in figure 14a or equivalently in figure 14b yields the

Sp(2)π gauge theory with two antisymmetric hypermultiplets from the calculation of the

prepotential. The gauge theory parameterization for the Sp(2)π gauge theory with two

antisymmetric hypermultiplets is given in figure 18. m0 is the inverse of the squared gauge

coupling, a1, a2 are the Coulomb branch moduli of the Sp(2)π gauge theory. n1, n2 are

related to the mass parameters for the two antisymmetric hypermultiplets. Note that
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Figure 19. A label for the faces in the diagram for the Sp(2)π gauge theory with two hypermul-

tiplets in the antisymmetric representation.

n1, n2 are related to the chemical potentials for the SO(5) flavor symmetry. On the other

hand the mass parameters for the two antisymmetric hypermultiplets correspond to the

chemical potentials for the Sp(2) flavor symmetry. Hence the two mass parameters are

given by

n1 = m1 +m2, n2 = m1 −m2. (2.42)

With the parameterization in figure 18 and (2.42), we can express the area of the faces

whose label is depicted in figure 19 in terms of the parameters of the Sp(2) gauge theory

with two hypermultiplets in the antisymmetric representation and the non-trivial discrete

theta angle. The area of the five faces is given by

1© = 2a2m0 −
m2

1

2
+m1(a1 − a2)−

m2
2

2
+m2(a1 − a2)− a21 + 3a22, (2.43)

2© = (a1 − a2)(m0 −m1 −m2 + 2a1 + a2), (2.44)

3© = (a1 − a2)(m0 + a2), (2.45)

4© =
1

2
(a1 − a2)(−2m1 + 3a1 + a2), (2.46)

5© = (a1 − a2)(m1 −m2). (2.47)

A linear combination of the area (2.43)–(2.47) corresponds to the tension of the

monopole string and it can be computed also from a derivative of the effective prepo-

tential with respect to a Coulomb branch modulus. The effective prepotential is computed

from the general formula in (2.5) and the diagram in figure 14a corresponds to the phase

a1 + a2 −m1 > 0, a1 − a2 −m1 < 0, −a1 + a2 −m1 < 0, −a1 − a2 −m1 < 0,

(2.48)

for one antisymmetric hypermultiplet with mass m1 and

a1 + a2 −m2 > 0, a1 − a2 −m2 < 0, −a1 + a2 −m2 < 0, −a1 − a2 −m2 < 0,

(2.49)
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Figure 20. The parameterization of the G2 gauge theory with two flavors for the diagram which

is S-dual to the one in figure 14b.

for the other antisymmetric hypermultiplet with mass m2. Then the effective prepotential

for the Sp(2)π gauge theory with the two antisymmetric hypermultiplets on the phase

becomes

FSp(2)π+2AS =m0(2φ
2
1−2φ1φ2+φ22)+

1

6
(−m3

1−3m2
1φ2+3m1(−4φ21+4φ1φ2−φ22)

−m3
2−3m2

2φ2+3m2(−4φ21+4φ1φ2−φ22)+8φ31+12φ21φ2−18φ1φ
2
2+6φ32),

(2.50)

where we used the Dynkin basis for Sp(2)

a1 = φ1, a2 = −φ1 + φ2 (2.51)

Then taking the derivative of (2.50) with respect to φ1, φ2 should correspond to the

linear combination 2©+ 3©+2× 4©+ 5© and 1© respectively. Indeed the explict comparison

between (2.43)–(2.47) and (2.50) gives

∂F(Sp(2)π+2AS)

∂φ1
= 2©+ 3©+ 2× 4©+ 5©, (2.52)

∂F(Sp(2)π+2AS)

∂φ2
= 1©. (2.53)

By comparing the parameterization in figure 18 and (2.42) for the Sp(2) gauge the-

ory with two antisymmetric hypermultiplets and the discrete theta angle π with the

parametrization of the G2 gauge theory with two flavors in section 2.2, one can obtain

the duality map between the Sp(2) gauge theory and the G2 gauge theory. Note that the

S-dual of the diagram in figure 14b yields a diagram of the G2 gauge theory two flavors.

The parameterization in section 2.2 can be translated to the parameterization for the S-

dual diagram as in figure 20. Again n1, n2 in figure 20 are related to the mass parameters

by (2.15). Then, the comparison between the two parameterizations gives the duality map
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between the Sp(2) gauge theory and the G2 gauge theory

m
Sp(2)
0 = −m

G2
0

2
, (2.54)

m
Sp(2)
AS,1 = mG2

F,1, (2.55)

m
Sp(2)
AS,2 = mG2

F,2, (2.56)

φ
Sp(2)
1 = φG2

2 +
1

2
mG2

0 , (2.57)

φ
Sp(2)
2 = φG2

1 +mG2
0 . (2.58)

Combining the map (2.37)–(2.41) with the map (2.54)–(2.58) yields the map between the

SU(3) gauge theory with two flavors and the CS level 6 and the Sp(2) gauge theory with

two antisymmetric hypermultiplets and the non-trivial discrete theta angle

m
Sp(2)
0 =

1

4

(
2m

SU(3)
0 + 3m

SU(3)
AS,1 + 3m

SU(3)
AS,2

)
, (2.59)

m
Sp(2)
AS,1 =

1

2

(
2m

SU(3)
0 +m

SU(3)
AS,1 −m

SU(3)
AS,2

)
, (2.60)

m
Sp(2)
AS,2 =

1

2

(
2m

SU(3)
0 −mSU(3)

AS,1 +m
SU(3)
AS,2

)
, (2.61)

φ
Sp(2)
1 = φ

SU(3)
1 +

1

4

(
2m

SU(3)
0 −mSU(3)

AS,1 −m
SU(3)
AS,2

)
, (2.62)

φ
Sp(2)
2 = φ

SU(3)
2 +

1

2

(
2m

SU(3)
0 −mSU(3)

AS,1 −m
SU(3)
AS,2

)
. (2.63)

2.3 Duality among marginal theories

In section 2.2, we started from the diagram of the G2 gauge theory with two flavors and

discussed that the diagram can be deformed into the one for the SU(3) gauge theory with

two flavors and the CS level 6 and also into the one for the Sp(2) gauge theory with two

hypermultiplet in the antisymmetric representation and the discrete theta angle θ = π.

In order for the G2 gauge theory to have a UV completion, we can add four more flavors

to the G2 gauge theory with two flavors. The UV completion of the G2 gauge theory

with six flavors is not a 5d SCFT but is supposed to be a 6d SCFT [12, 29]. It is in

fact straightforward to extend the discussion of the dualities in section 2.2 by adding four

more flavors to the diagram for the G2 gauge theory with four flavors. The G2 gauge

theory with six flavors is dual to the SU(3) gauge theory with six flavors and the CS level

6 and is also dual to the Sp(2) gauge theory with four flavors and two hypermultiplets

in the antisymmetric representation [1] and we will see the dualities from the 5-brane

web diagram.

Let us first add four flavors to the diagram for the G2 gauge theory with two flavors

in figure 4b. When we added two flavors to the diagram for the pure G2 gauge theory, we

introduced the flavors which originate from two spinors in the SO(7) gauge theory before

the Higgsing, This time, we introduce four flavors which originate from four hypermultiplets

in the vector representation of SO(7) before the Higgsing. The introduction of the flavors

can be done by adding four D7-branes to the diagram for the G2 gauge theory with two
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O7  + 4D7-

(e)

Figure 21. (a): Adding four D7-branes to the diagram in figure 4b. (b): Applying the two flop

transitions to the diagram in figure 21a. (c): The diagram after moving the (1,−1) 7-brane and

the (1, 1) 7-brane according to the arrows in figure 21b. (d): The diagram after moving the (1,−1)

7-brane and the (1, 1) 7-brane according to the arrows in figure 21c. (e): The diagram after forming

an O7−-plane from the (1,−1) 7-brane and the (1, 1) 7-brane in figure 21d.

flavors as in figure 21a. When we turn over the branch cuts of D7-branes in the horizontal

directions, external 5-branes will cross each other. In order to obtain a consistent 5-brane

web for the G2 gauge theory with six flavors, we perform the flop transitions and move

the (1,−1) 7-brane and the (1, 1) 7-brane as we did when we obtained the diagram for

the Sp(2) gauge theory. The diagram after the flop transitions and moving the 7-branes is

given in figure 21c. From this diagram, we let the (1,−1) 7-brane and the (1, 1) 7-brane

cross the branch cuts of the D7-branes as in figure 21c. The charge of the 7-branes changes

and the diagram becomes the one in figure 21d. At this stage, we have a pair of a (1, 1)

7-brane and a (1,−1) 7-brane, which can form an O7−-plane. Therefore, the final diagram

in figure 21e contains a pair of an O7−-plane and an Õ5-plan in the vertical direction. The

periodicity in the vertical direction implies that the theory has a 6d UV completion, which

is consistent with the result in [12, 29].
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Figure 22. A 5-brane web diagram for the G2 gauge theory with six flavors after turning over the

branch cuts of the D7-branes in the diagram in figure 21a.

(0, 1)

(a)

(1, 0)

(b) (c)

Figure 23. (a): The S-dual to the diagram in figure 21a. (b): After crossing the branch cut of the

(1,−1) 7-brane and four (0, 1) 7-branes change into four (1, 0) 7-branes. (c): A diagram which can

be interpreted as the SU(3) gauge theory with six flavors and the CS level 4.

Duality to SU(3). From the diagram of the G2 gauge theory with six flavors, it is also

possible to get the duality to the SU(3) gauge theory with four flavors and the CS level 4,

and to the Sp(2) gauge theory with two antisymmetric hypermultiplets and four flavors.

We first consider the duality to the SU(3) gauge theory with six flavors and the CS level

4. We first start from the diagram of the G2 gauge theory with six flavors in figure 21a.

Turning over the branch cuts of the D7-branes in the horizontal direction yields a diagram

in figure 22.

One the other hand, the S-dual to the diagram in figure 21a gives rise to a diagram

in figure 23a. As in the case for the G2 gauge theory with two flavors in section 2.2.1,

the existence of the three color D5-branes in figure 23a implies that the diagram yields

an SU(3) gauge theory. Furthermore, we can change the four (0, 1) 7-branes into the four

(1, 0) 7-branes when the (0, 1) 7-branes cross the branch cut of the (1,−1) 7-brane. Then

the four D7-branes can create flavor D5-branes as in figure 23c. Compared to the diagram

in figure 7, the diagram contains four more flavors. Since decoupling the flavors in the

same direction yields the diagram for the SU(3) gauge theory with two flavors and the CS

level 6, the CS level for the SU(3) gauge theory in figure 23c should be 4. Hence, we can

conclude that the diagram gives the SU(3) gauge theory with six flavors and the CS level 4.
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Figure 24. The G2 gauge theory parameterization for the diagram in figure 22.

a1
a2

a3

m3 m4m5
m6

l1

l2

n2

n1

Figure 25. The SU(3) gauge theory parameterization for the diagram in figure 23c.

Here let us see the parameterization of the G2 gauge theory with six flavors and the

SU(3) gauge theory with six flavors and the CS level 4 and obtain the duality map between

the two theories. The gauge theory parameterization for the G2 gauge theory with six

flavors is given in figure 24. m0 is the inverse of the squared gauge coupling, a1, a2 are

the Coulomb branch moduli and m3,m4,m5,m6 are the mass parameters. n1, n2 are also

related to the two mass parameters by (2.15). It is also possible to obtain the gauge theory

parameterization for the SU(3) gauge theory with six flavors and the CS level 4 by extending

the parametrization in section 2.2.1. The parameterization for the SU(3) gauge theory is

given in figure 25. The inverse of the squared gauge couping m0 is given by m0 = l1+l2
2 .

a1, a2, a3, (a1 + a2 + a3 = 0) are the Coulomb branch moduli and m3,m4,m5,m6 are the

mass parameters for the additional four flavors. The two other mass parameters m1,m2

enter in l1, l2 and n2 by3

l1 = m0 +
1

2
(m1 +m2 +m3 +m4 +m5 +m6) , (2.64)

l2 = m0 −
1

2
(m1 +m2 +m3 +m4 +m5 +m6) , (2.65)

n2 = m1 −m2. (2.66)

3On the other hand, n1 is given by n1 = 2m0 − (m3 + m4 + m5 + m6).
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Figure 26. A 5-brane web diagram for the G2 gauge theory with six flavors after moving the

7-branes in the diagram in figure 21c.

The comparison between the two parameterizations in figure 24 and in figure 25 gives

rise to the duality map

m
SU(3)
0 =

1

2
mG2

0 −
1

2
λ1, (2.67)

m
SU(3)
AS,1 = −mG2

F,2 + λ1, (2.68)

m
SU(3)
AS,2 = −mG2

F,1 + λ1, (2.69)

m
SU(3)
F,i = mG2

F,i − λ1, (i = 3, · · · , 6), (2.70)

φ
SU(3)
1 = φG2

2 − λ1, (2.71)

φ
SU(3)
2 = φG2

1 − 2λ1, (2.72)

where

λ1 = −1

3
mG2

0 +
1

3

6∑
i=1

mG2
F,i. (2.73)

Duality to Sp(2). We can also see the duality to the Sp(2) gauge theory with two

antisymmetric hypermultiplets and four flavors. For that we start from the diagram in

figure 21c which gives the G2 gauge theory with six flavors. When we send the 7-branes

to infinitely far, the diagram becomes the one in figure 26. Then we consider applying the

S-duality to the diagram in figure 21c. Then the resulting configuration becomes the one

in figure 27a. Then we can move the four (0, 1) 7-branes according the arrow in figure 27a

and then the four (0, 1) 7-branes change into four (1, 0) 7-branes as in figure 27b. Then the

(1,−1) 7-brane and the (1, 1) 7-brane in figure 27b can form an O7−-plane and the dia-

gram becomes the one in figure 27c. The presence of the four flavor D7-branes in figure 27d

implies the existence of four hypermultiplets in the fundamental representation of Sp(2).

Hence, the diagram in figure 27c yields the Sp(2) gauge theory with two hypermultiplets

in the antisymmetric representation and the four hypermultiplets in the fundamental rep-

resentation. An equivalent diagram when we send the 7-branes in figure 27b to infinitely

far is also depicted in figure 27d.

We can also see the parameterization of the both two theories by generalizing the

parameterization in section 2.2.2 and also obtain the duality map between the two theories.

The gauge theory parameterization for the G2 gauge theory realized in figure 26 is given
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(0, 1)

(a)

(1, 0)

(b)

O7  +4D7-

(c) (d)

Figure 27. (a): The S-dual to the diagram in figure 21c. (b): After crossing the branch cut of the

(1,−1) 7-brane and four (0, 1) 7-branes change into four (1, 0) 7-branes. (c): The (1,−1) 7-brane

and the (1, 1) 7-brane forms an O7−-plane and the diagram which can be interpreted as the Sp(2)

gauge theory with two antisymmetric hypermultiplets and four flavors. (d): The diagram when we

send the 7-branes in figure 27b to infinitely far.

m4m5
m6

m0

a

a1

2

n1

n2

m3

Figure 28. The G2 gauge theory parameterization for the diagram in figure 26.

in figure 28. m0 is the inverse of the squared gauge coupling, a1, a2 are the Coulomb

branch moduli and m3,m4,m5,m6 are the mass parameters. n1, n2 are related to the two

other mass parameters by (2.15). On the other hand, the gauge theory parametrization for

the Sp(2) gauge theory realized in figure 27d is depicted in figure 29. The inverse of the

squared gauge coupling is given by m0 = l1+l2
2 , a1, a2 are the Coulomb branch moduli and
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l1
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a1
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-a2

-a1

n1

n2

Figure 29. The Sp(2) gauge theory parameterization for the diagram in figure 27d.

m3,m4,m5,m6 are the mass parameters for the four flavors. n1, n2 are related to the mass

parameters for two antisymmetric hypermultiplets and the relation is given by (2.42).

The comparison between the two parameterizations in figure 28 and in figure 29 yields

the duality map between the G2 gauge theory and the Sp(2) gauge theory,

m
Sp(2)
0 =

mG2
0

2
, (2.74)

m
Sp(2)
AS,1 = mG2

F,1, (2.75)

m
Sp(2)
AS,2 = mG2

F,2, (2.76)

m
Sp(2)
F,i = mG2

F,i − λ2, (i = 3, · · · , 6), (2.77)

φ
Sp(2)
1 = φG2

2 − λ2, (2.78)

φ
Sp(2)
2 = φG2

1 − 2λ2, (2.79)

where we defined

λ2 = −1

2
mG2

0 +
1

2

6∑
i=3

mG2
F,i. (2.80)

Combining the map (2.67)–(2.72) between the SU(3) gauge theory and the G2 gauge theory

with the map (2.74)–(2.79) between the Sp(2) gauge theory and the G2 gauge theory, we

can also obtain the map between the Sp(2) gauge theory and the SU(3) gauge theory,

m
Sp(2)
0 = m

SU(3)
0 +

1

2

2∑
i=1

m
SU(3)
AS,i − λ3, (2.81)

m
Sp(2)
AS,i = m

SU(3)
AS,i − 2λ3, (i = 1, 2) (2.82)

m
Sp(2)
F,j = m

SU(3)
F,j − λ3, (j = 3, · · · , 6), (2.83)

φ
Sp(2)
1 = φ

SU(3)
1 − λ3, (2.84)

φ
Sp(2)
2 = φ

SU(3)
2 − 2λ3, (2.85)

where

λ3 = −1

2
m

SU(3)
0 +

1

4

2∑
i=1

m
SU(3)
AS,i +

1

4

6∑
j=3

m
SU(3)
F,j . (2.86)
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(a) (b)

(c) (d)

O5-
~

O5+
~

O5-
~

O5+
~

O5-
~

(e)

Figure 30. (a): A diagram for the G2 gauge theory with six flavors. (b): Applying flop transitions

to the diagram in figure 30a. (c): The diagram after moving the (1, 1) 7-brane according to the

arrow in figure 30c. (d): The diagram obtained after applying a flop transition to the diagram in

figure 30d. (e): The diagram obtained after applying generalized flop transitions to the diagram in

figure 30d.

2.4 Realization as SO(5) + 2V + 4S

In section 2.2.2 and section 2.3, we have seen the realization of the Sp(2) gauge group from

four D5-branes with an O7−-plane. In fact, the diagram may be deformed to a diagram

which can be interpreted as an SO(5) gauge theory. This is consistent with the fact that

there is an isomorphism so(5) ' sp(2) at the level of the Lie algebra.

To see the deformation, we start from the diagram in figure 21a for the G2 gauge

theory with six flavors. In section 2.3 we have seen this diagram can be deformed into the

one in figure 27c, yielding the Sp(2) gauge theory with two antisymmetric hypermultiplets

and four flavors. Here we consider a different deformation. First, the diagram in figure 21a

can be written as the one in figure 30a. Applying flop transitions yields the diagram in

figure 30b. From the diagram in figure 30b, we move the (1, 1) 7-brane according to the

arrow in figure 30c, giving rise to the diagram in figure 30d. Then, performing further flop

transitions changes the diagram finally into the one in figure 30e. The diagram in figure 30e

is exactly the diagram for the SO(5) gauge theory with two hypermultiplets in the vector

representation and four hypermultiplets in the spinor representation, which is equivalent

to the Sp(2) gauge theory with two hypermultiplets in the antisymmetric representation

and four hypermultiplets in the fundamental representation when we do not see the global

structure. Therefore, one can also consider a sequence of decoupling hypermultiplets in

terms of the SO(5) viewpoint.

– 29 –



J
H
E
P
1
2
(
2
0
1
8
)
0
1
6

m'3
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Figure 31. The parameterization for the diagram for the G2 gauge theory with six flavors in

figure 30b.

a1

a2

m1

m2

n1

n2

n3

n4

l

Figure 32. The parameterization for the diagram for the SO(5) gauge theory with two vectors

and four spinors in figure 30c.

From the deformation from figure 30a to figure 30e, one can determine the duality

map between the G2 gauge theory with six flavors and the SO(5) gauge theory with two

hypermultiplets in the vector representation and four hypermultiplets in the spinor rep-

resentation. To determine the duality map we compare the diagram in figure 30b with

the diagram in figure 30c. The parameterization for the G2 gauge theory with six flavors

is given in figure 31. a1, a2 are the Coulomb branch moduli and m0 is the inverse of the

squared gauge coupling. n′1, n
′
2 are related to two mass parameters by (2.15), namely

n′1 = m′1 +m′2, n′2 = m′1 −m′2. (2.87)

The other mass parameters m′3,m
′
4,m

′
5,m

′
6 appear directly in the diagram in figure 31. On

the other hand, the parameterization for the SO(5) gauge theory with two vectors and four

spinors is given in figure 32. a1, a2 are the Coulomb branch moduli and m1,m2 are the

mass parameters for the two hypermultiplets in the vector representation. n1, n2, n3, n4
are the mass parameters for the four hypermultiplets in the spinor representation. Since

the mass parameters for the two flavors in section 2.2 originate from the mass parameters

of the two spinors of the SO(7) gauge theory before the Higgsing, we choose the mass

parameters for the four spinors similarly to (2.15), namely

n1 = m3 +m4, n2 = m3 −m4, n3 = m5 +m6, n4 = m5 −m6. (2.88)

On the other hand, the length corresponding to m0, the inverse of the squared gauge

coupling, is different from that for the G2 gauge theory with two flavors or the SO(7) gauge

theory with two spinors. As explained in appendix A, m0 for the SO(5) gauge theory with

four spinors, attaching two spinors on the both sides of the diagram, is given by

m0 = l +
1

2
n1 +

1

2
n3. (2.89)
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By comparing the parameterization in figure 31 with the parameterization in figure 32

with the deformation depicted in figure 30b, we can determine the duality map between

the G2 gauge theory with six flavors and the SO(5) gauge theory with two vectors and the

four spinors. The duality map is given by

m
SO(5)
0 =

mG2
0

2
, (2.90)

m
SO(5)
V,i = m′G2

F,7−i, (i = 1, 2) (2.91)

m
SO(5)
S,j+2 = m′G2

F,j − λ4, (j = 1, · · · , 4), (2.92)

φ
SO(5)
1 = φG2

1 − 2λ4, (2.93)

φ
SO(5)
2 = φG2

2 − λ4, (2.94)

where

λ4 = −1

2
mG2

0 +
1

2

4∑
i=1

mG2
F,i (2.95)

and we used the Coulomb branch moduli in the Dynkin basis of SO(5)

φ1 = a1, φ2 =
1

2
(a1 + a2). (2.96)

We can also see the map between the Sp(2) gauge theory with two antisymmetric

hypermultiplets and four flavors discussed in section 2.3 with the SO(5) gauge theory from

the comparison of the duality map (2.74)–(2.79) with (2.90)–(2.94). In order to obtain a

simple map, we first rename the mass parameters for the G2 gauge theory by

m′G2
1 =mG2

3 , m′G2
2 =mG2

4 , m′G2
3 =mG2

5 , m′G2
4 =mG2

6 , m′G2
5 =mG2

1 , m′G2
6 =mG2

2 .

(2.97)

Then the map between the Sp(2) gauge theory and the SO(5) gauge theory becomes

m
SO(5)
0 = m

Sp(2)
0 , (2.98)

m
SO(5)
V,i = m

Sp(2)
AS,i , (i = 1, 2), (2.99)

m
SO(5)
S,j = m

Sp(2)
F,j , (j = 3, 4, 5), (2.100)

m
SO(5)
S,6 = −mSp(2)

F,6 , (2.101)

φ
SO(5)
k = φ

Sp(2)
3−k , (k = 1, 2). (2.102)

The map (2.98)–(2.102) is reasonable since the SO(5) gauge theory is equivalent to the

Sp(2) gauge theory when we ignore the global structure. Note that there is a minus

sign for the map (2.101). This is because the diagram for the Sp(2) gauge theory with two

antisymmetric hypermultiplets and four flavors in section 2.3 has the discrete theta angle π

as it was obtained by adding four flavors to the Sp(2)π gauge theory with two antisymmetric

hypermultiplets. On the other hand, the SO(5) gauge theory in the diagram in figure 30c

has zero discrete theta angle. Hence the minus sign in (2.101) is necessary to change the

discrete theta angle.

– 31 –



J
H
E
P
1
2
(
2
0
1
8
)
0
1
6
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O7 -
+

4 D7

ON-∼
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(a) (b)

(c) (d)

Figure 33. (a): A brane configuration for Sp(2)+2AS+4F with an O7−- and an ÕN-planes. (b):

A diagram after a flop transition together with relocating a half D7-brane to the upper side, which

turns the ÕN-plane to an ON-plane. (c): An intermediate process of a deformation from figure 33b

to figure 33c by sending m1 to ∞ with m2 kept fixed. (d): The resulting brane configuration for

Sp(2) + 1AS + 4F with an O7−-plane but without an ON-plane.

3 SU(3)-Sp(2)-SU(2) × SU(2) sequences

In this section, we consider deformations that lead to theories of gauge groups SU(3) and

Sp(2) which are dual to each other without involving G2. We start with the marginal

theory Sp(2)+2AS+4F in the G2−SU(3)−Sp(2) sequence and decouple hypermultiplets

in the antisymmetric representation. After decoupling one antisymmetric hypermultiplet,

we obtain Sp(2) + 1AS + 4F, and then adding more flavors yields another marginal theory

Sp(2) + 1AS + 8F, which is dual to SU(3) 3
2

+ 9F, and it will be discussed in section 3.1.

We also discuss yet another deformation by decoupling the remaining antisymmetric hy-

permultiplet and then obtain Sp(2) + 10F, which is dual to SU(3)0 + 10F, and it will be

discussed in 3.4.

3.1 Deformation to 5-brane web of SU(3) 3
2

+ 9F, Sp(2) + 1AS + 8F and

[5F + SU(2)] × [SU(2) + 2F]

As explained in the previous section 2.3, a 5-brane configuration for G2 + 6F can be de-

formed to display a 5-brane configuration for Sp(2) + 2AS + 4F. For example, figure 21

shows a deformation from the diagram of G2+6F and the last diagram is S-dual to the dia-
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gram for Sp(2)+2AS+4F given in figure 27c. In this section, we first discuss decoupling of

a hypermultiplet in the antisymmetric representation (AS) by starting from a 5-brane web,

for instance, figure 21e or equivalently figure 33a. There are four flavor D7-branes stacked

on top of an O7−-plane, and there are two external NS5-branes in figure 33a. The height

of the four D7-branes gives the mass of flavors while the position of the two NS5-branes

along the horizontal axis is related to the mass of two antisymmetric hypermultiplets. The

precise relation between the mass of antisymmetric hypermultiplets and the length in the

diagram in figure 33a was obtained in (2.42). In particular, the distance between the

two NS5-branes parameterizes two times of the mass of one antisymmetric hypermultiplet,

2m2. The distance from the ÕN-plane to the center of mass position of the two NS5-branes

parametrizes the mass of the other antisymmetric hypermultiplet, m1. Let us consider a

case where we decouple one AS by taking m1 →∞. To this end, we first need to perform

a flop transition in such a way as depicted from figures 33a to 33b. When we move from

the diagram in figure 33a to the one in figure 33b, we also transform the ÕN-plane into an

ON-plane by moving a fractional D7-brane, where the precise process can be found in [27].

Then we can take the limit m1 →∞ with m2 fixed, which can be also realized by sending

the horizontal position of the ON-plane to infinitely right. The process is depicted from

figure 33b to figure 33d. When m1 becomes larger compared to the diagram in figure 33c,

we conjecture that the upper right configuration may involve two (2, 1) 5-branes off from

the ON-plane4 which preserve the charge conservation, and then eventually the diagram

may be effectively described without the ON-plane as in figure 33d in the limit m1 →∞.

This leads to a brane configuration for Sp(2) + 1AS + 4F in figure 33d. We note that as

shown in [23], some of the transitions in the deformation shown in figure 33 corresponds

to different phases of the Seiberg-Witten curve which can be obtained from the diagrams

in figure 33.

Duality between Sp(2)+1AS+8F and SU(3) 3
2
+9F. We first see a duality between

Sp(2) + 1AS + 4F and SU(3) 7
2

+ 5F starting from the configuration in figure 33d. From

the perspective of the 5-brane web, this duality can be seen as re-arrangement of 7-branes

as depicted in figure 34. By resolving the O7− into two 7-branes of the charge [1,−1] (blue

dot) and [1, 1] (pink dot), one finds that the resulting diagram is given by figure 34a, where

4 D7-branes (four red dots) are allocated in the upper part for convenience. After applying

a flop transition, the brane configure becomes figure 34b, where we also take the [2, 1]

7-brane (black dot) inside the 5-brane loops. From this configuration it is possible to move

7-branes around to obtain a brane configuration where the presence of an SU(3) gauge

group is manifest. Firstly, we take the [1, 1] 7-brane (pink dot) outside along the arrow

in figure 34b, resulting in the web diagram in figure 34c. We then take out the remaining

two 7-branes of the charge [1,−1] and [2, 1] across the lower D5-brane in figure 34c. After

4In [23], a similar decoupling limit is discussed, that is the decoupling process from the rank 1 Ẽ1 theory to

the E0 theory from the perspective of a brane configuration in the presence of an O5-plane. Due to the gener-

alized flop transitions, the 5-brane configuration for the pure Sp(1)π gauge theory was deformed to have two

long NS5-branes near the O5-plane, and taking a limit where the length of the NS5-branes become infinitely

long may effectively yields a brane configuration with the long NS5-branes which end on an [0, 1] 7-brane.
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(d)

Figure 34. (a): A 5-brane web for Sp(2) + 1AS + 4F with the resolution of an O7−-plane into a

[1,−1] (blue dot) and a [1, 1] (pink dot) 7-branes, where 4 D7-branes (four red dots) are allocated

in the upper part. (b): Taking the [1, 1] 7-brane outside the 5-brane loop after a flop transition and

moving the [2, 1] 7-brane (black dot) inside the 5-brane loops. (c): Moving the [1,−1] and [2, 1]

7-branes outside the 5-brane loop through the lower D5-brane to make a configuration where an

SU(3) gauge theory description is manifest. (d): The resulting 5-brane web for SU(3) 7
2

+ 5F.

moving the 4 D7-branes to the left and the right, we reach a diagram in figure 34d, which

manifestly realizes SU(3) 7
2

+ 5F.

We now consider deformation to the theories with higher flavors from Sp(2)+1AS+4F

or SU(3) 7
2
+5F. From figure 34a, adding more flavors to Sp(2)+1AS+4F is straightforward

as one can introduce more D7-branes (red dots). Since adding the D7-branes in the same

way for the diagram of SU(3) 7
2

+ 5F in figure 34d should give an equivalent theory, one

readily expects that Sp(2)+1AS+(4+n)F is dual to SU(3) 7
2
−n

2
+(5+n)F with n ≥ 0. From

the point of view of 5-brane web, one can add up to four more flavors to figure 34a, and the

brane configuration can at most possesses 8 D7-branes which corresponds to Sp(2)+1AS+

8F, whose UV fixed point exists in six dimensions [30]. Namely the upper bound for the n

is four and the marginal theories which are dual to each other are given by SU(3) 3
2

+9F [31]

and Sp(2) + 1AS + 8F.

SU(2) × SU(2) quiver description. Sp(2) + 1AS + NfF with 6 ≤ Nf ≤ 8 has yet

another dual description as a quiver theory [SU(2) + (Nf − 6)F] × [SU(2) + 5F],5 which

is the quiver consisting of the SU(2) gauge theory with (Nf − 6) flavors and the SU(2)

gauge theory with five flavors and a bi-fundamental hypermultiplet that transforms as

(2,2) of SU(2) × SU(2). The duality can be understood from SU(3) 11−Nf
2

+ (Nf + 1)F.

Sp(2) + 1AS +NfF is dual to SU(3) 11−Nf
2

+ (Nf + 1)F and SU(3) 11−Nf
2

+ (Nf + 1)F is in

fact S-dual to the quiver theory [SU(2) + (Nf − 6)F]× [SU(2) + 5F].

This can be also explicitly seen from 5-brane webs. As a representative example, we

consider SU(3) 5
2

+ 7F (or Sp(2) + 1AS + 6F). A 5-brane web diagram for a mass deformed

5It was discussed in [1, 12] that there is some subtlety in the CFT limit of some SU(2) × SU(2) quiver

descriptions.
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(a) (b) (c)

(d) (e) (f)

Figure 35. (a): A mass deformed web-diagram for SU(3) 5
2

+ 7F. (b): The S-dual version of

figure 35a. (c) and (d): various 7-brane motions along the directions of the arrows. (e) and (f):

5-brane webs for SU(2)π × [SU(2) + 5F].

configuration of SU(3) 5
2

+ 7F is given in figure 35a. Its S-dual transformed web is given in

figure 35b. After various 7-brane motions depicted from figure 35b to figure 35e, we find

that the resulting 5-brane configuration shows the quiver theory of [SU(2)]× [SU(2) + 5F]

as in figure 35e. In order see the discrete theta angle for the pure SU(2) part, we consider

a flop transition from figure 35e to figure 35f. Then we can see that the pure SU(2) part in

figure 35f implies the non-trivial discrete theta angle and the quiver theory more precisely

is given by [SU(2)π]× [SU(2) + 5F]. Our finding is also consistent with the claim [1] that

a dual of SU(3) 5
2

+ 7F (or Sp(2) + 1AS + 6F) is SU(2)π × [SU(2) + 5F].

It is straightforward to add more flavors to duality relation between SU(3) 5
2

+ 7F and

SU(2)π × [SU(2) + 5F]. With more flavors, the following theories are S-dual to each other:

SU(3)2 + 8F ↔ [SU(2) + 1F]× [SU(2) + 5F], and (3.1)

SU(3) 3
2

+ 9F ↔ [SU(2) + 2F]× [SU(2) + 5F]. (3.2)

The corresponding web diagrams for the marginal case are given in figure 36.
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(a) (b)

Figure 36. (a) SU(3) 3
2

+ 9F. (b) [SU(2) + 2F]× [SU(2) + 5F].

We note that there is another decoupling from the quiver theory which yields different

dualities. For example, for the [SU(2)+2F]×[SU(2)+5F], there are two possible decoupling

of a flavor. One is the decoupling of a flavor from the first SU(2), which was already

discussed, and it gives [SU(2) + 1F]× [SU(2) + 5F] dual to SU(3)2 + 8F. The other one is

the decoupling of a flavor from the second SU(2), which gives [SU(2) + 2F]× [SU(2) + 4F].

This theory turns out to be dual to SU(3)1 + 8F and also to Sp(2) + 8F, which we will

discuss in more detail in section 3.4.

The decoupling of a flavor from the quiver theory [SU(2) + 1F] × [SU(2) + 5F] is, in

particular, interesting as it allows three different ways of decoupling of a flavor. Recall that

an SU(2) theory with a flavor can lead to the pure SU(2) theory with different discrete

theta angles, SU(2)0 and SU(2)π, depending on taking the mass of the flavor to be ±∞. By

decoupling a flavor in the first SU(2), one hence finds two quiver gauge theories, SU(2)0 ×
[SU(2) + 5F] and SU(2)π × [SU(2) + 5F]. Here the latter theory SU(2)π × [SU(2) + 5F] is

dual to SU(3) 3
2

+ 7F and also to Sp(2) + 1AS + 6F as we discussed before.

3.2 Duality map between SU(3) 3
2

+ 9F and Sp(2) + 1AS + 8F

In the previous subsection, we saw the duality between the SU(3) gauge theory with nine

flavors and the CS level 3
2 and the Sp(2) gauge theory with one antisymmetric hypermul-

tiplet and eight fundamental hypermultiplets. Since we have the diagrams for the two

theories, it is possible to obtain the duality map between the parameters of the two the-

ories. Before obtaining the duality map between the marginal theories, let us start from

an easier example by decouple eight flavors from the both theories. We decouple the eight

flavors by sending the mass of the flavors to +∞ and redefine the gauge coupling. Then

the decoupling yields a duality between the SU(3) gauge theory with one flavor and the

CS level 11
2 and the Sp(2) gauge theory with one antisymmetric hypermultiplet and the

non-trivial discrete theta angle. We first obtain the duality map between them.

The 5-brane web diagram and the gauge theory parameterization for the Sp(2)π gauge

theory with one antisymmetric hypermultiplet is given in figure 37. a1, a2 are the Coulomb

branch moduli of the Sp(2) gauge theory and m is the mass parameter for the antisymmetric
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a1
l1 a2

-a1

-a2l2

2m

Figure 37. The gauge theory parameterization for the Sp(2)π gauge theory with a hypermultiplet

in the antisymmetric representation.

①

②

③

④ ⑤

Figure 38. A labeling for five faces in the diagram for the Sp(2)π gauge theory with one antisym-

metric hypermultiplet.

hypermutliplet. It turns out that the inverse of the squared gauge coupling is given by

m0 =
1

2
(l1 + l2 +m). (3.3)

Let us confirm the choice of the parameters by comparing the area of the faces in the

diagram 37 and the tension of a monopole string computed from the effective prepotential

of the Sp(2) gauge theory. The area for the faces labeled in figure 38 becomes

1© =
1

2
(a1 − a2)(2m0 + 3a1 + 3a2), (3.4)

2© = a21 − a22 −
m2

2
, (3.5)

3© =
1

2
(2m0(a1 − a2) + a21 − a22 −m2), (3.6)

4© = a21 − a22, (3.7)

5© = 2a2(m0 + 2a2). (3.8)

On the other hand, the effective prepotential of the Sp(2) gauge theory with one

antisymmetric hypermultiplet can be calculated by using (2.5). The phase associated to

the antisymmetric hypermultiplet from the diagram in figure 37 is

a1 + a2 −m > 0, a1 − a2 −m > 0, −a1 + a2 −m > 0, −a1 − a2 −m > 0. (3.9)

– 37 –



J
H
E
P
1
2
(
2
0
1
8
)
0
1
6

a1
l1

a2
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Figure 39. The gauge theory parameterization for the SU(3) gauge theory with one flavor and

the CS level 11
2 .

①

②

Figure 40. A labeling for two faces in the diagram for the SU(3) 11
2

gauge theory with one flavor.

Hence the effective prepotential of the Sp(2) gauge theory becomes

FSp(2)π+1AS = m0(2φ
2
1 − 2φ1φ2 + φ22)−m2φ1 +

4

3
φ2(3φ

2
1 − 3φ1φ2 + φ22), (3.10)

where we used the Coulomb branch moduli in the Dynkin basis of Sp(2) given by (2.51).

Then the derivative of the prepotential (3.10) with repsect to the Coulomb branch

moduli yield the tension of a monopole string. A D3-brane can be wrapped on a face

1©+ 2©+ 3©+ 4© or on a face 5©, and the explict comparison between the area (3.4)–(3.8)

and the tension calculated from (3.10) indeed yields

∂FSp(2)π+1AS

∂φ1
= 1©+ 2©+ 3©+ 4©, (3.11)

∂FSp(2)π+1AS

∂φ2
= 5©, (3.12)

which confirms the gauge theory parameterization in the diagram in figure 37 and (3.3).

The diagram in figure 37 can be deformed into the one for the SU(3) gauge theory

with one flavor and the CS level 11
2 , The deformation is essentially given in figure 37 and

the resulting web and also the gauge theory parameterization for the SU(3) gauge theory

are depicted in figure 39. a1, a2, a3 with a1 + a2 + a3 = 0 are the Coulomb branch moduli

and m is the mass parameter for the one flavor. The inverse of the squared gauge coupling

m0 is given by

m0 =
1

2
(l1 + l2). (3.13)

Let us also compare the area of the faces in figure 39 with the tension of a monopole

string for completeness. The faces labeled in figure 40 yield the area

1© =
1

2
(a1 − a2)(2m0 +m+ 6a1 + 2a2 − 4a3), (3.14)

2© =
1

2
(2m0(a2 − a3)−m2 + (a2 + a3)m+ 4a22 − 4a2a3 − a23). (3.15)

On the other hand, the phase for the SU(3) 11
2

gauge theory with one flavor is given by

a1 −m > 0, a2 −m > 0, a3 −m > 0, (3.16)
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and the effective prepotential becomes

FSU(3) 11
2
+1F =

1

2
m0(φ

2
1 − φ1φ2 + φ22) +

1

12
m3 +

1

2
mφ1(φ1 − φ2)−

1

2
m2φ2

+
4

3
φ31 + 2φ21φ2 − 3φ1φ

2
2 +

7

6
φ32, (3.17)

where we used the Coulomb branch moduli in the Dynkin basis (2.7). The area of the

faces (3.14) and (3.15) agrees with the derivative of the prepotential (3.17) with respect to

the Coulomb branch moduli φ1, φ2 by

∂FSU(3) 11
2
+1F

∂φ1
= 1©, (3.18)

∂FSU(3) 11
2
+1F

∂φ2
= 2©. (3.19)

Since we know the deformation between the diagrams for the Sp(2)π gauge theory with

one antisymmetric hypermultiplet and the SU(3) 11
2

gauge theory with one flavor as well

as their parameterization, comparing the two diagrams may give the duality map between

the two parameterization. The duality map then is given by

m
SU(3)
0 = −1

3
m

Sp(2)
0 +

5

6
m

Sp(2)
AS , (3.20)

m
SU(3)
F = −mSp(2)

AS + 2λ, (3.21)

φ
SU(3)
1 = φ

Sp(2)
1 − λ, (3.22)

φ
SU(3)
2 = φ

Sp(2)
2 − 2λ, (3.23)

where

λ = −1

3
m

Sp(2)
0 +

1

3
m

Sp(2)
AS . (3.24)

It is now straightforward to obtain the duality map for the SU(3) 3
2

gauge theory with

nine flavors and the Sp(2) gauge theory with one antisymmetirc hypermultiplet an eight

flavors. Adding eight flavors in both theories can be accomplished by introducing eight

D7-branes in the two diagrams. The height of the eight D7-branes in the two diagrams

are equal to each other and the definition of the inverse of the gauge coupling also changes

according to the change of the slope of the external 5-branes which we used in the diagrams

in figure 37 and figure 39. Then the duality map between SU(3)− 3
2

with nine flavors and

Sp(2) gauge theory with one antisymmetric hypermultiplet and eight flavors is given by

m
SU(3)
0 = m

Sp(2)
0 − 1

2
m

Sp(2)
AS , (3.25)

m
SU(3)
F = −mSp(2)

AS + 2λ, (3.26)

m
SU(3)
F,i = m

Sp(2)
F,i − λ (i = 1, · · · , 8), (3.27)

φ
SU(3)
1 = φ

Sp(2)
1 − λ, (3.28)

φ
SU(3)
2 = φ

Sp(2)
2 − 2λ, (3.29)
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where

λ = −1

3
m

Sp(2)
0 +

1

3
m

Sp(2)
AS +

1

6

8∑
i=1

m
Sp(2)
F,i . (3.30)

Or if we express the Sp(2) gauge theory parameters in terms of the SU(3) gauge theory

parameters, the map becomes

m
Sp(2)
0 = m

SU(3)
0 − 1

2
m

SU(3)
F − λ′, (3.31)

m
Sp(2)
AS = −mSU(3)

F − 2λ′, (3.32)

m
Sp(2)
F,i = m

SU(3)
F,i − λ′ (i = 1, · · · , 8), (3.33)

φ
Sp(2)
1 = φ

SU(3)
1 − λ′, (3.34)

φ
Sp(2)
2 = φ

SU(3)
2 − 2λ′, (3.35)

where

λ′ = −1

2
m

SU(3)
0 − 1

4
m

SU(3)
F +

1

4

8∑
i=1

m
SU(3)
F,i . (3.36)

3.3 Periodicity for the diagrams of Sp(2) + 1AS + 8F and SU(3) 3
2

+ 9F

For a marginal theory, which can be viewed as a 6d theory on a circle, it may be natural

to assume that the bare coupling of the marginal theory would be the radius of the com-

pactification circle. It is then expected that bare couplings of each dual theory are equal to

each other as they would correspond to the same radius. For instance, the bare couplings

of SU(3)0 + 10F and Sp(2) + 10F are equal to each other, which can be also explicitly seen

from their 5-brane webs as done in [32]. However, from the duality maps we obtained, some

dual theories which are marginal have had different m0. For instance, the bare coupling of

SU(3)4+6F is different from that of Sp(2)+2AS+4F as in (2.81). Another example is the

bare couplings of SU(3) 3
2

+ 9F and Sp(2) + 1AS+ 8F as shown in (3.25). It is then natural

to ask which m0 is related to the period of a circle associated to the circle compactification

of a 6d theory. In this subsection, we consider 5-brane configurations of SU(3) 3
2

+ 9F and

Sp(2) + 1AS + 8F and compare their bare couplings with the period of the diagrams.

Marginal theories whose 5-brane configuration can be constructed without an orien-

tifold are described by a particular 5-brane configuration of special properties: a shape of

an infinite rotating spiral with constant period, call it a Tao web diagram [9, 33]. Since

a Tao diagram is periodic, the period associated to the diagram can be read off from the

configuration of a Tao diagram.

Consider a 5-brane web for Sp(2)+1AS+8F. For instance, figure 41(a) is an example of

a 5-brane web configuration for Sp(2)+1AS+8F. Applying the Hanay-Witten transitions

explained in [33], one can readily get a Tao web diagram for Sp(2)+1AS+8F [30] depicted

in figure 41(b). It follows from figure 41(a) that the inverse of the squared gauge coupling

of Sp(2) + 1AS + 8F can be diagrammatically computed by taking the average of the
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�푙1

�푙4

�푙2

�푙3

m1

m2

m3

m4

m8

m7

m6

m5
m 0

Sp(2) +1AS+0F

m 1 m 2 --

m 3 m 4 + m 5 m 6 +

m 7 m 8--

2m AS

(a) (b)

Figure 41. (a): The parameterization for Sp(2) + 1AS + 8F. m0 for Nf = 8 is given by

m
Nf=8
0 = m

Nf=0
0 − 1

2

(
m1 + m2 − m3 − m4 − m5 − m6 + m7 + m8

)
. (b): A Tao diagram for

Sp(2) + 1AS + 8F.

asymptotic distances on the center of the Coulomb branch moduli from two pairs of the

external 5-branes:

m
Sp(2)+1AS+8F
0 =m

Sp(2)+1AS+0F
0

− 1

2

(
m

Sp(2)
1 +m

Sp(2)
2 −mSp(2)

3 −mSp(2)
4 −mSp(2)

5 −mSp(2)
6 +m

Sp(2)
7 +m

Sp(2)
8

)
.

(3.37)

The length li in figure 41(b) can be expressed by the gauge theory parameters as

l1 = m
Sp(2)
5 +m

Sp(2)
6 +mAS, l2 = m

Sp(2)+1AS+0F
0 −mSp(2)

7 −mSp(2)
8 −mAS,

l3 = −mSp(2)
1 −mSp(2)

2 , l4 = m
Sp(2)+1AS+0F
0 +m

Sp(2)
3 +m

Sp(2)
4 . (3.38)

Then the period of the Tao diagram in figure 41 is given by the sum of the length li,

(i = 1, 2, 3, 4) and it turns out to be equal to 2m
Sp(2)+1AS+8F
0 :

τSp(2)+1AS+8F =
4∑
i=1

li = 2m
Sp(2)+1AS+8F
0 . (3.39)

Namely, the inverse of the squared gauge coupling of Sp(2) + 1AS + 8F is directly related

to the period of the Tao diagram.

We now consider a Tao web diagram for SU(3) 3
2

+ 9F which is a bit involving. From a

5-brane configuration for SU(3) 3
2

+9F given in figure 42, m0 for SU(3) 3
2

+9F is expressed as

a linear combination of the mass parameters mi and m0 for the pure SU(3)0 gauge theory

m
SU(3) 3

2
+9F

0 = m
SU(3)0+0F
0 − 1

2

(
m1 +m2 +m3 −m4 −m5 −m6 +m7 +m8 +m9

)
.

(3.40)
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m3
m2
m1

m9
m8
m7

m6

m7 m8 m9- --m 1 m 2 m 3- --
m 6m 4 m 5+

m 0
Nf = 0

Figure 42. A 5-brane web for SU(3) 3
2

+ 9F and the parameterization. m0 for Nf = 9 is given by

m
Nf=9
0 = m

Nf=0
0 − 1

2

(
m1 +m2 +m3 −m4 −m5 −m6 +m7 +m8 +m9

)
.

(a) (b)

(c) (d)

Figure 43. The deformation from a 5-brane web of SU(3) 3
2

+ 9F to its Tao web diagram. The

5-brane configuration in figure 42 can be deformed to the 5-brane web (a). Applying a particular

successive Hanany-Witten transitions by moving 7-branes, we arrive at a Tao web diagram given

in (d).

A Tao web diagram can be obtained by a successive application of Hanany-Witten

transition with a particular 7-brane motion explained in figure 43. For example, one can

start with figure 42 and perform Hanany-Witten transitions associated with the red and

blue 7-branes to get figure 43(a). And further performing Hanany-Witten transitions in a

particular order described in figure 43 yields the diagram in figure 43(d). In figure 43(d),

we denoted the dotted lines for the monodromy cuts of some 7-branes. By letting all

other 7-branes go through these monondromy cuts, 7-brane charges for those 7-branes are

changed and in fact, these particular monodromy cuts are chosen so that all other 7-branes

keep passing through the cuts and they form a spiral shape with a constant period. The
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Figure 44. A Tao web diagram for SU(3) 3
2

+ 9F and the period is given by τSU(3) 3
2
+9F =

l1 + l2 + l3 + l4 + l5 + l6.

periodic structure can be more explicitly seen in figure 43. The length li, (i = 1, · · · , 6) in

figure 43 are related to the mass parameters mi, (i = 1, · · · , 9) and m0 for the pure SU(3)0
gauge theory as where

l1 = m6 +m7 −m8 −m9, l2 = m
Nf=0
0 −m2 −m3 −m7,

l3 = −m6 −m7 −m8, l4 = m
Nf=0
0 −m1 −m7 −m9,

l5 = −m1 −m2 −m3, l6 = m
Nf=0
0 +m4 +m5 +m6. (3.41)

Then the diagram in figure 43 implies that the period is the sum of li, (i = 1, · · · , 9) and

it yields

τSU(3) 3
2
+9F =

6∑
i=1

li = 3m
SU(3) 3

2
+9F

0 − 1

2

9∑
i=1

mi. (3.42)

Note that, unlike the Sp(2) + 1AS + 8F case, the period τSU(3) 3
2
+9F is not given by

2m
SU(3) 3

2
+9F

0 . It is however easy to see that, by applying the duality map between the

two theories (3.31), the period of SU(3) 3
2

+ 9F is equal to 2m
Sp(2)+1AS+8F
0 and hence it is

equivalent to the period of Sp(2) + 1AS + 8F,

τSU(3) 3
2
+9F = 2m

Sp(2)+1AS+8F
0 = τSp(2)+1AS+8F. (3.43)

– 43 –



J
H
E
P
1
2
(
2
0
1
8
)
0
1
6

Since two marginal theories are dual to each other, it is expected that they have the same

period as the UV completion 6d theory on a circle whose radius directly related to the

period of two different 5d descriptions. Namely, only the 2m0 of Sp(2) + 1AS + 8F is

directly equal to the period of the Tao diagram but the 3m0 for SU(3) 3
2

+ 9F needs a shift

depending on the mass parameters as in (3.42) in order to form the period.

3.4 Further deformation to 5-brane webs of SU(3)0 + 10F, Sp(2) + 10F, and

[4F + SU(2)] × [SU(2) + 4F]

In section 3.1, we considered a deformation of a marginal theory Sp(2) + 2AS + 4F by

decoupling of a hypermultiplet in the antisymmetric representation. We then introduced

four more hypermultiplets in the fundamental representation which led to another marginal

theory Sp(2)+1AS+8F. In this subsection, in a similar manner, we consider a deformation

of Sp(2)+1AS+8F by decoupling the hypermultiplet in the antisymmetric representation.

The mass of the antisymmetric hypermultiplet is proportional to the distance between the

two external NS5-brane in figure 45a. To decouple this antisymmetric hypermultiplet, we

take this mass to infinity, or equivalently we take the distance be infinite. To this end, as

depicted in figure 45a, we bring out the [2, 1] 7-brane outside the 5-brane loops and move it

to infinitely far away from the diagram. The resulting web diagram is given in figure 45b,

where we also moved the [1, 1] 7-brane to the right. Then we move the [1,−1] 7-brane next

to the [1, 1] 7-brane by rotating the cut of the [1,−1] 7-brane so that it extends in the lower

direction as depicted in figure 45c. It is then readily seen that one can recombine the two

7-branes of the charge [1,−1] and [1, 1] to make an O7−-plane and thus the resulting 5-

brane configuration is a familiar configuration for Sp(2)+8F as given in figure 45d. Instead

of forming an O7−-plane, one can resolve the O7−-plane back into the two 7-branes. The

resulting 5-brane configuration then shows SU(3) + 8F where the corresponding CS level

for this SU(3) theory is 1. Hence the diagram gives Sp(2) + 8F and SU(3)1 + 8F, and they

are dual to each other [11, 30].

From the perspective of S-duality, the decoupling corresponds to decoupling a flavor

from the flavors associated with the SU(2)+5F of the quiver [SU(2)+2F]×[SU(2)+5F]. For

instance, SU(3)1 + 8F can be obtained by taking one of the lower D7-branes in figure 36b

is taken to −∞. Then the S-dual of the diagram yields [SU(2) + 2F]× [SU(2) + 4F].

As discussed, we can consider adding more flavors to Sp(2)+8F and SU(3)1+8F in the

same way. The marginal theory one can obtain in this way is Sp(2)+10F and SU(3)0+10F,

which are dual to each other. SU(3)0 + 10F is S-dual to [SU(2) + 4F]× [SU(2) + 4F]. The

duality map between Sp(2) + 10F and SU(3)0 + 10F has been already obtained in [32]. For

book-keeping purpose, we summarize the map here. For convenience, we label the Sp(2)

parameters with a prime (′) and the SU(3) parameters without a prime. For each instanton

factor (m′0,m0), the Coulomb moduli parameters (a′i, ai) and the mass parameters (m′i,mi),

the duality map between Sp(2) + 10F and SU(3) + 10F is given as follows:

m′0 = m0; a′j = aj +
1

2
`, (j = 1, 2);

m′i = mi +
1

2
` , m′i+5 = −mi+5 −

1

2
`, (i = 1, · · · , 5), (3.44)
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(a)

8 D7

(b)

8 D7

(c)

O7 -

8 D7

(d)

8 D7

(e)

Figure 45. (a): Decoupling an antisymmetric hypermultiplet by taking the 7-brane of the charge

[2, 1]. (b) and (c): Moving a 7-brane of charge [1,−1] to put together with a 7-brane of charge [1, 1]

in a 5-brane loop. (d): Recombining the two 7-branes to make an O7−-plane leading to a brane

configuration for Sp(2) + 8F. (e): After resolving O7−back into the two 7-branes, the resulting

5-brane configuration becomes equivalent to that of SU(3)1 + 8F.

where ` = m0 −
1

2

10∑
i=1

mi and the relation of the Coulomb branch moduli and the mass

parameters with the length in the diagrams is summarized in figure 46.

3.5 5-brane web for SU(3)0 + 1F + 1Sym

There is another deformation from an SU(3) theory with a flavor. It is to add a hyper-

multiplet in the symmetric representation (Sym), which may yield SU(3)0 + 1F + 1Sym.

We note that this theory is a marginal theory as the prepotential contribution of a sym-

metric hypermultiplet can be effectively “equivalent” to that of eight hypermultiplets in

the fundamental representation and a hypermultiplet in the antisymmetric representation

(1Sym ∼ 8F + 1AS). It follows that SU(3)0 + 1F + 1Sym would give an equivalent pre-

potential as that of SU(3)0 + 9F + 1AS or SU(3)0 + 10F, which has a 6d UV fixed point.

However a 5-brane configuration for SU(3)0 + 1F + 1Sym [26] is quite distinct from the

brane configuration for SU(3)0+10F. The SU(N) theory with a symmetric hypermultiplet
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m′9

m′8

m′7

m′6

m′10m′5

m′4

m′3

m′2
m′1

a′2

a′1

O7 -

(a)

m9

m8

m7

m6

m10m5

m4

m3

m2

m1

a 2

a 1

(b)

Figure 46. (a): A 5-brane web diagram with an O7−-plane for Sp(2) + 10F. (b): A 5-brane web

diagram for SU(3)0 + 10F where the red dotted line indicates the origin of the Coulomb branch.

O7+

(a) SU(3)0 + 1F + 1Sym

O7+

(b) SU(3)− 1
2

+ 1Sym

Figure 47. 5-brane web diagrams for SU(3) gauge theories with a symmetric hypermultiplet.

is described by the introduction of an O7+-plane on which an NS5-bane ends [24]. For

instance, see figure 47, which shows a 5-brane web for SU(3)0 + 1F + 1Sym in figure 47a

and a 5-brane web for SU(3)− 1
2

+ 1Sym in figure 47b. Using this 5-brane web diagram for

SU(3)0 + 1F + 1Sym, we will show that the areas of the compact faces of the web diagram

agree with the monopole tension from the effective prepotential.

In figure 48 which is a 5-brane web diagram describing SU(3)0 + 1F + 1Sym with

the mass parameters mF and mSym. We reflected 5-brane webs on the left against the

O7+-plane to the right below, and chose the right part as the fundamental region which

looks similar to that of an SU(3) theory (it is the bold faced 5-brane web in the figure). In

this way, one can readily compute to the area of the compact faces. The parameters in this

5-brane web are measured from the center of the Coulomb branch which is the horizontal

line in red. The distance between the O7+-plane cut and the center of the Coulomb branch

moduli corresponds to the half mass of the hypermultiplet in the symmetric representation,
1
2mSym, which is a natural generalization of the definition of the mass for an antisymmetric

hypermultiplet discussed in section 2.2.1. The bare coupling m0 is defined as usual by the

average of two extrapolated external 5-branes which are expressed as blue dotted lines in

figure 48. The blue dotted lines intersecting with the center line for the Coulomb branch

moduli give rise to two distances `1 and `2. It is not difficult to see that the two distances
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➁
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ℓ� m '-

0

Figure 48. SU(3)0 + 1F + 1Sym with mass parameters of the hypermultiplets. The 5-brane web

below the monodromy cut of an O7+-plane is the reflected image due to the O7+-plane. The center

of the Coulomb branch is denoted by the red line in the middle.

are related by `1 = `2 + 5mSym −mF. The bare coupling is defined by the average of the

two asymptotic distances of external 5-branes

m0 =
1

2
(l1 + l2), (3.45)

and hence `1, `2 can be expressed as

l1 = m0 +
5

2
mSym −

1

2
mF, l2 = m0 −

5

2
mSym +

1

2
mF. (3.46)

A little bit of algebra then yields that the area of the compact faces 1© and 2© in figure 48

are given by

1©= (2φ1−φ2)
(
m0+2φ1−2φ2−

1

2
mF+

3

2
mSym

)
, (3.47)

2©=m0 (−φ1+2φ2)−3φ21+4φ1φ2−
φ22
2

+mF

(
φ1
2
−φ2

)
− 3

2
m2

Sym−
3

2
mSymφ1. (3.48)

The effective prepotential is computed from (2.5). The phase of the parameters corre-

sponding to the configuration of figure 48 is

mF ≥ φ2 ≥ φ1 ≥
1

2
φ2 ≥ mSym ≥ 0. (3.49)

The prepotential reads

FSU(3)0+1F+1Sym =m0 (φ21−φ1φ2+φ22)+
4

3
φ31−3φ21φ2+2φ1φ

2
2−

1

6
φ32−

1

4
m3

F

− 1

2
mF (φ21−φ1φ2+φ22)+

3

2
mSymφ1(φ1−φ2)−

3

2
m2

Symφ2. (3.50)
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O7+

�퐒�퐲�퐦m-½  �∞

(1,1) (1,-1)(0,1)

(3,-1)(3,1)

Figure 49. A deformed web diagram for SU(3)0 + 1F + 1Sym which enables one to decouple a

hypermultiplet in the symmetric representation by taking its mass to −∞.

(3,1) (-3,1)

Figure 50. An effective description of the diagram in figure 49 when one sends mSym → −∞.

The diagram exhibits SU(3)− 7
2

+ 1F.

It is straightforward to see that the monopole string tension agrees with the area from the

5-brane web for SU(3)0 + 1F + 1Sym:

∂FSU(3)0+1F+1Sym

∂φ1
= 1©, (3.51)

∂FSU(3)0+1F+1Sym

∂φ2
= 2©. (3.52)

We close the subsection with a comment on decoupling of hypermultiplets. First we

can take mF → ∞ to decouple a flavor, which leads to SU(3)− 1
2

+ 1Sym as shown in

figure 47b.6 We can see that the area after the flavor decoupling reproduces the monopole

tensions of SU(3)− 1
2

+1Sym from the corresponding prepotential. It is also possible to take

the mass of a symmetric hypermultiplet to −∞ in order to decouple the hypermultiplet

in the symmetric representation. For that, consider a deformed web diagram for SU(3)0 +

1F + 1Sym depicted in figure 49, where three color D5-branes are put in on the right. On

the left, there is a (1, 1) 5-brane coming from the reflection of (−3, 1) 5-brane due to the

O7+-plane. The mass of the symmetric matter mSym is given by the distance between O7+-

plane and the center of the Coulomb branch (denoted as a red line). Since the origin of the

Coulomb branch moduli is above the location of the O7+-plane, the distance between them

is given by −1
2mSym. By taking mSym → −∞, one gets a web digram given in figure 50.

3.6 5-brane web for SU(3) 3
2

+ 1Sym

Here, we consider yet another marginal theory: SU(3) 3
2

+ 1Sym. Similar to the 5-brane

web configuration of figure 49, one has a 5-brane web for SU(3)− 3
2

+ 1Sym depicted in

figure 51. As discussed in the previous section, the mass of a symmetric hypermultiplet

parameterizes the distance between O7+-plane and the center of the Coulomb branch, as

shown in figure 51. It is then straightforward to see that taking it mass to −∞ which shifts

the CS level by −7
2 gives rise to SU(3)−5.

6From figure 48, we take −mF → −∞ and hence the CS level decreases by a half.
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Figure 51. A web diagram for SU(3)− 3
2

+ 1Sym from which one can decouple a hypermultiplet in

the symmetric representation by taking its mass to −∞, leading a web diagram for pure SU(3)−5

theory.

O7+

(0,1)

O7 -

(2,1) (2,-1)

(4,1) (4,-1) (4,-1)

Figure 52. A web diagram for SU(3)− 3
2

+ 1Sym with two O7-planes by recombining a pair of

7-branes of charges [1, 1] and [1,−1] into an O7−-plane in figure 51. As a result, an NS5-brane

one the left goes through the branch cut of the O7−-plane reappear as a (4,−1) 5-brane on the

right, which is the solid blue line. This goes through again to the cut of O7+-plane reappear as an

NS5-branes on the left of the first NS5-brane. This makes a 5-brane configuration with infinitely

many NS5-branes on the left and infinitely many (4,−1) 5-branes on the right.

This 5-brane configuration has an intriguing aspect which is quite different from 5-

brane web for SU(3) 1
2

+1Sym+1F . As discussed in [26], one can recombine three 7-branes

of the charges [1,−1], [0, 1] and [1, 1] in figure 49 to deform the 5-brane configuration to be

a 5-brane configuration with an O7+-plane and an O7−-plane, connected by an NS5-brane.

This hence makes the theory manifestly marginal. It is, in fact, a twisted compactification

of a 6d theory [26]. One can attempt to recombine 7-branes in a 5-brane web diagram for

SU(3) 3
2

+1Sym. For example, see figure 52. It is a 5-brane configuration with two different

O7-planes but an NS5-brane is not connected to two O7-plane, rather the NS5-brane is

left away. As there are two O7-planes, this NS5-brane goes through the branch cut of

an O7−-plane reappears as a (4,−1) 5-brane on the other side of O7−-plane, as shown in

figure 52. In fact, this configuration does not stop here. The (4,−1) 5-brane (the blue solid

line in the figure) again goes through the branch cut of an O7+-plane, and comes out as an

NS5-brane on the left side of the first NS5-brane, which again reappear on the right side

of the first (4,−1) 5-brane, and this pattern is repeated. This 5-brane configuration for

SU(3) 3
2

+ 1Sym with an O7+-and O7−-planes separated apart along the vertical direction

of 5-brane plane, gives rise to a new kind of 5-brane configuration representing a twisted

compactification of a 6d theory with an infinitely repeated 5-branes on the left and right

sides of two O7-planes.

New 5-brane web diagram for 5d SU(N)N/2 + 1Sym. It is straightforward to

construct a 5-brane configuration for SU(N)N
2

+ 1Sym as depicted in figure 53. We note

that N ≥ 2. As before, 5d SU(N)N
2

+ 1Sym has a 5-brane configuration with two O7-

planes with two sets of infinitely repeated 5-branes of the charges (3−N, 1) and (N +1, 1),

on the left and right sides of the O7-planes, which is depicted in figure 54. As the positions
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N D5-branes

(N+1,-1)(N+1,1)

Figure 53. A web diagram for SU(N)−N
2

+1Sym from which one can decouple a hypermultiplet in

the symmetric representation by taking its mass to −∞, leading a web diagram for pure SU(N)−N−2

theory.

O7+

(3-N,1) (N+1,-1)(N+1,1) (N+1,-1)

O7 -

N-1 D5-branes

(3-N,1)

Figure 54. A web diagram for SU(N)−N
2

+ 1Sym with two O7-planes. Due to two O7-planes,

this 5-brane configuration has infinitely many (3 − N, 1) 5-branes on the left and infinitely many

(N + 1,−1) 5-branes on the right.

of these infinitely repeated 5-branes depend on the separation between two O7-planes, one

can express the periodicity of the infinitely repeated 5-branes as a linear function of the

vertical separation between two O7-planes.

We note that for SU(N)N
2

+ 1Sym, it is easy to see that decoupling of a symmetric

hypermultiplet shifts the CS level κ by

κ → κ+
N + 4

2
. (3.53)

It follows that decoupling of a symmetric hypermultiplet from 5d SU(N)N
2

+ 1Sym gives

either SU(N)N+2 or SU(N)2 (modular the sign of the CS level).

4 Sp(2) gauge theory with 3AS

In the G2 − SU(3) − Sp(2) sequence, G2 + 3F is dual to Sp(2) + 2AS + 1F and it can be

also understood as SO(5) + 2F + 1S. Its decoupling is in particular interesting because

depending on how we decouple the fundamental hypermultiplet for Sp(2), it leads to two

different discrete θ-angle for the Sp(2) theory. Moreover, it allows us to deform the theory

by adding another hypermultiplet in the antisymmetric representation. Namely, we can

properly decouple the flavor from Sp(2) + 2AS + 1F to obtain Sp(2)0 + 2AS and then add

one more hypermultiplet in the antisymmetric representation, which gives rise to another

marginal theory Sp(2)0 + 3AS or equivalently SO(5)0 + 3F.

In this section, we consider the deformation leading to the Sp(2)0 + 3AS marginal

theory. Introducing three hypermultiplets in the antisymmetric representation in a 5-

brane web is not yet clear, so it is better to change the brane configuration for Sp(2) to

that for SO(5)0 as adding an antisymmetric hypermultiplet to an Sp(2) theory is equivalent

to adding a vector to an SO(5) theory.

Now we start with a brane configuration for SO(5)+2F+1S given in figure 55a. There

are three different possible decouplings as depicted in figure 55. By decoupling a vector,
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O5+∼ O5 -∼ O5+∼ O5 -∼

(a)
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(b)

O5+∼ O5 -∼ O5 -∼

(c)

O5+∼ O5 -∼ O5+∼

(d)

Figure 55. (a): A 5-brane web diagram for SO(5) + 2F + 1S. Different ways of decoupling a

hypermultiplet yield the following three different theories. (b): A 5-brane web for SO(5) + 1F+ 1S,

obtained by decoupling a vector from (a). (c): A 5-brane web for SO(5)π + 2F, obtained by

decoupling a spinor taking negative infinite mass from (a). (d): A 5-brane web for SO(5)0 + 2F,

obtained by decoupling a spinor taking positive infinite mass from (a).

➀

➁

m0

m1 m2
a 2

a 1

Figure 56. A 5-brane web diagram with an O5-plane for SO(5) + 2F.

we get SO(5) + 1F + 1S (figure 55b). By decoupling a spinor taking its mass to negative

infinity, we get SO(5)π + 2F (figure 55c) Decoupling a spinor by taking the mass of the

spinor matter infinite, we get SO(5)0 + 2F (figure 55d).

For completeness, let us compare the area with the monopole tension from the effective

prepotential of SO(5) gauge theories with antisymmetric hypermultiplets. We start from

SO(5)+2F in figure 55d. By mass deformations, we can get a web diagram for SO(5)0+2F

given in figure 56. One can then read off the monopole tension of the theory from the areas

in the brane configuration:

1© =
1

2
(a1 − a2) (a1 − 3a2 + 2m0) , (4.1)

2© =
1

2

(
2a2m0 − a22 + 4a1a2 −m2

1 −m2
2

)
, (4.2)

where the range of the parameters are given as

a1 ≥ a2 ≥ mi (i = 1, 2). (4.3)
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O7 -
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Figure 57. A 5-brane web diagram with an O5-plane for SO(5) + 3F.

We now compare the area of the two faces with the monopole string tension from the

prepotential for SO(5)+2F in the chamber. The effective prepotential in the phase (4.3) is

then given by

F SO(5)+2F = m0

(
φ21 − 2φ1φ2 + 2φ22

)
+

1

3

(
4φ31 − 9φ21φ2 + 6φ1φ

2
2 + 4φ32

)
− 1

12

2∑
i=1

(
12m2

iφ2 +m3
i + 16φ32 − 24φ1φ

2
2 + 12φ21φ2

)
, (4.4)

where we used the Dynkin basis (2.96). One can see explicitly that the monopole tension

computed from (4.4) is related to the area (4.1) and (4.2) by

∂F SO(5)+2F

∂φ1
= 1©,

∂F SO(5)+2F

∂φ2
= 2× 2©. (4.5)

SO(5) + 3F case. For the SO(5) theory with three hypermultiplets in the fundamental

representation, a 5-brane web diagram with an O5-plane is depicted in figure 57. Note that

the two external 5-branes in figure 57a are of the charges (1, 1) and (1,−1). Then a (1, 1)

7-brane and a (1,−1) 7-brane can end on the external 5-branes respectively and they can

be combined to be an O7−-plane as shown in figure 57b. It hence has a periodic direction

in the 5-brane plane, and therefore it is a marginal theory, which can be understood as a

twisted compactification [26].

The area of the compact faces in the web diagram in figure 57a are then given by

1©3F = (a1 − a2) (m0 − 2a2) , (4.6)

2©3F =
1

2

(
2a2m0 − 2a22 + 4a1a2 −m2

1 −m2
2 −m2

3

)
. (4.7)

We now compare these area with the monopole string tension from the prepotential. The

diagram in figure 57a is in the phase

a1 ≥ a2 ≥ mi, i = 1, 2, 3. (4.8)

Then the effective prepotential for SO(5) + 3F in this phase is given by

F SO(5)+3F = m0

(
φ21 − 2φ1φ2 + 2φ22

)
+

1

3

(
4φ31 − 9φ21φ2 + 6φ1φ

2
2 + 4φ32

)
− 1

12

3∑
i=1

(
12m2

iφ2 +m3
i + 16φ32 − 24φ1φ

2
2 + 12φ21φ2

)
. (4.9)
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Figure 58. The left diagram realizes the pure SU(3) gauge theory with the CS level 5 whereas the

right diagram realizes the pure SU(3) gauge theory with the CS level 7.

As expected, one can readily see that the monopole string tension agree with the area of

the faces of the web diagram in figure 57,

∂FSO(5)+3F

∂φ1
= 1©3F,

∂FSO(5)+3F

∂φ2
= 2× 2©3F. (4.10)

5 5-brane web for pure SU(3)9 gauge theory

In section 2.1, we realized a 5-brane web diagram which yields the pure SU(3) gauge theory

with the CS level 7. In fact, it turns out that an extension of the diagram gives a 5-brane

diagram of the pure SU(3) gauge theory with the CS level 9. In order to see the extension,

it is useful to compare a 5-brane web diagram for the pure SU(3) gauge theory with the

CS level 5 with the 5-brane web diagram for the pure SU(3) gauge theory with the CS

level 7. The two diagrams are depicted in figure 58. The increase of the CS level by 2 is

implemented by replacing one side of the diagram of the pure SU(3) gauge theory with the

CS level 5 with an ON-plane. Hence, it is natural to guess that replacing another side of

the diagram of the pure SU(3) gauge theory with the CS level 7 with an ON-plane may

give rise to a diagram of the pure SU(3) gauge theory with the CS level 9. We then propose

that the diagram in figure 59 gives rise to a 5-brane web diagram for the pure SU(3) gauge

theory with the CS level 9.

One can check the claim by computing the tension of the monopole string from the

5-brane web diagram in figure 59. The tension is given by the area and we can compare

the area with the result expected from the field theory. In order to write the area by

the gauge theory parameters of the SU(3) gauge theory, we assign the Coulomb branch

moduli a1, a2, a3, (a1 + a2 + a3 = 0) and the inverse of the squared gauge coupling m0 as

in figure 60. Then the area of the four faces in figure 60 becomes

1© = (a1 − a2)(a1 − a3), (5.1)

2© = (a1 − a2)(m0 − a1 + a2), (5.2)

3© = (a1 − a2)(a1 − a3), (5.3)

4© = (a2 − a3)(m0 − 2a1 + 2a2). (5.4)
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Figure 59. A 5-brane web diagram for the pure SU(3) gauge theory with the CS level 9.

①

②

③④

a1

a2

a3

m0

Figure 60. The parameterization for the pure SU(3) gauge theory with the CS level 9. a1, a2, a3
are the Coulomb branch moduli and m0 is the inverse of the squared gauge coupling.

Let us then compare the area with the tension of the monopole string of the pure SU(3)

gauge theory with the CS level 9. Since we do not have matter, the theory have only one

phase and the effective prepotential can be computed from (2.5) and it becomes

FSU(3)9 =
m0

2
(a21 + a22 + a23) +

1

6

(
(a1 − a2)3 + (a1 − a3)3 + (a2 − a3)3

)
+

9

6

(
a31 + a32 + a33

)
= m0

(
φ21 − φ1φ2 + φ22

)
+

4

3
φ31 + 4φ21φ2 − 5φ1φ

2
2 +

4

3
φ32, (5.5)

where we changed the basis for the Coulomb branch moduli into the Dynkin basis in (5.5)

by using (2.7). Then the tension of the monopole string is given by taking a derivative of

the prepotential with respect to φ1 and φ2. Hence the tension from (5.5) is

∂FSU(3)9

∂φ1
= (2φ1 − φ2)(m0 + 2φ1 + 5φ2), (5.6)

∂FSU(3)9

∂φ2
= (−φ1 + 2φ2)(m0 − 4φ1 + 2φ2). (5.7)

Now we can compare the tension (5.6) and (5.7) with the area (5.1)–(5.4). As in the

case of the comparison between the area and the monopole string tension for the pure G2

gauge theory, we need to consider a linear combination among (5.1)–(5.4) to obtain the
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area of a face where D3-brane covers [13]. More specifically, the area corresponding to the

tension (5.6) should be 2 1©+ 2©+ 2 3© while the area corresponding to the tension (5.7) is

simply given by 4©. Indeed, it is straightforward to check the equalities

2 1©+ 2©+ 2 3© =
∂FSU(3)9

∂φ1
, (5.8)

4© =
∂FSU(3)9

∂φ2
, (5.9)

from the explicit expressions of (5.1)–(5.4) and (5.6)–(5.7). This gives an evidence that

the diagram in figure 59 gives rise to the pure SU(3) gauge theory with the CS level 9.

6 Conclusion

In the paper, we proposed all the 5-brane webs of rank 2 superconformal theories classified

via geometries in [1], and discussed their mutual dualities from the perspective of S-duality

and the Hanany-Witten transitions arising by moving 7-branes. As many of 5-brane webs

for such rank 2 theories are already known, our focus has been those theories newly proposed

in [1], which did not have 5-brane descriptions.

We explicitly constructed 5-brane webs for all the marginal theories. We compared

the area of the web diagram for each theory with the monopole string tension calculated

from the effective prepotential, which showed the perfect agreement. We also found the

duality map among dual theories. For instance, explicit 5-brane webs are presented in

section 2 for the G2 gauge theories with six flavors (G2+6F) and its dual theories, the Sp(2)

gauge theory with four flavors and two hypermultiplets in the antisymmetric representation

(Sp(2) + 2AS + 4F) and the SU(3) gauge theory with six flavors and Chern-Simons level

4 (SU(3)4 + 6F). We also present 5-brane web from the viewpoint of the SO(5) theory

with two hypermultiplets in the fundamental representation and four hypermultiplets in

the spinor representation (SO(5) + 2V + 4S). The duality map among the theories in the

G2-SU(3)-Sp(2) sequences are also discussed in sections 2.3 and 2.4.

From the G2 − SU(3) − Sp(2) sequence, we also discussed various deformations: (i)

One can deform the theory by decoupling one antisymmetric hypermultiplet from Sp(2) +

2AS + 4F and then by adding flavors which leads to the Sp(2) gauge theory with one

antisymmetric and eight flavors (Sp(2) + 1AS + 8F) which is dual to the SU(3) gauge

theory with nine flavors and the CS level 3
2 (SU(3)3/2 + 9F). (ii) One can further decouple

the antisymmetric hypermultiplet and add more flavors to get the Sp(2) gauge theory with

ten flavors (Sp(2)+10F) which is dual to the SU(3) gauge theory with ten flavors and the CS

level 0 (SU(3)0+10F). (iii) One can also deform the theory to the SU(3) gauge theory with

one symmetric hypermultiplet and one flavor with the zero CS level (SU(3)0 +1Sym+1F)

and also to the SU(3) gauge theory with only one symmetric hypermultiplet with the CS

level 3/2 (SU(3) 3
2

+ 1Sym). (iv) Another possible deformation is to deform the theory

to the Sp(2)0 theory with three hypermultiplets in the antisymmetric representation and

the discrete theta angle zero (Sp(2)0 + 3AS) or equivalently the SO(5)0 theory with three

vectors and the discrete theta angle zero (SO(5)0 + 3F).
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We note that the 5-brane web diagrams for the marginal SU(3) theories, SU(3)0 +

1Sym + 1F and SU(3) 3
2

+ 1Sym are obtained with an O7+-plane. In particular, a 5-brane

web diagram for SU(3) 3
2

+ 1Sym can be constructed with O7+- and O7−-planes with 5-

branes appearing repeatedly on both sides of O7-planes with a periodic structure. This

can be straightforwardly generalized to rank N , exhibiting a new 5-brane structure for

5d SU(N)N
2

+ 1Sym theory. We also note that, inspired by the brane web for the pure

G2 gauge theory with an O5-plane, we constructed a 5-brane web for the marginal SU(3)

gauge theory with the CS level 9, which requires two ÕN -planes.7 An ÕN -plane appears

not only as the S-dual object of an Õ5-plane, but also naturally as Higgsing and decoupling

of the D-type quiver theory with an ON0-plane. Thus, a 5-brane web with an ÕN -plane

sometimes can allow a field theory description.

The duality between Sp(2) + 1AS + 8F and SU(3)3/2 + 9F can be understood as a

particular sequence of Hanany-Witten transitions by moving 7-branes. From the duality

map (3.25)–(3.35) and their brane configurations (Tao web diagrams in figures 41 and 44),

these two marginal theories have the same period which is expressed as two times the inverse

of the bare gauge coupling of Sp(2) + 1AS + 8F squared, denoted by 2m
Sp(2)
0 . We note

that, when expressed in terms of the parameters of SU(3)3/2+9F, the period is not 2m
SU(3)
0

but more complicated, which is, however, equivalent to 2m
Sp(2)
0 under the duality map.

By decoupling hypermultiplets from the marginal theories, we can obtain 5-brane webs

for 5d superconformal theories with various hypermultiplets. Various 5d theories with less

number of hypermultiplet can be obtained from decoupling of hypermultiplets from another

marginal theory. For example, we decoupled the symmetric matter to obtain a brane web

for SU(3)− 7
2

+ 1F. This decoupling generates various RG flows among rank 2 theories.

Following a summary figure presented in [1], we also summarize the 5-brane webs for rank

2 theories, their duality relations, and RG flows in figure 65.

It would be interesting to study the 6d origin of the marginal theories discussed in

the paper. It seems generic that for a marginal SU gauge theory with non-zero CS level

has the property that the compactification radius (or the period) is composed of a linear

combination of the bare coupling and the mass parameters of the hypermultiplets, which

may indicate some intriguing interplay between the compactification radius and the mass

parameters. It would also be interesting to further study such relation from the perspective

of its 6d origin. Another interesting future direction would be further confirm the duality

relation from BPS operator counting from the gauge theories. For instance, one may com-

pute superconformal indices for dual theories and confirm the duality map, which would

be another consistency check for the duality maps that we obtained from 5-brane webs.

Finally, pursuing 5-brane webs for superconformal theories of higher rank greater than 2

which may lead to new 5-brane perspective on higher Chern-Simons levels and hypermul-

tiplet in other representations than what was discussed. For instance, the hypermultiplet

in the rank 3 antisymmetric representation can be constructed [34].

7We found that the SU(3) gauge theories with the CS level from 3 to 6 also have a 5-brane web description

with an ÕN -plane, while the SU(3) gauge theory with the CS level 7 is only possible with an ÕN -plane.

See appendix B.
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A The gauge coupling for SO(2N + 1) gauge theory with spinors

In section 2.4, the inverse of the squared gauge coupling m0 for the SO(5) gauge theory

with two vector hypermultiplets and four spinor hypermultiplets was defined by (2.89),

using the parameters in figure 32. The definition of m0 in a web was in fact different

from that of the G2 gauge theory with two flavors given in figure 5. The G2 gauge theory

with two flavors was obtained from the Higgsing of the SO(7) gauge theory with three

spinors. Therefore, how to read off m0 from the diagram was different between the SO(5)

gauge theory and the SO(7) gauge theory. In this appendix, we give an explanation of the

difference by using the effective prepotential of an SO(2N + 1) gauge theory with spinors.

A.1 Decoupling of a spinor

We first discuss how decoupling one spinor of an SO(2N + 1) gauge theory affects the

inverse of the squared gauge coupling by using the effective prepotential. The effective

prepotential for the SO(2N + 1) gauge theory with Nf vectors and Ns spinors can be

calculated from the general expression (2.5) and it is given by

FSO(2N+1)+NfV+NsS =
1

2
m0

N∑
i=1

ai
2 +

1

6

 ∑
1≤i<j≤N

[
|ai − aj |3 + |ai + aj |3

]
+

N∑
i=1

|ai|3


− 1

12

N∑
i=1

Nf∑
j=1

(
|ai −mj |3 + |−ai −mj |3

)

− 1

12

Ns∑
k=1

∑
s1=±1

∑
s2=±1

· · ·
∑

sN=±1

∣∣∣∣∣12
(

N∑
i=1

siai

)
−mk

∣∣∣∣∣
3

. (A.1)
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We then consider decoupling one spinor by sending mNs → +∞. Then the terms involving

the Nsth spinor in the last line of (A.1) become

− 1

12

∑
s1=±1

∑
s2=±1

· · ·
∑

sN=±1

∣∣∣∣∣12
(

N∑
i=1

siai

)
−mNs

∣∣∣∣∣
3

= −2N−4mNs

N∑
i=1

ai
2 − 2N−2

3
mNs

3.

(A.2)

Therefore, in the limit where mNs →∞, the effective prepotential (A.1) becomes

FSO(2N+1)+NfV+(Ns−1)S =
1

2

(
m0−2N−3mNs

) N∑
i=1

ai
2

+
1

6

 ∑
1≤i<j≤N

[
|ai−aj |3+|ai+aj |3

]
+

N∑
i=1

|ai|3


− 1

12

N∑
i=1

Nf∑
k=1

(
|ai−mj |3+|−ai−mj |3

)

− 1

12

Ns−1∑
k=1

∑
s1=±1

∑
s2=±1

· · ·
∑

sN=±1

∣∣∣∣∣12
(

N∑
i=1

siai

)
−mk

∣∣∣∣∣
3

, (A.3)

up to the constant term −2N−2

3 mNs
3 which we can discard. In order to obtain the effective

prepotential for the theory after decoupling one spinor with mass mNs , we need to identify

the new (inverse of the squared) gauge coupling constant mnew
0 as

mnew
0 = m0 − 2N−3mNs . (A.4)

Unlike the case of decoupling a vector, the shift for m0 depends on N .

A.2 Reading off gauge coupling from web

Using the general formula for the shift of m0 after decoupling a spinor, we identify the

length corresponding to m0 from a 5-brane web diagram for the SO(2N + 1) gauge theory

with spinors.

A.2.1 One spinor case

For simplicity, we consider the SO(2N + 1) gauge theory with one spinor. We denote the

inverse of the squared gauge coupling by mNs=1
0 and the mass of the spinor by m1. The

inverse of the squared gauge coupling after decoupling one spinor is denoted by mNs=0
0 . A

5-brane web for the SO(2N + 1) gauge theory with one spinor is depicted in figure 61. The

mass parameter m1 is related to a half of the length between the (N − 2, 1) 5-brane and

the (1, 1) 5-brane on the Õ5-plane in figure 61, which can be interpreted as a half of the

inverse of the squared gauge coupling of the “Sp(0)” part. Hence a 5-brane web for the

pure SO(2N + 1) gauge theory after decoupling the spinor can be realized by moving (1, 1)

5-brane at the right hand side to infinitely right. Then, it is straightforward to read of
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N D5

m0
N =0s 2m1

SO(2N+1)
Sp(0)

O5
~+

O5
~-

Figure 61. The parameters for the SO(2N + 1) gauge theory with one spinor.

4 D5

m0
N =0s 2m1

SO(9)

Sp(0)

O5
~+

O5
~-

m0
N =1s

(a)

3 D5

m0
N =0s 2m1

SO(7)
Sp(0)

O5
~+

O5
~-

m0
N =1s

= =
(b)

2 D5

m0
N =0s 2m1

SO(5)
Sp(0)

O5
~+

O5
~-

m0
N =1s

= = = =

(c)

Figure 62. (a): mNs=1
0 for the SO(9) gauge theory with a spinor. (b): mNs=1

0 for the SO(7) gauge

theory with a spinor. (c): mNs=1
0 for the SO(5) gauge theory with a spinor.

the inverse of the squared gauge coupling mNs=0
0 of the pure SO(2N + 1) gauge theory in

a symmetric phase (vanishing Coulomb branch parameter) since it is simply the distance

between the (N − 1,−1) 5-brane on the left and the (N − 2, 1) 5-brane on the Õ5-plane

in figure 61.

Since we can identify mNs=0
0 in the web in figure 61, the relation (A.4) tells us how to

read off mNs=1
0 from the web. The relation is given by

mNs=1
0 = mNs=0

0 + 2N−3m1. (A.5)

For example, eq. (A.5) yields mNs=1
0 = mNs=0

0 + 2m1 for the SO(9) gauge theory. Then

the length corresponding to mNs=1
0 = mNs=0

0 + 2m1 is depicted in figure 62a. Namely,

we should use the “outside” point where the (1, 1) 5-brane ends as in figure 62a. For the

SO(7) gauge theory, the relation becomes mNs=1
0 = mNs=0

0 + m1. The diagram for the

SO(7) gauge theory is depicted in figure 62b. Unlike the case for the SO(9) gauge theory,

we use the “middle” point between the NS5-brane and the (1, 1) 5-brane to define mNs=1
0

as in figure 62b. Finally, for the SO(5) gauge theory, eq. (A.5) gives mNs=1
0 = mNs=0

0 + m1
2 .

Therefore, the “quarter” point between NS5-brane and the (1, 1) 5-brane the needs to be

used to define mNs=1
0 as in figure 62c.

A.2.2 Two spinor case

Next, we consider a case for the SO(2N + 1) gauge theory with two spinors. The two

spinors are realized at one side as depicted in figure 63. We denote the inverse of the

squared gauge coupling for the SO(2N + 1) gauge theory with two spinors by mNs=2
0 and

we write the masses of the two spinors by m1 and m2. These parameters can be read off

from the web in figure 63. Note that this parametrization is consistent with decoupling

of the spinor matter with mass m2, which corresponds to sending the height of the flavor

D5-brane extending in the left direction to infinitely far, keeping the length between the

(N − 2, 1) 5-brane and the (1, 1) 5-brane on the Õ5-plane. It turns out that the inverse
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Figure 63. The parameters for the SO(2N + 1) gauge theory with two spinors.

4 D5

m0
N =0s

SO(9)

O5
~+ O5

~-

m + m1 2 m + m1 2

m0
N =2s

(a)

3 D5

m0
N =0s

SO(7)

O5
~+ O5

~-

m + m1 2

m0
N =2s

(b)

2 D5

m0
N =0s

SO(5)

O5
~+ O5

~-

m + m1 2

m0
N =2s

= =

(c)

Figure 64. (a): The parametrization for the SO(9) gauge theory with two spinors. (b): The

parametrization for the SO(7) gauge theory with two spinors. (c): The parametrization for the

SO(5) gauge theory with two spinors.

of the squared gauge coupling for the “Sp(0)” part is identified with m1 +m2 rather than

2m1 + 2m2, which makes the way of reading off mNs=2
0 different from the one spinor cases.

Using the relation (A.4) twice gives the relation between mNs=0
0 and mNs=2

0

mNs=2
0 = mNs=0

0 + 2N−3(m1 +m2). (A.6)

Since mNs=0
0 is given as depicted in figure 63, we can determine the length corresponding

to m0Ns=2 by utilizing the relation (A.6). For example, a diagram for the SO(9) gauge

theory with two spinors in the symmetric phase is depicted in figure 64a. In this case,

the relation (A.6) is expressed as mNs=2
0 = mNs=0

0 + 2(m1 + m2). Therefore, the length

corresponding to mNs=2
0 is given by adding the distance between the (2, 1) 5-brane and

the (1, 1) 5-brane on the Õ5-plane twice to mNs=0
0 as in figure 64a. For the SO(7) gauge

theory with two spinors, we have mNs=2
0 = mNs=0

0 +m1 +m2 from (A.6). Then, to define

mNs=2
0 , we need to use the “outside” point which is given by extrapolating the NS5-brane

as depicted in figure 64b. Finally we consider the SO(5) gauge theory with two spinors.

The relation (A.6) yields mNs=2
0 = mNs=0

0 + m1+m2
2 . Therefore, we should use the “middle”

point between the NS5-brane on the left and the NS5-brane on the right in order to define

mNs=2
0 . The explicit length corresponding to mNs=2

0 is drawn in figure 64c.

B The web diagrams for rank two SCFTs

In this appendix, we give the 5-brane web diagrams for all the 5d N = 1 SCFTs with

rank 2 classified in [1]. In figure 65, all the diagrams for such theories are listed. The

theory in the box with gray color has 6d UV fixed point. In other words, certain 6d (1, 0)

SCFTs compactified on S1 give the 5d gauge theories inside the gray box. All the other
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5d theories are obtained by RG flows triggered by relevant deformation, which is described

by the arrows. The gauge theories inside the same box are the dual theories, which have

identical SCFTs at their UV fixed point.8 In some boxes, non-Lagrangian theories are

given, which are specified by the Calabi-Yau geometry. We exclude 5-brane webs which

can be obtained by an S-duality transformation or trivial Hanany-Witten transitions, unless

they have manifest Lagrangian descriptions.

In each box in figure 65, a figure number from 66 to 137 is given, in which the corre-

sponding web diagrams are depicted, where the external 5-branes are attached to 7-branes

which should be understood as being taken to infinity. Note that, for all the diagrams we

list in the appendix, we can move all the 7-branes to infinity by finite steps. In this way, a

conventional attempt to construct 5-brane for pure SU(3)7 theory is not very useful. One

may consider a naive diagram for SU(3)7 like the left diagram in figure 87(b), but it does

not lead to a “finite” diagram like the right diagram in (b). In other words, one cannot

move the 7-branes to infinity in finite steps, and hence a 5-brane web for describing the pure

SU(3)7 theory may need to rely on unconventional 5-brane constructions. As presented in

figure 72, it is described by introducing an ÕN -plane.

In some of the figures, web diagrams are classified into several groups labelled by (a),

(b), (c), etc. The web diagrams in the same group can be transformed to each other di-

agrammatically by using flop transitions, Hanany-Witten transitions, SL(2,Z) S-duality

transformation as well as reflection. The “flop transitions” include the generalized ones

found in [23]. The web diagrams with different groups do not have such obvious diagram-

matical transformations from one to the other even though they correspond to an identical

SCFT. If the group label (a), (b), (c), . . . are not written, it means that all the diagrams in

the figure can be transformed to each other diagrammatically. The RG flows of the SCFTs

are understood diagrammatically as a certain limit often combined with the flop transitions.

In some cases, more than one diagrams are depicted for one gauge theory. In order

to emphasize the difference of such diagrams, we put brief explanations in the bracket

after the name of the theory. For example, the second diagram in figure 67 denoted as

SU(3)9/2 + 5F (= 1AS + 4F). This means that one out of 5 flavors are actually realized

as the antisymmetric tensor representation using ÕN
−

-plane while the other 4 flavors are

conventionally realized as fundamental representation using D7-branes. Although antisym-

metric tensor and fundamental are identical for SU(3) gauge group, they nicely characterize

the difference of the web diagrams.

Also, for the SO(5) gauge theories with hypermultiplets in spinor representation, we

often obtain several diagrams due to the fact that the spinor representation can be realized

both at the left hand side and the right hand side of the SO(5) gauge theory in the

web diagram. For example, in figure 68, the last diagram in the group (b) is denoted as

“SO(5) + 2V + 2S(1S + 1S)”. This means that one spinor is realized at the left hand

side while the other one is at the right hand side. On the contrary, the diagrams in the

group (a) and group (c) are explained as “2S & θ = 0” and “2S & θ = π”, respectively.

8Some quiver theories may have subtlety as their parameter regions may not be directly connected to

the UV fixed point as pointed out in [1].
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This means that the two spinors are realized at the left side for both cases. The remaining

information θ = 0 or θ = π denote the discrete theta angle. Although discrete theta angle

is not really defined for the SO(5) theory with spinors, it is used just to briefly specify the

configuration at the right hand side of this diagram. The configuration for “θ = 0” is the

same as the right half of the diagram in figure 55d while “θ = π” is the one in figure 55c.

The explanations for the G2 gauge theories are a little bit tricky. For example, in

figure 67, the first diagram is denoted as “G2 + 5F (= 1S + 4V)”. This actually means

that this diagram for the G2 gauge theory with 5 flavor is obtained by Higgsing one hy-

permultiplet in spinor representation of SO(7) gauge theory with two hypermultiplets in

spinor representation and four hypermultiplets in vector representation. Since one out of

two hypermultiplets in spinor representation disappear in the process of Higgsing, what

remains in the G2 gauge theory is 1 flavor coming from the spinor representation and the

4 flavors coming from vector representation. This information of the origins are briefly

explained as “1S + 4V”. Analogously, “G2 + 5F (= 2S + 3V)” for the diagram below

means that the 2 flavor originates from spinor representation while the 3 flavor originates

from the vector representation of the parent SO(7) gauge theory.

All the external (p, q) 5-branes are terminated by (p, q) 7-branes in all the diagrams

in the following figures. In some cases, we can straightforwardly move (p, q) 7-branes to

(p, q) direction and obtain the web diagrams consists only of (p, q) 5-branes. For other

cases, (p, q) 7-branes go across the branch cut created by other (p, q) 7-branes. In this

case, we need to properly move (p, q) 7-branes taking into account this monodromy as well

as Hanany-Witten transition in order to move all the (p, q) 7-branes to infinity. Especially

in the diagrams for the 6d theories, it is not possible to move all the (p, q) 7-branes to

infinity at least in finite step unless they does not exist from the beginning as in figure 137.
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Fig. 130

SU(2)0-SU(2)0

Fig. 131

SU(2)π-SU(2)0

Fig. 121

SU(3)0 + 2F
SU(2)π-SU(2)π

Fig. 117

SU(3)1+2F

Fig. 112

SU(3)2+2F

Fig. 105

SU(3)3+2F

Fig. 96

SU(3)4+2F
Sp(2)+2F

Fig. 85

SU(3)5+2F
Sp(2)+1AS+1F

Fig. 70

SU(3)6+2F
Sp(2)π+2AS
G2+2F

Fig. 74

Sp(2)0+2AS

Fig. 75

Sp(2)0+1AS

Fig. 71

SU(3) 13
2

+1F

G2+1F

Fig. 86

SU(3) 11
2

+1F

Sp(2)π+1AS

Fig. 97

SU(3) 9
2
+1F

Sp(2)+1F

Fig. 106

SU(3) 7
2
+1F

Fig. 113

SU(3) 5
2
+1F

Fig. 118

SU(3) 3
2
+1F

Fig. 122

SU(3) 1
2
+1F

Fig. 132

“F1∪ dP2”

Fig. 76

Sp(2)0

Fig. 72

SU(3)7
G2

Fig. 87

SU(3)6

Fig. 98

SU(3)5
Sp(2)π

Fig. 107

SU(3)4

Fig. 114

SU(3)3

Fig. 119

SU(3)2

Fig. 123

SU(3)1

Fig. 124

SU(3)0

Fig. 133

“F2∪ dP1”

Fig. 120

“F3 ∪ P2”

Fig. 77

“F6 ∪ P2”

Fig. 73

Sp(2)0+3AS

Fig. 69

SU(3) 11
2

+3F

Sp(2)+2AS+1F
G2+3F

Fig. 84

SU(3) 9
2
+3F

Sp(2)+1AS+2F

Fig. 95

SU(3) 7
2
+3F

Sp(2)+3F

Fig. 104

SU(3) 5
2
+3F

Fig. 111

SU(3) 3
2
+3F

Fig. 116

SU(3) 1
2
+3F

SU(2)π-SU(2)-[1]

Fig. 129

[1]-SU(2)-SU(2)0

Fig. 68

SU(3)5+4F
Sp(2)+2AS+2F

G2+4F

Fig. 83

SU(3)4+4F
Sp(2)+1AS+3F

Fig. 94

SU(3)3+4F
Sp(2)+4F

Fig. 103

SU(3)2+4F

Fig. 110

SU(3)1+4F
SU(2)π-SU(2)-[2]

Fig. 115

SU(3)0+4F
[1]-SU(2)-SU(2)-[1]

Fig. 128

[2]-SU(2)-SU(2)0

Fig. 67

SU(3) 9
2
+5F

Sp(2)+2AS+3F
G2+5F

Fig. 82

SU(3) 7
2
+5F

Sp(2)+1AS+4F

Fig. 93

SU(3) 5
2
+5F

Sp(2)+5F

Fig. 102

SU(3) 3
2
+5F

SU(2)π-SU(2)-[3]

Fig. 109

SU(3) 1
2
+5F

[1]-SU(2)-SU(2)-[2]

Fig. 127

[3]-SU(2)-SU(2)0

Fig. 66

SU(3)4+6F
Sp(2)+2AS+4F

G2+6F

Fig. 81

SU(3)3+6F
Sp(2)+1AS+5F

Fig. 92

SU(3)2+6F
Sp(2)+6F

SU(2)π-SU(2)-[4]

Fig. 101

SU(3)1+6F
[1]-SU(2)-SU(2)-[3]

Fig. 108

SU(3)0+6F
[2]-SU(2)-SU(2)-[2]

Fig. 126

[4]-SU(2)-SU(2)0

Fig. 80

SU(3) 5
2
+7F

Sp(2)+1AS+6F
SU(2)π-SU(2)-[5]

Fig. 91

SU(3) 3
2
+7F

Sp(2)+7F
[1]-SU(2)-SU(2)-[4]

Fig. 100

SU(3) 1
2
+7F

[2]-SU(2)-SU(2)-[3]

Fig. 125

SU(2)0-SU(2)-[5]

Fig. 79

SU(3)2+8F
Sp(2)+1AS+7F
[1]-SU(2)-SU(2)-[5]

Fig. 90

SU(3)1+8F
Sp(2)+8F

[2]-SU(2)-SU(2)-[4]

Fig. 99

SU(3)0+8F
[3]-SU(2)-SU(2)-[3]

Fig. 78

SU(3) 3
2
+9F

Sp(2)+1AS+8F
[2]-SU(2)-SU(2)-[5]

Fig. 89

SU(3) 1
2
+9F

Sp(2)+9F
[3]-SU(2)-SU(2)-[4]

Fig. 88

SU(3)0+10F
Sp(2)+10F

[4]-SU(2)-SU(2)-[4]

Fig. 135

SU(3) 1
2
+1Sym

Fig. 134

SU(3)0+1Sym+1F

Fig. 137

SU(3)9

Fig. 136

SU(3) 3
2
+1Sym

Figure 65. List of 5d N = 1 theories with rank 2 and their relations through RG flows, where the

marginal theories are shaded in gray.
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G2+6F (=2S+4V) SU(3)4 + 6F (=2AS+4F) Sp(2) + 2AS + 4F SO(5) + 2V + 4S

～O5-

～ON-

～O5- ～O5-～O5+

～ON-

～ON-

～ON-

～ON-

～ON-
～O5- ～O5- ～O5-～O5+ ～O5+

Figure 66. Various diagrams representing G2 + 6F, SU(3)4 + 6F, Sp(2) + 2AS + 4F, and SO(5) +

2V +4S. All the diagrams are related by HW transitions, generalized flop transitions, and SL(2,Z)

transformation and reflection.

G2+5F (=1S+4V)

～O5- ～O5+ ～O5- ～O5-

SU(3)9/2 + 5F (=1AS+4F)

～ON-

～ON-

～ON-

G2+5F (=2S+3V)

～O5- ～O5+ ～O5- ～O5-

SU(3)9/2 + 5F (=2AS+3F)

～ON-

～ON-

～ON-

Sp(2) + 2AS + 3F

～ON-

～ON-

～ON-

SO(5) + 2V + 3S

～O5- ～O5- ～O5-～O5+ ～O5+

Figure 67. Various diagrams representing G2+5F, SU(3) 9
2
+5F, Sp(2)+2AS+3F, SO(5)+2V+3S.

These diagrams are obtained from any of the diagrams in figure 66 by a certain limit corresponding

to a relevant deformation.
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G2+4F (=0S+4V)

G2+4F (=1S+3V)

G2+4F (=2S+2V)

SU(3)5 + 4F (=0AS+4F)

SU(3)5 + 4F (=1AS+3F)

SU(3)5 + 4F (=2AS+2F) Sp(2) + 2AS + 2F

SO(5) + 2V + 2S (2S & θ=0)

SO(5) + 2V + 2S (1S + 1S )

SO(5) + 2V + 2S (2S & θ=π)

(a)

(b)

(c)

～O5+ ～O5- ～O5-

～O5- ～O5+ ～O5- ～O5-

～O5- ～O5+ ～O5- ～O5-

～ON-

～ON-

～ON+

～ON-

～ON-

～ON-

～ON-

～ON-

～ON-

～ON-

～ON-

～ON-

～O5+ ～O5-～O5-

～O5+ ～O5-～O5-

～O5+

～O5+ ～O5-

～O5+ ～O5-～O5- ～O5-

Figure 68. Various diagrams representing G2+4F, SU(3)5+4F, 2AS+2F, SO(5)+2V+2S. The

diagrams in the same group are related by Hanany-Witten transitions, generalized flop transitions,

and SL(2,Z) transformation and reflection. Although the diagrams in the different groups are

not related in such a way, all the diagrams are obtained from the one in figure 67 with different

diagrammatic limit.
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G2+3F (=0S+3V)

～O5+ ～O5- ～O5-

～O5- ～O5+ ～O5- ～O5-

～O5- ～O5+ ～O5- ～O5-

G2+3F (=1S+2V)

G2+3F (=2S+1V)

SU(3)11/2 + 3F (=0AS+3F)

SU(3)11/2 + 3F (=1AS+2F)

SU(3)11/2 + 3F (=2AS+1F) Sp(2) + 2AS + 1F

SO(5) + 2V + S (1S & θ=0)

SO(5) + 2V + S (1S & θ=π)

～O5+ ～O5-～O5- ～O5+

～O5+ ～O5-～O5- ～O5+

～ON-

～ON-

～ON+

～ON-

～ON-

～ON-

～ON-

～ON-

～ON-

～ON-

～ON-

～ON-

(a)

(b)

(c)

Figure 69. Various diagrams representing G2 + 3F, SU(3) 11
2

+ 3F, 1AS + 2F, 2AS + 1F, SO(5) +

2V+1S. The diagrams in group (a) are obtained from group (a) and group (b) in figure 68. Group

(b) is obtained from group (b) and group (c) in figure 68. Group (c) is obtained from group (c) in

figure 68.
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G2+2F (=0S+2V)

G2+2F (=1S+1V)

G2+2F (=2S+0V)

SU(3)6 + 2F (=0AS+2F)

SU(3)6 + 2F (=1AS+1F)

SU(3)6 + 2F (=2AS+0F)

SO(5)π + 2V

Sp(2)π + 2AS

～O5+ ～O5- ～O5-

～O5- ～O5+ ～O5- ～O5-

～O5- ～O5+ ～O5- ～O5-

～O5+ ～O5- ～O5-

～ON-

～ON-

～ON+

～ON-

～ON-

～ON-

～ON-

～ON-

～ON-

～ON-

～ON-

～ON-

(a)

(b)

(c)

Figure 70. Various diagrams representing G2 + 2F, SU(3)6 + 2F, 1AS + 1F, 2AS, SO(5)π + 2V,

and Sp(2)π + 2AS which are obtained from figure 69.

G2+1F (=0S+1V) G2+1F (=1S+0V)SU(3)13/2 + 1F (=0AS+1F) SU(3)13/2 + 1F (=1AS+0F)

～O5+ ～O5- ～O5- ～O5- ～O5+ ～O5- ～O5-

～ON-

～ON-

～ON+

～ON-

～ON-

～ON-

(a) (b)

Figure 71. Various diagrams representing G2+1F, SU(3) 13
2

+1F, SO(5)π+2V, and Sp(2)π+2AS

which are obtained from figure 69.

Pure G2 Pure SU(3)7 

～O5+ ～O5- ～O5-

～ON-

～ON-

～ON+

Figure 72. 5-brane webs for pure G2 and pure SU(3)7, which are obtained figure 71.
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～O5+ ～O5- ～O5+

Figure 73. A 5-brane web for Sp(2)0 + 3AS realized as SO(5)0 + 3V.

～ON-

～ON-

～ON-

(a) (b) (c)

Sp(2)0 + 2AS SO(5)0 + 2V SO(5)0 + 2V (θ=π+π)

～O5+ ～O5- ～O5+ ～O5- ～O5- ～O5-

Figure 74. 5-brane webs for (a) Sp(2)0 + 2AS, (b)SO(5)0 + 2F, and (c) SO(5)2π + 2F.

Sp(2)0 + 1AS SO(5)0 + 1V SO(5)0 + 1V (θ=π+π)

～O5+ ～O5- ～O5+ ～O5- ～O5- ～O5-

(a) (b) (c)

Figure 75. 5-brane webs for (a) Sp(2)0 + 1AS, (b) SO(5)0 + 1F, and (c) SO(5)2π + 1F.

Pure Sp(2)0 Pure SO(5)0 Pure SO(5)0 (θ=π+π)

～O5+ ～O5- ～O5+ ～O5- ～O5- ～O5-

(a) (b) (c)

Figure 76. 5-brane webs for (a) Sp(2)0, (b) SO(5)0, and (c) SO(5)2π.
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(a) (b)

～O5+ ～O5- ～O5+

(With O5-plane)(Without O5-plane)

Figure 77. A non-Lagrangian theories denoted by F6 ∪ P2 that are obtained the RG flows on 76.

SU(3)3/2 + 9F Sp(2) + 1AS + 8F [2]-SU(2)-SU(2)-[5]

Figure 78. Various 5-brane webs for SU(3) 3
2
+9F, Sp(2)+1AS+8F, and [SU(2)+2F]×[SU(2)+5F].

SU(3)2 + 8F Sp(2) + 1AS + 7F [1]-SU(2)-SU(2)-[5]

Figure 79. Various 5-brane webs for SU(3)2+8F, Sp(2)+1AS+7F, and [SU(2)+1F]×[SU(2)+5F].

SU(3)5/2 + 7F Sp(2) + 1AS + 6F SU(2)π-SU(2)-[5]

Figure 80. Various 5-brane webs for SU(3) 5
2

+ 7F, Sp(2) + 1AS + 6F, and SU(2)π × [SU(2) + 5F].
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SU(3)3 + 6F Sp(2) + 1AS + 5F

Figure 81. Various 5-brane webs for SU(3)3 + 6F and Sp(2) + 1AS + 5F.

SU(3)7/2 + 5F (=2AS+3F) SU(3)7/2 + 5F (without ON-plane) Sp(2) + 1AS + 4FSO(5) + 1V + 4S

～ON-

～ON-

～ON- ～O5+ ～O5-～O5- ～O5+ ～O5-

(a) (b)

Figure 82. 5-brane webs for SU(3) 7
2

+ 5F and SO(5) + 1F + 4S (or Sp(2) + 1AS + 4F) (a) with

an orientifold and (b) without an orientifold.

SU(3)4 + 4F (=2AS+2F)

SU(3)4 + 4F (without ON-plane)

SU(3)4 + 4F (=1AS+3F)

Sp(2) + 1AS + 3F

SO(5) + 1V + 3S

～O5+ ～O5-～O5- ～O5+ ～O5-
(a)

(b)

～ON-

～ON-

～ON-

～ON-

～ON-

～ON-

Figure 83. 5-brane webs for SU(3)4 + 4F and SO(5) + 1F + 3S (or Sp(2) + 1AS + 3F) (a) with

an orientifold and (b) without an orientifold.
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(a) (b) (c) (d)
～ON-

～ON-

～ON-

～ON-

～ON-

～ON+

～ON-

～ON-

～ON-

～O5+ ～O5-～O5- ～O5+ ～O5-～O5+ ～O5-～O5- ～O5+ ～O5+ ～O5-～O5- ～O5+

SU(3)9/2 + 3F (=0AS+3F) SU(3)9/2 + 3F (=1AS+2F) SU(3)9/2 + 3F (=2AS+1F) SU(3)9/2 + 3F

SO(5) + 1V + 2S (2S & θ=0) SO(5) + 1V + 2S (1S + 1S) SO(5) + 1V + 2S (2S & θ=π) Sp(2) + 1AS + 2F

Figure 84. Various 5-brane webs for SU(3) 9
2

+3F and its dual Sp(2)+1AS+2F or SO(5)+1F+2S.

SU(3)5 + 2F (=0AS+2F) SU(3)5 + 2F (=1AS+1F) SU(3)5 + 2F (=2AS+0F)

(a) (b) (c) (d)

SU(3)5 + 2F

SO(5)+1V+1S (1S & θ=0) SO(5)+1V+1S (1S & θ=π) Sp(2) + 1AS + 1F

～O5+ ～O5-～O5- ～O5+ ～O5+ ～O5-～O5- ～O5-

～ON-

～ON-

～ON+

～ON-

～ON-

～ON-

～ON-

～ON-

～ON-

Figure 85. Various 5-brane webs for SU(3)5+2F and its dual Sp(2)+1AS+1F or SO(5)+1F+1S.

～ON-

～ON-

～ON+

SU(3)11/2 + 1F

(a) (b) (c)

SU(3)11/2 + 1F (=1AS+0F)

～ON-

～ON-

～ON-

Sp(2)π + 1ASSU(3)11/2 + 1F

Figure 86. Various 5-brane webs for SU(3) 11
2

+ 1F and its dual Sp(2)π + 1AS.
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(a) (b)
～ON-

～ON-

～ON+

Pure SU(3)6 (with ON) Pure SU(3)6 (without ON)

Figure 87. 5-brane webs for pure SU(3)6. (a) A 5-brane web with an ON-plane. (b) A 5-brane

web without an ON-plane. In (b), the left one is a diagram naively showing SU(3)6, while the right

one is a 5-brane web when two 7-branes in the bottom part of the left figure are pulled out upward

along the direction of their charges.

SU(3)0 + 10F Sp(2) + 10F

O7-

[4]-SU(2)-SU(2)-[4]

Figure 88. 5-brane webs for SU(3)0 + 10F, Sp(2) + 10F, and [SU(2) + 4F]× [SU(2) + 4F], which

are dual to one anther.

SU(3)1/2 + 9F Sp(2) + 9F

O7-

[3]-SU(2)-SU(2)-[4]

Figure 89. 5-brane webs for SU(3) 1
2

+ 9F, Sp(2) + 9F, and [SU(2) + 3F] × [SU(2) + 4F], which

are dual to one anther.

SU(3)1 + 8F Sp(2) + 8F

O7-

[2]-SU(2)-SU(2)-[4]

Figure 90. 5-brane webs for SU(3)1 + 8F, Sp(2) + 8F, and [SU(2) + 2F]× [SU(2) + 4F], which are

dual to one anther.

SU(3)3/2 + 7F Sp(2) + 7F

O7-

[1]-SU(2)-SU(2)-[4]

Figure 91. 5-brane webs for SU(3) 3
2

+ 7F, Sp(2) + 7F, and [SU(2) + 1F] × [SU(2) + 4F], which

are dual to one anther.
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SU(3)2 + 6F Sp(2) + 6F

O7-

SU(2)π-SU(2)-[4]

Figure 92. 5-brane webs for SU(3)2 + 6F, Sp(2) + 6F, and SU(2)π × [SU(2) + 4F], which are dual

to one anther.

SU(3)5/2 + 5F Sp(2) + 5F
O7-

Figure 93. 5-brane webs for SU(3) 5
2

+ 5F and its dual Sp(2) + 5F.

SU(3)3+ 4F (=2AS+2F)

SU(3)3+ 4F (without ON) Sp(2) + 4F
O7-

(a)

(b)

SO(5) + 4S

～ON-

～ON-

～ON-
～O5+ ～O5-～O5- ～O5+ ～O5-

Figure 94. 5-brane webs for SU(3)3 + 4F and its dual Sp(2) + 4F or SO(5) + 4S.

～O5+ ～O5-～O5- ～O5+ ～O5-

～ON-

～ON-

～ON-

～ON-

～ON-

～ON-

SO(5) + 3SSU(3)7/2+ 3F (=2AS+1F)

(a)

(b)

SU(3)7/2+ 3F (=1AS+2F)

SU(3)7/2+ 3F (without ON) Sp(2) + 3F

O7-

Figure 95. Various 5-brane webs for SU(3) 7
2

+ 3F and its dual Sp(2) + 3F or SO(5) + 3S.
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SO(5) + 2S (2S & θ=0 ) SO(5) + 2S (1S + 1S) SO(5) + 2S (2S & θ=π )

SU(3)4+ 2F (=0AS+2F)

～O5+ ～O5-～O5- ～O5+ ～O5- ～O5+ ～O5-～O5- ～O5-～O5+ ～O5-～O5- ～O5+

～ON-

～ON-

～ON+

(a) (b) (c) (d)
～ON-

～ON-

～ON-

～ON-

～ON-

～ON-

SU(3)4+ 2F (=1AS+1F) SU(3)4+ 2F (=2AS+0F) SU(3)4+ 2F (without ON)

O7-

Sp(2) + 2F

Figure 96. Various 5-brane webs for SU(3)4 + 2F and its dual Sp(2) + 2F or SO(5) + 2S.

SU(3)9/2+ 1F (=0AS+1F) SU(3)9/2+ 1F (=1AS+0F)

SO(5) + 1S (1S & θ=0 ) SO(5) + 1S (1S & θ=π ) Sp(2) + 1F

SU(3)9/2+ 1F (without ON)

O7-～O5+ ～O5-～O5- ～O5+ ～O5+ ～O5-～O5- ～O5-

～ON-

～ON-

～ON-

～ON-

～ON-

～ON+

(a) (b) (c)

Figure 97. Various 5-brane webs for SU(3) 9
2

+ 1F and its dual Sp(2) + 1F or SO(5) + 1S.
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(a)

(b)

Pure SU(3)5 (with ON-plane)

Pure SU(3)5 (without ON-plane) Pure Sp(2)

Pure SO(5)π

O7-

～ON-

～ON-

～ON+ ～O5+ ～O5- ～O5-

Figure 98. Various 5-brane webs for SU(3)5 and its dual Sp(2)π or SO(5)π. For figure (b), the

discrete theta angle for the pure Sp(2) theory is determined by how an O7−-plane is resolved. For

instance, the resolution of an O7−-plane into a pair of [1,-1] and [1,1] 7-branes corresponds to the

discrete theta angle θ = π for Sp(2), while the resolution of an O7−-plane into a pair of [0,-1] and

[2,1] 7-branes corresponds to θ = 0 for Sp(2) [24].

SU(3)0+ 8F [3]-SU(2)-SU(2)-[3]

Figure 99. 5-brane webs for SU(3)0 + 8F and its dual quiver [SU(2) + 3F]× [SU(2) + 3F].

SU(3)1/2+ 7F [2]-SU(2)-SU(2)-[3]

Figure 100. 5-brane webs for SU(3) 1
2

+ 7F and its dual quiver [SU(2) + 2F]× [SU(2) + 3F].

SU(3)1+ 6F [1]-SU(2)-SU(2)-[3]

Figure 101. 5-brane webs for SU(3)1 + 6F and its dual quiver [SU(2) + 1F]× [SU(2) + 3F].
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SU(3)3/2+ 5F SU(2)π-SU(2)-[3]

Figure 102. 5-brane webs for SU(3) 3
2

+ 5F and its dual quiver SU(2)π × [SU(2) + 3F].

Figure 103. A 5-brane web for SU(3)2 + 4F.

(a) (b)

SU(3)5/2+3F (2AS+1F) SU(3)5/2+3F

～ON-

～ON-

～ON-

Figure 104. 5-brane webs for SU(3) 5
2

+ 3F with and without an ÕN -plane.

SU(3)3+2F (2AS+0F) SU(3)3+2F (1AS+1F)

～ON-

～ON-

～ON-

(a) (b) (c)
～ON-

～ON-

～ON-

SU(3)3+2F

Figure 105. Various 5-brane webs for SU(3)3 + 2F with and without an ÕN -plane.
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(a) (b) (c)
～ON-

～ON-

～ON+

SU(3)7/2+1F (0AS+1F)

～ON-

～ON-

～ON-

SU(3)7/2+1F (1AS+0F) SU(3)7/2+1F

Figure 106. Three different 5-brane configurations: (a) SU(3) 7
2

+ 1F with an ÕN -plane. (b)

SU(3) 7
2

+ 1AS with an ÕN -plane. (c) SU(3) 7
2

+ 1F without an ÕN -plane.

(a) (b)

Pure SU(3)4 (with ON-plane) Pure SU(3)4 (without ON-plane)

～ON-

～ON-

～ON-

Figure 107. (a) A web diagram for SU(3)4 with an ÕN -plane. (b) A conventional brane web

diagram for SU(3)4.

SU(3)0+6F [2]-SU(2)-SU(2)-[2]

Figure 108. 5-brane webs for SU(3)0 + 6F and its dual quiver theory [SU(2) + 2F]× [SU(2) + 2F].

SU(3)1/2+5F [1]-SU(2)-SU(2)-[2]

Figure 109. 5-brane webs for SU(3) 1
2

+5F and its dual quiver theory [SU(2)+1F]× [SU(2)+2F].
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SU(3)1+4F SU(2)π-SU(2)-[2]

Figure 110. 5-brane webs for SU(3)1 + 4F and its dual quiver theory SU(2)π × [SU(2) + 2F].

Figure 111. A 5-brane web diagram for SU(3) 3
2

+ 3F.

SU(3)2+2F (2AS+0F) SU(3)2+2F

～ON-

～ON-

～ON-

(a) (b)

Figure 112. (a) A web diagram for SU(3)2 + 2F with an ÕN -plane which can be understood as

SU(3)2 + 2AS. (b) A conventional brane web diagram for SU(3)2 + 2F.

(a) (b)

SU(3)5/2+1F (1AS+0F)

～ON-

～ON-

～ON-

SU(3)5/2+1F

Figure 113. (a) A web diagram for SU(3) 5
2

+ 1F theory with an ÕN -plane. (b) a conventional

web diagram for SU(3) 5
2

+ 1F without an ÕN -plane.
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Pure SU(3)3 (with ON-plane)

～ON-

～ON-

～ON+
Pure SU(3)3 

(without ON-plane)

(a) (b)

Figure 114. (a) A web diagram for the pure SU(3)3 theory with an ÕN -plane. (b) a conventional

web diagram for the pure SU(3)3 theory without an ÕN -plane.

SU(3)0+4F [1]-SU(2)-SU(2)-[1]
Figure 115. 5-brane webs for SU(3)0+4F and its S-dual quiver theory [SU(2)+1F]× [SU(2)+1F].

The duality can be seen by an S-duality and Hanany-Witten transitions.

SU(3)1/2+3F SU(2)π-SU(2)-[1]
Figure 116. 5-brane webs for SU(3) 1

2
+ 3F and SU(2)π × [SU(2) + 1F] which are dual to each

other.
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Figure 117. SU(3)1 + 2F. Figure 118. SU(3) 3
2

+ 1F.

Figure 119. Pure SU(3)2. Figure 120. F3 ∪ P2.

Figure 121. SU(3)1 + 2F. Figure 122. SU(3) 1
2

+ 1F.

Figure 123. Pure SU(3)1. Figure 124. Pure SU(3)0.

Figure 125. [SU(2) + 5F]− SU(2)0. Figure 126. [SU(2) + 4F]− SU(2)0.

Figure 127. [SU(2) + 3F]− SU(2)0. Figure 128. [SU(2) + 2F]− SU(2)0.
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Figure 129. [SU(2) + 1F]× SU(2)0. Figure 130. SU(2)π × SU(2)0.

Figure 131. SU(2)0 × SU(2)0. Figure 132. F1∪ dP2.

Figure 133. F2∪ dP1.

O7+

Figure 134. SU(3)0 + 1Sym + 1F.

O7+

Figure 135. SU(3) 1
2

+ 1Sym.

O7+

Figure 136. SU(3) 3
2

+ 1Sym.

～ON-

～ON-

～ON+

～ON-

～ON-

～ON+

Figure 137. Pure SU(3)9.
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