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Abstract: I study the “general” case that arises in the Extended Effective Field Theory

of Inflation (gEEFToI), in which the coefficients of the sixth order polynomial dispersion

relation depend on the physical wavelength of the fluctuation mode, hence they are time-

dependent. At arbitrarily short wavelengths the unitarity is lost for each mode. Depending

on the values of the gEEFToI parameters in the unitary gauge action, two scenarios can

arise: in one, the coefficients of the polynomial become singular, flip signs at some physical

wavelength and asymptote to a constant value as the wavelength of the mode is stretched

to infinity. Starting from the WKB vacuum, the two-point function is essentially singular

in the infinite IR limit. In the other case, the coefficients of the dispersion relation evolve

monotonically from zero to a constant value in the infinite IR. In order to have a finite

power spectrum starting from the vacuum in this case, the mode function has to be an

eigensolution of the Confluent Heun (CH) equation, which leads to a very confined param-

eter space for gEEFToI. Finally, I look at a solution of the CH equation which is regular

in the infinite IR limit and yields a finite power spectrum in either scenario. I demonstrate

that this solution asymptotes to an excited state in past infinity in both cases. The result

is interpreted in the light of the loss of unitarity for very small wavelengths. The outcome

of such a non-unitary phase evolution should prepare each mode in the excited initial state

that yields a finite two-point function for all the parameter space. This will be constraining

of the new physics that UV completes such scenarios.
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1 Introduction

In the previous studies on the effect of new physics on inflationary observables, it was

often suggested that the new physics appearing at energy scale ΛUV in most of the cases

can modify the power spectrum, even though such corrections could be quite small. The

effect was often expressed in terms of
(

H
ΛUV

)n
, where n was found to be one [1–6] or

two [7, 8], although [9] claimed that the effect depends on the vacuum state obtained

by the minimization of the Hamiltonian on the new physics hypersurface crossing [10].

Of course, if such a state coincides with what was called “calm excited states” in [11],

the power spectrum is left intact, although it will ultimately manifest itself in the higher

point functions. In the opposite limit, there could be excited initial states that modify the

power spectrum by a very large modulation factor which needs to be considered when the

amplitude of the power spectrum is matched with observation [12, 13]. In all the above

cases, the effect turned out to be finite.

One of the methods used to model the effect of new physics at very large momenta was

the Modified Dispersion Relation (MDR) method [1, 2]. The scheme was originally moti-

vated by the studies in condensed matter physics that suggested departure from Lorentzian

dispersion relation beyond some momentum cutoff [14, 15]. It was shown in [16] that two

formalisms of excited initial state and MDR could be related to each other and how a

range of possibilities that arise within the excited state setup, appears in the formalism of

MDR by changing the functional behavior and/or the coefficients of the dispersion relation.

Although in the study of the new physics on inflationary observables, the MDRs were intro-

duced in the setup of the cosmological perturbation theory through some ad hoc condensed

matter procedure, with the advent of the Effective Field Theory of Inflation (EFToI) [17]

and HořavaIt-Lifshitz gravity [18, 19], such MDRs found a clear origin within the field of

– 1 –



J
H
E
P
1
2
(
2
0
1
8
)
0
1
2

high energy physics. Spatial higher derivative terms naturally can arise in the EFToI and

the coefficients of the corrections to the Lorentzian dispersion relation, will not be neces-

sarily small as simple promotion of such MDRs from the Minkowski space-time suggested.

The EFToI allows for a unified picture of different single field inflationary scenarios,

emphasizing on the fluctuations instead of the action for the inflaton. Time diffeomorphism

is broken in the unitary gauge and the inflaton fluctuations are set to zero. Deviations from

the slow-roll inflation is encoded in the operators built out of the variables that respect the

remaining symmetries of the system, i.e. the spatial diffeomorphisms. The perturbations of

the inflaton are then absorbed to the metric, which will have three degrees of freedom. Be-

sides the two transverse degrees of freedom, there is a longitudinal component, a Goldstone

boson π, whose action can be recovered with the Stückelberg technique. This is similar

to what happens in spontaneously broken gauge theories, where the gauge field acquires a

longitudinal component and becomes massive. The nonlinear sigma model describing the

longitudinal components is UV completed to the Higgs theory. Here the nonlinear sigma

model that describes the Goldstone boson is UV completed to the theory of inflaton with

linear representation of time diffeomorphism.

The authors of EFToI [17] proved that the most general action for the single field in-

flation perturbations can be derived from implementing the Stückelberg procedure on the

unitary gauge action which contains operators built out of any function of time, the g00

component of the metric and the perturbations of the extrinsic curvature of constant in-

flaton hypersurfaces around the FRW background, δKµν . The standard slow-roll inflation

action can be recovered from the operators with time dependence and at most linear in

terms of g00 (mass dimension zero operators) in the decoupling limit. Higher dimensional

operators are supposed to quantify the deviations from the slow-roll inflation. Various infla-

tionary models, such as DBI inflation [20], with speed of sound different from one, or Ghost

Inflation [21, 22], with leading spatial gradient term proportional to (∇2π)2 [17] can be re-

produced in this way. In particular, for the class of DBI inflationary models, it is shown how

reducing the speed of sound naturally enhances the non-gaussianity. In [17], only up to mass

dimension two operators were included in the unitary gauge action, which would lead to dis-

persion relations with quartic corrections to the Lorentzian dispersion relation. Although

operator proportional to (1+g00)2 modifies the speed of sound from one, in presence of op-

erators with mass dimension zero which is constructed out of δK2
µν , one can again make the

speed of sound equal to one. The nonlinear nature of time diffeomorphism will lead to non-

vanishing higher point correlation function that can in principle be measured or bounded.

Although by including additional higher dimensional operators, one could modify the

dispersion relation even further to obtain ω2 ∼ k2n, with n ≥ 3, [17] argued that these new

terms would not be compatible with an EFT formalism, since the interacting operators will

become strong at low energy, which invalidates the EFT formalism. In [23], nonetheless, we

argued that such a dispersion relation is allowed when combined with lower order dispersion

relations. As we showed in [23], the terms in the unitary gauge action that leads to k6

dispersion relation, naturally lead to k4 and k2 in the dispersion relation as well. In presence

of such lower order dispersions, the issue of strong coupling at low energy can be avoided.

For that, the energy scale the dispersion relation has to change from ω2 ∼ k6 to ω2 ∼ k4,
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Λ4−6

dis , has to be bigger than the strong coupling energy at low energy for pure k6 dispersion

relation, ΛIR
6 � Λ4−6

dis . In addition the scale Λ4, where the ω2 ∼ k4 theory becomes strongly

coupled, should not be below Λ4−6

dis . Also, the ω2 ∼ k2 should not become strongly coupled

at a scale Λ2 below the scale Λ2−4

dis where the dispersion relation crosses to the quartic form,

i.e Λ2−4

dis � Λ2. The EFT formalism is viable on energy scales below ΛUV ≡ min{Λb,ΛUV
6 },

where Λb is the energy scale at which time diffeomorphism gets spontaneously broken by

the inflaton background and ΛUV
6 is the UV strong coupling scale of the ω2 ∼ k6 theory.

Out of the operators up to mass dimension 4 that were added in the EEFToI, the

mass dimension 3, which is a parity-violating operator, led to only quadratic and quartic

contributions to the dispersion relation but four operators with mass dimensions 4, which

were built out of various indicial combinations of (∇Kµ
ν)2 operators, led to sextic cor-

rection, in addition to the quadratic and quartic ones. However two of those operators,

namely (∇µδKνγ)(∇µδKνγ) and (∇µδKν
ν)2, contained Ostrogradski ghosts at the level of

perturbations, either in the tensor and/or scalar sectors. The other two indicial combi-

nations, namely (∇µδKµ
ν)(∇γδKγν) and ∇µδKνµ∇νδKσ

σ , however, did not contain any

ghost. In general it leads to sextic polynomial dispersion relation where the coefficients

of the dispersion relation are dependent on the physical scale of the fluctuations. The

scale dependence disappears for a specific sector in which certain relations between the

coefficients of two healthy operators is satisfied and, in [23], we focused on this sector of

the theory. However in general the coefficient of the dispersion relation are dependent on

the physical wavelength of the mode and hence are time-dependent. The analysis of the

general case that can arise in the setup is the subject of the paper.

As we will see, in the general case, even if the parameters of the theory has been

adjusted such that the Goldstone mode is decoupled from gravity at the horizon crossing,

due to the time dependence of the coefficients of the dispersion relation, they have been

coupled to gravity at sub-Planckian scales. Of course the EFT breaks down at those

scales, because one would need to use the quantized theory of gravity, which is lacking. As

I will point out, two scenarios are conceivable depending on the couplings of the operators

in the unitary gauge action. In one, the coefficients of the dispersion relation become

singular and change sign at some point throughout the evolution. In another one, the

coefficients increase monotonically from zero as the modes are stretched. Starting from the

positive frequency WKB vacuum, in the first case, the two point function never becomes

constant, but evolves at superhorizon scales and becomes infinite in the infinite IR limit.

For the other case, the two point function although becomes finite, in order for the mode

function to satisfy the Wronskian condition, one has to demand that the mode function is

eigensolution of the differential equation and hence the parameters of the problem has to

satisfy certain constraints, which is expressed in terms of continued fraction relations. In

both two scenarios, the two point function is never finite for all the regions of parameter

space. On the other hand imposing that the mode function would be regular in the infinite

IR limit, we will show that the mode function is a combination of positive and negative

frequency WKB modes, namely it is an excited state. In other words, in order to obtain

sensible results for the inflationary two-point function for all the parameter space, one has

to assume that the mode function is an excited state. We interpret this result in the light
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of the mixing of the Goldstone mode with the gravity at infinitely short scales, which turns

out to be sub-Planckian. Truncating the interacting regime, one has to replace the initial

state of the theory with an excited states instead.

The outline of this paper is as follows. In section 2, I briefly review the formalism of

the EEFToI and how the absence of ghost at the level of perturbations in the scalar and

tensor sector constraints the parameter space of the EEFTo1. In contrast to our previous

study in [23], I analyze the general case in the EEFToI in which the coefficients of the

dispersion relation become time-dependent. Depending on the parameters in the gEEFToI,

two scenarios can arise. In one case, there will be a change of sign of the coefficients of

the dispersion relation at a singular point throughout the evolution. In another one, the

coefficients vary monotonously from close to zero to their final constant value in infinite

IR. We show that in the first case the two point function becomes singular in the infinite

IR limit. In the second case, the power spectrum becomes finite only in certain regions of

parameter space. At the end, I demonstrate that the solution which is regular and finite

in the infinite IR limit is actually an excited state in the deep UV. I try to interpret this

result in the light of violation of the unitarity at very small physical wavelengths. Finally,

I conclude the paper and outline directions for future research.

2 General extended EFT of inflation

Let me begin by briefly reviewing the EEFToI framework which allows for the inclusion

of sixth order corrections to the dispersion relation, without introducing ghosts, in the

framework of the EFT of inflation. In the EFT of inflation, one restricts to hypersurfaces

with no inflaton fluctuations (the unitary gauge). The most general action around the FRW

background could be written out of the terms that respect the remaining 3-diffeomorphisms.

This includes g00, any pure functions of time f(t), and terms which depend on the extrinsic

curvature of the constant time hypersurfaces, Kµν . One can show that any other operator

can be expressed in terms of the ones built out of these variables. The resulted Lagrangian

around the flat FRW could be written as [17]

L = M2
Pl

[
1

2
R+ Ḣ g00 −

(
3H2 + Ḣ

)]
+
∑
m≥2

Lm(g00 + 1, δKµν , δRµνρσ,∇µ; t) , (2.1)

where Lm represent functions of order m in g00 + 1, δKµν and δRµνρσ. Furthermore, the

pure time-dependent term and coefficient of g00 have become functions of H and Ḣ by

satisfying the Friedmann equations in the FRW limit.

Once the generic action in unitary gauge has been written, the gauge condition can be

relaxed by allowing the time transformation t → t + ξ0(xµ). Since the action is no more

restricted to a particular time slicing, time diffeomorphism invariance has to be restored

again. This can be achieved by substituting ξ0(xµ) with a field −π(xµ) and requiring that it

shifts as π(xµ)→ π(xµ)− ξ0(xµ) under time diffeomorphisms. Note that when we perform

t → t + ξ0(xµ), we no longer expect the perturbations in inflaton field, φ, to be zero. In

fact, by introducing the Goldstone boson we are representing these perturbations.
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This action is very complicated in general. However, the advantage of using this

approach is that, in certain limits known as the decoupling limit, one can ignore all the

metric perturbations in the action. It can be shown that if we implement this procedure

for the action (2.1), assuming Lm = 0 ∀m, we obtain

Lslow−roll = −M2
Pl Ḣ

(
π̇2 − (∂π)2

a2

)
. (2.2)

One can show, using proper gauge transformations, that π is related to the conserved

quantity ζ by ζ = −Hπ. Substituting ζ in the above action reduces it to the standard

slow-roll inflationary action for ζ. Since we are interested in deviations from the standard

slow-roll model, we will turn on the coefficients of the operators in Lm. In the EEFToI,

we extended the framework of EFToI to incorporate the mass dimension three and four

operators in the unitary gauge action. Such operators would lead to sixth order corrections

to the dispersion relation which the authors had excluded as they had argued that the

pure ω2 ∼ k6 dispersion relation would invalidate the EFT rationale as it leads to large

interacting three point functions. However we argued that the exclusion of such operators

are not justified for a mixed dispersion relation that deforms to k4 and/or k2 at low energies.

In fact the new higher dimensional mass operators added in the unitary gauge, not only

led to the sixth order dispersion relation, but also quartic and quadratic terms too. In this

sense, the theory has a self-healing property.

Focusing only on the terms that contribute to the quadratic action of π and can change

the dispersion relation up to six order, the unitary gauge action is

LEEFToI = Lslow−roll + L2 , (2.3)

where

L2 =
M4

2

2!
(g00 + 1)2 +

M̄3
1

2
(g00 + 1)δKµ

µ −
M̄2

2

2
(δKµ

µ)2 − M̄2
3

2
δKµ

ν δK
ν
µ

+
M̄4

2
∇µg00∇νδKµν −

δ1

2
(∇µδKνγ)(∇µδKνγ)− δ2

2
(∇µδKν

ν)2

−δ3

2
(∇µδKµ

ν)(∇γδKγν)− δ4

2
∇µδKνµ∇νδKσ

σ , (2.4)

The first term, (g00 + 1)2, is the operator that modifies the speed of sound for scalar

perturbations from the speed of light. Noting that (g00+1) has zero mass dimension, powers

of (g00 + 1)n with n ≥ 3 could also be included which result in more general K-inflationary

models. In this work, without loss of generality, we only include the quadratic term in (g00+

1) as it only modifies the speed of sound for scalar perturbations. The mass dimension 1

term, (g00 +1) δKµ
µ, is not symmetric under time reversal, and was already analysed in [17,

24, 25].
M̄2

2
2 (δKµ

µ)2 and
M̄2

3
2 δKµ

ν δKν
µ are the operators that lead to generalized Ghost

Inflation with a quartic correction to the dispersion relation [17, 21]. Mass dimension three

operator ∇µg00∇νδKµν , as we will see, will lead to at most quartic corrections, but mass

dimension four operators, (∇Kµν)2 operators will also generate the sixth order contribution

to the dispersion relation. The reason advocated in [17] for discarding these operators
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is that sixth order corrections to the dispersion relation would make higher derivative

operators relevant, signaling the presence of an IR strong coupling regime. However, as

explained in section 1, one can still have a sensible EFT description if the IR strong coupling

scale of the ω2 ∼ k6 theory is below the scale Λ4−6

dis where the dispersion relation becomes

dominated by the quartic term.

Studying the tensor perturbations in the transverse traceless gauge,

gij = a2(δij + γij) , (2.5)

where

γii = 0 , ∂iγij = 0 . (2.6)

Only −M̄2
3

2 δKµ
ν δKν

µ, from the operators existed in the EFToI [17], affects the equation of

motion for γij by modifying the speed of propagation of gravitational waves,

c2
T =

(
1− M̄2

3

M2
Pl

)−1

. (2.7)

From the new operators in the EEFToI [23], only δ1
2 (∇µδKνγ)(∇µδKνγ) contributes to

the action of tensor perturbations after the TT gauge is imposed. It actually contributes

a ghost, which in order to get rid of, one has to set to zero the coefficient of the operator,

δ1 = 0 . (2.8)

As for the scalar sector, the Goldstone boson π, can be made explicit in the action through

the Stückelberg method. Evaluating the action explicitly for π in Fourier space in the limit

Ḣ → 0, the EEFToI Lagrangian (2.3) in the unitary gauge leads to the following second

order Lagrangian:

L(π)
EEFToI = M2

p Ḣ(∂µπ)2 + 2M4
2 π̇

2 − M̄3
1H

(
3π̇2 − (∂iπ)2

2a2

)
− M̄2

2

2

(
9H2π̇2 − 3H2 (∂iπ)2

a2

+
(∂2
i π)2

a4

)
− M̄2

3

2

(
3H2π̇2 −H2 (∂iπ)2

a2
+

(∂2
j π)2

a4

)

+
M̄4

2

(
k4Hπ2

a4
+
k2H3π2

a2
− 9H3π̇2

)
−1

2
δ1

(
k6π2

a6
− 3H2k4π2

a4
− k4π̇2

a4
+

4H4k2π2

a2
− 6H4π̇2 − 3H2π̈2

)
−1

2
δ2

(
k6π2

a6
+
H2k4π2

a4
− k4π̇2

a4
+

6H4k2π2

a2
− 9H2π̈2

)
−1

2
δ3

(
k6π2

a6
+

3H2k4π2

a4
+
H2k2π̇2

a2
− 9H4π̇2

)
−1

2
δ4

(
k6π2

a6
+
H2k4π2

2a4
+

9H4k2π2

2a2
+

3H2k2π̇2

a2
+

27

2
H4π̇2

)
. (2.9)

The mass dimension 4 operators, − δ1
2 (∇µδKνγ)(∇µδKνγ) and − δ2

2 (∇µδKν
ν)2, yield π̈2

after Stückelberg transformation and thus contain Ostrogradski’s ghost [26]. Such a ghost
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term could be avoided if δ1 = −3 δ2, but as we needed δ1 = 0 to avoid ghost at the level of

tensor perturbations, one has to assume that both δ1 and δ2 are simultaneously zero. The

equation of motion for uk = a πk, in conformal time, dτ ≡ dt/a, and in the limit Ḣ → 0 is

u′′k +
2k2H3(δ3 + 3δ4)

aA1
u′k + uk

(
C1

A1

k6

a4
+
D1

A1

k4

a2
+
F1

A1
k2 − a′′

a

)
= 0 , (2.10)

where

A1 = −2M2
PlḢ + 4M4

2 − 6M̄3
1H − 9H2M̄2

2 − 3H2M̄2
3 + 2H4F0(k, τ) ,

C1 = δ3 + δ4 ,

D1 = M̄2
2 + M̄2

3 +H2 δ4

2
+ 3H2δ3 − M̄4H ,

F1 = −2M2
PlḢ − M̄3

1H − 3H2M̄2
2 − M̄2

3H
2 + 3H4

(
δ3 +

3

2
δ4

)
− M̄4H

3 , (2.11)

and F0(k, τ) is defined as

F0(k, τ) =
9

2
δ3 −

27

4
δ4 −

k2

2a2H2
(δ3 + 3δ4)− 9

2H
M̄4 , (2.12)

where the mixing with gravity has been neglected. Noting that the canonical πc ∼√
A1(k/aH)π and δg00

c ∼MPl δg
00, the mixing momentum between gravity and the Gold-

stone mode π can be neglected at energies

k > kmix ∼
√
A1(k/aH)

MPl
, (2.13)

and the physics of the longitudinal components of the metric can be studied, at sufficiently

high momenta/energies, concentrating on the scalar Goldstone mode. This is known as

the equivalence theorem. Noting that the A1, depends on the physical wavelength of the

mode with respect to the Hubble momentum, k/aH , even if the coefficients of the EEFToI

are time independent, i.e. if δ3 6= −3δ4, the coefficients of the dispersion relation becomes

dependent on the physical momentum of the mode and hence on time. This happens

despite the fact that we assumed that the time-dependence of the couplings in the unitary

gauge action is slow compared to the Hubble time. Time-independent situation is what we

focused on in [23] in which we resorted to numerics to analyze the equation of motion. In

this work, however, I focus on the more general case, where the coefficients of the dispersion

relation are time-dependent.

Expressing the equation of motion for uk = a πk, in conformal time and again in the

limit Ḣ → 0, we obtain

u′′k +
2k2H3(δ3 + 3δ4)

aA1
u′k + uk

(
C1

A1

k6

a4
+
D1

A1

k4

a2
+
F1

A1
k2 − a′′

a

)
= 0 . (2.14)

the above equation in a de Sitter space, where a = −1/(Hτ), takes the form

u′′k +
G3τk

2δ4

G1 +G2τ2k2
u′k + uk

(
F2

G1 +G2τ2k2
k2 +

D2k
2

G1 +G2k2τ2
k2τ2

+
C2k

2

G1 +G2τ2k2
k4τ4 − 2

τ2

)
= 0 (2.15)
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where

G1 ≡ A0 + 9H4

(
δ3 −

3

2
δ4

)
− 9M̄4H

3 , F2 ≡ F1

G2 ≡ −H4 (δ3 + 3δ4) , D2 ≡ D1H
2

G3 ≡ −2H4 (δ3 + 3δ4) = 2G2 , C2 ≡ C1H
4 (2.16)

and

A1(k, τ) = G1 +G2k
2τ2 . (2.17)

Hence all the coefficients including the speed of propagation of the perturbations become

time-dependent. In terms of a dimension less variable, x ≡ kτ , the equation of mo-

tion (2.15) takes the form

d2uk
dx2

+
G3x

G1 +G2x2

duk
dx

+

(
F2

G1 +G2x2
+

D2x
2

G1 +G2x2
+

C2x
4

G1 +G2x2
− 2

x2

)
uk = 0 . (2.18)

This is the equation that we will focus on in the rest of this paper. At high momenta

energy scales as k3, and thus the mixing energy is

E > Emix ∼
|A1(k/aH)|

√
C1

M3
Pl

, (2.19)

which is also a time-dependent quantity. Even if at the horizon crossing, the parameters

of the gEEFToI in the unitary gauge are arranged to be such that Emix < H, when the

wavelengths of the modes are much smaller than the Planck length, or equivalently when

k

a
&MPl

(
MPl

H

)1/2

(2.20)

the mixing energy becomes larger than the Hubble parameter during inflation. Hence

each individual mode is coupled to gravity at super-Planckian momenta.1 Of course, the

Einstein-Hilbert action already breaks down at Planckian distances, and so the formalism

of effective field theory becomes applicable only well after this epoch. The length and scale

of inflation could be of course such that the CMB modes never undergo such a phase.

Another impeding factor in following the perturbations back in time, when δ3 6= −3δ4,

is that the coefficients of the dispersion relation and in particular the speed of sound, would

depend on the physical momentum of the mode and when the physical momentum of the

mode was large, the quantity that plays the role of speed of sound would get smaller. This

is true even if the parameters are arranged to be such that c2
S

in the IR limit, which is

roughly given by F2/G1, is O(1). In this work we focus on the region of parameter space

that the speed of cosmological perturbations in the IR is subluminal, i.e. 0 ≤ c2
S
≤ 1. For

small speed of sound the self interactions of the Goldstone boson enhances and it becomes

strongly coupled at certain energy scales such that the unitarity is lost above some threshold

energy. For the (1 + g00)2 operator, this cutoff is estimated in [17] to be

Λ4 ' 16π2M2
PlḢ

c5
S

1− c2
S

. (2.21)

1H < 10−5 MPl from observation.
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In order to be able to use the EFT formalism for the relevant mode, Λ & H. Since now cS
depends on time, Λ will be a function of time too. The unitarity is lost when

Λ(kτu) ' H . (2.22)

In order for our analysis below to make sense, one has to assume that τu for each mode,

k, happens when the mode is well within the regime of domination of k6 term in the

dispersion relation. This can be arranged by tuning the parameters of the gEEFToI.

Defining xu ≡ kτu, the hypersurface at which the EFT formalism breaks down could be

computed to be

x5
u ' 16π2

M2
p

H2
ε

(
F2

G2

)5/2

, (2.23)

where above we have assumed that G2x
2
u � G1. To be in the regime of domination of k6

at xu,

C2x
4
u � F2 , (2.24)

C2x
2
u � D2 . (2.25)

In the following we have assumed that the above two conditions are satisfied in the gEEFToI

formalism.

Various scenarios can arise depending on the relative sign of the parameters G1 and

G2. In this work, we assume that the speed of sound and the coefficient of the sixth order

correction to the dispersion relation in IR are positive, i.e.

sign(F2G1) > 0 , sign(C2G1) > 0. (2.26)

These two conditions are, respectively, necessary to guarantee the stability in the IR and

UV limits. The coefficient of the quartic part of the dispersion relation can be positive or

negative in the IR, similar to what we analyzed in [16, 23].

3 Analysis of the mode equation in gEEFToI

3.1 Conversion of the EOM to confluent Heun equation

Despite having a complicated form, interestingly, one can obtain an exact solution for the

above equation of motion (2.18). In the rest of analysis, we assume C2G2 > 0, i.e. these

parameters have the same sign. Plugging the ansatz,

uk(x) = x−1e
− i

2

√
C2
G2
x2
wk

(
−G2x

2

G1

)
, (3.1)

in the above equation, one arrives at the following differential equation for wk

d2wk(z)

dz2
+

(
4p+

γ

z
+

δ

z − 1

)
dwk(z)

dz
+

4pαz − σ
z(z − 1)

wk(z) = 0 , (3.2)
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where

z ≡ −G2x
2

G1
, p = i

G1

4

√
C2

G3
2

, γ = −1

2
, δ = 1 ,

α =
1

4
− i

4

C2G1 −D2G2√
G3

2C2

, σ = − iG1

4

√
C2

G3
2

+
1

2
− F2

4G2
. (3.3)

This is nothing other than the “non-symmetrical canonical form” of the differential equa-

tion for Confluent Heun functions [27]. The differential equation has two regular singular

points at z = 0, 1 and an irregular singular point at z = ∞. The general solution to the

differential equation (3.2) is a linear combination of the angular (or Frobenius) solution,

HeunCa(p, α, γ, δ, σ; z), normalized as

HeunC(a)(p, α, γ, δ, σ; 0) = 1 , (3.4)

and the radial solution, HeunC(r)(p, α, γ, δ, σ; 0), which is defined by its behavior at z →
−∞

lim
z→−∞

zαHeunC(r)(p, α, γ, δ, σ; 0) = 1 . (3.5)

For complex p = |p|eiφ, the ray argz = π − φ should be taken. One should also note

that the argument of the function, z, in the case where sign(G1G2) > 0 is negative and

otherwise positive. In the former case, −∞ < z ≤ 0, whereas in the latter one, 0 ≤ z <∞,

which includes the singular point z = 1. As we will see, the regularity of the mode function

at z = 1 could be still satisfied in certain regions of parameter space, otherwise the mode

function and the two point function diverge.

Usually the general solution to the CH differential equation is written as

wk(z) = C1(k)HeunC(a)(p, α, γ, δ, σ; z) + C2(k)z1−γHeunC(r)(p, α, γ, δ, σ; z) . (3.6)

Noting that the prefactor, exp
(
− i

2

√
C2
G2
x2
)

, in eq. (3.1), is singular when G2 = 0, or iden-

tically when δ3 = −3δ4 the explicit solution in (3.1), becomes singular and meaningless.

The corresponding sector, δ3 = −3δ4 defines the Extended Effective Field Theory of Infla-

tion (EEFToI) of inflation [23] and we used numerical integration to find solutions to the

mode equation. One should also note that the argument of the function in the case where

sign(G1G2) > 0 is negative and otherwise positive. On the other hand, the asymptotic

forms of the wk(z) in the neighborhood of the irregular singular point at z =∞ is

w1∞
k (z) = z−α

∞∑
i=0

a1∞
i z−i (3.7)

w2∞
k (z) = zα−γ−δ exp(−4pz)

∞∑
i=0

a2∞
i z−i . (3.8)

Using the above asymptotic forms one can obtain the asymptotic form of the mode function

uk(x), which becomes

u∞k (x) ' D1(k) e
−ix

2

2

√
C2
G2 x

− 3
2

+ i
2

C2G1−D2G2√
G3
2C2 +D2(k) e

ix
2

2

√
C2
G2 x

− 5
2

+ i
2

C2G1−D2G2√
G3
2C2 , (3.9)
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The asymptotic form of the solution thus contains both positive and negative frequency

WKB modes. Starting from WKB positive frequency mode corresponds to choosing

D1(k) = 0, as one can easily verifies. To know which combination of the HC functions

can yield a positive frequency WKB mode in the past infinity, one has to bring the differ-

ential equation (3.2) to the Leaver form [28],

z(z − 1)
d2v(z)

dz2
+ (B1 +B2z)

dv(z)

dz
+ [B3 − 2ηω(z − 1) + ω2z(z − 1)]v(z) = 0 . (3.10)

This could be achieved by the following homotopy transformation

w(z) = e−2zpv(z), (3.11)

where

B1 = −γ =
1

2
, B2 = γ + δ =

1

2
, B3 = 4αp− 4γp− 2δp+ σ

ω = 2ip , η = i

(
α− γ + δ

2

)
= i

(
α− 1

4

)
(3.12)

The factor e−2zp in (3.11) cancels the factor e
− i

2

√
C2
G2
x2

in (3.1) and thus the mode function

will finally take the form

uk(x) = x−1v(z) . (3.13)

3.2 The case with singularity in evolution of the coefficients, sign(G1G2) < 0

In this case 0 ≤ z <∞ as x runs from 0 to −∞. Even if c2
S and the coefficient of the sixth

order term, k6, in the dispersion relation are assumed to be positive in the IR, there is a

moment in the evolution of each mode when they become singular and negative for the

times before the singularity point, please see figure 1, where we have only plotted c2
S as

a function of variable that is roughly proportional to time. The coefficient of the quartic

term in the dispersion relation could be positive or negative in the IR, but also becomes

singular and changes sign for earlier times. In figure 1, we have only plotted the speed of

sound, c2
S , as a function of x and assumed to be positive in the limit x→ 0. The asymptotic

form of the solution at z → ∞ can be obtained from the normal Thomé solutions [28] to

be, in general, a combination of

lim
z→∞

v(z) ∼ e±iωzz∓iη−B2/2 . (3.14)

The Jaffé solution that behaves like the positive frequency WKB mode in infinite past is

vJ(z) = eiωzz−B2/2−iη
∞∑
n=0

an

(
z − 1

z

)n
(3.15)

The solution is valid in the interval 1 ≤ z < ∞. The coefficients obey the three term

recurrence relation

α0a1 + β0a0 = 0 ,

αnan+1 + βnan + γnan−1 = 0, n = 1, 2, . . . (3.16)

– 11 –



J
H
E
P
1
2
(
2
0
1
8
)
0
1
2

-2.0 -1.5 -1.0 -0.5
x -

G2

G1

-6

-4

-2

2

4

6

G1

F2
cS
2

Figure 1. The behavior of the c2S , as a typical time-dependent coefficient in the dispersion relation,

as a function of time when sign(G1G2) < 0. There is a singularity in time and a change in sign

of the coefficients at the singularity. When the physical wavelength of the mode is very small, the

speed of sound (and other coefficients of the dispersion relation) go to zero. When Λ H for each

mode, there will be a loss of unitarity for each mode. The parameters in the problem are tuned

such that this loss of unitarity happens well before the transition from ω2 ∼ k6 to the ω2 ∼ k4

which guarantees that the mode spends a substantial amount during the sextic dispersion relation

and make it relevant.

where

αn = (n+ 1)(n+B2 +B1/z0) = (n+ 1)2 , (3.17)

βn = −2n2 − 2 [B2 + i(η − ωz0) +B1/z0]n− (B2/2 + iη)(B2 +B1/z0)

+iω(B1 +B2z0) +B3

= −2n2 − 2[1 + i(η − ω)]n− (1/4 + iη) + iω +B3 (3.18)

γn = (n− 1 +B2/2 + iη)(n+B2/2 + iη +B1/z0) = (n+ iη)2 − 9/16 (3.19)

The recurrence relation (3.16) have two set of solutions a
(1)
n : n = 1, 2, . . . and {a(2)

n : n =

1, 2, . . .} where limn→∞ a
(1)
n /a

(2)
n = 0. Then the solution which is identified by a

(1)
n is called

minimal and the other one, with a
(2)
n coefficients, is referred to a non-minimal or dominant

solution. As noted earlier for the case where sign(G1G2) > 0, z runs from −∞ to 0 which

avoid the singular point z = 1, whereas in the case where sign(G1G2) < 0, the mode

function passes through the singular point z = 1. In this case, the eigensolutions of the

Confluent Heun equation are the ones for which
∑∞

n=0 an converges [28]. Then the solution

at z → ∞ has a pure eiωzz−B2/2−iη behavior at z → ∞ and is regular at z = 1. The sum∑∞
n=0 an usually converges iff the an’s are the minimal solution to the recurrence relation.

For the minimal solution, the ratio of successive elements in the large n limit goes to zero.

It has been proven in [29] that the ratio of successive coefficient of the minimal solution is

given by the continued fraction

an+1

an
=
−γn+1

βn+1−
αn+1γn+2

βn+2−
an+2γn+3

βn+3−
. (3.20)
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For n = 0 this yields
a1

a0
=
−γ1

β1−
α1γ2

β2−
a2γ3

β3−
, (3.21)

which along with the first of eqs. (3.16)

a1

a0
= −β0

α0
, (3.22)

requires that

0 = β0 −
α0γ1

β1−
α1γ2

β2−
α2γ3

β3−
· · · . (3.23)

Since αn, βn and γn are functions of B3, ω and η, which are related to parameters in the

gEEFToI through eqs. (3.3) & (3.12), this sets a relation between the gEEFToI parameters

that should be satisfied to make the mode function regular at z = 1. In other words, when

sign(G1G2) < 0, not for all parameter in the gEEFToI the mode function is regular at z = 1.

Even if, arranging for the parameters to satisfy the relations (3.23), the mode function

does not become singular at the point z = 1, the power spectrum does not seem to be finite

and well defined in the limit x→ 0. The power spectrum is defined as

PS =

(
k3

2π2

)1/2 ∣∣∣uk
a

∣∣∣
kτ→0

= lim
x→0

2x2|uk|2 = lim
x→0

2|vk|2 (3.24)

∝ lim
x→0

x
−1−C2G1−D2G2√

G3
2C2

∣∣∣∣∣∑
n=0

an

(
−g1

g2

)n 1

x2n

∣∣∣∣∣
2

. (3.25)

The above expression goes to infinity in the limit of x → 0. The mode function has an

essential singularity at x = 0 which makes the power spectrum, for general parameters,

infinite. One might be tempted to think that the parameters could be tuned to terminate

the series at some value of n∗ which would yield an effective power-law format to the power

spectrum. For that to happen, i.e. an∗+1 = 0, βn∗ and γn∗ should be both set to zero.

By adjusting the parameters, this could be in principle achieved. However to terminate

the series an∗+2 should be set to zero which, in turn, requires that γn∗+1 = 0. Looking at

the third equation of (3.17), this cannot be achieved for both n∗ and n∗ + 1. Thus the

possibility of the series getting terminated is also out of question. This shows that if one

assumes that the mode has started from the vacuum, which corresponds to the positive

frequency WKB mode, the power spectrum turns out to be infinite!

In a more realistic situation, one expects that there will be a beginning to inflation,

corresponding to initial conformal time τi. If for the given mode k,

zi ≡ −
G2x

2
i

G1
< 1, (3.26)

where xi ≡ kτi, instead of the Jafe solution (3.15), which is valid in the regime of z0 ≤
z <∞ and is only extendable to the region of 0 < z < z0 if the eigensolution condition is

satisfied, one can instead use Baber and Hasse solution which is convergent in the region

0 ≤ z < z0. Their solution is given as

vB−H = exp(iωz)
∞∑
n=0

a′nz
n , (3.27)
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The sequence of expansion coefficients are given be the three term recurrence relation

α′0a
′
1 + β′0a

′
0 = 0 ,

α′na
′
n+1 + β′na

′
n + γ′na

′
n−1 = 0, n = 1, 2, . . . (3.28)

where

α′n = −n2 + (B1 − 1)n+B1 , (3.29)

β′n = n2 + (B2 − 2iω − 1)n+ 2ηω + iωB1 +B3 (3.30)

γ′n = 2iωn+ iω(B2 − 2)− 2ηω (3.31)

In this case when x → 0, the mode function will approach a constant value a′0 and thus

the power spectrum becomes constant. For this to happen nonetheless, it is necessary that

the condition (3.26) is satisfied for all the modes that exit inflation during the Ne that exit

during inflation. Condition (3.26) is scale-dependent through the variable xi = kτi and

if it holds for the largest k that exit during inflation, i.e. k = H, it is naturally satisfied

for smaller k’s too. This will lead to the following constraint on the parameters of the

gEEFToI in this case

− G2H
2τ2
i

G1
< 1 , (3.32)

or equivalently if

e2Ni < −G1

G2
. (3.33)

Of course, oting that Ni has to be bigger than the number of e-folds needed to solve the

problems of the Big Bang cosmology, Ni & 60, this condition is quite restrictive and indi-

cates a hierarchical separation between the parameters G1 and G2. Nonetheless, arranging

for this, it seems to be possible to have a well-defined finite power spectrum in the infinite

IR.

3.3 Case of positive definite sound speed squared, sign(G1G2) > 0

In this case, z ∈ (−∞, 0] as x runs from +∞ to 0. The regular singularity at z0 = 1 is out

of (−∞, 0] interval in this case. It can be shown that the behavior of the solution in the

region z ∈ (−∞, 0] could be mapped to the region [z0,∞), where in our case z0 = 1. To

see this, let us do the following reparameterization

z′ ≡ z0 − z , (3.34)

which leaves the form of confluent Heun function equation, (3.10), intact with new param-

eters that are defined as follows

B′1 = −(B1 +B2z0) = −1 B′2 = B2 = 1/2 , B′3 = B3 + 2ηωz0 (3.35)

η′ = −η ω′ = ω (3.36)

The Jaffé solution that resembles the positive frequency WKB mode is given as

v′J(z′) = exp(−iωz′)z′−B′2+iη′
∞∑
n=0

bn

(
z′ − z0

z′

)n
(3.37)
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Figure 2. The behavior of the c2S , as a typical time-dependent coefficient in the dispersion relation,

as a function of time when sign(G1G2) > 0. In this case the speed of sound, and other coefficients

of the dispersion relation, approach zero and a constant value in infinite past and future. Contrary

to the previous case, there will be no singularity in the evolution of the mode. However as in the

previous case, when Λ H, there will be a loss of unitarity for each mode.

The expansion coefficients are produced by the three-term recurrence relation,

α̃0b1 + β̃0b0 = 0 , (3.38)

α̃nbn+1 + β̃nbn + γ̃nbn−1 = 0 . (3.39)

where the recurrence coefficients are given by

α̃n = (n+ 1)(n+B′2 +B′1/z0) (3.40)

β̃n = −2n2 − 2[B2 − i(η′ − ω′z0) +B′1/z0]n

−(B′2/2− iη′)(B′2 +B′1/z0)− iω(B′1 +B′2z0) +B′3 (3.41)

γ̃n = (n− 1 +B′2/2− iη)(n+B′2/2− iη′ +B′1/z0) (3.42)

The power spectrum, as defined in the first line of (3.24), turns out to be

PS = lim
x→0

2x2|uk(x)|2 = lim
x→0

2x2|x−1v′J(z′)|2 = lim
z′→z0

|v′J(z′)|2 = 2|b0|2 , (3.43)

which is finite. On the other hand the finiteness of v′J(z′) at infinity z′ →∞, requires that

B ≡
∑∞

n=0 bn should converges which, in turn, means that the solution (3.37), should be

the eigensolution of the mode equation. As stated in the previous section the sum over

bn’s converge if and only if they are the minimal solution to the recursive equation, which

corresponds to satisfying the continued fraction equation,

bn+1

bn
= − γ̃n+1

β̃n+1−
α̃n+1γ̃n+2

β̃n+2−
α̃n+2γ̃n+2

β̃n+3−
(3.44)
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which requires ω to be the root of

0 = β̃0 −
α̃0γ1

β1−
α̃1γ̃2

β̃2−
α̃2γ̃3

β̃3−
. (3.45)

The above equation is only valid for certain characteristic values of ω. Since the recurrence

coefficients are functions of ω, η and σ, this will provide constraints on the parameters

of the dispersion relation for which the resulted power spectrum in the IR limit is finite

and well-defined. If the parameters do not satisfy these constraints, the power spectrum is

indefinite in the large wavelength limit.

The constraint (3.45), could also be obtained from the Wronskian condition which

fixes the normalization of the mode function. In principle the normalization of the mode

function, determined by b0, could be determined by the Wronskian condition,

kW(uk(x), u∗k(x)) =
i

κ(x)
, (3.46)

where

κ(x) = exp

(
−
∫

2G2x

G1 +G2x2

)
= (G1 +G2x

2) . (3.47)

The above in terms of the Wronskian of v′J(z′) could be written as

W(v′J(z′), v′∗J (z′)) =
i
√
z′ − 1

z′
. (3.48)

Since we do not know the explicit n dependence of the expansion coefficients, bn’s, summing

up the L.H.S. of the equation (3.48) is a formidable task. If we look at the behavior of

v′J(z′) in the limit of z′ → ∞, v′(z′) ∝ exp(−i(ωz′ − η ln z′)), we see that the Wronskian

reduces to

W(v′J(z′), v′∗J (z′)) = |B|2 2iω√
z′
' i√

z′
. (3.49)

From the three-term recurrence relation all the expansion coefficients bn could be expressed

in terms of b0 and, hence, relation (3.49) can use to constrain the value of b0, which in turn

determine the amplitude of the power spectrum. In the first approximation that B ∼ b0,

the Wronskian condition (3.49) tells us that the normalization

|B| ∼ 1√
2ω

(3.50)

which is nothing other than Bunch-Davies vacuum normalization. Of course, we will have

higher order corrections to the frequency of the mode from the unharmonic nature of the

mode equation. Still the value of b0 obtained from eq. (3.49) should be finite which, in

turn, translates to the convergence of B.

4 Excited initial condition and finite two point function in gEEFToI

There is a one-side series expansion for the Confluent Heun functions in terms of Confluent

Hypergeometric functions [28, 30] which converges for any z and is regular at both z = z0
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and z = 0,2

v1(z) = e−iωz
∞∑
n=0

(−1)ncn
Γ(n+B2)

Φ

(
B2

2
− iη, n+B2; 2iωz

)
. (4.1)

The recurrence relation for the expansion coefficients are

α̂0c1 + β̂0c0 = 0 (4.2)

α̂ncn+1 + β̂ncn + γ̂ncn−1 = 0 (4.3)

where the recursion coefficients are

α̂n = (n+ 1)(n+ iη +B2)

β̂n = n(n+B − 2− 1 + 2iωz0) +B − 3 + iωz0

(
B − 2 +

B1

z0

)
γ̂n = 2iωz0

(
n+B2 +

B1

z0
− 1

)
(4.4)

where Φ(a, c; y) is the regular confluent hyper-geometric function, which is the solution to

the differential equation

y
d2ϕ

dy2
+ (c− y)

dϕ

dy
− aϕ = 0 , (4.5)

and defined as

Φ(a, b, z) =
∞∑
n=0

(a)nz
n

(b)n
, (4.6)

where (a)n is the Pochammer’s symbol defined as

(a)n ≡ a(a+ 1)(a+ 2) · · · (a+ n− 1) , and (a)0 ≡ 1 . (4.7)

According to [30], the above solution converges for any value of z and since v1(z) ∼ Const.,

for z = 0, the power spectrum will be finite in the case where the speed of sound changes

sign and becomes singular at some point during the evolution. In the case where c2
S is

positive definite and finite during the evolution, the power spectrum is finite too.

There are two other series expansions in terms of hypergeometric functions that have

a purely negative and positive frequency WKB mode in infinite past

v∞ = e−iωz
∞∑
n=0

(−1)ncnΨ

(
B2

2
− iη, n+B2; 2iωz

)

v̌∞ = eiωz
∞∑
n=0

dnΨ

(
n+ iη +

B2

2
, n+B2;−2iωz

)
The coefficients dn is also determined recursively through the following relations,

α̌0d1 + β̌0d0 = 0 , (4.8)

α̌ndn+1 + β̌ndn + γ̌ndn−1 = 0 , (4.9)

2Since, neither B2 + B1/z0 nor iη + B2
2

are zero or negative integers, the solution could be written as

one-sided series, running from n = 0 to ∞.
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where

α̌n = n+ 1 , (4.10)

β̌n = n(n+B2 − 1 + 2iωz0) +B3 + iωz0 (B2 +B1/z0) , (4.11)

γ̌n = 2iωz0

(
n+B2 +

B1

z0
− 1

)(
n+ iη +

B2

2
− 1

)
. (4.12)

Ψ(a, c; y) now is the irregular confluent hypergeometric function which is the solution to

the differential equation (4.7) and in the case where a, c and c− a are not integers, which

is true in the above cases, is related to the regular solution, Φ(a, c; y), through the relation

Ψ(a, c; y) =
Γ(1− c)

Γ(a− c+ 1)
Φ(a, c; y) +

Γ(c− 1)

Γ(a)
y1−cΦ(a− c+ 1, 2− c; y) (4.13)

The two solutions, v∞ and v̌∞ converge only for |z| > |z0| = 1. Their asymptotic forms at

z →∞, respectively, are

lim
z→∞

v∞(z) ∼ exp(−iωz)ziη−
B2
2 , (4.14)

lim
z→∞

v̌∞(z) ∼ exp(iωz)z−iη−
B2
2 . (4.15)

Since v∞(z), v̌∞(z) and v1(z) are three solutions to a linear second order differential equa-

tion, it is possible to express one of the solutions in terms of the other two, in the region

that all three are viable, i.e. |z| > 1. In particular in the region of validity of v∞ and v̌∞,

namely |z| > 1, one can express v1(z) in terms of v∞(z) and v̌∞(z), which respectively

behave like positive and negative frequency WKB modes at z → ∞ (or in the latter case

z′ →∞). This means that the solution which would yield a finite two-point function, irre-

spective of the behavior of the value of the coefficients, emanates from an excited state. It

is interesting that the details of the initial condition reflects itself in whether the two-point

function asymptotes to a constant value. Only for a specific excited initial condition the

power spectrum turns out to be finite in the IR limit. For any other state other than the

one which reduces to the form v1(z), the power spectrum will be divergent.

The reason for the finiteness of the power spectrum for all values of the parame-

ters could be traced back to the fact that for each mode, at sufficiently small physical

wavelength, the unitarity is lost, even if it is arranged to be satisfied at the Hubble cross-

ing. This loss of unitarity comes about because the corresponding speed of sound for the

perturbations goes to zero, which results in the reduction of the cutoff scale, Λ, for the

gEEFT obtained from non-renormalizable operators. For each mode, the time span where

Λ(kτ) . H is the part of the evolution that is not governed by the EFT. Whatever the re-

sult of evolution during the non-unitary phase is, this computation suggests that assuming

the mode having remained in the vacuum of the theory after through the evolution in this

phase, leads to inconsistencies. These inconsistencies show up in physically infinite results,

like the case where there is a singularity in the time-dependent dispersion relation, or a

fine-tuned parameter space that yield a finite two-point function.

The demand for a completion of the theory to a unitary theory at arbitrarily short

wavelengths seems to be entangled with the quest for quantum gravity in this setup too,
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where the mixing momentum between the Goldstone boson and gravity turns out to be a

function of time too,

kmix ∼
√
A1(k, τ)

MPl
=

√
G1 +G2x2

MPl
. (4.16)

If √
G1 +G2

MPl
� H , (4.17)

assuming that the dispersion relation is dominant by the k2 at the horizon-crossing, the

Goldstone mode will be decoupled from gravity. However, tracing the mode back in time

and at shorter wavelengths, the mixing energy for a given comoving mode with momentum

k will increase like k6 and ultimately will become bigger than H. The coupling to gravity

becomes important when

x2 =
M3

PlH

G2

√
C1
'
(
MPl

H

)3

(4.18)

where in the second line we have assumed that δ3 + δ4 ∼ δ3 + 3δ4 ∼ O(1). Since H .
10−5MPl, this suggests that the coupling to gravity happens at sub-Planckian wavelengths.

This indicates that the quest for quantum gravity is complementary to the question of the

unitary completion of the evolution of the mode at small wavelengths.

5 Conclusions

I studied the general Extended Effective Field Theory of Inflation (gEEFToI) in which the

coefficients of the sixth order polynomial dispersion relation for each mode could become

time-dependent. This happens even if the couplings of the spatially diffeomorphism invari-

ant operators in the unitary gauge action are assumed to be independent of time. This is

a general situation that occurs if two ghost-free operators, at the order (∇Kµν)2, are not

tuned to satisfy the relation δ3 = −3δ4, assumed to hold in [23]. Depending on the values of

these couplings, the coefficients in the dispersion relation could either become singular and

change sign at some point during the evolution of each mode or could monotically increase

from a small value in infinite past to a constant value in IR. In both cases, when the mode

is smaller than a certain threshold, the unitarity is lost and the Goldstone mode is cou-

pled to gravity, even if the parameters of the unitary gauge action are arranged such that

the unitarity is preserved and the Goldstone boson is decoupled from gravity at horizon

crossing. However, after the mode gets stretched out of the “non-unitary phase” due to the

universe expansion, the equations of motion derived within the gEEFToI approach could be

still trusted. With the assumption of starting the modes from the vacuum dictated by the

gEEFToI equation of motion, which in this case corresponds to the positive frequency WKB

mode, the two point function diverges in the infinite IR limit, if the coefficients of the dis-

persion relation have a singularity and change sign. With the assumption of validity of the

WKB mode as an initial condition for the modes, this imposes certain inequalities on the pa-

rameters of unitary gauge action in the gEEFToI, which should be respected in order to ob-

tain finite result, i.e. sign(G1G2) ≮ 0, or instead the length of inflation should be such that
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the mode never experiences the region before the singularity. The latter demands a hierar-

chical relation between two parameters that should be respected. In the other case, where

the dispersion relation coefficients asymptote to a constant value, without encountering a

singularity, the two point function becomes constant but the requirement that the mode

function — which is expressed as an infinite series expansion– remains finite at infinite past,

dictates that the solution be an eigensolution of the Confluent Heun differential equation.

This requires that some characteristic eigensolution equation given as infinite continued

fraction holds which constraints the region of parameters space of the gEEFToI. All these

results were under the assumption that the mode function starts from the vacuum solution.

With the assumption that the mode function and the power spectrum should remain

finite, irrespective of the values of the parameters in the gEEFToI, I looked for a solution

which is regular in infinite IR limit, for both two scenarios explained above. I showed that

such a mode function is a combination of positive and negative frequency modes in infinite

UV limit, i.e. it is an excited state. This result is interpreted noting the fact the unitarity

is lost at arbitrarily short wavelengths, even though it is arranged to hold at the Horizon

crossing. Also the Goldstone mode couples to gravity at sub-Planckian wavelengths. Unless

one assumes that the mode emerges as an excited state out of this non-unitary phase, the

two-point function for perturbations either turns out to be infinite or finite for a confined

part of the parameter. In fact the criterion of finite two-point function can be used to

constrain the mode function. Such a mode function turns out to be an excited state. The

non-unitary stage of evolution in the gEEFToI, once the mode is stretched to the unitary

phase evolution, could be approximated with an excited state. We expect that whatever

“new” physics that replaces the non-unitary phase of evolution should produce such an

excited mode function. This is constraining for the new physics that should be replaced

with the non-unitary stage evolution of the mode.

In order to check the unitarity and find the region of parameter space in which the

gEEFToI is a fully viable effective field theory, one should compute the three-point function

and map out the region of parameter space in which the non-gaussianity does not violate

the unitarity bounds. Noting the current computations at the level of two-point function

we have two ways to proceed. Either one starts off from the WKB vacuum for which the

parameter space is “already constrained” by eq. (3.45) and then compute the bispectrum.

The other option would be computing the bispectrum with the mode function (4.1), which

is an excited mode function in the past, and then checking that the level of non-gaussianity

does not violate the unitarity bounds. In both cases, in analogy with the work of super-

excited states [12, 16] , it is expected that at least for the region of parameter space where

the horizon crossing happens in the regime of domination of the quadratic term in the

dispersion relation, ω2 ∝ k2, the generated non-gaussinity would be small and unitarity is

under control. We will postpone the investigation of this point in detail to a future study.

As we noted, such new physics, is either due to the nonlinear interactions of the

Goldstone mode or the coupling of the Goldstone mode with the gravity at sub-Planckian

scales. Being equipped with the preferred mode function, one can study the higher point

functions which will then incorporate the signature of new physics further. By studying

the correlation functions, one can then learn about the potential new physics signatures in

the CMB correlation functions.

– 20 –



J
H
E
P
1
2
(
2
0
1
8
)
0
1
2

Acknowledgments

I am thankful to R. Casadio and M. M. Sheikh-Jabbari for useful discussions on this.

The author is thankful to the INFN fellowship at the University of Bologna, where this

project was initiated, and to the Riemann Center for Geometry and Physics at the Leibniz

University in Hannover where it was completed.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] J. Martin and R.H. Brandenberger, The trans-Planckian problem of inflationary cosmology,

Phys. Rev. D 63 (2001) 123501 [hep-th/0005209] [INSPIRE].

[2] J. Martin and R. Brandenberger, On the dependence of the spectra of fluctuations in

inflationary cosmology on trans-Planckian physics, Phys. Rev. D 68 (2003) 063513

[hep-th/0305161] [INSPIRE].

[3] U.H. Danielsson, A note on inflation and trans-Planckian physics, Phys. Rev. D 66 (2002)

023511 [hep-th/0203198] [INSPIRE].

[4] A. Ashoorioon, A. Kempf and R.B. Mann, Minimum length cutoff in inflation and

uniqueness of the action, Phys. Rev. D 71 (2005) 023503 [astro-ph/0410139] [INSPIRE].

[5] A. Ashoorioon and R.B. Mann, On the tensor/scalar ratio in inflation with UV cut off, Nucl.

Phys. B 716 (2005) 261 [gr-qc/0411056] [INSPIRE].

[6] A. Ashoorioon, J.L. Hovdebo and R.B. Mann, Running of the spectral index and violation of

the consistency relation between tensor and scalar spectra from trans-Planckian physics,

Nucl. Phys. B 727 (2005) 63 [gr-qc/0504135] [INSPIRE].

[7] N. Kaloper, M. Kleban, A.E. Lawrence and S. Shenker, Signatures of short distance physics

in the Cosmic Microwave Background, Phys. Rev. D 66 (2002) 123510 [hep-th/0201158]

[INSPIRE].

[8] A. Kempf and J.C. Niemeyer, Perturbation spectrum in inflation with cutoff, Phys. Rev. D

64 (2001) 103501 [astro-ph/0103225] [INSPIRE].

[9] V. Bozza, M. Giovannini and G. Veneziano, Cosmological perturbations from a new physics

hypersurface, JCAP 05 (2003) 001 [hep-th/0302184] [INSPIRE].

[10] M.R. Brown and C.R. Dutton, Energy momentum tensor and definition of particle states for

Robertson-Walker space-times, Phys. Rev. D 18 (1978) 4422 [INSPIRE].

[11] A. Ashoorioon and G. Shiu, A note on calm excited states of inflation, JCAP 03 (2011) 025

[arXiv:1012.3392] [INSPIRE].

[12] A. Ashoorioon, K. Dimopoulos, M.M. Sheikh-Jabbari and G. Shiu, Reconciliation of high

energy scale models of inflation with Planck, JCAP 02 (2014) 025 [arXiv:1306.4914]

[INSPIRE].

[13] A. Ashoorioon, K. Dimopoulos, M.M. Sheikh-Jabbari and G. Shiu, Non-Bunch-Davis initial

state reconciles chaotic models with BICEP and Planck, Phys. Lett. B 737 (2014) 98

[arXiv:1403.6099] [INSPIRE].

– 21 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevD.63.123501
https://arxiv.org/abs/hep-th/0005209
https://inspirehep.net/search?p=find+EPRINT+hep-th/0005209
https://doi.org/10.1103/PhysRevD.68.063513
https://arxiv.org/abs/hep-th/0305161
https://inspirehep.net/search?p=find+EPRINT+hep-th/0305161
https://doi.org/10.1103/PhysRevD.66.023511
https://doi.org/10.1103/PhysRevD.66.023511
https://arxiv.org/abs/hep-th/0203198
https://inspirehep.net/search?p=find+EPRINT+hep-th/0203198
https://doi.org/10.1103/PhysRevD.71.023503
https://arxiv.org/abs/astro-ph/0410139
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0410139
https://doi.org/10.1016/j.nuclphysb.2005.03.033
https://doi.org/10.1016/j.nuclphysb.2005.03.033
https://arxiv.org/abs/gr-qc/0411056
https://inspirehep.net/search?p=find+EPRINT+gr-qc/0411056
https://doi.org/10.1016/j.nuclphysb.2005.08.020
https://arxiv.org/abs/gr-qc/0504135
https://inspirehep.net/search?p=find+EPRINT+gr-qc/0504135
https://doi.org/10.1103/PhysRevD.66.123510
https://arxiv.org/abs/hep-th/0201158
https://inspirehep.net/search?p=find+EPRINT+hep-th/0201158
https://doi.org/10.1103/PhysRevD.64.103501
https://doi.org/10.1103/PhysRevD.64.103501
https://arxiv.org/abs/astro-ph/0103225
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0103225
https://doi.org/10.1088/1475-7516/2003/05/001
https://arxiv.org/abs/hep-th/0302184
https://inspirehep.net/search?p=find+EPRINT+hep-th/0302184
https://doi.org/10.1103/PhysRevD.18.4422
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D18,4422%22
https://doi.org/10.1088/1475-7516/2011/03/025
https://arxiv.org/abs/1012.3392
https://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3392
https://doi.org/10.1088/1475-7516/2014/02/025
https://arxiv.org/abs/1306.4914
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.4914
https://doi.org/10.1016/j.physletb.2014.08.038
https://arxiv.org/abs/1403.6099
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.6099


J
H
E
P
1
2
(
2
0
1
8
)
0
1
2

[14] W.G. Unruh, Sonic analog of black holes and the effects of high frequencies on black hole

evaporation, Phys. Rev. D 51 (1995) 2827 [INSPIRE].

[15] S. Corley and T. Jacobson, Hawking spectrum and high frequency dispersion, Phys. Rev. D

54 (1996) 1568 [hep-th/9601073] [INSPIRE].

[16] A. Ashoorioon, R. Casadio, G. Geshnizjani and H.J. Kim, Getting super-excited with

modified dispersion relations, JCAP 09 (2017) 008 [arXiv:1702.06101] [INSPIRE].

[17] C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan and L. Senatore, The effective field

theory of inflation, JHEP 03 (2008) 014 [arXiv:0709.0293] [INSPIRE].
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