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1 Introduction

Strongly coupled quantum field theories are often prohibitively difficult to study, yet, in the

rare cases that one succeeds, they reveal a wealth of phenomena. This has been evidenced

over the past decade with the remarkable integrability results in maximally supersymmetric

N = 4 Yang-Mills [1]. The integrability of N = 4 implies that the theory is, in principle,

solvable at large N . However, in practice the solution is neither simple nor direct. Like

any matrix model, the large N dominant Feynman diagrams are planar, and there are no

known general techniques to sum planar diagrams. It would be incredibly useful to have

simpler large N models, with diagrammatic structures that allow for full summation.

Melonic models are of this type. These have arisen in a number of independent con-

texts, including: models of Bose fluids [2], models of spin glasses [3], and tensor models [4].

The specific theory we will focus on is the SYK model [5–7]: a 0 + 1 dimensional model

of Majorana fermions with q-body interactions. Through a simple extension, our results

are applicable to any melonic theory. In fact, as we will discuss later, our results extend

to an even broader class of theories, provided they have the diagrammatic structure that

higher-point correlators are built out of four-point functions. In this paper we solve SYK:

we give expressions for the connected piece of the fermion 2p-point correlation function,

for any p, to leading nontrivial order in 1/N .

What are the features of melonic theories that make them solvable? At the level of

the two-point function, it is the fact that, at leading order in 1/N , all Feynman diagrams

are iterations of melons nested within melons. This self-similarity leads to an integral

equation determining the two-point function, which in turn has a conformal solution at

strong coupling. At the level of the four-point function, all leading large N Feynman

diagrams are ladders, with an arbitrary number of rungs: summing all ladder diagrams is

no more difficult than summing a geometric series, provided one uses the appropriate basis.

The focus of this paper is the six-point function, and higher. As input, we need to know

the conformal two-point and four-point functions, but it is irrelevant to us how they were

obtained or which diagrams contributed to them. The essential property we do need is that

higher-point correlation functions have the diagrammatic structure of four-point functions

that are glued together, as shown in figure 1 for the six-point function and figure 2 for

the eight-point function. Computing the six-point function involves gluing together three

four-point functions. As the four-point function is a sum of conformal blocks, this amounts

to evaluating a conformal integral, though a nontrivial one. In all higher-point functions,

the six-point function acts like an interaction vertex. As a result, the structure of the

six-point function fully determines all higher-point correlation functions.
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Figure 1. The connected fermion six-point function, to leading nontrivial order in 1/N , is given

by a sum of Feynman diagrams, of the kind shown on the right. This consists of three fermion

four-point functions, ladders, that are glued together. There are two classes of diagrams, as shown

on the right; only the second is planar. This figure, as well as all others, is for q = 4 SYK, and the

lines denote the full propagators: they should be dressed with melons.

To be slightly more specific, since SYK has an O(N) symmetry after disorder averaging,

it is convenient to work with the primary, O(N) invariant, fermion bilinear operators, Oi.
These are the analogs of the single-trace operators in gauge theories. The fermion six-

point function determines the three-point function of the bilinears, and hence the OPE

coefficients c123 appearing in O1O2 ∼ c123O3. The essential point is to regard the c123

as analytic functions of the dimensions of the Oi. All higher-point correlation functions

will be expressed in terms of contour integrals involving cijk . We stress that c123 are the

OPE coefficients of the single-trace operators. Somehow, their analytic structure, combined

with the fermion four-point function, is encoding the OPE coefficients of the double-trace

operators, as well as all others. We finish this introduction with a heuristic sketch of the

main result, followed by an outline of the paper.

1.1 Outline of computation

We will focus on the three-point and four-point functions of the primary O(N) invariant

bilinear operators, schematically of the form, O =
∑

i χi∂
2n+1
τ χi. These arise from a limit

of the fermion six-point function and eight-point functions, respectively.

The fermion six-point function consists of a sum of two classes of diagrams,“contact”

and planar, as shown in figure 1. Summing these gives the conformal three-point function

〈O1(τ1)O2(τ2)O3(τ3)〉 of the Oi of dimension hi. Up to a constant, c123, the form of

the three-point function is fixed by conformal symmetry. This constant is of course the

same one that appears in the OPE, O1O2 ∼ c123O3. In [8] we computed the contact

diagram exactly, whereas the planar diagram was evaluated in the large q limit, in which the

computation simplifies. In section 3 we revisit the three-point function, and compute the

planar diagrams exactly at finite q. The form of c123 involves generalized hypergeometric

functions, of type 4F3, at argument one.

In section 4 we turn to the fermion eight-point function. While the six-point function

involves gluing together three fermion four-point function, the eight-point function involves

gluing together five four-point functions, as shown in figure 2. While this at first appears

significantly more involved, it is actually quite simple, and builds off of the analytic struc-

ture of the three-point function structure constants, c123. The essential step is to use the

– 2 –
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Figure 2. The fermion eight-point function is composed of Feynman diagrams such as the one

shown. It is built out of two six-point functions; the shaded circle is defined by figure 1.

representation of a CFT four-point function in terms of a contour integral over a complete

basis of SL2 conformal blocks. Specifically, for any CFT1, let FH1234(x) denote a conformal

block, with the subscript labeling the four external operators Ai, the superscript labeling

the exchanged operator, and x denoting the conformal cross-ratio of the four times. It is a

familiar fact that the four-point function can be expanded as a sum of conformal blocks,

〈A1 · · · A4〉 =
∑
H

c12Hc34HFH1234(x) , (1.1)

where the sum is over all exchanged primaries. One may just as well write the four-point

function as a contour integral,1

〈A1 · · · A4〉 =

∫
C

dh

2πi
f(h)Fh1234(x) , (1.2)

with some appropriately chosen f(h), where the contour consists of a line running parallel

to the imaginary axis, h = 1
2 +is, as well as circles around the positive even integers, h = 2n.

The distinction between these two expansions is that the former sums over conformal blocks

corresponding to physical operators in the theory, whereas the latter sums over the blocks

that form a complete basis. If one closes the contour in the latter, one recovers the sum in

the former.

Let us write the SYK fermion four-point function in the form of such a contour integral,∑
ij

〈χi(τ1)χi(τ2)χj(τ3)χj(τ4)〉 =

∫
C

dh

2πi
ρ̃(h)Fh∆(x) . (1.3)

Closing the contour yields the standard conformal block expansion, with OPE coefficients∑
i χiχi ∼

∑
hn
chnOhn , given by,

c2
hn = −Res ρ̃(h)

∣∣∣
h=hn

. (1.4)

1We are being slightly imprecise here, in that what should really enter this expression is the conformal

block plus its shadow; we will be more explicit in the main body of the paper.

– 3 –
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The main step in evaluating the contribution to the SYK four-point function 〈O1 · · · O4〉
shown in figure 2, is to use the above contour integral representation for the intermediate

fermion four-point function. After some manipulation, we will find these diagrams are,

〈O1(τ1) · · · O4(τ4)〉s =

∫
C

dh

2πi

ρ̃(h)

c2
h

c12hc34hFh1234(x) . (1.5)

This result is simple and intuitive, following Feynman-like rules: there are cubic in-

teractions c12h and c34h, the conformal block of Oh, Fh1234, acts as the CFT analog of a

propagator, and h-space acts as the CFT analog of Fourier space.

If one closes the contour in (1.5), one is left with the standard representation of a CFT

four-point function as a sum of conformal blocks. The analytic structure of the integrand is

such that the only blocks that appear are those corresponding to single-trace and double-

trace operators, as should be the case. In fact, the argument leading to (1.5) is general,

and is valid for any cubic level interactions of four-point functions, not necessarily the ones

specific to SYK that were depicted in figure 1.

The expression (1.5) is just for the s-channel diagrams. We must also include the

t-channel and u-channel diagrams, which follow from the s-channel ones by a simple per-

mutation of operators. In adding these three contributions, we will over-count the diagram

which has no exchanged melons, shown later in figure 12, which must then be explicitly

subtracted off.

Outline

The paper is organized as follows: section 2 reviews the SYK model and the fermion four-

point function. The bilinear three-point function is computed in section 3 and the bilinear

four-point function is computed in section 4. Higher-point functions are studied in section 5.

The correlation functions of the bilinears, in the limit that all of them have large dimension,

reduce to the correlators of generalized free field theory of fermions in the singlet sector.

This provides a good way of studying their asymptotic behavior, via saddle point, and is

discussed in section 6. In section 7, we make some comments on what the correlators teach

us about the bulk dual of SYK, and discuss the relation between exchange Feynman dia-

grams in SYK and exchange Witten diagrams. We end in section 8 with a brief discussion.

In appendix A we review conformal blocks, the shadow formalism, and Mellin space.

Appendix B discusses the SYK correlation functions in the large q limit, and appendix C

discusses the generalized free field limit. In appendix D we discuss the relation between

the fermion correlation functions and the bilinear correlation functions. In appendix E

we study additional contact Feynman diagrams that must be included in the computation

of correlation functions if q is sufficiently large. In appendix F we express exchange and

contact Witten diagrams as sums of conformal blocks. In appendix G we show that the

spectrum of large q SYK can be reproduced by placing an AdS2 brane inside of AdS3,

however this does not reproduce the necessary cubic couplings.

– 4 –
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2 SYK ladders

2.1 SYK basics

The SYK model describes N � 1 Majorana fermions satisfying {χi, χj} = δij , with action,

Stop + Sint
SY K , where,

Stop =
1

2

N∑
i=1

∫
dτ χi

d

dτ
χi , (2.1)

is the action for free Majorana fermions, and the interaction is,

Sint
SY K =

(i)
q
2

q!

N∑
i1,...,iq=1

∫
dτ Ji1 i2 ...iq χi1χi2 · · ·χiq , (2.2)

where the coupling Ji1,...,iq is totally antisymmetric and, for each i1, . . . , iq, is chosen from

a Gaussian ensemble, with variance,

1

(q − 1)!

N∑
i2,...,iq=1

〈Ji1i2...iqJi1i2...iq〉 = J2 . (2.3)

One can consider SYK for any even q ≥ 2, with q = 4 being the prototypical case.

In the UV, at zero coupling, the total action is (2.1), and the fermions have a two-point

function given by 1
2sgn(τ). In the infrared, for J |τ | � 1, the fermion two-point function

is, at leading order in 1/N ,

G(τ) = b
sgn(τ)

|Jτ |2∆
, (2.4)

where b is given by,

ψ(∆) ≡ 2i
√
π 2−2∆ Γ(1−∆)

Γ(1
2 + ∆)

, bq = − 1

ψ(∆)ψ(1−∆)
=

1

2π
(1− 2∆) tanπ∆ , (2.5)

and the IR dimension of the fermions is ∆ = 1/q.

While SYK appears conformally invariant at the level of the two-point function, the

conformal invariance is broken at the level of the four-point function [5–7, 9, 10], resulting

in SYK being “nearly” conformally invariant in the infrared. There is a variant of SYK,

cSYK [11], which is conformally invariant at strong coupling, and in fact, for any value of

the coupling. The action for cSYK is S0 + Sint
SY K , where Sint

SY K is given by (2.2), while S0

is the bilocal action,

S0 = bq
N∑
i=1

∫
dτ1dτ2 χi(τ1)

sgn(τ1 − τ2)

|τ1 − τ2|2(1−∆)
χi(τ2) . (2.6)

The distinction between SYK and cSYK is in the kinetic term, Stop versus S0. As a result,

for SYK the coupling J is dimension-one, while for cSYK it is dimensionless.

At strong coupling, the correlation functions of all bilinear, primary, O(N) singlet

operators On, schematically of the form On =
∑N

i=1 χi∂
1+2n
τ χi, are the same for SYK and

– 5 –
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Figure 3. The fermion four-point function, at order 1/N , is a sum of ladder diagrams. There are

also crossed diagrams, which are not shown.

for cSYK, for n ≥ 1. The distinction between SYK and cSYK appears in the correlators

involving O0 (the “h = 2” operator); it is these that break conformal invariance in SYK.

Our results for the correlation functions of the On that will be presented in the body of the

paper are for cSYK at strong coupling, or, equivalently, for all the On in SYK at strong

coupling, with the exception of those correlators involving O0.2 Since cSYK is conformally

invariant for all J , it is trivial to extend the results to cSYK correlators at finite J .

2.2 Fermion four-point function: summing ladders

The SYK four-point function to order 1/N , is given by,

1

N2

N∑
i,j=1

〈χi(τ1)χi(τ2)χj(τ3)χj(τ4)〉 = G(τ12)G(τ34) +
1

N
F(τ1, τ2, τ3, τ4) , (2.7)

where τ12 ≡ τ1 − τ2 and F is given by the sum of ladder diagrams, as shown in figure 3.

Due to the restored O(N) invariance the leading behavior in 1/N is completely captured

by F . The first diagram in figure 3, although disconnected, is suppressed by 1/N as it

requires setting the indices to be equal, i = j. This diagram is denoted by F0,

F0 = −G(τ13)G(τ24) +G(τ14)G(τ23) . (2.8)

Letting K denote the kernel that adds a rung to the ladder,

K(τ1, . . . τ4) = −(q − 1)J2G(τ13)G(τ24)G(τ34)q−2 , (2.9)

and then summing the ladders yields, schematically, F = (1 + K + K2 + . . .)F0 = (1 −
K)−1F0. To write this explicitly, one should decompose F0 in terms of a complete basis of

eigenvectors of the kernel K.

The eigenvectors of the kernel are conformal three-point functions involving two

fermions and a scalar of dimension h,3

〈Oh(τ0)χ(τ1)χ(τ2)〉 = ch
b

J2∆

sgn(τ12)

|τ12|2∆−h|τ01|h|τ02|h
, (2.10)

2In particular, the fermion four-point function in SYK, has a block coming from O0 that breaks conformal

invariance and, at finite temperature, scales as βJ . We will not be including this contribution. It would give

rise to terms in the higher-point functions that scale as powers of βJ , and are straightforward to compute,

using the O0 block in the fermion four-point function.
3In the current context the subscript on Oh denotes that the operator has dimension h. This is different

from another usage of subscript, On, which denotes the operator in SYK, which in the weak coupling limit

has dimension 2∆ + 2n+ 1. Finally, we will also sometimes use the shorthand O1 to mean Oh1 .

– 6 –
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Figure 4. The contour of integration C in the complex h-plane.

and have corresponding eigenvalues [5–7],

kc(h) = −(q − 1)
ψ(∆)

ψ(1−∆)

ψ(1−∆− h
2 )

ψ(∆− h
2 )

, (2.11)

where ψ(∆) was defined in (2.5). For our purposes, one should regard the right side

of (2.10) as defining what we mean by the left side. It is manifest that kc(h) = kc(1−h), and

moreover, that the singularities of kc(h) in the right-half complex plane are at h = 2∆+2n+

1, for integer n. The three-point function involving the shadow of Oh, 〈O1−hχχ〉 is also an

eigenfunction of the kernel, with the same eigenvalue, kc(h). As a result, Ψh, defined as [10],

2 chc1−h
b sgn(τ12) b sgn(τ34)

|Jτ12|2∆|Jτ34|2∆
Ψh(x) =

∫
dτ0 〈χ(τ1)χ(τ2)Oh(τ0)〉〈χ(τ3)χ(τ4)O1−h(τ0)〉 ,

(2.12)

is also an eigenfunction of the kernel. Moreover, (2.12) can be seen to be an eigenfunction

of the SL(2, R) Casimir, and is simply the sum of a conformal block and its shadow, see

appendix A. The conformal cross-ratio of times, x, is defined as,

x =
τ12τ34

τ13τ24
. (2.13)

The necessary range of h in order to form a complete basis is dictated by representation

theory of the conformal group. In even spacetime dimensions, one only needs the continuous

series, h = d
2 + is, where d is the dimension and −∞ < s <∞. In odd dimensions, the

case relevant for SYK, one must also include the discrete series, h = 2n for n ≥ 1. The

eigenfunctions are orthonormal with respect to the Plancherel measure,

µ(h) =
2h− 1

π tan πh
2

. (2.14)

The measure has poles at h = 2n; indeed, the complete basis includes the discrete series

specifically in order to cancel off these poles [12]. We can now write F0, as well as F , in

terms of the complete basis of Ψh [10],

F0(τ1, . . . , τ4) = G(τ12)G(τ34)

∫
C

dh

2πi
ρ0(h)Ψh(x) , (2.15)

F(τ1, . . . , τ4) = G(τ12)G(τ34)

∫
C

dh

2πi
ρ(h)Ψh(x) , (2.16)

– 7 –
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Figure 5. A pictorial representation of the four-point function, split into a product of two three-

point functions 〈χχO〉, see [13], using the shadow formalism. See eq. (2.12).

where,

ρ0(h) = µ(h)
α0

2
kc(h) , ρ(h) = µ(h)

α0

2

kc(h)

1− kc(h)
, (2.17)

and α0 is a constant,

α0 =
2π∆

(1−∆)(2−∆) tanπ∆
, (2.18)

and the contour of integration C in (2.15) consists of the line h = 1/2 + is with s running

from −∞ to ∞, as well as circles going counterclockwise around h = 2n for n ≥ 1, see

figure 4.

A property of the measure µ(h) that we will use, which follows immediately from its

definition is,

µ(1− h) = − tan2 πh

2
µ(h) . (2.19)

As kc(1− h) = kc(h), both ρ0(h) and ρ(h) satisfy an analogous relation.

The fermion four-point function F , written as a contour integral over h, is of the form

that was expected on general grounds, as mentioned in the introduction, (1.3). This form

of the four-point function will be very useful in our later studies of higher-point correlation

functions. Inserting into F the representation of Ψh given in (2.12), we can pictorially view

the four-point function as shown in figure 5.

Closing the contour. In order to write the four-point function as a sum of conformal

blocks of the operators in the theory, we simply need to close the contour of integration

in (2.16).

First, consider the case of 0 < x < 1. We split the contour into the line piece and the

sum of poles,∫
C

dh

2πi
ρ(h)Ψh(x) =

∫
h= 1

2
+is

dh

2πi
ρ(h)Ψh(x) +

∑
n>0

Res ρ(h) Ψh(x)
∣∣∣
h=2n

. (2.20)

Focusing first on the line piece of the contour, we write Ψh in terms of a sum of a conformal

block and its shadow, see appendix A,

G(τ12)G(τ34)

∫
1
2

+is

dh

2πi
ρ(h)Ψh(x)=

b2

2J4∆

∫
1
2

+is

dh

2πi
ρ(h)

[
β(h,0)Fh∆(x)+β(1−h,0)F1−h

∆ (x)
]
,

(2.21)

– 8 –
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where Fh∆ is the conformal block with external fermions of dimension ∆ and an exchanged

scalar of dimension h, while,

β(h, 0) =
√
π

Γ(h2 )2Γ(1
2 − h)

Γ(1−h
2 )2Γ(h)

. (2.22)

In (2.21), let us change integration variables for the second term, h → 1 − h, use the

reflection relation (2.19) for the measure, as well as,

β(h, 0)

(
1− tan2 πh

2

)
= 2

Γ(h)2

Γ(2h)
, (2.23)

to write,

G(τ12)G(τ34)

∫
1
2

+is

dh

2πi
ρ(h)Ψh(x) =

b2

J4∆

∫
1
2

+is

dh

2πi
ρ(h)

Γ(h)2

Γ(2h)
Fh∆(x) . (2.24)

Turning now to the sum over the discrete series, we rewrite this as,

G(τ12)G(τ34)
∑
n>0

Res ρ(h) Ψh(x)
∣∣∣
h=2n

=
b2

J4∆

∑
n>0

Res ρ(h)
Γ(h)2

Γ(2h)
Fh∆(x)

∣∣∣
h=2n

, (2.25)

where we have used that β(1−2n, 0) = 0 for n > 0 and β(h, 0) = 2Γ(h)2/Γ(2h) for h = 2n.

Recombining the continuous and discrete series terms gives,

F(τ1, . . . , τ4) =
b2

J4∆

∫
C

dh

2πi
ρ(h)

Γ(h)2

Γ(2h)
Fh∆(x) . (2.26)

Finally, we close the line piece of the contour to the right, giving a sum over the poles at

the h for which kc(h) = 1,4

F(τ1, . . . , τ4) =
b2

J4∆

∑
hn

c2
nF

hn
∆ (x) , 0 < x < 1 , (2.27)

where hn are the single-trace operator dimensions, kc(hn) = 1, and we have defined [10]5

c2
n ≡ −Res ρ(h)

∣∣∣
h=hn

Γ(hn)2

Γ(2hn)
= α0

(hn − 1/2)

π tan(πhn/2)

Γ(hn)2

Γ(2hn)

1

k′c(hn)
. (2.28)

One can identify the cn as the OPE coefficients 1
N

∑N
i=1 χ(0)χ(τ) ∼ 1√

N

∑
n cnOn. We

will sometimes use the short-hand, ch1 (or c1) to denote cn for h1 that is given by h1 =

2∆ + 2n+ 1 at weak coupling.

This is the expression for the fermion four-point function when the conformal cross-

ratio x in the range 0 < x < 1. For the case of x > 1, we return to (2.16) and simply close

the line piece of the contour to the right, giving,

F(τ1, . . . , τ4) = G(τ12)G(τ34)
∑
hn

Res ρ(h)
∣∣∣
h=hn

Ψhn(x) , x > 1 . (2.29)

4The poles at h = 2n coming from measure µ(h) are outside of the closed contour, as a result of the

piece of the contour made up of the circles at h = 2n.
5We have suppressed the 1/N scaling of cn ∼ 1/

√
N . In order to not carry around factors of 1/N , we

will generally suppress them. A connected p-point correlation function scales as 〈O1 · · · Op〉 ∼ 1/N
(p−2)

2 .
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We conclude with a comment on the singularity structure in h-space of the ladder

diagrams. One can see that the first diagram in the sequence of ladders, F0, is, in h-space,

proportional to kc(h). Similarly, a diagram with n rungs is proportional to kc(h)n+1.

Summing any finite number of ladder diagrams gives a polynomial in kc(h) which, like

kc(h), will have singularities at h = 2∆+2n+1. Correspondingly, upon closing the contour

to return to physical space, the finite sum of ladder diagrams will be expressed in terms of

conformal blocks of exchanged operators of dimension 2∆+2n+1: the free-field dimensions

of the primaries, schematically of the form
∑
χi∂

2n+1
τ χi. It is only when one sums an

infinite number of ladder diagrams, such as the geometric sum kc(h)(1+kc(h)+kc(h)2+. . .),

as in ρ(h) appearing in F , that the singularities of the expression are no longer where kc(h)

is singular, but rather where kc(h) = 1. Correspondingly, the expansion of F is in terms

of conformal blocks at the infrared dimensions of the primaries, the h for which kc(h) = 1.

3 Bilinear three-point function

In this section we compute, to leading nontrivial order in 1/N , the fermion six-point func-

tion, and correspondingly the three-point function 〈O1O2O3〉 of the bilinear O(N) invariant

primaries, Oi, of dimension hi.

The six-point function of the fermions can be written as,

1

N3

N∑
i,j,l=1

〈χi(τ1)χi(τ2)χj(τ3)χj(τ4)χl(τ5)χl(τ6)〉 = . . .+
1

N2
S(τ1, . . . , τ6) + . . . , (3.1)

where S is the lowest order term in 1/N that contains fully connected diagrams. There are

two classes of diagrams contributing to S: the “contact” diagrams, whose sum we denote

by S1, and the planar diagrams, whose sum we denote by S2,

S = S1 + S2 . (3.2)

We study the contact diagrams in section 3.1, and the planar diagrams in section 3.2.

From the fermion six-point function, we will extract the three-point function of the

bilinear primary O(N) singlets,

〈O1(τ1)O2(τ2)O3(τ3)〉 =
1√
N

c123

|τ12|h1+h2−h3 |τ23|h2+h3−h1 |τ13|h1+h3−h2
, (3.3)

where c123 will have two contributions,

c123 = c
(1)
123 + c

(2)
123 , (3.4)

coming from the contact and the planar diagrams, respectively. We compute c
(1)
123 in sec-

tion 3.1 and c
(2)
123 in section 3.2.
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+ + + + . . . 

Figure 6. The first set of diagrams (“contact” diagrams) contributing to the six-point function at

order 1/N2.

3.1 Contact diagrams

The “contact diagrams” are composed of three fermion four-point functions glued to two

interaction vertices connected by q − 3 propagators, see figure 6 and the first diagram on

the right in figure 1,

S1 = (q − 1)(q − 2)J2

∫
dτadτbG(τab)

q−3F(τ1, τ2, τa, τb)F(τ3, τ4, τa, τb)F(τ5, τ6, τa, τb) .

(3.5)

The fermion four-point function F is a sum of conformal blocks, and the functional form

of each block is fixed by conformal invariance. It will be most convenient to write the

blocks in terms of the differential operator Cn(τ12, ∂2), which sums the contributions of all

descendants associated with the primary On, acting on a conformal three-point function,

see appendix A,

F(τ1, τ2, τa, τb) =
∑
n

cn Cn(τ12, ∂2) 〈On(τ2)χ(τa)χ(τb)〉 , (3.6)

where the three-point function was given in (2.10). Using this form for each of the four-

point functions appearing in S1 gives,

S1 =
∑

n1,n2,n3

3∏
i=1

cniCni(τ2i−1,2i, ∂2i) 〈On1(τ2)On2(τ4)On3(τ6)〉1 , (3.7)

where,

〈On1(τ1)On2(τ2)On3(τ3)〉1 = (q − 1)(q − 2)J2

∫
dτadτbG(τab)

q−3
3∏
i=1

〈Oni(τi)χ(τa)χ(τb)〉 .

(3.8)

Explicitly writing out the integrand in the expression for the three-point function of

bilinears gives,

〈On1(τ1)On2(τ2)On3(τ3)〉1 = cn1cn2cn3(q − 1)(q − 2)bq I
(1)
123(τ1, τ2, τ3) , (3.9)

where

I
(1)
123(τ1, τ2, τ3) =

∫
dτadτb

|τab|h1+h2+h3−2

|τ1a|h1 |τ1b|h1 |τ2a|h2 |τ2b|h2 |τ3a|h3 |τ3b|h3
. (3.10)

In order to evaluate the integral, it is convenient to change integration variables to the two

cross-ratios,

A =
τa1τ23

τa2τ13
, B =

τb2τ13

τb1τ23
, (3.11)
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Figure 7. The second set of diagrams (planar diagrams) contributing to the six-point function at

order 1/N2.

resulting in a conformal thee-point function,

I
(1)
123(τ1, τ2, τ3) =

I(1)
123

|τ12|h1+h2−h3 |τ13|h1+h3−h2 |τ23|h2+h3−h1
(3.12)

with coefficients I(1)
123,

I(1)
123 =

∫
dAdB

|1−AB|h1+h2+h3−2

|A|h1 |B|h2 |(1−A)(1−B)|h3
. (3.13)

In [8], we evaluated this integral by noticing that, after a change of variables B → 1/B,

it is of the form of a Selberg integral. Equivalently, one may notice that if the integration

range in the integral were A ∈ (0, 1) and B ∈ (0, 1), then the result would be proportional

to a generalized hypergeometric function at argument one,

3F2

[
1− h1 1− h2 2− h1 − h2 − h3

2− h1 − h3 2− h2 − h3
; 1

]
. (3.14)

Breaking the integral in I(1)
123 up into regions for which the integrand is analytic, identifying

the integral in each region as a particular 3F2 at argument one, all of which in this case

simplify to products of ratios of gamma functions, and then adding the contributions, we

recover the result of [8],

I(1)
123=

√
π2h1+h2+h3−1Γ(1−h1)Γ(1−h2)Γ(1−h3)

Γ
(

3−h1−h2−h2
2

) [ρ(h1,h2,h3)+ρ(h2,h3,h1)+ρ(h3,h1,h2)] ,

(3.15)

where we defined,

ρ(h1, h2, h3) =
Γ(h2+h3−h1

2 )

Γ(2−h1−h2+h3
2 )Γ(2−h1−h3+h2

2 )

(
1 +

sin(πh2)

sin(πh3)− sin(πh1 + πh2)

)
. (3.16)

The contribution of the contact diagrams to the three-point function is thus,

c
(1)
123 = c1c2c3 (q − 1)(q − 2)bq I(1)

123 . (3.17)

3.2 Planar diagrams

Turning now to the planar diagrams, these similarly consist of three fermion four-point

functions glued together, though now in a smooth way, see figure 7 as well as the second
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diagram on the right in figure 1,

S2 =

∫
dτadτadτbdτbdτcdτcF(τ1,τ2,τa,τb)D(τbb)F(τ3,τ4,τc,τa)D(τaa)F(τ5,τ6,τb,τc)D(τcc),

(3.18)

where we have let D(τ) denote the inverse of the propagator,∫
dτ0D(τ10)G(τ02) = δ(τ12) . (3.19)

The D(τ) are needed in (3.18) in order to strip off some of the propagators on the external

legs of the four-point functions which would, otherwise, be overcounted. In the infrared,

D(τ) is simply, D(τ) = −Σ(τ) = −J2G(τ)q−1.

Applying the same logic as with the contact diagrams, and writing the fermion four-

point function in the form (3.6), gives the planar diagram contribution to the three-point

function of the O,

〈O1(τ1)O2(τ2)O3(τ3)〉2 =

∫
dτadτadτbdτbdτcdτc 〈O1(τ1)χ(τa)χ(τb)〉D(τbb)

× 〈O2(τ2)χ(τc)χ(τa)〉D(τaa) 〈O3(τ3)χ(τb)χ(τc)〉D(τcc) . (3.20)

Explicitly writing out the terms appearing in the integrand gives,

〈O1(τ1)O2(τ2)O3(τ3)〉2 (3.21)

= c1c2c3 b
3q

∫
dτadτadτbdτbdτcdτc

sgn(τabτcaτbcτaaτbbτcc) |τab|
h1−2∆|τca|h2−2∆|τbc|h3−2∆

|τaaτbbτcc|2(1−∆)|τ1aτ1b|h1 |τ2cτ2a|h2 |τ3bτ3c|h3
.

This form exhibits all the symmetries that are manifest of the Feynman diagrams. The

integrals over τa, τb, τc are conformal three-point integrals, and are simple to evaluate, see

appendix B of [8]. Defining,

ξ(h) =
1√
π

Γ(2∆+1
2 )

Γ(1−∆)

Γ(1−h
2 )

Γ(h2 )

Γ(2−2∆+h
2 )

Γ(1+2∆−h
2 )

, (3.22)

gives

〈O1(τ1)O2(τ2)O3(τ3)〉2 = c1c2c3 ξ(h1)ξ(h2)ξ(h3) I
(2)
123(τ1, τ2, τ3) , (3.23)

where [8],

I
(2)
123(τ1,τ2,τ3) (3.24)

=

∫
dτadτbdτc

−sgn(τ1aτ1bτ2aτ2cτ3bτ3c)|τab|h1−1|τca|h2−1|τbc|h3−1

|τ1a|h1−1+2∆|τ1b|h1+1−2∆|τ2c|h2−1+2∆|τ2a|h2+1−2∆|τ3b|h3−1+2∆|τ3c|h3+1−2∆
.

In making the choice of, for instance, evaluating the τa integral instead of the τa integral,

some of the symmetries are no longer manifest.

To proceed with evaluating the remaining three integral, we change integration vari-

ables to the cross-ratios A,B,C, defined as,

A =
τa1τ32

τa2τ31
, B =

τ13τab
τ1aτ3b

, C =
τ2aτ3c

τ23τac
. (3.25)
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This change of variables transforms I
(2)
123 into a form that is manifestly a conformal three-

point function,

I
(2)
123(τ1, τ2, τ3) =

I(2)
123

|τ12|h1+h2−h3 |τ13|h1+h3−h2 |τ23|h2+h3−h1
, (3.26)

with a coefficient,

I(2)
123 =

∫
dAdBdC

sgn(C(1−B)(1−C)) |1−ABC|h3−1

|A|h1 |1−A|1−h1−h2+h3 |B|1−h1 |1−B|h1+1−2∆|C|1−2∆+h3 |1−C|h2−1+2∆
.

(3.27)

To evaluate this integral we note the following: if the integration range were over A ∈
(0, 1), B ∈ (0, 1), C ∈ (0, 1), then this would be of the form of a generalized hypergeometric

function at argument equal to one,

4F3

[
1−h1 h1 2∆−h3 1−h3

1+h2−h3 2∆ 2−h2−h3
; 1

]
. (3.28)

In order to account for the other regions of integration, one should consider each region

separately and perform simple changes of variables combined with 2F1 connection identities

and Euler’s integral transform,

pFq

[
a1 . . . ap
b1 . . . bq

; z

]
=

Γ(bq)

Γ(ap)Γ(bq − ap)

∫ 1

0
dt tap−1(1−t)bq−ap−1

p−1Fq−1

[
a1 . . . ap−1

b1 . . . bq−1
; tz

]
.

A faster method is the following. Consider the more general integral, which is a

function of an additional variable z,

I(2)
123(z) (3.29)

=

∫
dAdBdC

sgn(C(1−B)(1− C)) |1− zABC|h3−1

|A|h1 |1−A|1−h1−h2+h3 |B|1−h1 |1−B|h1+1−2∆|C|1−2∆+h3 |1− C|h2−1+2∆
.

The generalized hypergeometric function 4F3 satisfies a fourth-order differential equation.

Since the piece of this integral coming from the region A ∈ (0, 1), B ∈ (0, 1), C ∈ (0, 1) is

a 4F3, of the type (3.28), it must be the case that the integrand satisfies the appropriate

differential equation. Breaking the integral up into regions in which the integrand is an-

alytic, the integrand in each region should also satisfy the same differential equation. As

there are four solutions to the differential equation defining 4F3, the integral (3.29) should

– 14 –
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take a form that is a superposition of these, with some coefficients, αi,
6

I(2)
123(z) = α1 4F3

[
1−h1 h1 2∆−h3 1−h3

1+h2−h3 2∆ 2−h2−h3
; z

]
(3.30)

+α2 z
h3−h2

4F3

[
1−h1−h2+h3 h1−h2+h3 2∆−h2 1−h2

2−2h2 1−h2+h3 2∆−h2+h3
; z

]

+α3 z
1−2∆

4F3

[
2−h1−2∆ 1+h1−2∆ 1−h3 2−h3−2∆

2+h2−h3−2∆ 3−h2−h3−2∆ 2−2∆
; z

]

+α4 z
h2+h3−1

4F3

[
h2+h3−h1 h1+h2+h3−1 h2−1+2∆ h2

2h2 h2+h3−1+2∆ h2+h3
; z

]
.

To fix the coefficient α1 we simply set z = 0 in (3.29): the integrals decouple, and are trivial

to evaluate, see appendix B of [8] for relevant equations. Similarly to fix α2, we change

integration variables A → A/(zBC), and then take small z and evaluate the integral. To

fix α3 we change variables B → B/(zAC), and for α4 we change variables C → C/(zAB).

It is convenient to define αi, which is related to αi through the coefficients ξ(h) that arose

earlier in performing the first three of six integrals,

αi = ξ(h1)ξ(h2)ξ(h3)αi . (3.31)

The result for the αi is the following,

α1 = −
Γ(2∆+1

2 )2

Γ(1−∆)2

3∏
i=1

Γ(1−hi
2 )

Γ(hi2 )

Γ(3−h2−2∆
2 )Γ(2+h2−2∆

2 )

Γ(h2+2∆
2 )Γ(1−h2+2∆

2 )

Γ(h3−h2
2 )Γ(h2+h3−1

2 )

Γ(2−h2−h3
2 )Γ(1+h2−h3

2 )

·
Γ(h1+h2−h3

2 )

Γ(1−h1−h2+h3
2 )

, (3.32)

α2 = −
Γ(2∆+1

2 )3

Γ(1−∆)3

Γ(1−h1
2 )

Γ(h1
2 )

Γ(1−h2
2 )2 Γ(2h2−1

2 )

Γ(h2
2 )2 Γ(2−2h2

2 )

Γ(3−h2−2∆
2 )

Γ(h2+2∆
2 )

Γ(2+h3−2∆
2 )

Γ(1−h3+2∆
2 )

·
Γ(h2−h3

2 )Γ(h2−h3+2−2∆
2 )

Γ(1−h2+h3
2 )Γ(h3−h2+1+2∆

2 )

Γ(h1−h2+h3
2 )

Γ(1−h1+h2−h3
2 )

,

α3 = −
Γ(2∆+1

2 )3 Γ(∆)

Γ(1−∆)3 Γ(3−2∆
2 )

3∏
i=1

Γ(1−hi
2 )Γ(2+hi−2∆

2 )Γ(3−hi−2∆
2 )

Γ(hi2 )Γ(1−hi+2∆
2 )Γ(hi+2∆

2 )

·
Γ(h3−h2+2∆

2 )Γ(h2+h3−1+2∆
2 )

Γ(3+h2−h3−2∆
2 )Γ(4−h2−h3−2∆

2 )

Γ(h1+h2−h3
2 )

Γ(1−h1−h2+h3
2 )

,

6It is conceivable that, as result of boundary terms, this is not true. However, we have also evaluated

the integral (3.27) explicitly, by breaking it up into regions, as outlined in the previous paragraph, and

found the same answer as the one quoted below, though in a less nice form.
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Figure 8. The two different kinds of vertices between three ladders, as was shown in figure 1, lead

to three kinds of contributions to the eight-point function.

α4 = −
Γ(2∆+1

2 )3

Γ(1−∆)3

Γ(1−h1
2 )

Γ(h1
2 )

Γ(1−2h2
2 )

Γ(h2)

Γ(2+h2−2∆
2 )

Γ(1−h2+2∆
2 )

Γ(2+h3−2∆
2 )

Γ(1−h3+2∆
2 )

·
Γ(1−h2−h3

2 )

Γ(h2+h3
2 )

Γ(3−h2−h3−2∆
2 )

Γ(h2+h3+2∆
2 )

Γ(h1+h2−h3
2 )Γ(−h1+h2+h3

2 )Γ(h1+h2+h3−1
2 )

Γ(1−h1−h2+h3
2 )Γ(1+h1−h2−h3

2 )Γ(2−h1−h2−h3
2 )

. (3.33)

This completes the evaluation of the planar diagram contribution to the three-point func-

tion. The result is,

c
(2)
123 =c1c2c3ξ(h1)ξ(h2)ξ(h3)I(2)

123 , (3.34)

where I(2)
123 is a sum of four generalized hypergeometric functions with argument one, I(2)

123 =

I(2)
123(z = 1) given by (3.30). Although it is not manifest, c

(2)
123 must be symmetric under

all permutations of the hi. In appendix B we study c
(2)
123 in the large q limit in which it

somewhat simplifies.

Universality. The full three-point function coefficient is a sum of the contact diagram

and the planar diagram contributions, c123 =c
(1)
123+c

(2)
123. It is instructive to write this as,

c123 =c1c2c3I123 . (3.35)

There are two distinct contributions. The product of OPE coefficients ci of two fermions

turning into an Oi reflects the sum of the ladder diagrams; this sum determines the dimen-

sions hi of the Oi. The contribution I123 comes from gluing the ladders. It is universal in

the sense that it is determined by an integral whose parameters are the fermion dimension

∆ and the dimensions hi.

4 Bilinear four-point function

4.1 Cutting melons and 2p-point functions

We begin by classifying which Feynman diagrams will appear, at leading nontrivial order

in 1/N , for a 2p-point correlation function of fermions. As noted in [14], for any large N

theory, this is found by drawing all diagrams contributing to the vacuum energy and succes-

sively considering all cuts of the propagators. A single cut gives a diagram contributing to

the two-point function. Two cuts gives a contribution to the four-point function, and so on.

The diagrams contributing to the two-point function consist entirely of melons. This

is true of SYK, as well as variants of SYK [13, 15–19] and their extensions, and of certain
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Figure 9. Some of the diagrams contributing to the eight-point function. We must include

diagrams with melons exchanged in both directions (first and second line).

tensor models [4, 14, 20–24] and their extensions. A cut of a melon diagram gives a ladder

diagram, contributing to the four-point function. Starting with the four-point function,

we have two nonequivalent options of which lines we may cut. We may either cut a melon

along a rail, giving a planar diagram contribution to the six-point function, or we may cut

a melon that is along a rung, giving a “contact” diagram contribution. Proceeding to the

eight-point function, there are now four possible cuts: two from a cut of the planar six-

point diagram, and two from a cut of the contact six-point diagram. In particular, for the

planar diagram, a cut of a melon along a rail leads to a planar diagram contribution to the

eight-point function, as in figure 8 (a), while a cut of a melon along a rung leads to a mixed

planar/contact eight-point diagram, as in figure 8 (b). For the contact six-point diagram,

a cut of a melon along a rail also leads to a mixed planar/contact eight-point diagram,

while a cut of a melon along a rung leads to a contact/contact eight-point diagram, as in

figure 8 (c). The same structure will persist for higher-point functions.

4.2 Outline

Having established the basic structure of the Feynman diagrams contributing to the eight-

point function, we now list more precisely all the diagrams that will need to summed.

Let Es(τ1,...,τ8) denote the Feynman diagram shown previously in figure 2, and let

〈O1(τ1)···O4(τ4)〉s denote its contribution to the four-point function of the Oi. In ad-

dition, let E0
s (τ1,...,τ8), and correspondingly 〈O1(τ1)···O4(τ4)〉0s, denote similar Feynman

diagrams, but only the planar one, and with no exchanged melons, as will be illustrated

later in figure 12. Then, the four-point function of the Oi is,

〈O1(τ1)···O4(τ4)〉 =
(
〈O1(τ1)···O4(τ4)〉s+(2↔3)+(2↔4)

)
−1

2

(
〈O1(τ1)···O4(τ4)〉0s+(2↔3)+(2↔4)

)
. (4.1)
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Figure 10. The three-point function of bilinears. This looks like the fermion six-point function,

with fermions brought together in pairs.

Finally, there is an additional diagram, which is discussed in appendix E, and consists of

four fermion four-point functions glued to the same melon.

Let us explain why (4.1) is correct. If we, for the moment, focus on only the planar

diagrams, then all the diagrams that need to be summed are shown in figure 9. The three

classes of diagrams in the first line are the three different channels. The diagrams in the

second line must be included as well - these are similar to the diagrams on the first line,

except now the exchanged melons are going in the other direction. For the diagrams in

which there are no exchanged melons, the top and bottom diagrams are the same, and we

should only include one of them. One can see that Es(τ1,...,τ8) corresponds to the sum

of the first and third diagrams on the top line of figure 9. The reason it corresponds to

two sets of diagrams is because the fermion four-point function is antisymmetric under

interchange of the last two (or the first two) fermions: in summing the ladder diagrams,

there were two sets of diagrams, coming from adding rungs to the two terms in F0 in (2.8).

The sum of the three terms on the first line of (4.1) accounts for all six terms in figure 9.

The second line of (4.1) compensates for the double counting of diagrams in which no

melons are exchanged. Finally, in addition to the diagrams shown in figure 9, there are

diagrams in which the cubic vertex is contact rather than planar, such as those in figure 8;

these have already been taken into account in (4.1), as the shaded circle in the diagram in

figure 2 includes both such vertices, see figure 1.

We now turn to computing 〈O1(τ1)···O4(τ4)〉s.

4.3 Splitting and recombining conformal blocks

The eight-point function of the fermions can be written as,

1

N4

∑
i1,...,i4

〈χi1(τ1)χi1(τ2)χi2(τ3)χi2(τ4)χi3(τ5)χi3(τ6)χi4(τ7)χi4(τ8)〉 (4.2)

= ...+
1

N3
E(τ1,...,τ8)+... ,

where E is the lowest order term in 1/N that contains fully connected diagrams.

In this section we will study the contribution to the eight-point function that was shown

in figure 2, denoted by Es(τ1,...,τ8). This consists of two six-point functions glued together.

We can write a general expression for the six-point function, containing a piece Score which
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Figure 11. An important step in computing the bilinear four-point function is to use the split

representation for the intermediate four-point function, as was shown previously in figure 5.

encodes the details of the interactions, attached to three external four-point functions,

S(τ1,...,τ6) (4.3)

=

∫
dτa1 ···dτa6F(τ1,τ2,τa1 ,τa2)F(τ3,τ4,τa3 ,τa4)F(τ5,τ6,τa5 ,τa6)Score(τa1 ,...,τa6).

Pictorially, Score is the shaded circle that appeared before in figure 2. For SYK, Score is

pictorially defined in figure 1. More explicitly, we found in section 3 that Score is,

Score = (q−1)(q−2)J2G(τa1a2)q−3δ(τa1a3)δ(τa1a5)δ(τa2a4)δ(τa2a6)

+D(τa2a5)D(τa4a1)D(τa6a3),

however the explicit form of Score is not relevant for the argument that follows.

Employing the same logic as used perviously in the derivation of the three-point func-

tion of bilinears from the six-point function of fermions, and utilizing the conformal block

structure of F given in (3.6), we may write for the three-point function, see figure 10,

〈O1(τ1)O2(τ2)O3(τ3)〉=
∫
dτa1 ···dτa6Score(τa1 ,...,τa6)

×〈O1(τ1)χ(τa1)χ(τa2)〉〈O2(τ2)χ(τa3)χ(τa4)〉〈O3(τ3)χ(τa5)χ(τa6)〉 . (4.4)

With this building block, we construct Es. As shown in figure 2, gluing together two

six-point functions gives,

Es(τ1,...,τ8)=

∫
dτa1 ···dτa8dτb1 ···dτb4Score(τa1 ,...,τa4 ,τb1 ,τb2)Score(τa5 ,...,τa8 ,τb3 ,τb4)

×F(τ1,τ2,τa1 ,τa2)F(τ3,τ4,τa3 ,τa4)F(τb1 ,...,τb4)F(τ5,τ6,τa5 ,τa6)F(τ7,τ8,τa7 ,τa8)

Again using (3.6), the four-point function of the O is thus,

〈O1(τ1)···O4(τ4)〉s=
∫
dτa1 ···dτa8dτb1 ···dτb4S

core(τa1 ,...,τa4 ,τb1 ,τb2)Score(τa5 ,...,τa8 ,τb3 ,τb4) (4.5)

×〈O1(τ1)χ(τa1)χ(τa2)〉〈O2(τ2)χ(τa3)χ(τa4)〉F(τb1 ,...,τb4)〈O3(τ3)χ(τa5)χ(τa6)〉〈O4(τ4)χ(τa7)χ(τa8)〉 .

The fermion four-point function is a sum of conformal blocks, hypergeometric functions,

and this integral is clearly challenging to evaluate directly in position space. The crucial

step is to use the more elementary representation of the four-point function, in terms of

the complete basis Ψh(x) of eigenfunctions of the conformal Casimir, as given in (2.16),

F(τb1 ,...,τb4)=
1

2

∫
C

dh

2πi

ρ(h)

chc1−h

∫
dτ0〈χ(τb1)χ(τb2)Oh(τ0)〉〈O1−h(τ0)χ(τb3)χ(τb4)〉, (4.6)
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where we have made use of the representation (2.12) of Ψh(x) in terms of a product of a

three-point function involving Oh and a three-point function involving the shadow O1−h.

With this representation of the fermion four-point function, upon comparing with

the expression (4.4) for the three-point function of O, we may write (4.5) as an integral

involving a three-point function of the external ingoing O1 and O2 and the exchanged Oh,

along with a three-point function involving the shadow O1−h and the external outgoing O3

and O4, see figure 11,

〈O1(τ1)···O4(τ4)〉s=
1

2

∫
C

dh

2πi

ρ(h)

chc1−h

∫
dτ0〈O1(τ1)O2(τ2)Oh(τ0)〉〈O1−h(τ0)O3(τ3)O4(τ4)〉.

(4.7)

The integral over τ0 over this product of three-point functions give a sum of a conformal

block and its shadow, now for external operators O1,...,O4, see appendix A,

〈O1(τ1)···O4(τ4)〉s=
1

2

∫
C

dh

2πi

ρ(h)

chc1−h
c12hc341−h

[
β(h,h34)Fh1234(x)+β(1−h,h12)F1−h

1234(x)
]
.

(4.8)

Here Fh1234(x) is the conformal block for external operators O1,...,O4 and exchanged op-

erator Oh,

Fh1234(x)=
∣∣∣τ24

τ14

∣∣∣h12
∣∣∣τ14

τ13

∣∣∣h34 1

|τ12|h1+h2 |τ34|h3+h4
xh2F1(h−h12,h+h34,2h,x), (4.9)

while,

β(h,∆)=
√
π

Γ(h+∆
2 )Γ(h−∆

2 )

Γ(1−h+∆
2 )Γ(1−h−∆

2 )

Γ(1
2−h)

Γ(h)
. (4.10)

Also, to be clear, c341−h denotes the coefficient of the three-point function of operators of

dimensions h3, h4, and 1−h: 〈O3O4O1−h〉. The contour C consists of a line parallel to

the imaginary axis, h= 1
2 +is, as well as the circles around h= 2n for n≥1. We consider

each piece separately. Starting with the contribution from the line, and changing variables

h→1−h for the second term in (4.8), we get,

〈O1(τ1)···O4(τ4)〉s⊃
1

2

∫
1
2

+is

dh

2πi
ρ(h)

c12hc34h

c2
h

×
[
c341−h
c34h

ch
c1−h

β(h,h34)− c121−h
c12h

ch
c1−h

tan2 πh

2
β(h,h12)

]
Fh1234(x) . (4.11)

We now use the following relation between the coefficient c12h of the three-point function

〈O1O2Oh〉 and that of c121−h, involving the shadow, 〈O1O2O1−h〉,

c121−h
c1−h

Γ(1−h
2 )2

Γ(1−h+h12
2 )Γ(1−h−h12

2 )
=
c12h

ch

Γ(h2 )2

Γ(h+h12
2 )Γ(h−h12

2 )
. (4.12)

Using the explicit form of the c123 for SYK found in section 3, one can verify that this

relation is satisfied. However, it should be true more generally. The contribution of the

line integral (4.11) now simplifies to become,

〈O1(τ1)···O4(τ4)〉s⊃
∫

1
2

+is

dh

2πi

ρ(h)

c2
h

Γ(h)2

Γ(2h)
c12hc34hFh1234(x) . (4.13)
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Now consider the portion of the contour integral (4.8) consisting of the circles wrapping

h=2n. Noting that for h=2n, β(1−h,h12) vanishes, and as a result of (4.12),

β(h,h34)
c341−h
c34h

ch
c1−h

=

(
1+

1

cosπh

)
Γ(h)2

Γ(2h)
. (4.14)

For h=2n, the factor in parenthesis becomes 2, and so the integrand for the portion of the

contour consisting of the circles is the same as for the line piece of the contour. Recombining

the two gives a single expression,

〈O1(τ1)···O4(τ4)〉s=

∫
C

dh

2πi

ρ(h)

c2
h

Γ(h)2

Γ(2h)
c12hc34hFh1234(x) . (4.15)

This is one of our main results. It is simple and intuitive.

4.4 Combining ingredients and comments

Universality. It is instructive to recall the form of the three-point function, as written

in (3.35), c123 =c1c2c3I123, which separates the ci, which arise from summing the ladders,

from I123 which arises from gluing the ladders. With this, the s-channel piece of the

four-point function takes the form,

〈O1(τ1)···O4(τ4)〉s=c1c2c3c4

∫
C

dh

2πi
ρ(h)

Γ(h)2

Γ(2h)
I12hI34hFh1234(x) . (4.16)

The four-point function, as well as all higher-point correlation functions, are analytic func-

tions of the fermion dimension ∆ and the Oi dimensions hi. As one flows from weakly

coupled cSYK to strongly coupled cSYK, the hi change, or, as one changes the order of

the interaction, q, the fermion dimension ∆ = 1/q changes. To the extent that hi and ∆

are close for these different theories, eq. (4.16) shows that the four-point functions will

also be close, and, through a simple generalization, so will all correlation functions.7 A

useful case is when all the operators have large dimensions, hi� 1, as in this limit the

anomalous dimensions at strong coupling are small, hi≈ 2∆+2n+1. This allows for the

study of this universal sector of the theory through study of weakly coupled cSYK, which

is just generalized free field theory, and will be discussed in section 6.

Closing the contour. Closing the contour in (4.15) will turn the integral over conformal

blocks in h-space into a sum over conformal blocks. To do this, we need to look at the

singularity structure of the integrand, for h in the right-half complex plane. For simplicity,

we assume none of the hi are equal.

The first term in the integrand, ρ(h), has poles at the dimensions of the single-trace

operators, the h=hn for which kc(hn)=1. Next, let us look at the other term, involving the

three-point function coefficients, ch12/ch. The contact contribution c
(1)
h12/ch, see eq. (3.17),

has poles at h= h1+h2+2n, as well as at h= 2n+1.8 The planar contribution c
(2)
h12/ch,

7The statement is true to the extent that one can neglect the additional contact diagrams discussed in

appendix E.
8It may naively appear that there are also poles at h=2n, but in fact there aren’t.
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see eq. (3.34), has poles at h = h1+h2+2n as well as h = 2n+1, and h = 3−2∆+2n.9

The poles at h = 2n+1 and h = 3−2∆+2n are irrelevant, since ρ(h= 2n+1) = 0 and

ρ(h=3−2∆+2n)=0.10

Therefore, as expected, 〈O1 ···O4〉s is a sum of single-trace and double-trace conformal

blocks,

〈O1(τ1)···O4(τ4)〉s =
∑
h=hn

c12hc34hFh1234(x) (4.17)

+
∞∑
n=0

−Res
[c12h

ch

]
h=h1+h2+2n

[
ρ(h)

Γ(h)2

Γ(2h)

c34h

ch
Fh1234(x)

]
h=h1+h2+2n

+

∞∑
n=0

−Res
[c34h

ch

]
h=h3+h4+2n

[
ρ(h)

Γ(h)2

Γ(2h)

c12h

ch
Fh1234(x)

]
h=h3+h4+2n

.

In appendix B we write the terms on the second and third line more explicitly, and also

study their large q limit.

Let us recall why we expect that the four-point function of bilinears, at order 1/N , is

composed of single-trace and double-trace conformal blocks. On general grounds the OPE

is of the form [25],

O1O2∼
1√
N
c12hOh+d0

12[12]n
[O1O2]n+

1

N
d1

12[ij]n
[OiOj ]n+..., (4.18)

where [OiOj ]n denotes a double-trace operator, schematically of the form, Oi∂2nOj , and

the dots denote terms that are higher order in 1/N . If we look at the four-point function,

and apply the OPE to O1O2 and to O3O4 then we schematically get, for the 1/N piece,

〈O1 ···O4〉 ∼
1

N

(
c12hc34h〈OhOh〉+d0

12[12]n
d1

34[12]n
〈[O1O2]n[O1O2]n〉

+d0
34[34]n

d1
12[34]n

〈[O3O4]n[O3O4]n〉
)
.

This structure is precisely reflected in the actual result, (4.17).

Cross-channel. As stated in eq. (4.1), in addition to the sum of the s-channel Feynman

diagrams, given by (4.15), we must also include the t-channel and u-channel diagrams.

The sum of the t- channel diagrams is simply (4.15), but with h2↔h3, and τ2↔ τ3 and

correspondingly for the cross-ratio x→1/x. The sum of the u-channel diagram is (4.15),

but with h2↔h4, and τ2↔τ4 and correspondingly x→1−x.

9It is most convenient to look at c
(2)
123 found in section 3.2 as a function of h1 (as it is symmetric under

permutations, we are free to do this). Then, all of the poles in h1 arise form the gamma functions in the

αi; the generalized hypergeometric functions, as functions of h1, do not have any poles.
10In fact, this is a bit subtle. One may notice that even though ρ(h)=0 for h=2n+1 or h=3−2∆+2n,

one would still have a pole at these h, because the product c12hc34h gives rise to a double pole at these

values. However, this divergence is an artifact of an earlier step, in which we exchanged the order of the

h contour integral and the time integrals. More simply stated, what we should really do is instead of the

contour C in the fermion four-point function in (4.6), we should use a contour C′ which excludes h=2n+1

and h=3−2∆+2n; since the integrand vanishes at these values of h, this is a justified replacement.
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Figure 12. A contribution to the eight-point function. This was included in both lines shown

before in figure 9, and so must be subtracted due to double counting.

It is straight forward to combine these three contributions into a single expression

suited to performing the OPE. To do this, one should use (4.8), which has an integral over

the conformal block plus its shadow, Bh1234(x) = β(h,h34)Fh1234(x)+β(1−h,h12)F1−h
1234(x).

The range of h is 1
2−i∞<h< 1

2 +i∞ and h= 2n. Since these form a complete basis, one

could expand Bh1234(1−x) and Bh1234(1/x) in terms of the basis of Bh̃1234(x). This would be

analogous to the computation in [26], though slightly different since there one has a linear

combination of the block plus shadow block that is different from Bh1234.

Combining these three channels is actually unnecessary for us, since, as we will see

later, in the bulk computation of the four-point function, there are three types of Witten

diagrams, s, t, and u channel, related to the SYK s, t, u channel Feynman diagrams.11

Subtracting a planar. The first term on the second line of (4.1) is the diagram shown

in figure 12. This is similar to the sum of the s-channel exchange diagrams we already

computed, the only difference being that it only sums planar diagrams, and that instead of

the full fermion four-point function F appearing in the exchange, one has the free fermion

four-point function, F0. This allows us to immediately write the answer,

〈O1(τ1)···O4(τ4)〉0s=

∫
C

dh

2πi

ρ0(h)

c2
h

Γ(h)2

Γ(2h)
c

(2)
12hc

(2)
34hF

h
1234(x) . (4.19)

Closing the contour yields a sum of both single-trace and double-trace conformal blocks.

The single-trace blocks are for operators of dimension 2∆+2n+1, which serve to cancel

the same blocks that arise from expanding the exchange diagrams in the cross-channel.

The double-trace blocks are again for operators of the type [O1O2]n and [O3O4]n.

Mellin space. It is sometimes useful to represent the four-point function in Mellin space,

see appendix A.1 for our conventions. In order to find the Mellin transform of 〈O1 ···O4〉s,
denoted by Ms(hi,γ12), it is most convenient to use the form of the expression in (4.7). The

11It may be of interest to do this calculation anyway, in order to compute the 1/N corrections to the

OPE coefficients. One should note, however, that we are only computing the connected piece of the

bilinear four-point function. In order to compute the 1/N anomalous dimensions of operators, one needs

to compute the disconnected diagrams as well: in particular, one needs the loop corrections to the fermion

four-point function.
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Figure 13. A contribution to the ten-point function.

integral appearing there is denoted by Bh1234 in appendix A, see eq. (A.10), and its Melin

transform, M̃h
1234(γ12), is given in (A.23). Therefore Ms(hi,γ12) is the contour integral,

Ms(hi,γ12)=
1

2

∫
C

dh

2πi

ρ(h)

chc1−h
c12hc341−hM̃

h
1234(γ12) . (4.20)

Similarly, the Mellin transform of 〈O1 ···O4〉0s is,

M0
s (hi,γ12)=

1

2

∫
C

dh

2πi

ρ0(h)

chc1−h
c

(2)
12hc

(2)
341−hM̃

h
1234(γ12) . (4.21)

Due to the complexity of c123, these expressions are not in themselves especially en-

lightening. In section 6 we will study the limit of hi� 1, in which the full four-point

function, as well as its Mellin transform, significantly simplify.

5 Higher-point correlation functions

In the previous section we computed the bilinear four-point function. It is straightforward

to generalize to higher-point functions. These will be expressed in terms of contour integrals

involving the ρ(h) from summing ladders in section 2, the c123 computed in section 3, and

higher-point conformal blocks.

For instance, consider a fermion ten-point function. An example of a class of diagrams

that contribute is shown in figure 13. To compute such diagrams, we use the same method

as in the previous section, writing the intermediate fermion four-point functions (of which

there are now two) in the form given by eq. (4.6). The contribution to the bilinear five-point

function is then,

〈O1(τ1)···O5(τ5)〉s=
1

4

∫
C

dha
2πi

ρ(ha)

chac1−ha

∫
C

dhb
2πi

ρ(hb)

chbc1−hb
(5.1)

×
∫
dτadτb〈O1(τ1)O2(τ2)Oha(τa)〉〈O1−ha(τa)O3(τ3)Ohb(τb)〉〈O1−hb(τb)O4(τ4)O5(τ5)〉 .

The integrals over τa,τb will be evaluated in the next section; the result is a sum of five-point

conformal blocks and their shadows. After changing variables, ha→1−ha and ha→1−hb
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on some of the terms, similar to what was done in the case of the bilinear four-point

function, we find,

〈O1(τ1)···O5(τ5)〉s=

∫
C

dha
2πi

ρ(ha)

c2
ha

Γ(ha)
2

Γ(2ha)

∫
C

dhb
2πi

ρ(hb)

c2
hb

Γ(hb)
2

Γ(2hb)
c12hacha3hbchb45Fha,hb12345(x1,x2),

(5.2)

where Fha,hb12345(x1,x2) is the five-point conformal block, depending on the two cross-ratios of

times,

x1 =
τ12τ34

τ13τ24
, x2 =

τ23τ45

τ24τ35
. (5.3)

The prescription for writing a general connected p-point correlation function

〈Oh1 ···Ohp〉, to leading nontrivial order in 1/N , is clear. One draws all Feynman-like

skeletons, in which the lines are ladders and there are “cubic interactions” c123 (where

c123 is the coefficient of 〈O1O2O3〉 found in section 3). For each internal line, one has a

contour integral, ∫
C

dha
2πi

ρ(ha)

c2
ha

Γ(ha)
2

Γ(2ha)
. (5.4)

The integrand consists of the “cubic interactions” c123, and a p-point conformal block.

One writes down such an expression for each of the skeleton diagrams. One should then

subtract diagrams with no exchanged melons in some channels, which were over-counted;

these have the same rules but with a ρ0 and a c
(2)
123 (as was discussed in the four-point

function case, eq. (4.19)). Finally, if q is sufficiently large, there are additional contact

diagrams one must add, which consist of four or more ladders meeting at a melon; these

are discussed in appendix E. From the correlation functions 〈Oh1 ···Ohp〉, one can obtain

the 2p-point fermion correlation function, as discussed in appendix D.

5.1 Five-point conformal blocks

In conformal field theories, the functional form of the building blocks of correlation func-

tions is fully fixed by conformal invariance. As discussed in appendix A, the OPE takes

the form,

O1(τ1)O2(τ2)=
∑
h

c12hC12h(τ12,∂2)Oh , (5.5)

where C12h(τ12,∂2) accounts for descendants of Oh, and is fully determined by the functional

form of the three-point function. The conformal blocks are in turn fully determined by the

C12h(τ12,∂2). For instance, the four-point block is,

Fh1234(x)=C12h(τ12,∂2)C34h(τ34,∂4)〈Oh(τ2)Oh(τ4)〉, (5.6)

and the five-point block is,

Fha,hb12345(x1,x2)=C12ha(τ12,∂2)C45hb(τ45,∂4)〈Oha(τ2)O3(τ3)Ohb(τ4)〉 . (5.7)

To determine the higher-point conformal blocks, one simply continues to successively apply

the OPE. See [27] for a recent study, in the context of Virasoro blocks.
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An alternative way to obtain an explicit form for the higher-point SL2 conformal blocks

is to simply evaluate the integrals that appear in the higher-point correlation function. For

instance, the expression that appeared in the five-point function is,

Ba,b12345=

∫
dτadτb〈O1(τ1)O2(τ2)Oha(τa)〉〈O1−ha(τa)O3(τ3)O1−hb(τb)〉〈Ohb(τb)O4(τ4)O5(τ5)〉,

where we have changed hb→1−hb, relative to (5.1), in order to make the expression more

symmetric. Through a change of variables, we rewrite this so that it is a function of the

two cross-ratios x1,x2 defined in (5.3),

Ba,b12345 =
1

|τ12|h1+h2 |τ45|h4+h5 |τ34|h3

∣∣∣τ23

τ13

∣∣∣h12
∣∣∣τ24

τ23

∣∣∣h3
∣∣∣τ35

τ34

∣∣∣h45

Ca,b12345 , (5.8)

where,

Ca,b12345 = |x1|1−ha |x2|1−hb
∫
dτadτb

|1−τax1−τbx2|ha+hb+h3−2

|τa|ha−h12 |τa−1|ha+h12 |τb|hb+h45 |τb−1|hb−h45
. (5.9)

Let us assume 0<x1,x2<1. From the integral definition of the Appell function F2 we notice

that, if our integral were in the range 0<τa,τb<1, then Ca,b12345 would be proportional to,

x1−ha
1 x1−hb

2 F2

[
2−ha−hb−h3 1+h12−ha 1−h45−hb

2−2ha 2−2hb
;x1 x2

]
. (5.10)

The differential equation defining the Appell function F2 has a total of four solutions, which

follow from (5.10). Our integral Ca,b12345 should be a linear combination of these. We set

the coefficients by studying the integral Ca,b12345 in various limits, similar to what we did for

the integral appearing in the three-point function in section 3.2. The result is expressed in

terms of the five-point conformal blocks,

Fha,hb12345(x1,x2) =
1

|τ12|h1+h2 |τ45|h4+h5 |τ34|h3

∣∣∣τ23

τ13

∣∣∣h12
∣∣∣τ24

τ23

∣∣∣h3
∣∣∣τ35

τ34

∣∣∣h45

×xha1 xhb2 F2

[
ha+hb−h3 ha+h12 hb−h45

2ha 2hb
;x1 x2

]
, (5.11)

and is given by,

Ba,b12345 = β(ha,hb+h3−1)β(hb,h3−ha)Fha,hb12345(x1,x2)

+β(1−ha,h12)β(hb,ha+h3−1)F1−ha,hb
12345 (x1,x2)

+β(ha,hb+h3−1)β(1−hb,h45)Fha,1−hb12345 (x1,x2)

+β(1−ha,h12)β(1−hb,h45)F1−ha,1−hb
12345 (x1,x2),

where β(h,∆) is defined in appendix A, see eq. (A.13). We established which of the four

terms in this expression is identified as the five-point conformal block by looking at the

small τ12,τ45 behavior.

One could, in this way, compute six-point blocks and higher, though we will stop here.
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6 Generalized free field theory

In the previous sections we gave a prescription for determining all correlation functions in

SYK, 〈Oh1 ···Ohp〉. The operatorsOh have small anomalous dimensions when the dimension

h is large, h� 1. As we showed, the correlators of these are determined from the weak

coupling limit of cSYK: generalized free field theory of fermions, and can be found through

Wick contraction. This provides significant simplification.

In this section, we study the generalized free field theory of N fermions of dimension

∆, in the singlet sector. In section 6.1 we compute the correlation functions of the primary

O(N) invariant fermion bilinears. Then in section 6.2 and section 6.3 we use saddle point

analysis to simplify the three-point and four-point functions, respectively, in the limit of

large hi.

6.1 Wick contractions and generating function

The fermion bilinear, primary, O(N) invariant operators are given by,

On=
1√
N

N∑
i=1

n∑
r=0

dnr∂
r
τχi∂

n−r
τ χi , (6.1)

where dnr is,

dnr=
(−1)r

Γ(n−r+1)Γ(∆+n−r)Γ(r+1)Γ(∆+r)
. (6.2)

Due to fermion antisymmetry, only correlation functions of On involving odd n are nonzero.

As a result, throughout this paper On has been used to denote what in the current language

is O2n+1; for the purposes of this section, the current definition is more convenient.

Wick contractions. The correlation functions of the On follow trivially by Wick con-

tractions. The connected piece of a p-point correlation function is,

〈On1(τ1)···Onp(τp)〉=
1

N
p−2

2

∑
r1,...,rp

dn1r1 ···dnprp
(
∂
np−rp
p ∂r11 G(τ1p)

)
×
(
∂n1−r1

1 ∂r22 G(τ12)
)(
∂n2−r2

2 ∂r33 G(τ23)
)
···
(
∂
np−1−rp−1

p−1 ∂
rp
p G(τp−1p)

)
+perm . (6.3)

Using that dnr=(−1)ndnn−r, one can see that the addition of permutations gives a factor

(1−(−1)n1)···(1−(−1)np) multiplying the term we explicitly wrote. Making use of the

derivative of the two-point function,

∂p1G(τ12)=G(τ12)
Γ(2∆+p)

Γ(2∆)

(−1)p

τp12

, (6.4)
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the p-point function becomes,

〈On1(τ1)···Onp(τp)〉=
1

N
p−2

2

(∏
i

δni=odd

)
−(−2)p

Γ(2∆)p
G(τ12)G(τ23)···G(τp−1p)G(τ1p)

×
∑

r1,...,rp

dn1r1 ···dnprp (−1)r2+...rp−1
Γ(2∆+np−rp+r1)

τ
np−rp+r1
1p

×Γ(2∆+n1−r1+r2)

τn1−r1+r2
12

Γ(2∆+n2−r2+r3)

τn2−r2+r3
23

···Γ(2∆+np−1−rp−1+rp)

τ
np−1−rp−1+rp
p−1p

. (6.5)

Generating function. It is convenient to introduce a generating O(τ,x) which includes

all the On(τ), see for instance [28],

O(τ,x)=
∞∑
n=0

On(τ)xn . (6.6)

Using the explicit definition of the On in terms of fermions the generating O(τ,x) becomes,

O(τ,x)=
1√
N

N∑
i=1

D(x,τ)χi(τ)D(−x,τ)χi(τ), (6.7)

where we have defined,

D(x,τ)=

∞∑
r=0

(−x)r

r!Γ(r+∆)
∂rτ =(x∂τ )

1−∆
2 J∆−1(2

√
x∂τ ) . (6.8)

We now compute the correlation functions of O(τ,x). The two-point function is,

〈O(τ1,x1)O(τ2,x2)〉 = H(x1,τ1,−x2,τ2)H(−x1,τ1,x2,τ2) (6.9)

−H(x1,τ1,x2,τ2)H(−x1,τ1,−x2,τ2)

where

H(x1,τ1,x2,τ2)=D(x1,τ1)D(x2,τ2)G(τ12) . (6.10)

Using the definition of D(xi,τi) and acting with the derivatives on G(τ12), and then using

the integral definition of the Gamma function, performing the sum, and evaluating the

resulting integral, we get,

H(x1,τ1,x2,τ2)=
G(τ12)

Γ(2∆)

(
x1x2

τ2
12

) 1−∆
2

e
x1−x2
τ12 J∆−1

(
2

√
x1x2

τ2
12

)
. (6.11)

If we insert H into (6.9), and Taylor expand, we recover the two-point functions

〈On(τ1)On(τ2)〉. In the ∆=0 limit these are,

〈O(x1,τ1)O(x2,τ2)〉= 1

Γ(2∆)2

∞∑
n=1

(
x1x2

τ2
12

)2n+1( Nn

(2n!)

)2

, N2
n=

24n+1

(2n+1)

Γ(2n+ 1
2)

√
πΓ(2n)

.

(6.12)
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In the large n limit these simplify to,(
Nn

(2n!)

)2

≈
( e
n

)4n
, n�1 . (6.13)

A p-point correlation function of the O(τ,x) is a simple generalization of the two-point

function,

〈O(τ1,x1)O(τ2,x2)···O(τp,xp)〉= (6.14)

=H(x1,τ1,−xp,τp)H(−x1,τ1,x2,τ2)H(−x2,τ2,x3,τ3)···H(−xp−1,τp−1,xp,τp)+perm.

To obtain the correlators of the Oni , one should Taylor expand the right-hand side, ex-

tracting the coefficient of the xnii term. Upon Taylor expansion, each of the permutations

gives the same contribution, up to a sign, and serves to ensure that the correlation function

〈On1(τ1)···Onp(τp)〉 is nonzero only for odd ni.

6.2 Asymptotic three-point function

We would like to find the form of the three-point function 〈On1(τ1)On2(τ2)On3(τ3)〉 in

the limit that n1,n2,n3 � 1. This is simplest to do through study of the correlator

〈O(τ1,x1)O(τ2,x2)O(τ3,x3)〉.12 Writing this out explicitly,

〈O(x1,τ1)O(x2,τ2)O(x3,τ3)〉 =
sgn(τ12τ13τ23)

Γ(2∆)3

∣∣∣x1x2

τ2
12

∣∣∣ 1−∆
2
∣∣∣−x1x3

τ2
13

∣∣∣ 1−∆
2
∣∣∣x2x3

τ2
23

∣∣∣ 1−∆
2

(6.15)

×exp

(
x1

τ23

τ12τ13
−x2

τ13

τ12τ23
+x3

τ12

τ13τ23

)
J∆−1

(
2

√
x1x2

τ2
12

)
×J∆−1

(
2

√
−x1x3

τ2
13

)
J∆−1

(
2

√
x2x3

τ2
23

)
+7 perm.

If we were to expand this, it would give, for ∆→0,

〈O(x1,τ1)O(x2,τ2)O(x3,τ3)〉= (6.16)

=
1

Γ(2∆)3

∑x2n1+1
1

(2n1)!

x2n2+1
2

(2n2)!

x2n3+1
3

(2n3)!

8s
(2)
n1n2n3

|τ12|2(n1+n2−n3)+1|τ23|2(n2+n3−n1)+1|τ31|2(n3+n1−n2)+1
,

where s
(2)
n1n2n3 is a triple sum, see eq. (B.8).

More directly, we can extract the desired correlator through a triple contour integral

over the unit circle,

〈On1(τ1)On2(τ2)On3(τ3)〉=
3∏
i=1

∮
dxi

(2πi)xni+1
i

〈O(x1,τ1)O(x2,τ2)O(x3,τ3)〉 . (6.17)

12In section 3.2 we found the three-point function by evaluating Feynman diagrams, obtaining an expres-

sion in terms of a generalized hypergeometric function at argument 1; see eq. (B.8) for the expression in

the current context. However, since some of the arguments of this hypergeometric function are negative,

written as a single sum, it includes both positive and negative terms, which makes its asymptotic analysis,

in this form, difficult.
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To work with (6.15), we use the following representation of the Bessel function,

Jν(z)=
(z

2

)ν∫
L

ds

2πi

1

sν+1
exp

(
s− z

2

4s

)
, (6.18)

where the contour L comes in from −∞, circles around the origin, and returns to −∞.

With this representation of the Bessel function, we have 〈On1(τ1)On2(τ2)On3(τ3)〉 in terms

of six-contour integrals. In the limit of large ni, we may evaluate these by saddle point

analysis. We will only be interested in the dominant term, and will not compute the

subleading corrections. Dropping all terms that are not exponential in the ni, and not

distinguishing between ni and ni−1, we have,

〈On1(τ1)On2(τ2)On3(τ3)〉≈ sgn(τ12τ13τ23)

Γ(2∆)3

3∏
i=1

∫
L

dsi
2πi

3∏
i=1

∮
dxi

(2πi)

×exp

(
x1

τ23

τ12τ13
−x2

τ13

τ12τ23
+x3

τ12

τ13τ23

)
×exp

(
−

3∑
i=1

ni logxi+s1−
x2x3

τ2
23

1

s1
+s2+

x1x3

τ2
13

1

s2
+s3−

x1x2

τ2
12

1

s3

)
. (6.19)

Note that, at this level of approximation, it makes no difference what ∆ is. The saddle

equations from varying the si are,

s2
1 =−x2x3

τ2
23

, s2
2 =

x1x3

τ2
13

, s2
3 =−x1x2

τ2
12

. (6.20)

The saddle equations from varying the xi are,

−n1

x1
+

x3

τ2
13s2
− x2

τ2
12s3

+
τ23

τ12τ13
= 0 (6.21)

−n2

x2
− x3

τ2
23s1
− x1

τ2
12s3
− τ13

τ12τ23
= 0 (6.22)

−n3

x3
− x2

τ2
23s1

+
x1

τ2
13s2

+
τ12

τ13τ23
= 0 . (6.23)

We multiply the first equation by x1, the second by x2, and the third by x3. We then

apply (6.20) to simplify the left-hand side. This gives,

s2+s3 =n1−x1
τ23

τ12τ13
, s1+s3 =n2+x2

τ13

τ12τ23
, s1+s2 =n3−x3

τ12

τ13τ23
. (6.24)

We now trivially solve for the xi, and insert into (6.20) to get,

s2
1 = (n2−s1−s3)(n3−s1−s2), s2

2 =(n1−s2−s3)(n3−s1−s2),

s2
3 = (n1−s2−s3)(n2−s1−s3) .

Solving gives two solutions. The first is,

s1 =
n2n3

n1+n2+n3
, s2 =

n1n3

n1+n2+n3
, s3 =

n1n2

n1+n2+n3
, (6.25)
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and is the dominant saddle, while the second is,

s1 =
n2n3

−n1+n2+n3
, s2 =

n1n3

n1−n2+n3
, s3 =

n1n2

n1+n2−n3
. (6.26)

Inserting the dominant saddle into the integrand, we find the three-point function is,

〈On1(τ1)On2(τ2)On3(τ3)〉 ≈ 1

|τ23|n2+n3−n1 |τ13|n1+n3−n2 |τ12|n1+n2−n3

(eN)N

n2n1
1 n2n2

2 n2n3
3

,

n1,n2,n3 � 1, (6.27)

where we defined N=n1+n2+n3.

In terms of sn1n2n3 , comparing (6.27) with (6.16), we have that,

s(2)
n1n2n3

≈ (2N)2N

(2n1)2n1(2n2)2n2(2n3)2n3
≈ (2N)!

(2n1)!(2n2)!(2n3)!
, n1,n2,n3�1 . (6.28)

Equipped with the asymptotic limit of the three-point function, we can find the asymptotic

limit of the cubic couplings of the dual bulk scalars φn dual to O2n+1 [8]. With the φn
canonically normalized, we have,

λn1n2n3≈
N !

Γ(N−2n1+ 1
2)Γ(N−2n2+ 1

2)Γ(N−2n3+ 1
2)
, n1,n2,n3�1, (6.29)

where we have, for simplicity, dropped any order-one factors that may have appeared. One

would ultimately like to have a string-like bulk interpretation of these couplings.

6.3 Asymptotic four-point function

To find the behavior of the four-point function 〈On1(τ1)···On4(τ4)〉 for large ni we per-

form an analogous analysis as with the three-point function. Representing the four-point

function as a contour integral, and dropping all terms that aren’t exponential, we have,

〈On1(τ1)...On4(τ4)〉≈ sgn(τ12τ23τ34τ41)

Γ(2∆)4

4∏
i=1

∫
L

dsi
2πi

4∏
i=1

∮
dxi

(2πi)
(6.30)

×exp

(
−x1

τ24

τ12τ14
−x2

τ13

τ12τ23
−x3

τ24

τ23τ34
−x4

τ13

τ14τ34

)
×exp

(
−

4∑
i=1

ni logxi+s1+
x1x2

τ2
12s1

+s2+
x2x3

τ2
23s2

+s3+
x3x4

τ2
34s3

+s4+
x4x1

τ2
41s4

)
.

At large ni we can approximate the integral by its saddle. Varying with respect to the si
gives the saddle equations,

s2
1 =

x1x2

τ2
12

, s2
2 =

x2x3

τ2
23

, s2
3 =

x3x4

τ2
34

, s2
4 =

x4x1

τ2
41

. (6.31)
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Varying, in addition, with respect to xi gives the saddle equations,

−n1

x1
+

x2

τ2
12s1

+
x4

τ2
41s4
− τ24

τ12τ14
= 0 (6.32)

−n2

x2
+

x1

τ2
12s1

+
x3

τ2
23s2
− τ13

τ12τ23
= 0 (6.33)

−n3

x3
+

x2

τ2
23s2

+
x4

τ2
34s3
− τ24

τ23τ34
= 0 (6.34)

−n4

x4
+

x3

τ2
34s3

+
x1

τ2
41s4
− τ13

τ14τ34
= 0 . (6.35)

We multiply the first equation by x1, the second by x2, and so on, and use (6.31) to simplify,

s4+s1 =n1+
τ24

τ12τ14
x1 , s1+s2 =n2+

τ13

τ12τ23
x2 , (6.36)

s2+s3 =n3+
τ24

τ23τ34
x3 , s3+s4 =n4+

τ13

τ14τ34
x4 .

Now, using the saddle equations, at the saddle we see that the four-point function is,

〈On1(τ1)...On4(τ4)〉≈ 1∏
ix
ni
i

exp
(∑

ni

)
(6.37)

Trivially solving (6.36) for the xi and inserting into (6.31) gives, in terms of the cross-

ratio x= τ12τ34
τ13τ24

,

s2
1 = (1−x)(s4+s1−n1)(s1+s2−n2) (6.38)

s2
2 = x(s1+s2−n2)(s2+s3−n3)

s2
3 = (1−x)(s2+s3−n3)(s3+s4−n4)

s2
4 = x(s3+s4−n4)(s4+s1−n1) .

The solution to these equations for general ni is complicated. A simple case, which we

focus on, is when all of the dimensions ni are equal.

Equal ni. We set n1 =n2 =n3 =n4. In this case we can simplify (6.37) to,

〈On1(τ1)...On1(τ4)〉≈exp(4n)
1

(τ2
12τ

2
23τ

2
34τ

2
41s

2
1s

2
2s

2
3s

2
4)

n
2

, n1�1 . (6.39)

The symmetric product of the times can alternatively be written as,

τ2
12τ

2
23τ

2
34τ

2
41 =τ4

12τ
4
34

(
1−x
x

)2

. (6.40)

We define s̃i=si/n1. Then, since (n/e)n≈n!,

〈On1(τ1)...On1(τ4)〉≈ 1

(n1!)4

1

(τ2
12τ

2
34)n1

1(
(1−x)
x s̃1s̃2s̃3s̃4

)n1
, n1�1 . (6.41)

To complete the evaluation of the four-point function we need to solve (6.38) for the si,

and insert their product into (6.41). There are eight solutions to (6.38). In writing them,

– 32 –



J
H
E
P
1
2
(
2
0
1
7
)
1
4
8

we assume that we have a time-ordered correlation function, so that cross-ratio of times is

in the range 0<x<1. The other time orderings can be worked out in a similar fashion. Of

the eight saddle, two saddles give the product,

s̃1s̃2s̃3s̃4 =
x−1

16x
. (6.42)

Another two saddles give,

s̃1s̃2s̃3s̃4 =
x

16(x−1)
, (6.43)

while the remaining four saddles give,

s̃1s̃2s̃3s̃4 =
x(1−x)

(1±
√
x±
√

1−x)4
. (6.44)

The dominant saddle, for all values of 0<x<1, is clearly the one for which,

s̃1s̃2s̃3s̃4 =
x(1−x)

(1+
√
x+
√

1−x)4
. (6.45)

Inserting this into (6.41), we have,

〈On1(τ1)...On1(τ4)〉≈ −1

(τ2
12τ

2
34)n1

(
(
√
x+
√

1−x+1)4

(1−x)2

)n1 1

(n1!)4
, n1�1 . (6.46)

As we cross the boundaries: x= 0 or x= 1, we observe the Stokes phenomenon: the

dominant saddle changes. This means that if we want to consider the limit of x→ 0, or

x→1, we must account for multiple saddles. This can already be seen from (6.46) since,

by itself, it has incorrect small x behavior. In particular, expanding around small x gives

rises to powers xm/2, however the single-trace and double-trace operators appearing in the

OPE have integer dimension, so there should not be any terms with odd m. If we were to

include one of the other saddles,

s̃1s̃2s̃3s̃4 =
x(1−x)

(1−
√
x+
√

1−x)4
, (6.47)

and have it come with the same phase, then this would eliminate the odd m in the expan-

sion. Of course, to actually determine the phase one should compute fluctuations about

the saddle, which we have not done.

Mellin transform. It is sometimes useful to study the four-point function in Mellin

space, reviewed in appendix A.1. In terms of the variables u= x2 and v = (1−x)2, the

four-point function (6.46) is,

〈On1(τ1)...On1(τ4)〉= 1

(n1!)4

−1

(τ2
13τ

2
24)n1

(
(u1/4+v1/4+1)4

uv

)n1

. (6.48)

Notice that, since u and v are not independent, we could have written this in other ways.

This ambiguity reflects the non-uniqueness of the Mellin amplitude for CFT1 four-point

– 33 –



J
H
E
P
1
2
(
2
0
1
7
)
1
4
8

(a) (b)

+ + +

(c)

Figure 14. The Witten diagrams for the AdS computation of CFT correlation functions of O.

The (a) two-point function (b) three-point function and (c) four-point function.

functions. However, the choice we made is natural because it is symmetric. Using the

standard Mellin-Barnes representation, we can write,(
(u1/4+v1/4+1)4

uv

)n1

(6.49)

=
1

(uv)n1

1

Γ(−4n1)

∫
ds

2πi

∫
dt

2πi
Γ(−4n1+s+t)Γ(−s)Γ(−t)(u

1
4 )s(v

1
4 )t ,

and comparing with (A.22), we find the Mellin amplitude is,

M(γ12,γ14)=
−1

(n1!)4

16

Γ(−4n1)

Γ(4n1−4γ12−4γ14)Γ(4γ12−4n1)Γ(4γ14−4n1)

Γ(n1−γ12−γ14)2Γ(γ12)2Γ(γ14)2
. (6.50)

For a CFT1 four-point function, it would seem more natural to consider a Mellin

amplitude that is a function of only one variable. The reason for studying a two variable

Mellin amplitude is because this is natural from the AdS2 perspective, as will be discussed

in the next section.

7 Bulk

7.1 Constructing the bulk

The bilinear, primary, O(N) invariant singlets On are, via the AdS/CFT dictionary, dual

to scalar fields φn in AdS2. Knowing all large N connected correlation functions of the On,

in principle, fully fixes the classical bulk Lagrangian of the AdS dual of SYK.

On general grounds, we expect the bulk Lagrangian, up to order 1/N , to take the form,

Sbulk =

∫
d2x
√
g

[
1

2
(∂φn)2+

1

2
m2
nφ

2
n+

1√
N
λnmkφnφmφk

+
1

N

(
λ0
nmklφnφmφkφl+λ

1
nmkl∂φn∂φmφkφl+...

)]
. (7.1)
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We have not included cubic interaction terms with derivatives, as these can be eliminated

through field redefinitions [8]. At the quartic level, it is no longer possible to eliminate

derivatives, and indeed there should generically be an infinite number of independent quar-

tic terms, with various combinations of derivatives.

To establish the coefficients appearing in Sbulk, one should use this bulk action to

compute CFT correlation functions, and fix the coefficients so as to match the SYK cor-

relation functions. This is simple to do for the two-point and the three-point functions, as

their functional form is fixed by conformal invariance. Evaluating the Witten diagram for

the two-point function, figure 14(a), gives the standard relation between the mass of φn
and the dimension of On, m2

n=hn(hn−1). From the Witten diagram for the three-point

function, figure 14(b), one obtains a simple relation between the cubic coupling λnmk and

the coefficient of the SYK three-point function, cnmk.

Starting with the four-point function, the mapping is more involved. Conformal

invariance restricts the four-point function to be a function of the cross-ratio, but is

insufficient to fix the functional form. As result, matching between bulk and boundary

requires matching two functions, rather than just two numbers. In particular, on the

bulk side, computation of the four-point function involves summing over the exchange

and contact Witten diagrams, shown in figure 14(c). One must sum over all exchange

diagrams: in each of the three channels there is one for each exchanged φn. One must also

sum over all contact Witten diagrams, accounting for the generically infinite number of

quartic terms appearing in the bulk Lagrangian.

One way of organizing the four-point function is by expanding each of the Witten

diagrams as a sum of conformal blocks, and similarly for the SYK four-point function,

and then adjusting the bulk couplings so as to make the coefficients of all blocks match.

The matching of the single-trace blocks is automatic, as these only depend on the cubic

couplings. In particular, the s-channel Witten diagrams, expanded in terms of s-channel

blocks, will contain single-trace blocks whose coefficients will match the coefficients of the

single-trace blocks coming from the sum of s-channel SYK Feynman diagrams, that were

computed in section 4.3. The same holds for the t-channel and u-channel. The matching

of coefficients of double-trace blocks is where the challenge lies: both the exchange and

contact Witten diagrams will contain double-trace blocks, so one must adjust the quartic

couplings in order for the total coefficients of the double-trace blocks to match the SYK

result. An approach of this type has been pursued in [29–31], in the context of the duality

between the free O(N) model and Vasiliev theory.

A more tractable way of constructing the bulk at the quartic level, at least for local

bulk theories of a few fields, is to study the four-point function in Mellin space. As discussed

in [32], a contact Witten diagram has a Mellin amplitude that is a polynomial in the Mellin

variables, whose order is set by the number of derivatives in the quartic interaction. In

previous sections we wrote the SYK four-point function in Mellin space, so one could study

it further in this context. The simplest limit is when all four operators have equal and large

dimension, in which case the Mellin amplitude takes the form (6.50). This does not have

a natural interpretation as a polynomial, nor should we have expected it to, if the bulk

Lagrangian has terms with an arbitrarily large number of derivatives, and moreover, no
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large gap. We leave an analysis of the bulk at the quartic level to future work: it is likely

that the bulk theory should be regarded as a theory of extended objects, rather than local

fields. So one should understand the CFT four-point function in this context instead.

The only thing that we will do in the rest of the section is analyze further the exchange

Witten diagrams and relate them to SYK exchange Feynman diagrams.

7.2 Preliminaries

We begin by collecting some relevant equations for AdS2 computations of correlation func-

tions. The discussion follows [32], with the notational exception that there h denotes

one-half of the boundary spacetime dimension, whereas for us the boundary spacetime

dimension is one and h denotes the operator dimension.

Letting X denote a bulk coordinate and P a boundary coordinate, both in embedding

space, the bulk-boundary propagator is,

Gh(X,P )=
Ch

(−2P ·X)h
, where Ch=

Γ(h)

2
√
πΓ(h+ 1

2)
. (7.2)

Correspondingly, this leads to a CFT two-point function,

〈Oh(P1)Oh(P2)〉= Ch
(−2P1 ·P2)h

, (7.3)

where, upon converting from embedding space to physical space, −2P1 ·P2 =(τ1−τ2)2.

Consider a cubic bulk interaction with coupling equal to one, φ1φ2φ3, involving fields

φi dual to operators Oi of dimension hi. The corresponding tree-level Witten diagram

determining the CFT three-point function involves a product of three bulk-boundary prop-

agators, see figure 14(b),

〈O1(P1)O2(P2)O3(P3)〉=
∫

AdS
dXGh1(X,P1)Gh2(X,P2)Gh2(X,P3) . (7.4)

Evaluation of the integral gives,

〈O1(P1)O2(P2)O3(P3)〉= ΛB∂(h1,h2,h3)

(−2P2 ·P3)
h2+h3−h1

2 (−2P1 ·P3)
h1+h3−h2

2 (−2P1 ·P2)
h1+h2−h3

2

,

(7.5)

where,

ΛB∂(h1,h2,h3)=
Γ
(
h1+h2+h3−1

2

)
Γ
(
h2+h3−h1

2

)
Γ
(
h1+h3−h2

2

)
Γ
(
h1+h2−h3

2

)
16πΓ(h1+ 1

2)Γ(h2+ 1
2)Γ(h3+ 1

2)
. (7.6)

As a result, the relation between the cubic couplings λ123 and the coefficients c123 of the

CFT three-point function is,

λ123 =
c123

ΛB∂(h1,h2,h3)

√
C1C2C3 , (7.7)

where the Ci appear due to the CFT convention of two-point functions having norm equal

to one.
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Figure 15. A convenient way to evaluate an exchange Witten diagram is to make use of the

split-representation of the bulk two-point function.

For computing exchange Witten diagrams, we will need the bulk propagator for a field

dual to an operator of dimension h,

GhBB(X,Y )=
Γ(h)

2
√
πΓ(h+ 1

2)
u−h2F1

(
h,h,2h,−4

u

)
, (7.8)

where u= (X−Y )2. One can verify the following representation of the propagator minus

the “shadow” propagator, written in terms of two bulk-boundary propagators,∫
∂AdS

dP0Gh(P0,X)G1−h(P0,Y )=
1

(1−2h)

(
GhBB(X,Y )−G1−h

BB (X,Y )
)
. (7.9)

One may notice the similarity between (7.8) and the CFT1 conformal blocks, and be-

tween (7.9) and the representation of the conformal block plus its shadow as a product

of a three-point function involving Oh and a three-point function involving its shadow,

see appendix A. This similarity will be utilized later, in connecting boundary Feynman

diagrams to bulk Witten diagrams. Performing a contour integral of (7.9) over h gives the

standard split-representation,

GhBB(X,Y )=

∫
dhc
2πi

2(hc− 1
2)2

(hc−h)(hc−1+h)

∫
∂AdS

dP0Ghc(X,P0)G1−hc(Y,P0), (7.10)

where the hc integral runs parallel to the imaginary axis, 1
2−i∞<hc<

1
2 +i∞. Finally, a

delta function in AdS can also be written in terms of a split-representation, with the same

contour,

δ(X−Y )=−2

∫
dhc
2πi

(hc−
1

2
)2

∫
∂AdS

dP0Ghc(X,P0)G1−hc(Y,P0) . (7.11)

7.3 Exchange Witten diagrams

Consider an s-channel exchange diagram, shown in figure 15, where a field dual to an

operator of dimension h is exchanged. This is given by,

Ws=

∫
dXdY Gh1(τ1,X)Gh2(τ2,X)GhBB(X,Y )Gh3(τ3,Y )Gh4(τ4,Y ) . (7.12)

In appendix F we evaluate this; using the split-representation for the bulk propagator gives

a nice form in terms of single-trace and double-trace conformal blocks. For the bulk dual
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of SYK, since the bulk theory contains a whole tower of fields, we must sum over all the

φh, dual to Oh, that can be exchanged, requiring us to evaluate,

〈O1O2O3O4〉s =
∑
h=hn

c12h

ΛB∂(h1,h2,h)

c34h

ΛB∂(h3,h4,h)
Ch (7.13)

×
∫
dXdY Gh1(τ1,X)Gh2(τ2,X)GhBB(X,Y )Gh3(τ3,Y )Gh4(τ4,Y ),

where we have made use of the expression (7.7) relating the cubic couplings to the SYK

three-point function coefficients. The sum is over all the physical Oh in the theory; in

particular the h>0 that satisfy the transcendental equation, kc(h)=1 given in (2.11). The

most direct way to evaluate this would be to use the expression in appendix F for a single

Witten diagram expressed as a single-trace conformal block and a sum of double-trace

blocks, see eq. (F.4), and then evaluate the sum over all the operators hn. This will yield a

sum of single-trace and double-trace blocks. The coefficients of the single-trace blocks will

clearly be the same as what was found for SYK s-channel exchange diagrams, c12hc34h, see

eq. (4.17). The coefficients of the double-trace blocks, however, will be complicated. In

what follows, we will perform some manipulations to simplify them.

An important step is to start by replacing the sum over the dimensions of the exchanged

operators with a contour integral,

〈O1O2O3O4〉s =

∫
C

dh

2πi

ρ(h)

c2
h

Γ(h)2

Γ(2h)

c12h

ΛB∂(h1,h2,h)

c34h

ΛB∂(h3,h4,h)
Ch (7.14)

×
∫
dXdY Gh1(τ1,X)Gh2(τ2,X)GhBB(X,Y )Gh3(τ3,Y )Gh4(τ4,Y ) .

To verify that this step is correct, we should check that if we close the contour in (7.14)

we get back to (7.13). In particular, the integrand in (7.14) should not have any poles

except at those h equal to the physical dimensions, kc(h) = 1, and moreover, for these h

the residue of the poles should agree with what is in (7.13). The latter property is clearly

satisfied, due to the definition of c2
h in terms of the residue of ρ(h), (2.28). To check

the former, that there are no additional poles, recall the analytic structure of c12h/ch,

discussed at the end of section 4.3. For h in the right-half complex plane, the only poles

we need to potentially be concerned about are at h=h1+h2+2n, however ΛB∂(h1,h2,h)

also has poles at these h, so the ratio c12h/ΛB∂(h1,h2,h) is finite at h=h1+h2+2n. Thus,

we are justified in going from (7.13) to (7.14).

Proceeding, we make use of the property (4.12) relating c12h to c121−h to note that,

chc121−h
c1−hc12h

ΛB∂(h1,h2,h)

ΛB∂(h1,h2,1−h)
=

Γ(h2 )2Γ(3
2−h)

Γ(1−h
2 )2Γ(1

2 +h)
. (7.15)

One can verify this implies the following identity,

1

2

1

(1−2h)

(
chc341−h
c1−hc34h

ΛB∂(h3,h4,h)

ΛB∂(h3,h4,1−h)
+
ρ(1−h)

ρ(h)

chc121−h
c1−hc12h

ΛB∂(h1,h2,h)

ΛB∂(h1,h2,1−h)

)
=Ch

Γ(h)2

Γ(2h)
.
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Inserting this identity into (7.14) we get,

〈O1O2O3O4〉s=

∫
C

dh

2πi

ρ(h)

c2
h

c12h

ΛB∂(h1,h2,h)

c34h

ΛB∂(h3,h4,h)
(7.16)

×1

2

1

(1−2h)

(
chc341−h
c1−hc34h

ΛB∂(h3,h4,h)

ΛB∂(h3,h4,1−h)
+
ρ(1−h)

ρ(h)

chc121−h
c1−hc12h

ΛB∂(h1,h2,h)

ΛB∂(h1,h2,1−h)

)
×
∫
dXdY Gh1(τ1,X)Gh2(τ2,X)GhBB(X,Y )Gh3(τ3,Y )Gh4(τ4,Y ) .

Recall that the contour C has two pieces: a line parrallel to the imaginary axis, and circles

around even integers, as was shown in figure 4. Let us focus on the contribution of the line

piece. For this, we may change variables h→1−h for the second term to get,

〈O1O2O3O4〉s⊃
∫
dXdY Gh1(τ1,X)Gh2(τ2,X)Gh3(τ3,Y )Gh4(τ4,Y )

×
∫
h= 1

2
+is

dh

2πi

ρ(h)

chc1−h

c12h

ΛB∂(h1,h2,h)

c341−h
ΛB∂(h3,h4,1−h)

1

2

1

(1−2h)

(
GhBB(X,Y )−G1−h

BB (X,Y )
)
.

Recalling the representation of the bulk two-point function minus its shadow, as given

in (7.9), we rewrite this as,

〈O1O2O3O4〉s⊃
1

2

∫
h= 1

2
+is

dh

2πi

ρ(h)

chc1−h

c12h

ΛB∂(h1,h2,h)

c341−h
ΛB∂(h3,h4,1−h)

(7.17)

×
∫
dXdY dτ0Gh1(τ1,X)Gh2(τ2,X)Gh3(τ3,Y )Gh4(τ4,Y )Gh(τ0,X)G1−h(τ0,Y ).

Recognizing that the integral over X of three bulk-boundary propagators is what appears

in the cubic Witten diagram, (7.4), and similarly for the integral over Y , we finally have,

〈O1O2O3O4〉s⊃
1

2

∫
h= 1

2
+is

dh

2πi

ρ(h)

chc1−h

∫
dτ0〈O1(τ1)O2(τ2)Oh(τ0)〉〈O3(τ3)O4(τ4)O1−h(τ0)〉.

This precisely matches the analogous SYK answer, (4.7), for the s-channel exchange Feyn-

man diagrams, for the contribution of the line piece of the contour.

If we suppose, for the moment, that the contour C necessary for a complete basis of con-

formal blocks in a one-dimensional CFT consisted only of the line parallel to the imaginary

axis (and did not also require circles around positive even integers), then the above would

have demonstrated that the sum over all s-channel exchange Feynman diagrams in SYK

(figure 2) is equal to the sum over all s-channel exchange Witten diagrams. This would be

a remarkably simple result. Furthermore, it would imply that the SYK Feynman diagrams

with no exchanged melons, figure 12, are dual to the sum over all contact Witten diagrams.

Unfortunately, we must also include the contribution of the contour in (7.14) coming

from circles wrapping h=2n. Here we can not change variables, so as to form the combina-

tion of the bulk propagator and its shadow needed to apply (7.9). We can of course use the

expression for an individual Witten diagram as a sum of conformal blocks, and then sum

over the h=2n. This will give the same single-trace piece as in the SYK s-channel exchange

diagrams answer, as it must, but there will be additional double-trace terms (which, aside

from simplicity, we had no reason not to expect).
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8 Discussion

The conformal symmetry of SYK at strong coupling fully fixes the functional form of the

building blocks of all correlation functions. The dynamical information in the fermion two-

point, four-point, and six-point functions is captured by ∆, ρ(h), and c123, respectively.

All higher-point functions are built out of these ingredients.

The structure of c123 is remarkable. Viewed as a function of, for instance, h3, it has

poles at precisely h3 = h1+h2+2n. These poles give rise to the double-trace blocks in

the bilinear four-point function. This is presumably a general result for large N conformal

field theories: that the analytic continuation of a three-point function of scalar operators of

dimensions hi has poles at hi=hj+hk+2n, where i,j,k are distinct and chosen from 1,2,3.13

It is essential that there be no additional poles, with the exception of those at the h3 for

which ρ(h3) = 0, or else the bilinear four-point function would have the wrong structure.

Furthermore, the c123 are analytic functions of hi and ∆, and lead to universality: to the

extent that two theories in the SYK family have similar dimensions hi and ∆, be they

SYK at different q or cSYK at different couplings, the c123, and by extension, all higher-

point functions (not accounting for the additional contact diagrams in appendix E), will

be similar. The large dimension bilinears have small anomalous dimensions. As a result,

their correlators are well approximated by those of cSYK at weak coupling: generalized

free field theory of fermions of dimension ∆, in the singlet sector.

Knowing all large-N CFT correlation functions, in principle, determines the full tree-

level AdS dual Lagrangian. However, thinking of the bulk as a collection of fields φn, dual

to the On, with some particular masses and couplings, is not the optimal language: there

should be a string-like interpretation of the bulk, which still needs to be formulated. The

place to start understanding the bulk is with the correlators of the large dimension opera-

tors: the interactions of the very massive bulk fields. We gave a simple expression for the cu-

bic couplings of these. There is a vague resemblance to string theory: a three-point function

of vertex operators for massive string modes comes with combinatorial factors, as a result of

the derivatives. The four-point function of four equal and large dimension On is also simple,

and should have some string-like interpretation. We hope to report on this in future work.
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A Conformal blocks

Let Oi be CFT1 operators of dimensions hi. Performing an OPE expansion,

O1(τ1)O2(τ2)=
∑
h

c12hC12h(τ12,∂2)Oh , (A.1)

13A simple CFT three-point function is the one obtained by computing the Witten diagram for scalars

with cubic interaction φ1φ2φ3. This yields (7.6), which indeed has poles at hi=hj+hk+2n.

– 40 –



J
H
E
P
1
2
(
2
0
1
7
)
1
4
8

where c12h are the OPE coefficients, and the function C12h(τ12,∂2) is present in order to

include the contributions of all the decedents of Oh. The functional form of C12h(τ12,∂2) is

fully fixed by conformal invariance: SL(2,R) for a CFT1. In particular, applying the OPE

to the first two operators in a three-point function gives,

〈O1(τ1)O2(τ2)O3(τ3)〉=c123C123(τ12,∂2)〈O3(τ2)O3(τ3)〉 . (A.2)

The function C123(τ12,∂2) can now be found in an explicit form, through Taylor expansion,

in powers of τ12, of the conformal three-point function on the left-hand side of the above,

C123(τ12,∂2)
1

|τ23|2h3
=

|τ12|h3−h1−h2

|τ13|h1+h3−h2 |τ23|h2+h3−h1
(A.3)

=
|τ12|h3−h1−h2

|τ23|2h3

(
1+(h2−h1−h3)

τ12

τ23
+...

)
.

Equipped with C123(τ12), through successive application of the OPE, the functional form of

the building blocks of any correlation function is fixed. In particular, consider a four-point

function, and apply the OPE either once or twice,

〈O1(τ1)O2(τ2)O3(τ3)O4(τ4)〉 =
∑
h

c12hC12h(τ12,∂2)〈Oh(τ2)O3(τ3)O4(τ4)〉 (A.4)

=
∑
h

c12hc34hC12h(τ12,∂2)C34h(τ34,∂4)
1

|τ24|2h
. (A.5)

The conformal blocks are identified as the functions appearing in the latter expansion,

Fh1234(x)≡C12h(τ12,∂2)C34h(τ34,∂4)
1

|τ24|2h
, (A.6)

so that,

〈O1(τ1)O2(τ2)O3(τ3)O4(τ4)〉=
∑
h

c12hc34hFh1234(x) . (A.7)

The explicit functional form of the conformal blocks is in terms of a hypergeometric func-

tion [33],14

Fh1234(x)=
∣∣∣τ24

τ14

∣∣∣h12
∣∣∣τ14

τ13

∣∣∣h34 1

|τ12|h1+h2 |τ34|h3+h4
xh2F1(h−h12,h+h34,2h,x), (A.8)

where hij≡hi−hj and x is the conformal cross-ratio,

x=
τ12τ34

τ13τ24
. (A.9)

A simple alternative way of deriving the conformal blocks is through the shadow for-

malism [34, 35], see also [18, 36]. For an operator Oh having dimension h, its shadow O1−h

14The notation, Fh1234(x), is somewhat inaccurate, because as a result of the prefactors, the conformal

blocks are really functions of all the times, not just x.
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has dimension 1−h. Consider the integral of a product of a three-point function involving

Oh and a three-point function involving O1−h,

Bh1234 =

∫
dτ0〈O1(τ1)O2(τ2)Oh(τ0)〉〈O1−h(τ0)O3(τ3)O4(τ4)〉

=

∫
dτ0

|τ12|h−h1−h2

|τ10|h+h12 |τ20|h−h12

|τ34|1−h−h3−h4

|τ30|1−h+h34 |τ40|1−h−h34
. (A.10)

After a change of variables this becomes,

Bh1234 =
1

|τ12|h1+h2

1

|τ34|h3+h4

∣∣∣τ24

τ14

∣∣∣h12
∣∣∣τ14

τ13

∣∣∣h34
∫
dτ0

|1−x|h12−h34 |x|h

|τ0|h−h12 |τ0−x|h+h12 |τ0−1|1−h−h34
.

(A.11)

Evaluating the integral gives a sum of a conformal block of an exchanged Oh and a con-

formal block of its shadow,

Bh1234 =β(h,h34)Fh1234(x)+β(1−h,h12)F1−h
1234(x), (A.12)

where we defined,

β(h,∆)=
√
π

Γ(h+∆
2 )Γ(h−∆

2 )

Γ(1−h+∆
2 )Γ(1−h−∆

2 )

Γ(1
2−h)

Γ(h)
. (A.13)

In evaluating the integral, we have taken the cross-ratio to be in the range 0 < x < 1.

Through a simple change of variables, one can obtain Bh1234 for other ranges of x as well.

In the special case that the four external operators are fermions with dimension ∆, this

kind of integral was encountered in the SYK fermion four-point function, see eq. (2.12), in

which case Ψh(x) was defined as,

2

|τ12|2∆|τ34|2∆
Ψh(x)=β(h,0)Fh∆(x)+β(1−h,0)F1−h

∆ (x), (A.14)

where Fh∆(x) denotes the conformal block (A.8) with hi=∆,

Fh∆(x)=
sgn(τ12)sgn(τ34)

|τ12|2∆|τ34|2∆
xh2F1(h,h,2h,x) . (A.15)

Since we are dealing with fermions, we have added an antisymmetry factor of

sgn(τ12)sgn(τ34) relative to the definition in (A.8).

A.1 Mellin space

Mellin space is useful for large N CFTs [32, 37]. The Mellin amplitude M(γij) for a

four-point function is defined by,

〈O1(τ1)···O4(τ4)〉=
∫

[dγ]

2πi
M(γij)

∏
i<j

Γ(γij)

(τ2
ij)

γij
, (A.16)

where the γij have the constraints,

4∑
j=1

γij =0, γij =γji , γii=−hi , (A.17)
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and the integral [dγ] is over two independent γij , which we will take to be γ12 and γ14.

Solving the constraints for the others,

γ13 =h1−γ12−γ14 , γ23 =
−h12+h34

2
+γ14 (A.18)

γ24 =
h1+h2−h3+h4

2
−γ12−γ14 , γ34 =

−h13−h24

2
+γ12 . (A.19)

The four-point function can therefore be written as,

〈O1(τ1)···O4(τ4)〉 =
(τ2

23)
h12−h34

2

(τ2
13)h1

(τ2
34)

h13+h24
2

(τ2
24)

h1+h2−h3+h4
2

(A.20)

×
∫
dγ12

2πi

dγ14

2πi
M(γ12,γ14)

∏
i<j

Γ(γij)u
−γ12v−γ14 ,

where,

u=
τ2

12τ
2
34

τ2
13τ

2
24

=x2 , v=
τ2

14τ
2
23

τ2
13τ

2
24

=(1−x)2 . (A.21)

We see that, unlike in dimensions greater than one, in one dimension the cross-ratios u and v

are not independent. This leads to the non-uniqueness of the four-point Mellin amplitude.

In higher dimensions, the p-point Mellin amplitude is also not unique, for p > d+2. In

the case that all the operators have the same external dimension, h1 = h2 = h3 = h4, the

four-point function simplifies to,

〈O1(τ1)···O1(τ4)〉= 1

(τ2
13τ

2
24)h1

(A.22)

×
∫
dγ12

2πi

dγ14

2πi
M(γ12,γ14)Γ(γ12)2Γ(γ14)2Γ(h1−γ12−γ14)2u−γ12v−γ14 .

In order to find the Mellin transform of a general four-point function, it is convenient

to have the Mellin transform of a conformal block plus its shadow, Bh1234. We will denote

this by M̃h
1234(γ12,γ14). A simple way to find M̃h

1234 is to start with the integral definition

of Bh1234 (A.10) and evaluate it through the standard Mellin-Barnes technique. After an

appropriate change of variables, it can be brought into the form (A.16), with,

M̃h
1234(γ12,γ14) =

π
1
2

Γ(h+h12
2 )Γ(h−h12

2 )Γ(1−h+h34
2 )Γ(1−h−h34

2 )
(A.23)

×
Γ(γ12+ h−h1−h2

2 )

Γ(γ12)

Γ(γ12+ 1−h−h1−h2
2 )

Γ(γ12− h13+h24
2 )

.

B Large q limit

In this appendix we study the large q limit of the three-point and four-point functions. As

a result of the fermions having a small anomalous dimension in the infrared, ∆=1/q, there

are some simplifications.
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For q�1, the dimensions of the On approach their free-field values, 2n+1,

hn=2n+1+2εn , εn=
1

q

2n2+n+1

2n2+n−1
, n≥1, q�1, (B.1)

while the OPE coefficients in the large q limit behave as,

c2
n=ε2n

n(1+2n)

(n(1+2n)+1)(n(1+2n)−1)

√
πΓ(2n+1)

Γ(2n+ 1
2)24n−2

, q�1 . (B.2)

Three-point function

The contact diagram contribution to the three-point function 〈O1O2O3〉 has a coefficient

that was denoted by c
(1)
123, given in (3.17), c

(1)
123 =c1c2c3I(1)

123, where I(1)
123 was given in (3.15).

Inserting (B.1) into I(1)
123 and expanding to leading order in ε gives [8],

I(1)
123 =2s

(1)
123

εn1 +εn2 +εn3

εn1εn2εn3

, q�1, (B.3)

where s
(1)
123 is,

s
(1)
123 =(−4)n1+n2+n3 (B.4)

×
Γ(1

2+n2+n3−n1)Γ(1
2 +n1+n3−n2)Γ(1

2 +n1+n2−n3)Γ(1+n1+n2+n3)

π
3
2 Γ(1+2n1)Γ(1+2n2)Γ(1+2n3)

.

The planar diagram contribution to the three-point function has a coefficient that was

denoted by c
(2)
123, given in (3.34) as c

(2)
123 =c1c2c3ξ(h1)ξ(h2)ξ(h3)I(2)

123, where I(2)
123≡I

(2)
123(z=1)

was given in (3.30). Taking the large q limit this simplifies. Defining

ε±=ε±∆, (B.5)

the factor, ξ(hn) simplifies to,

ξ(hn)=
ε−n
εn

(
n+

1

2

)
, q�1, (B.6)

while the expression for I(2)
123 simplifies to,

I(2)
123 =s

(2)
123

(
2

(ε+1 +ε−2 )(ε+2 +ε−3 )(ε+3 +ε−1 )

ε+1 ε
−
1 ε

+
2 ε
−
2 ε

+
3 ε
−
3

− 1

ε+1 ε
+
2 ε

+
3

− 1

ε−1 ε
−
2 ε
−
3

)
, q�1, (B.7)

where we are using the short hand εi≡εni , and s
(2)
123 is,

s
(2)
123 =

(2n1+2n2−2n3)!(2n2+2n3−1)!

(2n1−1)!(2n2−1)!(2n3−1)!(1+2n2−2n3)!
(B.8)

×4F3

[
1−2n1 2+2n1 1−2n3 −2n3

2 1−2n2−2n3 2+2n2−2n3
;1

]
.

In writing it in this form we have assumed n1>n2>n3. Using the definition of 4F3, this

may be written as a single finite sum. Previously, in [8], we found (B.7) without taking
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the large q limit of the exact answer, but rather by evaluating the integral I
(2)
123 to leading

order in 1/q. There we noted that s
(2)
123 is the same expression that appears in computing

the three-point function in a generalized free field theory with fermions of dimension ∆, in

the limit ∆→0. Specifically (see eq. (6.14)),

s
(2)
123 = −

∑
p1,p2,p3

(
2n1

p1

)(
2n2

p2

)(
2n3

p3

)(
2n1+p2−p1

p2+1

)
(B.9)

×
(

2n2+p3−p2

p3+1

)(
2n3+p1−p3

p1+1

)
zp1−p2+2n2−2n3

(−1−z)p3−p2+2n1−2n3
,

where z is a cross ratio of times; the answer is independent of z. While it is not manifest

that (B.8) and (B.9) are the same, one can verify that they are.

Four-point function

The s-channel contribution to the four-point function was given in (4.17). The only term

that was not explicitly stated there is the residue of ch12/ch at h=h1+h2+2n. This consists

of two terms, coming from ch12 =c
(1)
h12+c

(1)
h12. Using (3.17) gives,

Res
c

(1)
h12

ch

∣∣∣
h=h1+h2+2n

= c1c2
(−1)n

n!

√
π4h1+h2+nΓ(1−h1)Γ(1−h2)Γ(1−h1−h2−2n)

Γ(1−h1−n)Γ(1−h2−n)Γ(3
2−h1−h2−n)

×
[

1

cosπ(h1+h2)
−1

]
. (B.10)

For the other contribution, using (3.34), and noting that the term giving the residue comes

from a gamma function in α4, we get,

Res
c

(2)
h12

ch

∣∣∣
h=h1+h2+2n

= c1c2 2
(−1)n

n!

Γ(2∆+1
2 )3

Γ(1−∆)3

Γ(1−2h1
2 )

Γ(h1)

Γ(1−h1−h2−2n
2 )

Γ(h1+h2+2n
2 )

×
Γ(2+h1−2∆

2 )

Γ(1−h1+2∆
2 )

Γ(2+h2−2∆
2 )

Γ(1−h2+2∆
2 )

Γ(1−h1−h2
2 )

Γ(h1+h2
2 )

×
Γ(2h1+2n

2 )

Γ(1−2h1−2n
2 )

Γ(2h1+2h2+2n−1
2 )

Γ(2−2h1−2h2−2n
2 )

Γ(3−h1−h2−2∆
2 )

Γ(h1+h2+2∆
2 )

1

Γ(2n+1
2 )

×4F3

[
−2n 2h1+2h2+2n−1 h1−1+2∆ h1

2h1 h1+h2−1+2∆ h1+h2
;1

]
. (B.11)

The large q limit of these expressions is not much simpler, so we won’t write it.

Another term entering the four-point function is c34h at h=h1+h2+2n. In the large q

limit, hi are close to odd integers, and so h is close to an even integer. This has a different

large q limit from the one we already studied, in which all three dimensions are close to

odd integers. In the current case, two of the dimensions are odd, and one is even. Taking,

more generally,

h̃1 =2n1+2+2ε̃1 , h2 =2n2+1+2ε2 , h3 =2n3+1+2ε3 , (B.12)
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Figure 16. In the limit that the coupling goes to zero, the only surviving Feynman diagram is the

one without any melons.

and assuming h1>h2>h3 (the other cases can be similarly worked out), we find the large

q limit to be,

c
(2)

1̃23
→ c1c2c3

(ε2+ε3)

ε2ε
+
2 ε3ε

+
3

(2+2n1)(1+2n2)(1+2n3)Γ(2+2n1+2n2−2n3)Γ(2n2+2n3)

4Γ(2n1+1)Γ(2n2)Γ(2n3)Γ(2+2n2−2n3)

×4F3

[
−2n1 3+2n1 1−2n3 −2n3

2 1−2n2−2n3 2+2n2−2n3
;1

]
(B.13)

It is also straightforward to take the large q limit of the other piece, c
(1)

1̃23
, but it does not

simplify significantly.

Finally, the expression for the four-point function contains a ρ(h). Since the large q

limit of kc(h) is simple, kc(h)→2/(h(h−1)), we have that, at large q,

ρ(h)→ 1

ε1+ε2

1

π2

4h−2

h(h−1)−2
, (B.14)

where we took h=h1+h2+2n and used the large q expression for hi given in (B.1).

C Free field theory

The cSYK model [11] is a variant of SYK that is conformally invariant for all values of the

coupling. All the results in the paper can be trivially generalized to cSYK for arbitrary

coupling. In this appendix we study the particular limit of weak coupling, in which cSYK

becomes a generalized free field theory of fermions of dimension ∆.

The cSYK model [11] has an action made up of the SYK interaction term (2.2) along

with a bilocal kinetic term (2.6). The model has SL(2,R) symmetry for any value of the

(marginal) coupling J , with a fermion two-point function,

G(τ)=b
sgn(τ)

|τ |2∆
, (C.1)

where b is given implicitly through,

b
q

1−2b
=

1

2πJ2
(1−2∆)tanπ∆ . (C.2)

It is trivial to generalize the J�1 results in the body of the paper to any value of J .
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Figure 17. The fermion six point function. Using the split representation of the four-point

function, we can obtain the six-point function from the three-point functions of the bilinears.

In the limit J→0, the action becomes that of a generalized free field theory, (2.6). In

this limit the kernel kc(h) (2.11) near the poles can be expanded as,

kc(h)=
γn

h−(2n+2∆+1)
+... , γn=2(1−∆)(1−2∆)

Γ(2n+4∆)

Γ(2n+2)Γ(2∆)Γ(1+2∆)
. (C.3)

At leading order in J2, the bilinear dimensions hn are therefore,

hn=2∆+2n+1+(1−2b)γn . (C.4)

Note that (1−2b) scales like J2 for small J . We can now take the limit of J=0, to find for

the OPE coefficients cn [11],

c2
n=

2

Γ(2∆)2

(4∆+1+4n)Γ(2n+1+2∆)2Γ(2n+4∆)

Γ(2n+2)Γ(4n+2+4∆)
, J=0 . (C.5)

Let us look at the three-point function 〈O1O2O3〉 in the limit of J→0. At zero-coupling,

the only Feynman diagrams that appear are of the type shown in figure 16. Taking the

general result for the coefficient c
(2)
123 given in (3.34) for the sum of the planar diagrams,

and using the dimensions (C.4), we find that c
(2)
123, now denoted as cfree

123 is,

cfree
123 = c1c2c3

sin2(2π∆)Γ(2∆)2Γ(2n2+2)
∏3
i=1Γ(−2ni−2∆)

π2Γ(2n2−2n3+1)Γ(−2n2−2n3−4∆)Γ(2n3−2n1−2n2−2∆)

×Γ(2n3+4∆)Γ(2n2+2)Γ(1−2n2−4∆)−πcsc(4π∆)Γ(2n3+2)

Γ(2n3+2)Γ(2n2+4∆)−Γ(2n2+2)Γ(2n3+4∆)

×4F3

[
−1−2n3 −2n1−2∆ −2n3−2∆ 1+2n1+2∆

1+2n2−2n3 −2n2−2n3−4∆ 2∆
;1

]
. (C.6)

In writing it in this form we have assumed n1>n2>n3.

In section 6 we studied the generalized free field theory in a more direct way, computing

the three-point function in terms of Wick contractions, see eq. (6.5), which instead gives

the answer in the form of a triple sum.

D Fermion correlation functions

In this appendix we show how to obtain a fermion 2p-point correlation function from the

p-point correlation functions of the Oi.
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Let us start with the fermion six-point function. Since the Oi are contained in the OPE

of the fermions, it is clear that, due to conformal symmetry, one can obtain the fermion

six-point function from the three-point functions of the Oi. Indeed, such an expression was

given in eq. (3.7).15 Here we just give an alternative form of the expression.

The fermion six-point function is expressed in terms of three fermion four-point func-

tions in (4.3). Making use of the fermion four-point function in the form (4.6), and then

making use of (4.4) gives the desired expression, see figure 17,

S=

3∏
i=1

(
1

2

∫
C

dhi
2πi

ρ(hi)

chic1−hi

)∫
dτadτbdτc〈χ(τ1)χ(τ2)Oh1(τa)〉〈χ(τ3)χ(τ4)Oh2(τb)〉

×〈χ(τ5)χ(τ6)Oh3(τc)〉〈O1−h1(τa)O1−h2(τb)O1−h3(τc)〉 . (D.1)

Making use of (2.10), this can be written explicitly as,

S =

3∏
i=1

(
1

2

∫
C

dhi
2πi

ρ(hi)

)
G(τ12)|τ12|h1G(τ34)|τ34|h2G(τ56)|τ56|h3 (D.2)

× c1−h11−h21−h3

c1−h1c1−h2c1−h3

∫
dτadτbdτc

|τab|h1+h2−h3−1|τac|h1+h3−h2−1|τbc|h2+h3−h1−1

|τa1τa2|h1 |τb3τb4|h2 |τc5τc6|h3
.

This expression allows us to verify that the argument given in section 3.1 for identify-

ing the three-point function 〈O1O2O3〉 from the fermion six-point function is correct. In

particular, the three-point function is picked out as the coefficient of the term that has the

correct scaling powers of τ12,τ34,τ56, in the limit that these become small,

S=
∑

h1,h2,h3

ch1ch2ch3G(τ12)|τ12|h1G(τ34)|τ34|h2G(τ56)|τ56|h3〈Oh1(τ2)Oh2(τ4)Oh3(τ6)〉+...

(D.3)

There are two contributions to this term coming from (D.2). The first involves setting, in

the integrand, τ1 = τ2, τ3 = τ4 and τ5 = τ6, and then performing the integral. The second

involves doing a change of variables in the integral, τa→ τaτ12+τ2, τb→ τbτ34+τ4, τc→
τcτ56+τ6, then taking τ1→τ2, τ3→τ4, τ5→τ6 and then performing the integral. We then

relate c1−h1,1−h2,1−h3 to ch1,h2,h3 through repeated use of (4.12). We then recover (D.3).

There is a clear generalization of (D.1) to higher-point correlation functions. Specif-

ically, the leading order in 1/N fully connected piece of a 2p-point fermion correlation is

given by,

1

N2p

∑
i1,...,ip

〈χi1(τ1)χi2(τ2)···χip(τ2p−1)χip(τ2p)〉⊃
p∏
i=1

(
1

2

∫
C

dhi
2πi

ρ(hi)

chic1−hi

)

×
∫
dτa1 ···dτap

p∏
i=1

〈χ(τ2i−1)χ(τ2i)Ohi(τai)〉〈O1−h1(τa1)···O1−hp(τap)〉 .
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Figure 18. There is an additional contribution to the eight-point function, involving four four-

point functions meeting at a melon. This diagram is not planar, so it is difficult to draw. We have

shown it for SYK with q=6, unlike the other diagrams in the paper which are drawn for q=4.

E Contact diagrams

There is an additional contribution to the fermion eight-point function, shown in figure 18,

which has four ladders glued to a single melon,

Ec=(q−1)(q−2)(q−3)J2

∫
dτadτbG(τab)

q−4
4∏

i=1

F(τ2i−1,τ2i,τa,τb) . (E.1)

This gives rise to a contribution to the bilinear four-point function 〈O1(τ1)···O4(τ4)〉 that is,

C=c1c2c3c4(q−1)(q−2)(q−3)bq
∫
dτadτb
|τab|2

4∏
i=1

∣∣∣ τab
τiaτib

∣∣∣hi . (E.2)

This diagram is novel, and unlike the other contributions to the four-point function

studied in the body of the paper, in the sense that it is not made up of fermion six-point

functions glued together.

For a 2p-point fermion correlation function, there will be an analogous, novel, contact

diagram, consisting of p ladders glued to a melon, as long q≥p. This term takes the form,

(q−1)!

(q−p)!
J2

∫
dτadτbG(τab)

q−p
p∏

i=1

F(τ2i−1,τ2i,τa,τb), (E.3)

and gives a contribution to the p-point function 〈O1(τ1)···Op(τp)〉 that is,

c1 ···cp
(q−1)!

(q−p)!
bq
∫
dτadτb
|τab|2

p∏
i=1

∣∣∣ τab
τiaτib

∣∣∣hi . (E.4)

These integrals can be rewritten in terms of conformal cross-ratios. For instance, for the

four-point function, we change variables to,

A=
τa1τ23

τa2τ13
, B=

τb2τ13

τb1τ23
, (E.5)

15This expression is valid as long as the times in the six-point function are time-ordered, so that the OPE

is valid.
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which gives,

C=c1c2c3c4(q−1)(q−2)(q−3)bq
∣∣∣τ24

τ14

∣∣∣h12
∣∣∣τ14

τ13

∣∣∣h34 1

|τ12|h1+h2 |τ34|h3+h4

|x|h3+h4

|1−x|−h1+h2+h3
IC ,

(E.6)

where,

IC =

∫
dAdB

|1−AB|h1+h2+h3+h4−2

|A|h1 |B|h2 |(1−A)(1−B)|h3 |(A+x−1)(B+ 1
x−1)|h4

, (E.7)

where x is the cross-ratio of times. We will not proceed further with evaluating this

integral, however one could evaluate it using similar methods as those employed in the

paper: considering a restricted integration range and recognizing that portion of the integral

as giving rise to a multivariable generalized hypergeometric function, finding all solutions to

the differential equation defining this function, and then writing the result for the integral

as a linear combination of solutions, and fixing the coefficients from different scaling limits.

F Witten diagrams

In this appendix we recall the evaluation of exchange and contact Witten diagrams [38–41].

Exchange diagram. Consider an s-channel exchange Witten diagram, Ws defined

by (7.12) and shown in figure 15. This involves external fields φi dual to operators Oi
of dimension hi, and an exchanged φh, dual to an operator Oh of dimension h. Making use

of the split representation of the bulk propagator, (7.10), we write this as,

Ws=

∫
dhc
2πi

ρw(h,hc)

∫
∂AdS

dP0

∫
AdS

dXdY Ghc(X,P0)G1−hc(Y,P0)

×Gh1(X,P1)Gh2(X,P2)Gh3(Y,P3)Gh4(Y,P4), (F.1)

where the integration contour is parallel to the imaginary axis 1
2−i∞<hc<

1
2 +i∞, and we

defined,

ρw(h,hc)=
2(hc− 1

2)2

(hc−h)(hc−1+h)
. (F.2)

We see that Ws involves a product of two three-point functions (7.4), integrated over P0.

The P0 integral, done in (A.12), gives a conformal block plus its shadow, leaving,

Ws =

∫
dhc
2πi

ρw(h,hc)ΛB∂(h1,h2,hc)ΛB∂(h3,h4,1−hc)

×
[
β(hc,h34)Fhc1234(x)+β(1−hc,h12)F1−hc

1234 (x)
]
.

We change integration variables hc→1−hc for the second term, and use,

ΛB∂(h3,h4,hc)

ΛB∂(h3,h4,1−hc)
=−β(hc,h34)

Γ(hc)√
πΓ(hc− 1

2)
, (F.3)

in order to write this as,

Ws=

∫
dhc
2πi

ρ̃w(h,hc)ΛB∂(h1,h2,hc)ΛB∂(h3,h4,hc)Fhc1234(x), (F.4)
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where,

ρ̃w(h,hc)=−2
√
π

Γ(hc− 1
2)

Γ(hc)
ρw(h,hc) . (F.5)

If we wish, we can, for 0<x< 1, close the contour to the right, writing the result as the

expected sum of single-trace and double-trace conformal blocks. For simplicity, we assume

none of the hi are equal and that h1+h2>1/2 and h3+h4>1/2. Then,

Ws=d(hi,h)Fh1234+
∞∑
n=0

en(h1,h2,h3,h4,h)Fh1+h2+2n
1234 +

∞∑
n=0

en(h3,h4,h1,h2,h)Fh3+h4+2n
1234

(F.6)

where the coefficient of the single-trace block is,

d(hi,h)=2
√
π

Γ(h+ 1
2)

Γ(h)
ΛB∂(h1,h2,h)ΛB∂(h3,h4,h), (F.7)

while the coefficients of the double-trace blocks are,

en(h1,h2,h3,h4,h) = −ρ̃w(h,h1+h2+2n)ΛB∂(h3,h4,h1+h2+2n)

× Res ΛB∂(h1,h2,hc)
∣∣∣
hc=h1+h2+2n

where,

Res ΛB∂(h1,h2,hc)
∣∣∣
hc=h1+h2+2n

=−2(−1)n

n!

Γ(h1+h2+n− 1
2)Γ(h1+n)Γ(h2+n)

16πΓ(h1+ 1
2)Γ(h2+ 1

2)Γ(h1+h2+2n+ 1
2)

.

Contact diagram. One can evaluate a contact Witten diagram using similar methods.

Consider the contact diagram arising from the interaction, φ1φ2φ3φ4. We need to evaluate,

Wc=

∫
AdS

dXGh1(X,P1)Gh2(X,P2)Gh3(X,P3)Gh4(X,P4) . (F.8)

We may trivially rewrite this as,

Wc=

∫
AdS

dXdY Gh1(X,P1)Gh2(X,P2)δ(X−Y )Gh3(Y,P3)Gh4(Y,P4), (F.9)

and use the split-representation of the delta function [32],

δ(X−Y )=

∫
dhc
2πi

ρc(hc)

∫
∂AdS

dP0Ghc(X,P0)G1−hc(Y,P0), (F.10)

where the contour is as before, and,

ρc(hc)=−2

(
hc−

1

2

)2

. (F.11)

Following the same steps as in the calculation of the exchange Wittten diagram gives for

the contact Witten diagram,

Wc=

∫
dhc
2πi

ρ̃c(hc)ΛB∂(h1,h2,hc)ΛB∂(h3,h4,hc)Fhc1234(x), (F.12)
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where,

ρ̃c(hc)=−2
√
π

Γ(hc− 1
2)

Γ(hc)
ρc(hc) . (F.13)

If we wish, we can, for 0<x<1, close the contour to the right and write Wc as a sum of

double-trace conformal blocks.

A general quartic interaction in the bulk will involve derivatives. For any specific

set of derivatives it straightforward to write the contact Witten diagram as a sum of

conformal blocks, as in the above case without derivatives, but it is difficult to write a

general expression.

G An AdS2 brane in AdS3

The SYK model contains a tower of primary O(N) invariant bilinears, On, with dimensions

hn. By the AdS/CFT dictionary, these are dual to a tower of massive fields φn with masses,

m2
n=hn(hn−1) . (G.1)

For SYK at large q, the dimensions are, to leading order in 1/q, given by hn = 2n+

1. Therefore, for large n, the masses are approximates mn ≈ 2n+1. A natural way to

approximately produce a spectrum of this type is to view it as arising from a Kaluza-

Klein tower of a single scalar field in AdS2×S1.16 To account for the bulk cubic couplings

λnmkφnφmφk, it is natural to introduce a cubic interaction φ3 in the AdS2×S1 space.

One can then trivially compute the resulting cubic couplings: they are given by overlaps

of the wavefunctions eimθ along the S1. These couplings are, however, clearly a poor

approximation to the true λnmk, given in (6.29). For instance, these are of order-one,

whereas the actual λnmk grow exponentially as n,m,k uniformly get large.

The spectrum of the scalar in AdS2×S1 is only approximately that of large-q SYK

for n�1. In this appendix we will show that placing an AdS2 brane inside of AdS3, and

considering a scalar in the AdS3 spacetime, will exactly reproduce the large q SYK spec-

trum. However, the cubic couplings will still be completely off. This illustrates, perhaps

unsurprisingly, that the spectrum is not by itself a strong enough clue as to the nature of

the bulk theory.

We write AdS3 in coordinates,

ds2 =dr2+cosh2rds2
2 , (G.2)

where ds2
2 is the metric on AdS2. Which coordinates one picks on the AdS2 will not be

relevant for us; a simple choice is global coordinates,

ds2
2 =

1

cos2ρ

(
−dt2+dρ2

)
. (G.3)

The interpretation of (G.2) is that at each r there is an AdS2 space with radius coshr. The

range of r is from −∞ to ∞.

16We thank N. Nekrasov for discussions on this. See [42] for work in a similar direction.
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We place a brane at some constant r, which without loss of generality, we take to be at

r=0. The tension of the brane is tuned so that it is static; for a general discussion, see [43].

The wave equation for a scalar in AdS3,
(
�−m2

)
φ=0, in terms of coordinates (G.2) is,

1

cosh2r
∂r
(
cosh2r∂rφ

)
+

1

cosh2r
�2φ=m2φ, (G.4)

where �2 is the AdS2 Laplacian. Letting the solution be of the form,

φ(r,ρ,t)=f(r)ψ(ρ,t), f(r)=
u(r)

coshr
, (G.5)

and letting m2
2 denote the eigenvalue of the AdS2 Laplacian, �2ψ(ρ,t)=m2

2ψ(ρ,t), we get

that the radial wavefunction satisfies,

− 1

2
u′′(r)− m2

2

2cosh2r
u(r)=−(m2+1)

2
u(r) . (G.6)

This is of the form of a Schrödinger equation for a particle of energy −(m2+1)/2 in a

potential −m2
2/(2cosh2r). Note that the mass m is fixed: this is the mass of the scalar in

AdS3, which we choose at the beginning. On the other hand, m2 is arbitrary and will only

be constrained by quantization requirements. In particular, in order for −(m2+1)/2 to be

an eigenenergy of the potential, the values m2
2 can not be arbitrary. This is a bit different

from the scenario in which one compactifies along a compact manifold.

In fact, this potential is the Pöschl-Teller potential. Letting,

m2
2 =n(n+1), µ2 =m2+1, (G.7)

where n is a positive integer, the eigenenergies are µ= 1,2,...,n. The eigenfunctions are

the associated Legendre functions, u(r)=Pµλ (tanh(r)).

We will choose the AdS3 scalar to be massless, m=0. Then, from the point of view of

the AdS2 brane, a massless particle in AdS3 looks like a tower of particles with masses m2
2 =

n(n+1). This reproduces the large q SYK spectrum, up to the fact that we should keep

only odd n. This can be achieved through an appropriate choice of boundary conditions, as

the Legendre polynomials P 1
n (tanh(r)) are odd under r→−r for even n, and even for odd n.

Let us now compute the cubic couplings. In the AdS3 space we take the action,

S=

∫
dtdρdr

√
−g
(
φ�φ+λφ3

)
(G.8)

and insert

φ=

∞∑
n=1

fn(r)ψn(ρ,t), fn(r)=
1

coshr
P 1
n (tanh(r)) . (G.9)

We rewrite the action as,

S =

∫
dρdt
√
−g2

∑
n,m

(∫
fn(r)fm(r)

)
ψn(ρ,t)

(
�2−n(n+1)

)
ψm(ρ,t) (G.10)

+

∫
dρdt
√
−g2

∑
n,m,k

(∫
drcosh2rfn(r)fm(r)fk(r)

)
ψn(ρ,t)ψm(ρ,t)ψk(ρ,t),
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where g2 denotes the determinant of the AdS2 metric. Rescaling the fields,

ψ̃n=Nnψn , N2
nδnm=

∫
drfn(r)fm(r), N2

n=
2n(1+n)

1+2n
, (G.11)

we have,

S=

∫
dρdt
√
−g2

[∑
n,m

ψ̃n

(
�2−n(n+1)

)
ψ̃n+λnmkψ̃nψ̃mψ̃k

]
(G.12)

where,

λnmk=
λ

NnNmNk

∫
dr cosh2rfn(r)fm(r)fk(r) . (G.13)

Evaluating λnnn, the growth with n is slow, and inconsistent with the required couplings

of the bulk dual of SYK, (6.29).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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