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1 Introduction

Traversable wormholes have long been a source of fascination as a method of long distance

transportation [38]. However, such configurations require matter that violates the null

energy condition, which is believed to apply in physically reasonable classical theories. In

quantum field theory, the null energy condition is false, but in many situations there are

other no-go theorems that rule out traversable wormholes.

In this work we find that adding certain interactions that couple the two boundaries

of eternal AdS-Schwarzschild results in a quantum matter stress tensor with negative aver-

age null energy, rendering the wormhole traversable after gravitational backreaction. The

coupling we turn on has the effect of modifying the boundary conditions of a scalar field

in the bulk, which changes the metric at 1-loop order.

Violation of the averaged null energy condition (ANEC) is a prerequisite for all

traversable wormholes [25, 39, 52, 53]. It states that there must be infinite null geodesics

passing through the wormhole, with tangent vector kµ and affine parameter λ, along which

ˆ +∞

−∞

Tµνk
µkνdλ < 0. (1.1)

The physical picture is that by Raychaudhuri’s equation for null geodesic congruence, light

rays will defocus only when ANEC is violated. In that case, the light rays that focus in

one end of the wormhole can defocus when going out the other end.

There are reasonable arguments that the ANEC is always obeyed along infinite achronal

geodesics [22, 31, 33, 34, 55].1 This is sufficient to rule out traversable wormholes joining two

otherwise disconnected regions of spacetime [22]. Furthermore, the generalized second law

1A set of points is achronal if no two of the points can be connected by a timelike curve; otherwise it is

chronal.
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(GSL) of causal horizons also rules out traversable wormholes connecting two disconnected

(asymptotically flat or AdS) regions, due to the fact that the future horizon of a lightray

crossing through the wormhole has divergent area at very early times, which contradicts

the increase of generalized entropy along the future horizon [57].

For small semiclassical perturbations to a stationary causal horizon, both the GSL and

the ANEC follow from lightfront quantization methods that are valid for free or super-

renormalizable field theories [56]. (There is also evidence that these results extend to more

general field theories [13, 19, 26, 27, 32]).

In our configuration, signals from early times on the horizon can intersect it again at

late times, by passing through the directly coupled boundaries. The causal structure of the

manifold is modified as a result, changing the commutation relations along null geodesics

through the wormhole and making them no longer achronal. For the same reason, a causal

horizon extending through the wormhole intersects itself, removing the piece with divergent

area. Hence the above impossibility results do not apply. The negative energy matter in our

configuration is similar to the Casimir effect, since the interaction between the boundaries

implies that the radial direction is effectively a compact circle.

Another problematic aspect of traversable wormholes is that they have the potential to

lead to causal inconsistencies. For example, by applying a boost to one end of a wormhole

one could attempt to create a configuration with closed time-like curves [39]. The direct

interaction of the boundaries that we require implies that no such paradoxes may arise (for

a more detailed discussion, see section 4).

The traversable wormhole we find is the first such solution that has been shown to be

embeddable in a UV complete theory of gravity. A phenomenological model of a static

BTZ wormhole that becomes traversable as a result of nonperturbative effects in a 1/c

expansion was proposed in [47] (c being the central charge), however it was not shown that

the metric obeys any field equations. A traversable wormhole solution of five dimensional

Einstein-Gauss-Bonnet gravity was found in [3, 9, 50], however that low energy effective

theory appears to lack a UV completion [14]. Another example was found [6] in a theory

with a conformally coupled scalar, in a regime in which the effective Newton’s constant

becomes negative. This suggests that this solution also cannot arise in a UV complete

model. The important fact that the boundary CFT dual of a traversable wormhole must

involve interactions between the two CFTs was noted in [3, 47].

The eternal black hole with two asymptotically AdS regions is the simplest setting to

investigate these questions [36]. We will deform the system by turning on a relevant double

trace deformation [1]

δS =

ˆ

dt dd−1x h(t, x)OR(t, x)OL(−t, x), (1.2)

where O is a scalar operator of dimension less than d/2, dual to a scalar field ϕ. This

connects the boundaries with the same time orientation, since the t coordinate runs in

opposite directions in two wedges (see figure 1a). The small deformation h(t, x) has support

only after some turn-on time t0. By the AdS/CFT correspondence, we can be certain that

this relevant deformation corresponds to a consistent configuration in quantum gravity.
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(a) (b)

Figure 1. (a) is the Penrose diagram and (b) shows the Kruskal coordinates of the eternal

black hole.

The eternal black hole has a Killing symmetry which is time-like outside the horizon.

Null rays along the horizon V = 0 pass through the bifurcation surface of the Killing vector,

and asymptote to t → −∞ on the left boundary and t → +∞ on the right boundary (see

figure 1b). Denote the affine parameter along this ray as U . In the linearized analysis

around this solution, the throat will become marginally traversable if
´

dU TUU < 0, where

the integral is over the whole U coordinate.

It is instructive to see explicitly in this case that a small spherically symmetric per-

turbation of the stress tensor Tµν ∼ O(ǫ) results in a traversable wormhole exactly when

the ANEC is violated, by solving the linearized Einstein equation for hµν = δgµν ∼ O(ǫ).

Using Kruskal coordinates for the background metric, we find that at V = 0,

(d− 2)

4

[(

(d− 3)r−2
h + (d− 1)ℓ−2

)

(hUU + ∂U (UhUU ))− 2r−2
h ∂2

Uhφφ
]

= 8πGN TUU (1.3)

where φ is the azimuthal angle, rh is the horizon radius of the black hole and the cosmo-

logical constant is Λ = − (d−2)(d−1)
2l2

< 0.

Since the deformation of the Hamiltonian is small, after the scrambling time, the fields

ought to approach a stationary state with respect to an asymptotic Killing symmetry U∂U .

Hence TUU must decay faster than U−2, as does each term in l.h.s. of (1.3) after imposing

a suitable gauge at past and future infinity. Therefore, if we integrate (1.3) over U the

total derivative terms drop out and we obtain

8πGN

ˆ

dUTUU =
(d− 2)

4

(

(d− 3)r−2
h + (d− 1)ℓ−2

)

ˆ

dUhUU (1.4)

Linearized diffeomorphisms around the stationary black hole background act on hµν , but

when the AdS asymptotic conditions are imposed the quantity
´ +∞

−∞
dU hUU is gauge

invariant. Note that the null ray originating on the past horizon is given in coordinates by

V (U) = −(2gUV (0))
−1

ˆ U

−∞

dUhUU (1.5)

after including the perturbation to linear order, where gUV (0) < 0 is the UV component

of the original metric on the V = 0 slice. If the ANEC is violated, V (+∞) < 0, and a light

ray from left boundary will hit the right boundary after finite time.
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Note that if there existed any state in which the wormhole was traversable in the system

defined by the decoupled Hamiltonian, HL +HR, then it would contradict the AdS/CFT

duality. This is because in the decoupled system, no operator on the left can influence the

right, which implies that no signal can be transmitted between the boundaries through

the bulk.

At the linearized level, if one modifies the state as |tfd〉 → eiǫA|tfd〉 for small ǫ, the

average null energy becomes 〈
´

dUTUU 〉 = iǫ〈[
´

dUTUU , A]〉. If this were non-vanishing for

any operator A, then by adjusting the sign of ǫ, the throat could be made traversable. It

is easy to check that the expectation value of this commutator indeed vanishes.

In fact, |tfd〉 is invariant under HR −HL, which corresponds to the bulk Killing sym-

metry i∂t (note the directions are opposite in left and right wedges). On the horizon V = 0,

one can show ∂t = U∂U in Kruskal coordinates, which is just a dilation of the U direction.

Note that under the U → λU scaling, TUU → λ−2TUU and dU → λdU , which implies

[HR −HL,
´

dUTUU ] = −i
´

dUTUU . Therefore

(HR −HL)

ˆ

dUTUU |tfd〉 =

[

HR −HL,

ˆ

dUTUU

]

|tfd〉+
ˆ

dUTUU (HR −HL)|tfd〉

= −i

ˆ

dUTUU |tfd〉. (1.6)

This implies that
´

dUTUU |tfd〉 is either an eigenvector of HR − HL with eigenvalue

−i, or identically zero. Since HR − HL is a Hermitian operator, whose eigenvalues must

be real, it follows that
´

dUTUU |tfd〉 = 0. In other words, TUU in the modified state along

U > 0 will exactly cancel that along U < 0. Beyond the linearized level, one can show

that the backreaction always causes the throat to lengthen [35, 46], so that it cannot be

traversed in any state of the decoupled system, as expected.

We will consider a deformation of the Hamiltonian that turns on at some time t0
in (1.2).2 At the linearized level, this has the same effect as changing the state to the

future of t0. Now there is no reason for the above cancellation to occur since TUU along

U < 0 is unchanged. Therefore, one expects that generically by an appropriate choice

of sign one will render the Einstein-Rosen bridge traversable, as long as the deformation

couples the two boundaries.3

The simplest option in the large N limit is a double trace deformation. This has

the effect of modifying the boundary conditions for the dual scalar field, such that some

amplitude of a wave hitting one boundary will be transmitted to the opposite one. This does

not change the eternal black hole solution classically, but results in a quantum correction

to the matter stress tensor.

In order to be sure that the configuration is an allowed one, we choose the deformation

to be relevant. Then it will be a renormalizable deformation of the CFT, and the dual

2We do not consider the case of a time-independent interaction, in order to prevent the quantum state

from becoming non-regular on the past horizon.
3A deformation of only HR has the same effect on the ANE as a change in the state, by bulk causality,

since the past causal cone of the deformation does not intersect the V = 0 null sheet. This again agrees

with the fact that when the boundaries are decoupled, no traversable wormhole can exist.
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geometry will not be modified by backreaction in an uncontrolled way at the AdS bound-

aries. Also, heuristically, the effect of such a deformation coupling the two CFT’s should

be strong in the IR, which suggests that it renders the deep interior traversable.

Recall that the conformal weight of a scalar operator Oi is given by ∆ = d
2 ±

√

(

d
2

)2
+M2, where M is the mass of the bulk field, and the plus or minus sign depends on

the choice of asymptotic boundary conditions. In the case M2 > 0, only the plus sign leads

to normalizable modes. However, unitarity in AdS space [12] allows a slightly tachyonic

bulk field: M2 > −
(

d
2

)2
, in which modes of both signs are normalizable and we are free to

choose either one. To have a relevant deformation, we start with the alternative boundary

condition, associated with the minus sign.

A brief overview of this paper is as follows. In section 2, we calculate the bulk two-

point function with the modified Hamiltonian at linear order in h. In section 3, we use the

point-splitting method to calculate TUU on the V = 0 slice. Numerical result shows that

TUU is rendered negative by our boundary interaction. We find an analytic expression for
´

dUTUU , which is negative for all 0 < ∆ < 1. In section 4 we calculate the energy and

entropy of the resulting CFT state, and describe their holographic bulk duals. In section 5,

we discuss the properties of this traversable wormhole and propose a quantum teleportation

interpretation in the ER=EPR context. The appendix is a detailed calculation of
´

dUTUU .

Throughout we use units where c = ~ = 1.

2 Modified bulk two-point function

For simplicity, we consider the eternal BTZ black hole [4, 5] (for a review, see [15]), whose

metric is

ds2 = −r2 − r2h
ℓ2

dt2 +
ℓ2

r2 − r2h
dr2 + r2dφ2 (2.1)

The inverse temperature of the BTZ black hole is determined by its horizon radius rh as

β = 2πℓ2/rh. Here and below we set AdS length ℓ to 1. Without any deformation of

the Hamiltonian, the bulk free field two-point function in the BTZ background with r−∆

fall-off was first derived by the mode sum method in [29].

In right wedge, it is

〈

ϕR(x)ϕR(x
′)
〉

0
=

1

23−∆π
(G+ +G−)(G

−1
+ +G−1

− )1−2∆ (2.2)

where

G± ≡
(

rr′

r2h
cosh rh∆φ± 1− (r2 − r2h)

1/2(r′2 − r2h)
1/2

r2h
cosh rh∆t

)−1/2

. (2.3)

The bulk field operator ϕR(x) in the eternal black hole background can be understood as

a non-local CFT operator [41]. In particular, ϕR(x) can be expanded in terms of the right

boundary dual operator as

ϕR(t, r, φ) =

ˆ

ω>0
dω dm

(

fωm(r)e−iωt+imφOωm + f∗
ωm(r)eiωt−imφO†

ωm

)

(2.4)
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where fωm(r)e−iωt+imφ are bulk positive frequency normalizable modes approaching r−∆

when r → ∞ and Oωm is the boundary annihilation operator defined by

O(t, φ) =

ˆ

dω dm
(

e−iωt+imφOωm + eiωt−imφO†
ωm

)

. (2.5)

Therefore, the bulk to boundary correlation function is given by

K∆(r, t, φ) ≡ 〈ϕR(t, r, φ)O(0, 0)〉 = lim
r′→∞

r′∆
〈

ϕR(t, r, φ)ϕR(0, r
′, 0)

〉

0

=
r∆h

2∆+1π

(

−(r2 − r2h)
1/2

rh
cosh rht+

r

rh
cosh rhφ

)−∆

, (2.6)

where we used translation symmetry in t and φ to move (t′, φ′) to the boundary origin.

This expression is real only when (r, t, φ) is space-like separated from the boundary origin.

For time-like separation, general analytic properties of Wightman functions imply that one

should change t to t−iǫ, which assigns a phase of e−iπ∆ when t > 0 and of eiπ∆ when t < 0.

Now we consider the time dependent modified Hamiltonian of (1.2):

δH(t) = −
ˆ

dφh(t, φ)OR(t, φ)OL(−t, φ), (2.7)

where h(t, φ) = 0 when t < t0. Using evolution operator U(t, t0) = T e
−i
´ t

t0
dtδH(t)

in

interaction picture, the bulk two-point function is
〈

ϕH
R (t, r, φ)ϕH

R (t′, r′, φ′)
〉

=
〈

U−1(t, t0)ϕ
I
R(t, r, φ)U(t, t0)U

−1(t′, t0)ϕ
I
R(t

′, r, φ)U(t′, t0)
〉

(2.8)

where superscripts H and I represent Heisenberg and interaction picture respectively. To

leading order in h, (2.8) is (suppressing r and φ coordinates and omitting I)

Gh ≡− i

ˆ t

t0

dt1h(t1)
〈

[OL(−t1)OR(t1), ϕR(t)]ϕR(t
′)
〉

− i

ˆ t′

t0

dt1h(t1)
〈

ϕR(t)[OL(−t1)OR(t1), ϕR(t
′)]
〉

≃− i

ˆ t

t0

dt1h(t1)
〈

ϕR(t
′)OL(−t1)

〉

〈[OR(t1), ϕR(t)]〉+ (t ↔ t′)

= i

ˆ t

t0

dt1h(t1)K∆(t
′ + t1 − iβ/2) [K∆(t− t1 − iǫ)−K∆(t− t1 + iǫ)] + (t ↔ t′)

= 2 sinπ∆

ˆ

dt1h(t1)K∆(t
′ + t1 − iβ/2)Kr

∆(t− t1) + (t ↔ t′) (2.9)

where in the second line we used large N factorization and causality, in that OL commutes

with any ϕR, in the third line we used the KMS condition [23]
〈

OR(t)OL(t
′)
〉

tfd
=
〈

OR(t)OR(t
′ + iβ/2)

〉

tfd
(2.10)

and in the last line Kr
∆ is the retarded correlation function

Kr
∆(t, r, φ) = |K∆(t, r, φ)| θ(t) θ

(

(r2 − r2h)
1/2

rh
cosh rht−

r

rh
cosh rhφ

)

(2.11)
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One can also derive (2.9) using the bulk mode sum method with modified boundary

conditions. This approach would allow one to compute the stress tensor for finite h, not just

perturbatively. According to Lorentzian AdS/CFT, the double trace deformation [8, 58],

from the point of view of the right wedge, is equivalent to a source term h(t, φ)OL(−t, φ),

for OR(t), activating the initially frozen fall-off component of the bulk field. The same

applies to the left wedge. Therefore the asymptotic behavior of a global bulk mode ϕ

living in the entire eternal black hole should satisfy

ϕ(r → ∞R) → αR(t, φ)r
−∆ + βR(t, φ)r

−2+∆, βL(t, φ) = h(−t, φ)αR(−t, φ) (2.12)

ϕ(r → ∞L) → αL(t, φ)r
−∆ + βL(t, φ)r

−2+∆, βR(t, φ) = h(t, φ)αL(−t, φ) (2.13)

where the subscript 1 is for right wedge and 2 is for left wedge.

The thermofield double state of the eternal black hole is the vacuum state in the

Kruskal patch [30]. This is analogous to the relation between the Minkowski vacuum and

the Rindler thermofield double state [51]. Choosing the appropriate global bulk modes

H
(±)
ωm ,4 and applying the method of [30], we can construct ϕ as

ϕ(x) =

ˆ

ω>0
dω dm(H(+)

ωm (x)b(+)
ωm +H(−)

ωm (x)b(−)†
ωm + h.c.) (2.14)

where b
(±)
ωm are annihilation operators used to define the vacuum. We find the two-point

function in this vacuum is the same as (2.9) up to normalization. Since the calculation is

quite involved, we do not include it in this paper.

3 1-loop stress tensor

The stress tensor is given by variation of action with respect to gµν ,

Tµν = ∂µϕ∂νϕ− 1

2
gµνg

ρσ∂ρϕ∂σϕ− 1

2
gµνM

2ϕ2 (3.1)

The 1-loop expectation value can be calculated by point splitting,

〈Tµν〉 = lim
x→x′

∂µ∂
′
νG(x, x′)− 1

2
gµνg

ρσ∂ρ∂
′
σG(x, x′)− 1

2
gµνM

2G(x, x′) (3.2)

whereG(x, x′) is 2-point function. In this formula, one must renormalize the stress tensor by

subtracting the coincident point singularities from the 2-point function, which are given by

the Hadamard conditions [42]. Since these are determined by the short distance dynamics,

this subtraction is unchanged when we modify the boundary conditions, and it has no effect

on the order h correction that we are interested in.

At leading order, as we reviewed in the Introduction,
´

dUTUU is zero on the horizon

V = 0. Indeed, the leading order two point function in the BTZ black hole is (2.2) where

φ has periodicity 2π and all ∆φ+2πn images are summed. The only coincident point pole

4This step is very tricky because at order h, the r−∆ component is not constrained by the deformation.

The only requirement is that the modified two point function must be regular on horizon. We were able to

find a choice to reproduce (2.9) up to normalization.
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comes from the n = 0 component. Summing over the other n components, one finds that

in Kruskal coordinates the leading order stress tensor TUU ∼ O(V 2) in the V → 0 limit, so

that TUU = 0 along the horizon.

The subleading 2-point function is given by (2.9). Note that h(t, φ) is dimensionful

and its dimension is 2− 2∆ because in (2.7) O has dimension ∆.5 Moreover, since h(t, φ)

is a boundary CFT smearing function, it should not depend on any bulk length scale (e.g.

rh and ℓ) explicitly but only on the inverse temperature β. Let us assume that h(t, φ) is

uniform over φ:

h(t, φ) =

{

h(2π/β)2−2∆ t ≥ t0

0 t < t0
(3.3)

where h is a dimensionless constant. In Kruskal coordinates

e2rht = −U

V
,

r

rh
=

1− UV

1 + UV
(3.4)

the change in the 2-point function is

Gh = C0

(

2π

β

)2∆−2

rh

ˆ

dU1

U1
dφ1h(U1, φ1)

(

1 + UV

U/U1− V U1 − (1− UV ) cosh rh(φ− φ1)

)∆

×
(

1 + U ′V ′

U ′U1 − V ′/U1 + (1− U ′V ′) cosh rh(φ′ − φ1)

)∆

+ (U, V, φ ↔ U ′V ′, φ′) (3.5)

where C0 =
r2∆−2

h
sin∆π

2(2∆π)2

(

2π
β

)2−2∆
and we transformed the integral over t1 to Kruskal

coordinates in which the boundary is U1V1 = −1. Note that this result applies to both the

black hole and black brane cases because the integration of φ1 over 0 to 2π and summing

over n with modification φ1 → φ+2πn is equivalent to the integration of φ1 over the whole

real axis. Since we only focus on TUU component on the horizon V = 0 and the derivative

on U and U ′ in (3.2) has nothing to do with the value of V and V ′, we can take both points

to the horizon first, namely V = V ′ = 0. Similarly, we can take φ = φ′ first for simplicity.

Since h(t1, φ1) is uniform in φ1, ∂φ is still a Killing vector of the system and therefore Gh

should not depends on φ. Defining y = cosh rh(φ1 − φ), on horizon we have

Gh = hC0

ˆ U

U0

dU1

U1

ˆ U
U1

1

2dy
√

y2 − 1

(

U1

U − U1y

)∆( 1

U ′U1 + y

)∆

+ (U ↔ U ′)

≡ F (U,U ′) + F (U ′, U) (3.6)

where U0 = erht0 . The integral range of (3.6) is given by the step function in (2.11), which

ensures that U − U1y ≥ 0. Note that the integral in (3.6) is dimensionless. Since Gh has

dimension 1 (ϕR has dimension 1
2 in 3-dimension spacetime), if we restore ℓ in (3.6), we

find the total length scale dependence of Gh is ℓ−1.

Note that gUU = 0 in the original BTZ geometry. By (3.2), TUU on horizon is

TUU = lim
U ′→U

∂U∂U ′(F (U,U ′) + F (U ′, U)) = 2 lim
U ′→U

∂U∂U ′F (U,U ′) (3.7)

5Here we implicitly defined the unit length angular coordinate x ≡ φℓ. Taking the limit r → ∞ in BTZ

metric (2.1), the boundary metric is flat ds2b = −dt2 + dx2.
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where we should note the dimension of TUU is the same as Gh because U is dimensionless.

Since the integration ranges are only functions of U , we can take the U ′ derivative before

evaluating the integral

TUU = −4h∆C0 lim
U ′→U

∂U

ˆ U

U0

dU1

ˆ U
U1

1

dy
√

y2 − 1

U∆
1

(U − U1y)∆(U ′U1 + y)∆+1
(3.8)

Defining a new variable x = y−1
U/U1−1 and integrating over x we get

TUU =− 4h∆C0Γ
(

1
2

)

Γ(1−∆)√
2Γ
(

3
2 −∆

) lim
U ′→U

∂U

ˆ U

U0

dU1

F1

(

1
2 ;

1
2 ,∆+ 1; 32 −∆; U1−U

2U1
, U1−U
U1(1+U ′U1)

)

U
−∆+1/2
1 (U − U1)∆−1/2(1 + U ′U1)∆+1

(3.9)

where we used the integral representation of Appell hypergeometric function. The integral

over U1 is finite as long as ∆− 1/2 < 1, namely ∆ < 3/2, because in the integrated region,

the only potentially divergent point is around U1 → U from below since F1 is a complete

function when ∆ < 3/2. In particular, when U1 ∼ U , F1 → 1, which implies ∆ < 3/2 is

the sufficient and necessary condition for integrability. Defining a new variable z = U1−U0

U−U0
,

the domain of integration in (3.9) becomes 0 to 1 and therefore we can exchange the order

of ∂U and
´

dz. After differentiating w.r.t. U , and restoring the variable U1, we get

TUU =− 2h∆C0Γ
(

1
2

)

Γ(1−∆)

Γ
(

3
2 −∆

)

ˆ U

U0

dU1U
2∆
1 (f1 + f2 + f3)

(U− U0)(U− U1)∆−1/2(1 + U2
1 )

∆+1U∆+1(U + U1)1/2

(3.10)

where

f1 =
−2∆(UU2

1 + U0) + 3UU0U1 + U0 + 2U1

1 + UU1
F1

(

1−∆,
1

2
, 1 + ∆,

3

2
−∆, u, v

)

(3.11)

f2 =
2(1 + ∆)(U − U1)(U0 + 2UU0U1 − UU2

1 )

(2∆− 3)U(1 + U2
1 )(1 + UU1)

F1

(

1−∆,
1

2
, 2 + ∆,

5

2
−∆, u, v

)

(3.12)

f3 =
U0(U − U1)

(2∆− 3)(U + U1)
F1

(

1−∆,
3

2
, 1 + ∆,

5

2
−∆, u, v

)

(3.13)

u =
U − U1

U + U1
, v =

U − U1

U(1 + U2
1 )

(3.14)

Performing the final integral numerically, we plot the result in figure 2a.

In the figure, we see that the null energy is negative after we turn on the insertion

at U0 = 1 if we take positive h. Physically, this means the light-like ray V = 0 becomes

time-like after U0 and a spaceship that enters early enough may escape the black hole!

One may note that when ∆ < 1/2, TUU is finite but when ∆ > 1/2, TUU is singular

near insertion time U0. However, this singularity is not essential because it is integrable,

as we will see later when we calculate
´

dUTUU along the horizon V = 0. Indeed, the

classical solution of Einstein equations for a shockwave insertion in the bulk in Kruskal

coordinates contains a delta function, which is also an integrable singularity [46]. One
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(a) (b)

Figure 2. (a) shows the null energy along the horizon when the interaction is turned on at

U = U0 = 1 and never shut off, with our choice for the sign of the coupling h; (b) shows the case

where it is turned on at U = U0 = 1 and turned off at U = Uf = 2. In both cases, h = 1. We see

clearly in both (a) and (b) that TUU becomes negative after turn-on; in (b) TUU becomes positive

after turn-off. Blue is for ∆ = 0.1; yellow is for ∆ = 0.2; green is for ∆ = 0.4; pink is for ∆ = 0.6;

purple is for ∆ = 0.8.

might also worry that the derivative of gUU and the Riemann curvature are singular at the

turn-on and turn-off times, although TUU and
´

dUTUU are not. However, this is simply

due to the fact that we turned the insertion on and off as a step function. If this process

were taken to be smooth enough, there would be no singularity.

To see the late time behavior, we can use the z variable to rewrite (3.10) in the

large U limit. In this limit, f1 dominates among all fi’s in (3.10). Using the identity

F1(a; b, b
′; c; z, 0) = 2F1(a, b; c; z) we obtain

TUU → 4h∆2C0Γ
(

1
2

)

Γ(1−∆)

Γ
(

3
2 −∆

)

U2∆+2

ˆ 1

0

dz z2∆+1
2F1

(

1−∆, 12 ,
3
2 −∆, 1−z

1+z

)

((z + ǫ)2 + ǫ)∆+1(1− z)∆−1/2(1 + z)1/2
→ 0+ (3.15)

where ǫ is a small number of order U−1 and which implies that TUU becomes positive and

decays to zero at late times.

If we turn off the interaction at some finite time Uf , when U > Uf , we can safely pass

∂U into the U1 integral, which leads to

TUU = −4h∆C0Γ
(

1
2

)

Γ(1−∆)

Γ
(

1
2 −∆

)

ˆ Uf

U0

dU1

U2∆+1
1 F1

(

−∆; 12 ,∆+ 1; 12 −∆; U−U1

U+U1
, U−U1

U(1+U2
1
)

)

(U − U1)∆+1/2(U + U1)1/2U∆+1(1 + U2
1 )

∆+1

(3.16)

In deriving (3.16), we used a property of the derivative of the Appell hypergeometric

function and equation (7a) in [45]. The numerical result is plotted in figure 2b.

In this figure, we see that after turning off the interaction, TUU has a jump and becomes

positive at late times. In particular, when ∆ > 1/2, TUU becomes divergent again right

after Uf . Fortunately, it is again an integrable divergence which should not cause any
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Figure 3.
´

dUTUU as a function of ∆; blue is for U0 = 1; yellow is for U0 = 2; green is for U0 = 1

and Uf = 2.

physical problem. By the identity [43]:

F1(a; b, b
′; c;x, y) =

∑

m≥0

(a)m(b)m
m!(c)m

xm2F1(a+m, b′; c+m; y) (3.17)

the late time behavior can be analyzed by taking the U → ∞ limit in (3.16):

TUU ∼ 4h∆2C0

U2∆+2
logU log

Uf

U0
→ 0+

Again, we find TUU becomes positive after some time and decays to zero. In both late time

analyses, TUU decays like U−2∆−2, which validates the assumption that UhUU and ∂Uhφφ
vanish when U → ∞ in (1.3).

In the above discussion, we see that at some finite time TUU becomes positive whether

or not we turn off the insertion, which might appear dangerous for the fate of the worm

hole. The crucial diagnostic is the sign of the integral of TUU over the whole V = 0 slice.

This is what determines whether a light ray on horizon eventually reaches the boundary

at spatial infinity.

It looks horrible to integrate U in (3.10) from U0 to infinity. Interestingly and surpris-

ingly, by some tricks, we can get a closed form for it (see appendix A):

ˆ ∞

U0

dUTUU = − hΓ(2∆ + 1)2

24∆(2∆ + 1)Γ(∆)2Γ(∆ + 1)2ℓ

2F1

(

1
2 +∆, 12 −∆; 32 +∆; 1

1+U2
0

)

(1 + U2
0 )

∆+1/2
(3.18)

If we turn off the interaction at Uf , the integral is just the difference between
´∞

U0
dUTUU

and
´∞

Uf
dUTUU . We plot the result as a function of ∆ in figure 3.

In this figure, we see that for all ∆ values from 0 to 1, the integral of TUU is always

negative, which demonstrates the existence of a traversable wormhole. Furthermore, the

earlier we turn on the insertion, the larger the effect is. In particular, even if TUU becomes

positive in late times, the wormhole still exists since the integral of TUU remains negative.
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Note that ∆ = 0 is a special case where
´

dUTUU = 0. Indeed, the only ∆ = 0 operator in

CFT is the identity and of course adding the product of identity operators to Hamiltonian

has no effect on the system.

4 Holographic energy and entropy

In this section we will consider the implications of a traversable wormhole for the holo-

graphic entanglement entropy conjecture, which in this context relates the entanglement

entropy between the two boundary CFT’s to the area/entropy of certain extremal surfaces

in the bulk theory [7, 18, 20, 28, 44].

As a preliminary, we discuss the change of energy of the CFT state. Long after the

interaction is shut off, the system returns to thermal equilibrium. Thus the final horizon

area can be determined from the energy of the system, measured on the left or the right.

It is straightforward to check that, in our state, the energy decreases at linear order in h

with the sign choice that rendered the wormhole traversable:

After deforming the Hamiltonian (t > t0), the state in Schrödinger picture is

|Ψ(t)〉 = e−iH0(t−t0)U(t, t0) |tdf〉 . (4.1)

Expanding U(t, t0) to leading order in h(t) given by (3.3), we find that the change in the

energy on the right is

δER = i

ˆ t

t0

dt1h(t1) 〈tdf| [δH(t1), HR] |tdf〉

=

ˆ t

t0

dt1dφh(t1) 〈tdf| ∂tOR(t1, φ)OL(−t1, φ) |tdf〉

=
hr2h

2∆+1ℓ3

∑

n

(

1

(cosh 2rht+ cosh 2πrhn)∆
− 1

(cosh 2rht0 + cosh 2πrhn)∆

)

(4.2)

where in the second line we used the Heisenberg equation and in last line the boundary

two-point function is obtained by taking limit r → ∞ in (2.2) where φ has period 2π, and

all of its images are summed over in the global BTZ black hole.6 If the interaction shuts

off at tf , the energy obviously becomes constant for t > tf , and t in (4.2) is replaced by

tf . Therefore, the effect of the interaction with h > 0 is to reduce the energy. Note that if

there are any UV divergences in the energy they cannot appear at linear order in h, since

the interaction involves just one field in each CFT.

At least at first order in h, the entropy of entanglement SEE between the left and right

boundaries should also be well-defined (and time dependent) even during the period of time

when the interaction is turned on, if one thinks of the state as evolving by the deformed

Hamiltonian in the original tensor product Hilbert space. By the first law of entanglement,

at linear order in h, the change in SEE is equal to βδHR, thus it also decreases until

the turn-off time tf after which it remains constant (as it must under decoupled unitary

evolution on the left and right).

6We consider global AdS here so that the total energy is finite.
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The change in SEE is O(1) in a 1/c ∼ 1/N ∼ GN/LAdS expansion.7 At this order,

in the bulk interpretation SEE has two parts, namely the small gravitational correction to

the area A/4GN of the extremal surface, and the entanglement entropy of bulk fields Sbulk

on the spacelike slice from the extremal surface to the boundary slice at time t [7, 20].

In our situation, causality implies that the geometry near the bifurcation surface is

unaffected by the perturbation. Thus, at order h, the area of the quantum extremal surface

is unchanged from the original state. On the other hand, Sbulk has nonlocal aspects.

Therefore, the decrease of SEE at first order must be entirely due to a corresponding

decrease in Sbulk evaluated at the bifurcation surface.

However, after the time ttrav on the boundary, the bifurcation surface (E1 of figure 4)

is no longer spacelike to the AdS boundary, and one cannot define a bulk entanglement

wedge using the surface E1. This would render Sbulk ill-defined. The resolution is to use

the quantum extremal surface.

More generally, it was proposed in [18] (and proven in [17]) that, at general orders in

1/N , one should consider the entropy outside the quantum extremal surface, obtained by

extremizing the total generalized entropy Sgen = A/4GN+Sbulk. When calculating theO(1)

piece of the entropy, these two prescriptions agree on the value of the entropy but [16, 18]

argued that the location of the quantum extremal surface is also physically important,

because it provides a natural boundary for how much of the bulk can be reconstructed

from the CFT state on a single boundary. One useful constraint on the location quantum

extremal surface is the GSL, which states that Sgen is nondecreasing on any future horizon.

On a Cauchy slice prior to the time when the interaction is turned on, the geometry

and bulk quantum state are that of the Hartle-Hawking state. Thus the quantum (and

classical) extremal surface is located at the bifurcation surface of the original black hole (E1

of figure 4). On the other hand, after the interaction is over, the bulk quantum state of the

fields changes and thus the quantum extremal surface must move. By left-right symmetry

of the spacetime (together with the fact that the joint state of the entire system is pure

so that SEE is the same on both sides) it can it can only move along the vertical axis of

symmetry of the spacetime. Also, the GSL implies that the new location must be on or

behind the causal horizon [18], because otherwise it lies on a future horizon whose Sgen is

generically increasing.

In fact, at first order in h, the GSL implies that the quantum extremal surface must

lie exactly at the point E2 in figure 4, where the two future horizons intersect. For since

the GSL is true in every state [56], and saturated for the Hartle-Hawking state, it must

also be saturated for any first order perturbation to the Hartle-Hawking state [54]. But if

Sgen is stationary along two linearly independent normal directions of E2, then it must be

a quantum extremal surface.

As noted above, the area and bulk entanglement entropies are identical for E1 and E2

at linear order in h (as long as they are well-defined). Any effects arising from differences

between E1 and E2 are suppressed by additional powers of h.

7These are the correct scaling relations for 2+1 dimensional bulk. In other dimensions, the scaling with

GN is the same, but the scaling with the number of species N may vary.
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Figure 4. The throat size is ∆V ∼ h. The red thick interval on the boundary is the duration of the

deformation beginning at t0 and ending at tf . The metric in the light yellow region is unchanged

and only that of the white region will have a nonzero backreaction correction. The orange thick

curve is the future event horizon and the grey thick curve is the past event horizon. E1 is the

original bifurcation surface. E2 is the location where the right and left future horizons cross. The

magenta curve is a null ray that passes through wormhole, deviating to right boundary.

At second order in h, the GSL should no longer be saturated on the future horizon.

Hence Sbulk is increasing with time at E2, and the quantum extremal surface will instead

be located slightly above the point E2.

We have not followed the evolution of the quantum extremal surface at intermediate

times, but it seems that it must gradually move upwards from E1 to its final location above

E2. After the interaction is over the boundary evolution is unitary, and hence neither SEE

nor the quantum extremal surface changes.

Ref. [18] argued that the quantum extremal surface should always be spacelike to its

corresponding CFT region. In a sense this continues to be true, since E1 is spacelike to

all the boundary points prior to turning on the interaction, while E2 is spacelike to all the

points after the interaction is turned off. But neither one is spacelike to the entire boundary

for all time. For example, a unitary operator applied to the right boundary at sufficiently

early times might affect the value of Sgen(E2), and hence the right CFT entropy after the

interaction. But that does not contradict any of the properties of the right CFT, since it

does not have unitary time evolution (independent of the left CFT) during the period of

the interaction.

Note that, if we assume that our holographic entropy prescription is correct when the

CFT’s are not coupled, it must necessarily also be correct when the CFT’s are coupled.

Before the interaction is turned on, we can simply consider the Hartle-Hawking spacetime

as if there were no interaction. Similarly, after the interaction is over, we can consider a
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new spacetime which is dual to extrapolating the final state backwards in time, without

any interaction. Neither of these spacetimes corresponds to a traversable wormhole, but

they can be used for purposes of calculating SEE before or after the interaction is turned

on. It is only when these two spacetimes are patched together, that they are seen to be a

traversable wormhole geometry.

5 Discussion

We have demonstrated that the Einstein-Rosen bridge of a BTZ black hole becomes slightly

traversable after the addition of a two-boundary coupling. (We expect that a similar effect

also occurs in D > 3 bulk spacetime dimensions, although it is harder to calculate the

exact form of the stress-tensor.)

From (3.18), we see that the integral
´

dUTUU , giving the deviation of null rays from

the horizon, is proportional to h, which implies that the wormhole opens up by an amount

(in units where ~ = 1)

∆V ∼ hGN

RD−2
(5.1)

where ∆V is the difference of V coordinate between the future horizon and the first lightray

which can get through the wormhole (see figure 4), and we assume that the black hole radius

rh, the AdS length LAdS, and the amount of time ∆t the interaction is turned on for are

all of the same characteristic length scale R.

The wormhole is only open for a small proper time in the interior region. This is

quite different from the usual static wormhole solutions which do not have event horizons

(e.g. [38]). Nevertheless, radial lightrays originating on the boundary at arbitrarily early

times will cross through the portal to the other side; in this sense the wormhole is open at

arbitrarily early boundary times on either side.

A (test) astronaut from one boundary can only go through the wormhole before it

closes, and she reaches the other boundary long after the boundary-boundary interaction

is turned on. One should note that since the coupling we add breaks the Killing symmetry

HL −HR, there is no way to boost her back to a time before she entered the worm hole.

Thus the way we glue the two boundaries fixes the relative time coordinate between them,

excluding the possibility of having closed time-like curves [39]. Note that the traversable

throat size depends on the strength of the coupling and a signal transmitted through the

wormhole is only received at the other end after a very long time delay if the gravitational

effects of the coupling are small. Furthermore, the thermofield double state that we require

is an extremely fine tuned state, so it would be very difficult to prepare such a configuration

in which the astronaut could enter at early times from the left.

We have not yet considered the backreaction on the geometry coming from an actual

(non-test) astronaut traversing the wormhole throat. An object travelling at light speed

from left to right contributes to TV V but not to TUU , so at the level of linearized gravity it

will prevent objects from traversing in the other direction (i.e. from right to left) but it will

have no tendency to close the wormhole in the same direction that it is travelling. This

– 15 –



J
H
E
P
1
2
(
2
0
1
7
)
1
5
1

suggests that the objects can still traverse the wormhole even after taking into account

their own gravitational back-reaction.8

Another question concerns the interaction of the astronaut with the negative energy

pulse of radiation travelling in the other direction. In the frame of reference defined by

Kruskal coordinates, a quantum traversing the wormhole must be blueshifted up to a

frequency 1/∆V , while the pulse coming in the other direction has a frequency of order

1/R. Here we are assuming that the interaction is turned on for about one light-crossing

time R, and that there is no other time scale of relevance in the problem. Although an

incoming pulse with negative total energy is not allowed in classical scattering problems,

we will nevertheless attempt to build intuition by comparing the situation to a normal field

theory scattering problem. The center-of-mass energy scale of the collision is given by

√
s ∼

√

RD−4

hGN
. (5.2)

Since GN ∼ LD−2
planck, the center-of-mass energy is below the Planck scale in D = 3 (i.e. a

BTZ black hole with any extra dimensions compactified at the Planck scale) but not when

D > 3. However, even in higher dimensions we do not expect that full quantum gravity

effects will be important. We nevertheless expect that it is legitimate to use the eikonal

approximation, in which one solves for the propagation of each particle on the background

field generated by the other particle. This corresponds to resumming ladder Feynman

diagrams, whose amplitude scales with various powers of

GNs

bD−4
∼ h−1, (5.3)

where b is the impact parameter, and we have used the fact that b ∼ R (except for small tails

of the wavefunction). Non-eikonal Feynman diagrams should be suppressed by additional

powers of GN relative to eikonal diagrams with the same s dependence [2]. Therefore

we can consistently consider scenarios in which only the eikonal scattering is relevant, in

which our calculation of the geometry shows that the wormhole is traversable if the particle

is sent in before a time ∆t ≈ R ln(R/hLplanck) prior to the interaction being turned on.

However if the particle is sent in more than 3
2∆t prior to the interaction time, then the

eikonal approximation breaks down and there may be large back-reaction, invalidating our

analysis. When h ∼ 1, these times are of order the scrambling time.

It is interesting to consider what would happen if the two black holes were in the same

component of space, rather than in different asymptotic regions. If the black holes were in

a suitably entangled state, they should be connected by an Einstein-Rosen bridge [35], with

the QFT state near the horizon close to the Hartle-Hawking state. The direct boundary

interaction could then be produced by propagation through the ambient spacetime — this

8Presumably there is some limit on how much information can get through, since the black hole on

the other side cannot radiate more energy than its initial mass, but determining the precise limit would

require going beyond the linearized regime. There might also be an interesting limit on the total amount of

information which can get through the wormhole, coming from the Bousso bound [10] (see [21] for a proof

in classical case) or its quantum generalization [11, 48].
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would be the same as the interaction we studied, except with a time delay. A similar calcu-

lation would then lead to a traversable wormhole. The negative ANE could be understood

as coming from the Casimir effect associated to the cycle in space going from one black hole

to the other in the ambient space and then threading the wormhole. Of course, the effect

would be enhanced if the signals sent between the black holes were directed and amplified

(otherwise the Casimir energy would be extremely tiny if the black holes were far apart).

No causal paradoxes would arise because the traversability depends on backreaction due

to the existence of a casual path between the black holes in the ambient spacetime.

Since any infinite null geodesic which makes it through a wormhole must be chronal

(as discussed in the Introduction), such wormholes do not enable one to travel faster than

light over long distances through space. Hence traversable wormholes are like getting a

bank loan: you can only get one if you are rich enough not to need it.

The traversable wormhole we found has an interesting interpretation in the context of

ER=EPR [35]. Maldacena and Susskind conjectured that any pair of entangled quantum

systems are connected by an Einstein-Rosen bridge (the non-traversable wormhole). The

crucial difference in our work is that we allow interaction between the entangled systems,

which is assumed to be negligible in ER=EPR. What we have shown is that in this case

the Einstein-Rosen bridge can open to become a traversable wormhole.

Our example thus provides a way to operationally verify a salient feature of ER=EPR

that observers from opposite sides of an entangled pair of systems may meet in the con-

nected interior. Since in [35] any such meeting is trapped behind the horizon, it is not

obvious how its occurrence could be confirmed by exterior or CFT measurements. What

we found is that if, after the observers jump into their respective black holes, a boundary-

boundary coupling is activated, then the Einstein-Rosen can be rendered traversable, and

the meeting inside may be seen from the boundary. This seems to suggest that the

ER=EPR wormhole connection was physically “real”. But since all measurements in the

CFT description are governed by the rules of linear quantum mechanics, it seems like any

explicit operational verification of the existence of the wormhole would also correspond to

a linear quantum measurement. It might be interesting to check the compatibility of these

ideas with the linearity of measurements made behind the horizon, discussed in [37].

What is the quantum information theory interpretation of such a traversable wormhole?

A curious feature of the transmission of a qubit, Q, through the wormhole is that it appears

to be sent “via the entanglement”, rather than directly by the inter-boundary coupling.

(Note that the traversable portion of the wormhole is close to the bifurcation point, which

describes the subspaces of the left and right Hilbert spaces that are the most entangled in

the thermofield double state.) There are several ways to see that the quantum information

of Q is not simply being sent directly through the boundaries. First, the commutator of

Q (for example when it is first injected into the interior from the left boundary) with the

interaction Hamiltonian is extremely small near the thermofield double state. Furthermore,

at the time the interaction is activated, Q is in fact spacelike separated from the boundary in

the bulk picture, so in the bulk approximation Q and O are independent quantum variables.

From the CFT perspective, this is because Q has thermalized into the left system before

the OLOR interaction is turned on, so no quantum information about Q appears to be
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accessible to the operator O. Of course, the boundary coupling is nevertheless crucial for

the existence of the traversable wormhole.

This situation is somewhat analogous to what occurs in quantum teleportation. En-

tanglement alone cannot be used to transmit information, and no qubit, Q, from the left

can traverse the bridge to the right if the left and right systems are dynamically decoupled.

However, if additional classical information is sent from the left to the right, a qubit can be

transmitted - this is referred to as quantum teleportation. Suppose Alice and Bob share a

maximally entangled pair of qubits, A and B. Alice can then transmit the qubit Q to Bob

by sending only the classical output of a measurement on the Q-A system. Depending on

which of the 4 possible results are obtained, Bob will perform a given unitary operation on

the qubit B, which is guaranteed to turn it into the state Q.

Unlike the usual description of quantum teleportation, in our example it is essential

that the channel between the left CFT, A, and the right CFT, B, is a quantum one. For

example, if one projected onto eigenstates of the operator OL, then the configuration would

simply look like a particular quantum state (the projection of |tfd〉) evolving under the

decoupled Hamiltonians together with an action by a purely right unitary, which can never

lead to a traversable wormhole. This makes sense, because in the standard description

of quantum teleportation, the measurement performed by Alice is a projection onto an

eigenstate, which instantly results in the pattern of Q being contained in the system B.

This would not be described by a physical motion through the wormhole in the bulk.

Teleportation in this sense has been discussed in the dual gravity language by [37, 40, 49].

However, in the exact, fully quantum description of the quantum teleportation proto-

col, there is a particular dynamical process given by the unitary evolution V =
∑

i P
QA
i UB

i

that governs the transmission of the “classical” information and the subsequent appropriate

transformation of a qubit in the B quantum system. Here PQA
i are a complete mutually

exclusive set of projectors on the Q-A system that describe Alice’s measurement, and UB
i

is the unitary transformation performed by Bob given the data i. The classical information

transmitted from Alice to Bob was encoded by the index i.

Treating V as a time dependent interaction Hamiltonian can result in negative ANE

along the horizon if the original entanglement between A and B was well described by a

large Einstein-Rosen bridge, which will render the wormhole traversable. This is a descrip-

tion in which the time scales and processes of decoherence and measurement by Alice are

resolved, and treated as physical dynamical evolution. In such a “microscopic” description

of quantum teleportation, the qubit Q must physically evolve from the left to the right.

Of course in the limit that Alice’s measurement is essentially instantaneous and classical,

the traversable window will be very small (and not well described by a semiclassical space-

time) - just enough to let the single qubit Q pass through. Therefore, we propose that the

gravitational dual description of quantum teleportation understood as a dynamical process

is that the qubit passes through the ER=EPR wormhole of the entangled pair, A and B,

which has been rendered traversable by the required interaction.

Another possible interpretation of our result is to relate it to the recovery of information

described in [24]. Assuming that black hole evaporation is unitary, it is in principle possible

to eventually recover a qubit which falls into a black hole, from a quantum computation
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acting on the Hawking radiation. Assuming that you have access to an auxiliary system

maximally entangled with the black hole, and that the black hole is an efficient scrambler

of information, it turns out that you only need a small (order unity) additional quantity

of Hawking radiation to reconstruct the qubit. In our system, the qubit may be identified

with the system that falls into the black hole from the left and gets scrambled, the auxiliary

entangled system is the CFT on the right, and the boundary interaction somehow triggers

the appropriate quantum computation to make the qubit reappear again, after a time of

order the scrambling time R ln(R/Lplanck).
9
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A
´

dUTUU

Using (3.8), the integrated null energy is

ˆ ∞

U0

dUTUU = −4h∆C0

ˆ ∞

U0

dU lim
U ′→U

∂UG(U,U ′;U0), (A.1)

where

G(U,U ′;U0) ≡
ˆ U

U0

dU1

ˆ U
U1

1

dy
√

y2 − 1

U∆
1

(U − U1y)∆(U ′U1 + y)∆+1
. (A.2)

Note that

lim
U ′→U

∂UG(U,U ′;U0) = ∂UG(U,U ;U0)− ∂
(2)
U G(U,U ;U0), (A.3)

where ∂
(2)
U indicates a derivative with respect to the second variable. (A.1) becomes

ˆ ∞

U0

dUTUU = −4h∆C0

(

G(∞,∞;U0)−G(U0, U0;U0)−
ˆ ∞

U0

dU∂
(2)
U G(U,U ;U0)

)

(A.4)

By (3.9), and changing to the z variable,

G(U,U ;U0) ∝
ˆ U

U0

dU1
U

∆−1/2
1

(U − U1)∆−1/2(1 + UU1)∆+1
F1

(

1

2
;
1

2
,∆+ 1;

3

2
−∆;

U1 − U

2U1
,

U1 − U

U1(1 + UU1)

)

=

ˆ 1

0

dz
((U−U0)z+U0)

∆−1/2F1

(

1
2 ;

1
2 ,∆+1; 3

2−∆;− (U−U0)(1−z)
2((U−U0)z+U0)

,− (U−U0)(1−z)
((U−U0)z+U0)(1+U((U−U0)z+U0))

)

(U − U0)∆−3/2(1− z)∆−1/2(1 + U((U − U0)z + U0))∆+1

(A.5)

9We thank Juan Maldacena for suggesting this interpretation.
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which immediately implies G(U0, U0;U0) = 0 given that ∆ < 3/2. For the large U limit,

G(∞,∞;U0), the prefactor of F1 above decays at least as fast as U−∆ and the F1 part

becomes

F1

(

1

2
;
1

2
,∆+ 1;

3

2
−∆;−1− z

2z
, 0

)

= 2F1

(

1

2
,
1

2
;
3

2
−∆;

z − 1

2z

)

=

(

2z

z + 1

)1/2

2F1

(

1

2
,
1

2
;
3

2
−∆;

1− z

1 + z

)

(A.6)

which leads to

G(∞,∞;U0) ∼ U−∆

ˆ 1

0
dz

(

2z

z + 1

)1/2

(1− z)−∆+1/2
2F1

(

1

2
,
1

2
;
3

2
−∆;

1− z

1 + z

)

→ 0 (A.7)

where in the last step we used the fact that the z integral is finite due to the property of

hypergeometric function:

2F1

(

1

2
,
1

2
;
3

2
−∆; 0

)

= 1, lim
z→0

z1/22F1

(

1

2
,
1

2
;
3

2
−∆;

1− z

1 + z

)

∼ z1/2 log
2z

z + 1
→ 0 (A.8)

The integral of TUU is simplified to be

− 1

4h∆C0

ˆ ∞

U0

dUTUU

= −
ˆ ∞

U0

dU

ˆ U

U0

dU1

ˆ U
U1

1
lim

U ′→U
∂U ′

dy
√

y2 − 1

U∆
1

(U − U1y)∆(U ′U1 + y)∆+1

=

ˆ ∞

U0

dU1

ˆ ∞

U1

dU

ˆ U
U1

1

dy
√

y2 − 1

(∆ + 1)U∆+1
1

(U − U1y)∆(UU1 + y)∆+2

=

ˆ ∞

U0

dU1

ˆ ∞

U1

dU
(∆ + 1)Γ

(

1
2

)

Γ (1−∆)U2∆+3
1 (U + U1)

−1/2

Γ
(

3
2 −∆

)

(U − U1)∆−1/2U∆+2(1 + U2
1 )

∆+2

× F1

(

1−∆;
1

2
,∆+ 2;

3

2
−∆;

U − U1

U + U1
,

U − U1

U(1 + U2
1 )

)

(A.9)

For further simplification, we use (3.17) and define w = U−U1

U+U1
to rewrite (A.9) as

− 1

4h∆C0

ˆ ∞

U0

dUTUU

=
∑

m

(∆ + 1)Γ
(

1
2

)

Γ(1−∆)(1−∆)m(∆ + 2)m2m+1−∆

m!Γ
(

3
2 −∆

) (

3
2 −∆

)

m

ˆ ∞

U0

dU1
U2
1

(1 + U2
1 )

∆+m+2

×
ˆ 1

0
dw

wm−∆+1/2(1− w)2∆

(1 + w)∆+m+2 2F1

(

1−∆+m;
1

2
;
3

2
−∆+m;w

)

=
∑

m

(∆ + 1)Γ
(

1
2

)

Γ(1−∆)(1−∆)m(∆ + 2)m2m+1−∆

m!Γ
(

3
2 −∆

) (

3
2 −∆

)

m

ˆ ∞

U0

dU1
U2
1

(1 + U2
1 )

∆+m+2

× Γ
(

3
2 −∆+m

)

Γ(2∆ + 1)2

2∆+m+2Γ
(

3
2 + 2∆

)

Γ(2 + ∆+m)
2F1

(

2∆ + 1, 2∆ + 1;
3

2
+ 2∆;

1

2

)
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=
∑

m

Γ
(

1
2

)

Γ(1−∆)Γ(2∆ + 1)2(1−∆)m

m!Γ
(

3
2 + 2∆

)

Γ(∆ + 1)22∆+1 2F1

(

2∆ + 1, 2∆ + 1;
3

2
+ 2∆;

1

2

)

× (U−2
0 )∆+m+1/2

2(∆ +m+ 1/2)
2F1

(

1

2
+ ∆+m, 2 + ∆+m;

3

2
+ ∆+m;−U−2

0

)

=
Γ
(

1
2

)

Γ(1−∆)Γ(2∆ + 1)2

22∆+2(∆ + 1
2)Γ

(

3
2 + 2∆

)

Γ(∆ + 1)

1

(1 + U2
0 )

∆+1/2 2
F1

(

2∆ + 1, 2∆ + 1;
3

2
+ 2∆;

1

2

)

×
∑

m

(1−∆)m
(

1
2 +∆

)

m

m!
(

3
2 +∆

)

m

(

1

1 + U2
0

)m

2F1

(

1

2
+ ∆+m,−1

2
;
3

2
+ ∆+m;

1

1 + U2
0

)

=
πΓ(1−∆)Γ(2∆ + 1)2

22∆+2
(

∆+ 1
2

)

Γ(∆ + 1)3

2F1

(

1
2 +∆, 12 −∆; 32 +∆; 1

1+U2
0

)

(1 + U2
0 )

∆+1/2
(A.10)

where in fifth line we used [43]

ˆ y

0

xc−1(y − x)β−1

(1− zx)ρ
2F1(a, b; c;

x

y
)dx

=
yc+β−1

(1− yz)ρ
Γ(c)Γ(β)Γ(c− a− b+ β)

Γ(c− a+ β)Γ(c− b+ β)
3F2

(

β, ρ, c− a− b+ β; c− a+ β, c− b+ β;
yz

yz−1

)

[y,ℜc,ℜβ,ℜ(c− a− b+ β) > 0; | arg(1− yz)| < π] (A.11)

in sixth line we used

ˆ ∞

b
dx

x2

(1 + x2)a
=

b−2a+3

2a− 3
2F1

(

a− 3

2
, a; a− 1

2
;−b−2

)

(A.12)

and in last step we used [43]

∞
∑

k=0

(a)k(b
′)k

k!(c)k
xk2F1(a+ k, b; c+ k;x) = 2F1(a, b+ b′; c;x) (A.13)

2F1

(

2∆ + 1, 2∆ + 1;
3

2
+ 2∆;

1

2

)

=
π1/2Γ

(

3
2 + 2∆

)

Γ(1 + ∆)2
(A.14)

In the end, restoring ℓ, we find the following relatively simple result

ˆ ∞

U0

dUTUU = − hΓ(2∆ + 1)2

24∆(2∆ + 1)Γ(∆)2Γ(∆ + 1)2ℓ

2F1

(

1
2 +∆, 12 −∆; 32 +∆; 1

1+U2
0

)

(1 + U2
0 )

∆+1/2
(A.15)

If we turn off the interaction at Uf , the integral is just the difference between
´∞

U0
dUTUU

and
´∞

Uf
dUTUU .
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