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1 Introduction

Strongly coupled quantum field theories are often prohibitively difficult to study, yet, in the
rare cases that one succeeds, they reveal a wealth of phenomena. This has been evidenced
over the past decade with the remarkable integrability results in maximally supersymmetric
N = 4 Yang-Mills [1]. The integrability of N' = 4 implies that the theory is, in principle,
solvable at large N. However, in practice the solution is neither simple nor direct. Like
any matrix model, the large N dominant Feynman diagrams are planar, and there are no
known general techniques to sum planar diagrams. It would be incredibly useful to have
simpler large N models, with diagrammatic structures that allow for full summation.

Melonic models are of this type. These have arisen in a number of independent con-
texts, including: models of Bose fluids [2], models of spin glasses [3], and tensor models [4].
The specific theory we will focus on is the SYK model [5-7]: a 0 + 1 dimensional model
of Majorana fermions with g-body interactions. Through a simple extension, our results
are applicable to any melonic theory. In fact, as we will discuss later, our results extend
to an even broader class of theories, provided they have the diagrammatic structure that
higher-point correlators are built out of four-point functions. In this paper we solve SYK:
we give expressions for the connected piece of the fermion 2p-point correlation function,
for any p, to leading nontrivial order in 1/N.

What are the features of melonic theories that make them solvable? At the level of
the two-point function, it is the fact that, at leading order in 1/N, all Feynman diagrams
are iterations of melons nested within melons. This self-similarity leads to an integral
equation determining the two-point function, which in turn has a conformal solution at
strong coupling. At the level of the four-point function, all leading large N Feynman
diagrams are ladders, with an arbitrary number of rungs: summing all ladder diagrams is
no more difficult than summing a geometric series, provided one uses the appropriate basis.

The focus of this paper is the six-point function, and higher. As input, we need to know
the conformal two-point and four-point functions, but it is irrelevant to us how they were
obtained or which diagrams contributed to them. The essential property we do need is that
higher-point correlation functions have the diagrammatic structure of four-point functions
that are glued together, as shown in figure 1 for the six-point function and figure 2 for
the eight-point function. Computing the six-point function involves gluing together three
four-point functions. As the four-point function is a sum of conformal blocks, this amounts
to evaluating a conformal integral, though a nontrivial one. In all higher-point functions,
the six-point function acts like an interaction vertex. As a result, the structure of the
six-point function fully determines all higher-point correlation functions.



Figure 1. The connected fermion six-point function, to leading nontrivial order in 1/N, is given
by a sum of Feynman diagrams, of the kind shown on the right. This consists of three fermion
four-point functions, ladders, that are glued together. There are two classes of diagrams, as shown
on the right; only the second is planar. This figure, as well as all others, is for ¢ = 4 SYK, and the
lines denote the full propagators: they should be dressed with melons.

To be slightly more specific, since SYK has an O(N) symmetry after disorder averaging,
it is convenient to work with the primary, O(N) invariant, fermion bilinear operators, O;.
These are the analogs of the single-trace operators in gauge theories. The fermion six-
point function determines the three-point function of the bilinears, and hence the OPE
coefficients c193 appearing in 010y ~ c193 O3. The essential point is to regard the cio3
as analytic functions of the dimensions of the ;. All higher-point correlation functions
will be expressed in terms of contour integrals involving c;;, . We stress that cq23 are the
OPE coefficients of the single-trace operators. Somehow, their analytic structure, combined
with the fermion four-point function, is encoding the OPE coefficients of the double-trace
operators, as well as all others. We finish this introduction with a heuristic sketch of the
main result, followed by an outline of the paper.

1.1 Outline of computation

We will focus on the three-point and four-point functions of the primary O(N) invariant
bilinear operators, schematically of the form, O =), xi02"*1x,. These arise from a limit
of the fermion six-point function and eight-point functions, respectively.

The fermion six-point function consists of a sum of two classes of diagrams, “contact”
and planar, as shown in figure 1. Summing these gives the conformal three-point function
(O1(11)O2(712)O3(713)) of the O; of dimension h;. Up to a constant, cj23, the form of
the three-point function is fixed by conformal symmetry. This constant is of course the
same one that appears in the OPE, 0102 ~ c¢123 O3. In [8] we computed the contact
diagram exactly, whereas the planar diagram was evaluated in the large ¢ limit, in which the
computation simplifies. In section 3 we revisit the three-point function, and compute the
planar diagrams exactly at finite q. The form of c¢j23 involves generalized hypergeometric
functions, of type 4F3, at argument one.

In section 4 we turn to the fermion eight-point function. While the six-point function
involves gluing together three fermion four-point function, the eight-point function involves
gluing together five four-point functions, as shown in figure 2. While this at first appears
significantly more involved, it is actually quite simple, and builds off of the analytic struc-
ture of the three-point function structure constants, cij23. The essential step is to use the
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Figure 2. The fermion eight-point function is composed of Feynman diagrams such as the one
shown. It is built out of two six-point functions; the shaded circle is defined by figure 1.

representation of a CFT four-point function in terms of a contour integral over a complete
basis of S Ly conformal blocks. Specifically, for any CFT1, let ]:g34 (z) denote a conformal
block, with the subscript labeling the four external operators A;, the superscript labeling
the exchanged operator, and x denoting the conformal cross-ratio of the four times. It is a
familiar fact that the four-point function can be expanded as a sum of conformal blocks,

(A= Ag) =) cramesan Fiysa(e) (1.1)
H

where the sum is over all exchanged primaries. One may just as well write the four-point

function as a contour integral,!

oA = [ 5 Pao), (12

with some appropriately chosen f(h), where the contour consists of a line running parallel
to the imaginary axis, h = %+is, as well as circles around the positive even integers, h = 2n.
The distinction between these two expansions is that the former sums over conformal blocks
corresponding to physical operators in the theory, whereas the latter sums over the blocks
that form a complete basis. If one closes the contour in the latter, one recovers the sum in
the former.

Let us write the SYK fermion four-point function in the form of such a contour integral,

S ()X () (78) x5 (70)) = / Ih ) Fh ) | (1.3)

r c 2mi

Closing the contour yields the standard conformal block expansion, with OPE coefficients

> i XiXi ~ Y_n, ChnOh,, given by,

¢; = —Res ﬁ(h)‘h:h . (1.4)

'We are being slightly imprecise here, in that what should really enter this expression is the conformal
block plus its shadow; we will be more explicit in the main body of the paper.



The main step in evaluating the contribution to the SYK four-point function (O; ---Oy)
shown in figure 2, is to use the above contour integral representation for the intermediate
fermion four-point function. After some manipulation, we will find these diagrams are,

dh p(h)
(O1(11) - - O4(m2)) /p612h034h Figalz) . (1.5)

2mi 2

This result is simple and intuitive, following Feynman-like rules: there are cubic in-
teractions cj9p and cs4p, the conformal block of Oy, .7-"{1234, acts as the CFT analog of a
propagator, and h-space acts as the CF'T analog of Fourier space.

If one closes the contour in (1.5), one is left with the standard representation of a CF'T
four-point function as a sum of conformal blocks. The analytic structure of the integrand is
such that the only blocks that appear are those corresponding to single-trace and double-
trace operators, as should be the case. In fact, the argument leading to (1.5) is general,
and is valid for any cubic level interactions of four-point functions, not necessarily the ones
specific to SYK that were depicted in figure 1.

The expression (1.5) is just for the s-channel diagrams. We must also include the
t-channel and u-channel diagrams, which follow from the s-channel ones by a simple per-
mutation of operators. In adding these three contributions, we will over-count the diagram
which has no exchanged melons, shown later in figure 12, which must then be explicitly
subtracted off.

Outline

The paper is organized as follows: section 2 reviews the SYK model and the fermion four-
point function. The bilinear three-point function is computed in section 3 and the bilinear
four-point function is computed in section 4. Higher-point functions are studied in section 5.
The correlation functions of the bilinears, in the limit that all of them have large dimension,
reduce to the correlators of generalized free field theory of fermions in the singlet sector.
This provides a good way of studying their asymptotic behavior, via saddle point, and is
discussed in section 6. In section 7, we make some comments on what the correlators teach
us about the bulk dual of SYK, and discuss the relation between exchange Feynman dia-
grams in SYK and exchange Witten diagrams. We end in section 8 with a brief discussion.

In appendix A we review conformal blocks, the shadow formalism, and Mellin space.
Appendix B discusses the SYK correlation functions in the large ¢ limit, and appendix C
discusses the generalized free field limit. In appendix D we discuss the relation between
the fermion correlation functions and the bilinear correlation functions. In appendix E
we study additional contact Feynman diagrams that must be included in the computation
of correlation functions if ¢ is sufficiently large. In appendix F we express exchange and
contact Witten diagrams as sums of conformal blocks. In appendix G we show that the
spectrum of large ¢ SYK can be reproduced by placing an AdS, brane inside of AdSs,
however this does not reproduce the necessary cubic couplings.



2 SYK ladders

2.1 SYK basics

The SYK model describes N > 1 Majorana fermions satisfying {x;, x;} = d;;j, with action,
Stop + ngnf/K, where,

1 d
StOp = 5 Z dT Xl % XZ s (21)
=1
is the action for free Majorana fermions, and the interaction is,
ENOLIEE
Ssyr = Z /dT Jiv iy iig Xiy Xz Xig » (2.2)
a i1yeenyig=1

where the coupling J;, _;, is totally antisymmetric and, for each iy,. .., 1,4, is chosen from

a Gaussian ensemble, with variance,

N
Z (JivigoigJivig.iq) = J° . (2.3)

i9,eyig=1

(g—1)!

One can consider SYK for any even ¢ > 2, with ¢ = 4 being the prototypical case.

In the UV, at zero coupling, the total action is (2.1), and the fermions have a two-point
function given by %sgn(T). In the infrared, for J|r| > 1, the fermion two-point function
is, at leading order in 1/N,

_,sgn(7)
G<T) - b|JT‘2A ’ (24)
where b is given by,
Coigmo2al@=A) o, o L
P(A) = 2i/T2 TlTa) b = NN 271_(1 2A) tanmA,  (2.5)

and the IR dimension of the fermions is A = 1/q.

While SYK appears conformally invariant at the level of the two-point function, the
conformal invariance is broken at the level of the four-point function [5-7, 9, 10], resulting
in SYK being “nearly” conformally invariant in the infrared. There is a variant of SYK,
c¢SYK [11], which is conformally invariant at strong coupling, and in fact, for any value of
the coupling. The action for ¢SYK is Sy + SBL ., where S is given by (2.2), while Sy
is the bilocal action,

N
_ g oy osen(n—m)
So="b 2; / dridry xi(T1) Py Xi(72) - (2.6)

The distinction between SYK and ¢SYK is in the kinetic term, Siop versus Sp. As a result,
for SYK the coupling J is dimension-one, while for ¢cSYK it is dimensionless.

At strong coupling, the correlation functions of all bilinear, primary, O(N) singlet
operators O,, schematically of the form O,, = Zf\il X:0XT27x;, are the same for SYK and



Figure 3. The fermion four-point function, at order 1/N, is a sum of ladder diagrams. There are
also crossed diagrams, which are not shown.

for ¢SYK, for n > 1. The distinction between SYK and ¢cSYK appears in the correlators
involving Oy (the “h = 2” operator); it is these that break conformal invariance in SYK.
Our results for the correlation functions of the O,, that will be presented in the body of the
paper are for cSYK at strong coupling, or, equivalently, for all the O,, in SYK at strong
coupling, with the exception of those correlators involving Op.? Since cSYK is conformally
invariant for all J, it is trivial to extend the results to ¢SYK correlators at finite J.

2.2 Fermion four-point function: summing ladders

The SYK four-point function to order 1/N, is given by,

N
1 1
N2 D (alm)xa(m2)x (13X (14)) = G(112) G (734) + N7 (), (27)
ij=1
where 7190 = 7 — 7 and F is given by the sum of ladder diagrams, as shown in figure 3.
Due to the restored O(N) invariance the leading behavior in 1/N is completely captured
by F. The first diagram in figure 3, although disconnected, is suppressed by 1/N as it

requires setting the indices to be equal, ¢+ = j. This diagram is denoted by Fy,
Fo = —G(113)G(724) + G(714)G(723) . (2.8)
Letting K denote the kernel that adds a rung to the ladder,
K(ry,...m7a) = —(q— 1)JQG(Tlg)G(TQ4)G(T34)q72 , (2.9)

and then summing the ladders yields, schematically, 7 = (1 + K + K2 +...)Fy = (1 —
K)~'Fy. To write this explicitly, one should decompose Fj in terms of a complete basis of
eigenvectors of the kernel K.

The eigenvectors of the kernel are conformal three-point functions involving two
fermions and a scalar of dimension h,?

B b sgn(7i2)
<Oh(7—0)X(7—1)X(T2)> = Cp J2A ‘7_12‘2A_h’7_01’h

, 2.10
702" (2.10)

2In particular, the fermion four-point function in SYK, has a block coming from @ that breaks conformal
invariance and, at finite temperature, scales as J. We will not be including this contribution. It would give
rise to terms in the higher-point functions that scale as powers of 3J, and are straightforward to compute,
using the Op block in the fermion four-point function.

3In the current context the subscript on @, denotes that the operator has dimension h. This is different
from another usage of subscript, O,,, which denotes the operator in SYK, which in the weak coupling limit
has dimension 2A + 2n + 1. Finally, we will also sometimes use the shorthand O; to mean O, .
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Figure 4. The contour of integration C in the complex h-plane.

and have corresponding eigenvalues [5-7],

Y(A) v -A-3)
V(I —A) w(Aa-1)
where ¥(A) was defined in (2.5). For our purposes, one should regard the right side

of (2.10) as defining what we mean by the left side. It is manifest that k.(h) = k.(1—h), and
moreover, that the singularities of k.(h) in the right-half complex plane are at h = 2A+2n+

kc(h) = _(q - 1)

(2.11)

1, for integer n. The three-point function involving the shadow of Oy, (O1_pxX) is also an
eigenfunction of the kernel, with the same eigenvalue, k.(h). As aresult, ¥}, defined as [10],

LR gy 0) = [ i (IO ()01 ()

(2.12)
is also an eigenfunction of the kernel. Moreover, (2.12) can be seen to be an eigenfunction

2cpe1—n

of the SL(2, R) Casimir, and is simply the sum of a conformal block and its shadow, see
appendix A. The conformal cross-ratio of times, x, is defined as,

p = 12734 (2.13)
T13724

The necessary range of h in order to form a complete basis is dictated by representation
theory of the conformal group. In even spacetime dimensions, one only needs the continuous
series, h = %l + is, where d is the dimension and —oco < s < co. In odd dimensions, the
case relevant for SYK, one must also include the discrete series, h = 2n for n > 1. The

eigenfunctions are orthonormal with respect to the Plancherel measure,

2h —1
p(h) = ———. (2.14)
T tan 5

The measure has poles at h = 2n; indeed, the complete basis includes the discrete series
specifically in order to cancel off these poles [12]. We can now write Fp, as well as F, in
terms of the complete basis of ¥, [10],

Fo(rs . 74) = Gr12)G(7a) /C %po(h)\llh(x), (2.15)
Flrse..7) = G(ri2)G(r34) /c %p(h)ﬁ/h(x), (2.16)
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Figure 5. A pictorial representation of the four-point function, split into a product of two three-
point functions (xxO), see [13], using the shadow formalism. See eq. (2.12).

where,
0 Qo ag  ke(h)
= —k(h), — , 2.1
P = ph) (), plh) = () T s (2.17)
and ag is a constant,
21 A
ag = i (2.18)

(1-A)2-A)tan7A’

and the contour of integration C in (2.15) consists of the line h = 1/2 + is with s running
from —oo to oo, as well as circles going counterclockwise around h = 2n for n > 1, see
figure 4.

A property of the measure p(h) that we will use, which follows immediately from its
definition is,

p(1 — h) = — tan? % u(h) . (2.19)

As k(1 — h) = k.(h), both p°(h) and p(h) satisfy an analogous relation.

The fermion four-point function F, written as a contour integral over h, is of the form
that was expected on general grounds, as mentioned in the introduction, (1.3). This form
of the four-point function will be very useful in our later studies of higher-point correlation
functions. Inserting into F the representation of ¥j, given in (2.12), we can pictorially view
the four-point function as shown in figure 5.

Closing the contour. In order to write the four-point function as a sum of conformal
blocks of the operators in the theory, we simply need to close the contour of integration
in (2.16).

First, consider the case of 0 < & < 1. We split the contour into the line piece and the
sum of poles,

/C A Ry () = / B d—h_p(h)qfh(x)+ZRes p(h) Up(x) . (2.20)

1is 2T0 = h=2n

Focusing first on the line piece of the contour, we write ¥y, in terms of a sum of a conformal
block and its shadow, see appendix A,

2
Gna)Glroo) [ o W)= 57 [ S o(h) [B0,01FA @)+ B1-1.0) 7 ).
’ (2.21)

2



where F’ Z is the conformal block with external fermions of dimension A and an exchanged

scalar of dimension h, while,
r(4)? F(§ —h)
L (154)20(h)

In (2.21), let us change integration variables for the second term, h — 1 — h, use the

B(h,0) = V7 (2.22)

reflection relation (2.19) for the measure, as well as,

h r'(h)?
1—tan? 20 ) =2 2.2
8,0 (1 - tan2 ) 2000 (223)
to write,
dh b? dh L'(h)? _,
— LG = — — . 2.24
GG [, pooh®) = 7oz [ SopanFie. (20
Turning now to the sum over the discrete series, we rewrite this as,
L(h)?
G(112)G (T34 Z Res p(h )’hzz J4A Z Res )fA(ZL‘) b (2.25)

n>0 n>0

where we have used that 3(1—2n,0) = 0 for n > 0 and B(h,0) = 2I'(k)?/T'(2h) for h = 2n.
Recombining the continuous and discrete series terms gives,
b? dh I'(h)?
TJiA Tp(h) (%)
c 2mi I'(2h)
Finally, we close the line piece of the contour to the right, giving a sum over the poles at

the h for which k.(h) = 1,*

F(ryeooyTa) = ]:Z(x) . (2.26)

b2
]—"(71,...,7-4):ﬁ20i}'2”(9:), 0<z<l1, (2.27)

n

where h,, are the single-trace operator dimensions, k.(h,) = 1, and we have defined [10]°

U(ha)*  (hn—=1/2) T(hy)* 1
hetn D(2hn) O tan(nhp /2) T(2hn) ki (hn)

& = _Res p(h)‘ (2.28)
One can identify the ¢, as the OPE coefficients % Zi:l x(0)x(1) ~ ﬁ Y onnOn. We
will sometimes use the short-hand, ¢j, (or ¢1) to denote ¢, for hy that is given by h; =
2A + 2n + 1 at weak coupling.

This is the expression for the fermion four-point function when the conformal cross-
ratio x in the range 0 < x < 1. For the case of > 1, we return to (2.16) and simply close
the line piece of the contour to the right, giving,

F(r1,.., 1) = G(112)G(T34 ZResp ‘ - Uy (), x>1. (2.29)

“The poles at h = 2n coming from measure u(h) are outside of the closed contour, as a result of the
piece of the contour made up of the circles at h = 2n.
5We have suppressed the 1/N scaling of ¢, ~ 1/v/N. In order to not carry around factors of 1/N, we

(p 2)

will generally suppress them. A connected p-point correlation function scales as (O1---Op) ~ 1/N



We conclude with a comment on the singularity structure in h-space of the ladder
diagrams. One can see that the first diagram in the sequence of ladders, Fy, is, in h-space,
proportional to k.(h). Similarly, a diagram with n rungs is proportional to k.(h)"*!.
Summing any finite number of ladder diagrams gives a polynomial in k.(h) which, like
k.(h), will have singularities at h = 2A+2n+1. Correspondingly, upon closing the contour
to return to physical space, the finite sum of ladder diagrams will be expressed in terms of
conformal blocks of exchanged operators of dimension 2A+2n-+1: the free-field dimensions
of the primaries, schematically of the form Y x;02""1y;. It is only when one sums an
infinite number of ladder diagrams, such as the geometric sum k.(h)(1+ke(h)+ke(h)2+...),
as in p(h) appearing in F, that the singularities of the expression are no longer where k.(h)
is singular, but rather where k.(h) = 1. Correspondingly, the expansion of F is in terms
of conformal blocks at the infrared dimensions of the primaries, the h for which k.(h) = 1.

3 Bilinear three-point function

In this section we compute, to leading nontrivial order in 1/N, the fermion six-point func-
tion, and correspondingly the three-point function (O10203) of the bilinear O(N) invariant
primaries, O;, of dimension h;.

The six-point function of the fermions can be written as,

N
% > Oalm)xa(m2)xs ()X (ra)xa(ms)xa(7s)) = - + %8(7'17-~-77'6) +.o0 0 (31)
i jl=1

where S is the lowest order term in 1/N that contains fully connected diagrams. There are
two classes of diagrams contributing to S: the “contact” diagrams, whose sum we denote
by 81, and the planar diagrams, whose sum we denote by So,

S=85+6. (3.2)

We study the contact diagrams in section 3.1, and the planar diagrams in section 3.2.
From the fermion six-point function, we will extract the three-point function of the
bilinear primary O(N) singlets,

1 €123
<Ol<7'1)02(7'2)03(7'3>> - \/N ’7—12’]11+h2—h3|7—23|h2+h3—h1‘7-13‘}11-1—}13—}12 ) (3.3)
where cq93 will have two contributions,
1 2
12 = el + ooy (3.4)

(1)

coming from the contact and the planar diagrams, respectively. We compute cjy; in sec-

tion 3.1 and c{2; in section 3.2.

~10 -
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Figure 6. The first set of diagrams (“contact” diagrams) contributing to the six-point function at
order 1/N2.

3.1 Contact diagrams

The “contact diagrams” are composed of three fermion four-point functions glued to two
interaction vertices connected by ¢ — 3 propagators, see figure 6 and the first diagram on
the right in figure 1,

S1=(q—1)(qg— 2)J2/d7ad7'b G (Tap) T3 F (11, T2 Ta, ) F (73, Tas Ta, ) F (T8, T6 Tas T) -
(3.5)
The fermion four-point function F is a sum of conformal blocks, and the functional form
of each block is fixed by conformal invariance. It will be most convenient to write the
blocks in terms of the differential operator Cy (712, 02), which sums the contributions of all
descendants associated with the primary O,, acting on a conformal three-point function,
see appendix A,

F (11,72, Ta, T) = ch (712, 02) (On(72)X(7a)X (7)) , (3.6)

where the three-point function was given in (2.10). Using this form for each of the four-
point functions appearing in &7 gives,

3
Y [T enCui(rici 82) (Ony(72)Ony (1) Oy (76))1 (3.7)
ni,n2,m3 i=1
where,
3
{On, (1) Ons (72) Oy (T3))1 = (¢ — 1)(g — 2)J2/dTadTb G(7a) " T [{Ons (r)x(70)x (7)) -
=1

(3.8)
Explicitly writing out the integrand in the expression for the three-point function of

bilinears gives,

(Ony (71) Oy (12) O (T3))1 = iy Cyng (g — 1)(q — 20 Top(r1,72,73), (3.9)

where

’Tab | h1+ho+h3—2

IS?}(TMT?’T?)) :/dTadTb (3.10)

In order to evaluate the integral, it is convenient to change integration variables to the two

710l | 7101 |20 ] 2| Top| 2 | T30 ] 3 | Tap 2

cross-ratios,
Tal723 B — Tb2713

A = b )
Ta2T13 Th1723

(3.11)
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Figure 7. The second set of diagrams (planar diagrams) contributing to the six-point function at
order 1/N?2.

resulting in a conformal thee-point function,

(1)
(1) Zyys
Tz, ms) = |71a|F1h2—ha |7y [Fa+ha—ha |y [F2+Hha—h (3.12)
with coefficients Ig%,
h1+ho+hs—2
n _ |1 — AB|™
o = [ 4B = (313)

In [8], we evaluated this integral by noticing that, after a change of variables B — 1/B,
it is of the form of a Selberg integral. Equivalently, one may notice that if the integration
range in the integral were A € (0,1) and B € (0, 1), then the result would be proportional
to a generalized hypergeometric function at argument one,

1—hy 1—hy 2—hy—hy—hs

F 1] 3.14
32[ 2—hyi—hy 2—hg—hy (3:14)

Breaking the integral in Ig% up into regions for which the integrand is analytic, identifying

the integral in each region as a particular sF5 at argument one, all of which in this case
simplify to products of ratios of gamma functions, and then adding the contributions, we
recover the result of [§],

Jm2tthaths=1p () p D (1—hy)T(1—hs)
—hi1—ha—h
T (%)

Tih= [0(h1,ha, hs)+p(ha,hs, ha)+p(hs, hi,ha)],

(3.15)
where we defined,

p(hi, ho, hs) =

F(hﬁ_hgﬁ) sin(mhg)
F(Z_h1_2h2+h3)F(Q_hl_ZhTHl?) < sin(mwhg) — sin(why + 7Th2)> - (3.16)
The contribution of the contact diagrams to the three-point function is thus,

0512)3 = cicoe3 (g —1)(qg — 2)b? Ig% : (3.17)
3.2 Planar diagrams

Turning now to the planar diagrams, these similarly consist of three fermion four-point
functions glued together, though now in a smooth way, see figure 7 as well as the second
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diagram on the right in figure 1,

Sy Z/dTadTaddedeTCch.F(Tl 32, Tas T5) D (75 ) F (73,74, T, 7a) D(Taa ) F (75,76, 6, Te) D(Tec) 5

(3.18)
where we have let D(7) denote the inverse of the propagator,

/ dro D(r10)G (702) = 8(15) - (3.19)

The D(7) are needed in (3.18) in order to strip off some of the propagators on the external
legs of the four-point functions which would, otherwise, be overcounted. In the infrared,
D(7) is simply, D(7) = —X(7) = —J2G (7)1~ L.

Applying the same logic as with the contact diagrams, and writing the fermion four-
point function in the form (3.6), gives the planar diagram contribution to the three-point
function of the O,

(O1(11)O2(72)O3(73))2 = /dTadTaddedeTchc<01 (T1)x(7a)x(75)) D(73.)
X (O2(12)x(7e)X (7)) D(Taa) (O3(73)x(76) X (7)) D(7ec) - (3.20)
Explicitly writing out the terms appearing in the integrand gives,

(01(71)O2(72) O3(73))2 (3.21)
Sgn(TachETbETEaTBbTEC) ‘Ta5|h1 —24 |'7—ca|h2_2A |7_I)E|h3_2A

’TaaTngEC\Q(l_A) ’Tla7-15|h1 | TocToa |2 | T3pT3e] 3

= cieacs b / drodradnydrsdredrs

This form exhibits all the symmetries that are manifest of the Feynman diagrams. The
integrals over 75, 73, 7 are conformal three-point integrals, and are simple to evaluate, see
appendix B of [8]. Defining,

€)= ZEF—a) T(h) T (322
gives
(O1(11)Oa(72) O3(73))2 = creacs E(h)E(ha)&(hs) LAY (1, 72, 73) (3.23)
where [8],
Ig;(ﬁ,Tg,Tg) (3.24)

— [dr,dryd —sgn(T1aT1672aT2e T35 T3¢ )| Tab|™ [ Tea | 70|37
= TalTp Tc’Tla’h1_1+2A’le‘hl-i-l—QA‘TQC’h2—1+2A’T2a’h2+1—2A’Tgb’h3—1+2A‘TSC’h3+1—2A'

In making the choice of, for instance, evaluating the 77 integral instead of the 7, integral,
some of the symmetries are no longer manifest.

To proceed with evaluating the remaining three integral, we change integration vari-
ables to the cross-ratios A, B, C, defined as,

A= Tal1732 T13Tab T2aT3c

 B= L C= .
Ta2T31 T1aT3b T23Tac

(3.25)
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This change of variables transforms Ig?) into a form that is manifestly a conformal three-

point function,

(2)
(2) _ Z)3
1123(7177—%7—3) - ’7-12’h1+h2—h3‘7—13‘}11+h3—h2’T23‘h2+h3—h1 ’ (3.26)

with a coefficient,

sgn(C(1-B)(1-C))[1-ABC|"1
‘A|h1‘1_A|1—h1—h2+h3’B|1—h1’1_B|h1+1—2A|C‘1—2A+h3|1_C’h2—1+2A :
(3.27)

72 = / dAdBdC

To evaluate this integral we note the following: if the integration range were over A €
(0,1),B € (0,1),C € (0,1), then this would be of the form of a generalized hypergeometric
function at argument equal to one,

1—hy by 2A—hg 1—hy

. 3.28
31 14hy—hs 2A 2—ho—hy’ (3.28)

4

In order to account for the other regions of integration, one should consider each region
separately and perform simple changes of variables combined with 9 F7 connection identities
and Euler’s integral transform,

ai ... ap I'(by) /1 a1 b a1 [al ces Qpo1 ]
F 12| = dttr (1—t)’ % " , 1 F,_ itz .
P q[bl - } T(ap)L(by — ap) Jo (1-1) PR b b

A faster method is the following. Consider the more general integral, which is a
function of an additional variable z,

2
I3(2) (3.29)
sgn(C(1 — B)(1 - C)) |1 — zABC|hs~1
|A[P1[1 — A[I-hi—haths| B[1=hi|] — B[ +1-2A|C|1-2A%hs|] — C[h2— 124 -

= / dAdBdC

The generalized hypergeometric function 4F3 satisfies a fourth-order differential equation.
Since the piece of this integral coming from the region A € (0,1),B € (0,1),C € (0,1) is
a 4F3, of the type (3.28), it must be the case that the integrand satisfies the appropriate
differential equation. Breaking the integral up into regions in which the integrand is an-
alytic, the integrand in each region should also satisfy the same differential equation. As
there are four solutions to the differential equation defining 4F3, the integral (3.29) should
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take a form that is a superposition of these, with some coefficients, @;,5

1—hy hy 2A—hg 1— h3

.30
14+hy—hs 2A 2— hg—hg (3:30)

T2(2) = @ 4F3[
1—hi—ho+hs hi—ha+hs 2A—hy 1—h

a, 2 | ! 2 8 2 ’ ; g
+0io 2 4 3[ 2—2hy 1—hg+hs 2A—ha+hs 72}

I T {2 h=2A 1+h =28 1-hs 2—h3—24 ]

2+hg—h3—2A 3—ho—hg—2A 2— 2A

— -1 —14+2A
+a4zh2+h3—14F3[h2+h3 hi hi+ha+hs ho—1+ h2;z}_

2ho ho+hs—1+2A ho+hs

To fix the coefficient @; we simply set z = 0 in (3.29): the integrals decouple, and are trivial
to evaluate, see appendix B of [8] for relevant equations. Similarly to fix a9, we change
integration variables A — A/(zBC), and then take small z and evaluate the integral. To
fix @3 we change variables B — B/(zAC), and for @4 we change variables C — C/(zAB).
It is convenient to define a;, which is related to @; through the coefficients £(h) that arose
earlier in performing the first three of six integrals,

= &§(h1)&(h2)€(hs) i . (3.31)
The result for the «; is the following,
T 2A+1 — T 3—ho—2A T 2+ho—2A T h3—ha T hothz—1
o1 = F( 2A H ) ( hzfQA ) E—hz-ﬁ?A ) g—hg—h;); ( 1+%2—h2
( L2522 (=5=2) T(=5=")(=%—)
T h1+h2
E hy h ) (3.32)
F( 2+h3)

F(2A+1)3 F(l 2h1) F(1}h2)2 P(2h2271) P(37h2272A) 1—\(2+h3272A)

SO T() T(RPTESR) T(R5R) T2

(1
F( 2— h3)r( h3+2 QA) F(hl—ilQ2+h3)
1— 3

h2+h )F(h3 h2+1+2A) F(l—hl-l—2h2—h3) ’

oo R [
F(l—A)3F(;)i N (71)1-\( + )F( + )
F(ha—h22+2A)F(h2+h3 1+2A) F(h1+h2 )

1= h h2+h5)

.F(3+h2—2h3—2A)F(4 ho— h5 2A)F(

5Tt is conceivable that, as result of boundary terms, this is not true. However, we have also evaluated
the integral (3.27) explicitly, by breaking it up into regions, as outlined in the previous paragraph, and
found the same answer as the one quoted below, though in a less nice form.
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(a) (b)

Figure 8. The two different kinds of vertices between three ladders, as was shown in figure 1, lead
to three kinds of contributions to the eight-point function.

F(2A2+1)3 F(1—2h1) F(1_22h2) (2+h2 2A)
_F(l —A)?’ F(%) I‘(h2) F(l h2+2A) (1 h3+2A)
)F( h1+h2+h3)r\(h1+h22+h3—1)

( 2+h3 2A )

F(l—h%—hg,) F(3—h2—2h3—2A) (h1+h2

(3.33)

’ F(hz-ghg) F(h2+h§+2A) F(l —h1 2h2+h3)1—\(1+h1 2h2 h,j)l"(Q—hl—2h2_h3) '

This completes the evaluation of the planar diagram contribution to the three-point func-
tion. The result is,

2 = creacs€(h)E(h2)é(hs) T oy, (3.34)

where IS; is a sum of four generalized hypergeometric functions with argument one, Ig:)s =

Igé(z: 1) given by (3.30). Although it is not manifest, 0522)3 must be symmetric under
all permutations of the h;. In appendix B we study cg)g) in the large ¢ limit in which it
somewhat simplifies.

Universality. The full three-point function coefficient is a sum of the contact diagram

and the planar diagram contributions, cj23 :c%)g—i—cg)g. It is instructive to write this as,

C123 20162631123 . (3.35)

There are two distinct contributions. The product of OPE coefficients ¢; of two fermions
turning into an O; reflects the sum of the ladder diagrams; this sum determines the dimen-
sions h; of the O;. The contribution Z;23 comes from gluing the ladders. It is universal in
the sense that it is determined by an integral whose parameters are the fermion dimension
A and the dimensions h;.

4 Bilinear four-point function

4.1 Cutting melons and 2p-point functions

We begin by classifying which Feynman diagrams will appear, at leading nontrivial order
in 1/N, for a 2p-point correlation function of fermions. As noted in [14], for any large N
theory, this is found by drawing all diagrams contributing to the vacuum energy and succes-
sively considering all cuts of the propagators. A single cut gives a diagram contributing to
the two-point function. Two cuts gives a contribution to the four-point function, and so on.

The diagrams contributing to the two-point function consist entirely of melons. This
is true of SYK, as well as variants of SYK [13, 15-19] and their extensions, and of certain
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Figure 9. Some of the diagrams contributing to the eight-point function. We must include
diagrams with melons exchanged in both directions (first and second line).

tensor models [4, 14, 20-24] and their extensions. A cut of a melon diagram gives a ladder
diagram, contributing to the four-point function. Starting with the four-point function,
we have two nonequivalent options of which lines we may cut. We may either cut a melon
along a rail, giving a planar diagram contribution to the six-point function, or we may cut
a melon that is along a rung, giving a “contact” diagram contribution. Proceeding to the
eight-point function, there are now four possible cuts: two from a cut of the planar six-
point diagram, and two from a cut of the contact six-point diagram. In particular, for the
planar diagram, a cut of a melon along a rail leads to a planar diagram contribution to the
eight-point function, as in figure 8 (a), while a cut of a melon along a rung leads to a mixed
planar/contact eight-point diagram, as in figure 8 (b). For the contact six-point diagram,
a cut of a melon along a rail also leads to a mixed planar/contact eight-point diagram,
while a cut of a melon along a rung leads to a contact/contact eight-point diagram, as in
figure 8 (¢). The same structure will persist for higher-point functions.

4.2 Outline

Having established the basic structure of the Feynman diagrams contributing to the eight-
point function, we now list more precisely all the diagrams that will need to summed.
Let &s(7,...,73) denote the Feynman diagram shown previously in figure 2, and let
(O1(11)--O4(14))s denote its contribution to the four-point function of the ;. In ad-
dition, let £%(7y,...,73), and correspondingly (O1(71)---O4(74))?, denote similar Feynman
diagrams, but only the planar one, and with no exchanged melons, as will be illustrated
later in figure 12. Then, the four-point function of the O; is,

(O1(m)-+0a(ra)) = ({01(71) -+ Oa(m2))s+ (2663)+ (20 4) )

—%<<Ol(7‘1)"'04(7‘4)>2+(2<—>3)+(2<—>4)> . (4.1)
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Figure 10. The three-point function of bilinears. This looks like the fermion six-point function,
with fermions brought together in pairs.

Finally, there is an additional diagram, which is discussed in appendix E, and consists of
four fermion four-point functions glued to the same melon.

Let us explain why (4.1) is correct. If we, for the moment, focus on only the planar
diagrams, then all the diagrams that need to be summed are shown in figure 9. The three
classes of diagrams in the first line are the three different channels. The diagrams in the
second line must be included as well - these are similar to the diagrams on the first line,
except now the exchanged melons are going in the other direction. For the diagrams in
which there are no exchanged melons, the top and bottom diagrams are the same, and we
should only include one of them. One can see that &s(7y,...,75) corresponds to the sum
of the first and third diagrams on the top line of figure 9. The reason it corresponds to
two sets of diagrams is because the fermion four-point function is antisymmetric under
interchange of the last two (or the first two) fermions: in summing the ladder diagrams,
there were two sets of diagrams, coming from adding rungs to the two terms in Fy in (2.8).
The sum of the three terms on the first line of (4.1) accounts for all six terms in figure 9.
The second line of (4.1) compensates for the double counting of diagrams in which no
melons are exchanged. Finally, in addition to the diagrams shown in figure 9, there are
diagrams in which the cubic vertex is contact rather than planar, such as those in figure 8;
these have already been taken into account in (4.1), as the shaded circle in the diagram in
figure 2 includes both such vertices, see figure 1.

We now turn to computing (O1(71)---O4(74))s.

4.3 Splitting and recombining conformal blocks

The eight-point function of the fermions can be written as,

% | Z (Xiy (T1) X1 (72) Xz (73) Xia (T4) Xy (75) Xis (76) Xia (77) Xia (78)) (4.2)
= A g (T )

where £ is the lowest order term in 1/N that contains fully connected diagrams.

In this section we will study the contribution to the eight-point function that was shown
in figure 2, denoted by &(71,...,73). This consists of two six-point functions glued together.
We can write a general expression for the six-point function, containing a piece S which
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Figure 11. An important step in computing the bilinear four-point function is to use the split
representation for the intermediate four-point function, as was shown previously in figure 5.

encodes the details of the interactions, attached to three external four-point functions,
S(71,...,76) (4.3)
= /dTal o 'dTaﬁ-F(Tla7—27Ta1 7Ta2)‘F(T3aT4uTa3 aTa4)~F(7—577—657—a5 aTag)Score(Tala' .. 7Ta6) .

Pictorially, §°* is the shaded circle that appeared before in figure 2. For SYK, S’ is
pictorially defined in figure 1. More explicitly, we found in section 3 that S is,

S = (q - 1) (q - 2) J2G(Ta1a2 )q_35(7a1<13 )6(Ta1 as )5(Ta2a4 )5<Ta2a6 )
+D(Tazas ) D(Tasar ) D(Tagas )
however the explicit form of $° is not relevant for the argument that follows.
Employing the same logic as used perviously in the derivation of the three-point func-

tion of bilinears from the six-point function of fermions, and utilizing the conformal block
structure of F given in (3.6), we may write for the three-point function, see figure 10,

(01(11)O2(72)O3(13)) = /dTa1 o dTae S (Tay -3 Tag)

X (O (T1)X(Tar )X (7a2))(O2(72) X (Tas ) X (7as ) (O3(73) X (Ta5 )X (Tag)) - (4.4)

With this building block, we construct £. As shown in figure 2, gluing together two
six-point functions gives,

5S(T1,...,Tg)=/d7'a1---dTanTbl o d T, S (Tay s+ 3 Tau s Toy s Thy )S ™ (Tas s+ -y Tag s Ths » Thy )
X F(T1,72,Tay s Tag ) F (T3, Ty Tag s Tag ) F (Toy s+ -5 Tog )F (5,76, Tas s Tag ) F (77,78 Tar s Tag )
Again using (3.6), the four-point function of the O is thus,
((91(71)~--(94(T4))s:/d7a1 o dTagdTy, 7o, S (Tay sy Tag s Tor Toy ) S (Tag sy Tag Thy , Thy ) (4.5)
X(O1(11)x(Tar )X(Taz )(O2(72) X (Taz )X (Tas ) F (Tor 5 764 ) (O3(73) X (Tas ) X (Tag ) (Oa(7a) X (Tar )X (Tas ) -

The fermion four-point function is a sum of conformal blocks, hypergeometric functions,
and this integral is clearly challenging to evaluate directly in position space. The crucial
step is to use the more elementary representation of the four-point function, in terms of
the complete basis Wy (z) of eigenfunctions of the conformal Casimir, as given in (2.16),

Fr i) =3 [ s 2 [y (1) O} 1)y () (46)
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where we have made use of the representation (2.12) of ¥y (z) in terms of a product of a
three-point function involving O} and a three-point function involving the shadow O_y.

With this representation of the fermion four-point function, upon comparing with
the expression (4.4) for the three-point function of O, we may write (4.5) as an integral
involving a three-point function of the external ingoing 01 and Oy and the exchanged O,
along with a three-point function involving the shadow O;_j and the external outgoing O3
and Oy, see figure 11,

(O} Outrih= [ 57 L [ 01 () Oa(r) O (O1- () Oslr) Os().
(4.7)

The integral over 7y over this product of three-point functions give a sum of a conformal
block and its shadow, now for external operators Oq,...,04, see appendix A,

(1) Ou(ri)a=3, [ P cancyiron [B(h ) Flsa )+ 801~ hobra) Fl()]

2 211 ChCl1—h
(4.8)
Here F,,,(2) is the conformal block for external operators O,...,04 and exchanged op-
erator Oy,
Flya(w)=| = e T ot : hyF(h—highbhas 2h,e),  (4.9)
T)=|—"" — €T - 5 ,41,T ), .
1234 T4 Tial [ria|PiRe rgg Ratha 24 12 34
while,

DA)T(ES)  T(—h)
F( 17}%+A)F( 171’57A) F(h)

Also, to be clear, c341_j denotes the coefficient of the three-point function of operators of

B(h,A)=vT (4.10)

dimensions hs, hyg, and 1—h: (O30401_p). The contour C consists of a line parallel to
the imaginary axis, h= %—i—is, as well as the circles around h=2n for n>1. We consider
each piece separately. Starting with the contribution from the line, and changing variables
h—1—h for the second term in (4.8), we get,

1 dh C12hC34h
. s D — —olh
(O1(71)-+-O4(14)) 2/; s 2m’p( ) c

B _ h
X {634”‘% 6(h,h34)—61271h76h tan2l5(h,h12) Floga(w) . (4.11)
C34h Cl—h C12h Ci—h 2

We now use the following relation between the coefficient c195 of the three-point function
(010204,) and that of c121_p, involving the shadow, (010201 _4),

C121—h F(%)Q _G12n F(%)Q
Ci_h F(l*h;hlg)r(lfhghm) ch I‘w(h+2h12)1—\(h,2hm) .

(4.12)

Using the explicit form of the cjo3 for SYK found in section 3, one can verify that this
relation is satisfied. However, it should be true more generally. The contribution of the
line integral (4.11) now simplifies to become,

2
((’)1(71)---(94(74))33[* QCZZPE?%Q%CSMF{BM(%) : (4.13)
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Now consider the portion of the contour integral (4.8) consisting of the circles wrapping
h=2n. Noting that for h=2n, S(1—h,h;12) vanishes, and as a result of (4.12),

B(h,hgq) 21k —<1+ = >F(h)2 (4.14)

C34h Cl_hi cosmh F(Qh) '

For h=2n, the factor in parenthesis becomes 2, and so the integrand for the portion of the
contour consisting of the circles is the same as for the line piece of the contour. Recombining
the two gives a single expression,

dh p(h) T(h)?
2mi 2 T(2h)

CronCaan Fryga () . (4.15)

(O1(r1) -+ O(ra)) s = /C

This is one of our main results. It is simple and intuitive.

4.4 Combining ingredients and comments

Universality. It is instructive to recall the form of the three-point function, as written
in (3.35), c123 =c1c2¢37123, which separates the ¢;, which arise from summing the ladders,
from Zj03 which arises from gluing the ladders. With this, the s-channel piece of the
four-point function takes the form,

dh I'(h)?
<01(T1)---O4(7'4)>5_01026364/ ( ) Ilgh134h.7-"1h234(x) . (4.16)

c2mi” "V Tan)
The four-point function, as well as all higher-point correlation functions, are analytic func-
tions of the fermion dimension A and the O; dimensions h;. As one flows from weakly
coupled cSYK to strongly coupled cSYK, the h; change, or, as one changes the order of
the interaction, ¢, the fermion dimension A =1/q changes. To the extent that h; and A
are close for these different theories, eq. (4.16) shows that the four-point functions will
also be close, and, through a simple generalization, so will all correlation functions.” A
useful case is when all the operators have large dimensions, h; > 1, as in this limit the
anomalous dimensions at strong coupling are small, h; ~2A+2n+1. This allows for the
study of this universal sector of the theory through study of weakly coupled cSYK, which
is just generalized free field theory, and will be discussed in section 6.

Closing the contour. Closing the contour in (4.15) will turn the integral over conformal
blocks in h-space into a sum over conformal blocks. To do this, we need to look at the
singularity structure of the integrand, for A in the right-half complex plane. For simplicity,
we assume none of the h; are equal.

The first term in the integrand, p(h), has poles at the dimensions of the single-trace
operators, the h=h,, for which k.(h,)=1. Next, let us look at the other term, involving the
three-point function coefficients, cp12/cp,. The contact contribution 05111)2 /ch, see eq. (3.17),

has poles at h=hi+ha+2n, as well as at h=2n+1.%2 The planar contribution 0221)2/0;“

"The statement is true to the extent that one can neglect the additional contact diagrams discussed in
appendix E.
81t may naively appear that there are also poles at h=2n, but in fact there aren’t.
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see eq. (3.34), has poles at h = hy+ho+2n as well as h =2n+1, and h =3-2A+2n.”
The poles at h =2n+1 and h = 3—2A+2n are irrelevant, since p(h =2n+1) =0 and
p(h=3—2A+2n)=0.10

Therefore, as expected, (O;---Oy)s is a sum of single-trace and double-trace conformal
blocks,

(O1(11)-+Ou(a))s = Y _ croncsanFioza(x) (4.17)
h=hn

oo C12h I‘(h)Q C3ah

+n§:0—Res [?} h=h1+ha+2n [”(h)ﬂﬁflnx(w)} h=h1+hy+2n
3 C34h (

+;)—Res [?} R

2
L(h)? cron 4,

L(2h) ¢, 1234(1‘)} h=hg+ha+2n

In appendix B we write the terms on the second and third line more explicitly, and also
study their large ¢ limit.

Let us recall why we expect that the four-point function of bilinears, at order 1/N, is
composed of single-trace and double-trace conformal blocks. On general grounds the OPE
is of the form [25],

1 1
0102Nﬁclghohm?gm]n[0102]n+ﬁd}2[ij]n[ol-oj]ﬁ..., (4.18)
where [0;0;],, denotes a double-trace operator, schematically of the form, (’),-82"(9j, and
the dots denote terms that are higher order in 1/N. If we look at the four-point function,
and apply the OPE to 0102 and to O30, then we schematically get, for the 1/N piece,

1
(O1:::Oy4) ~ N<C12h034h<0h0h>‘*’d?z[lz]nd:lm[lz]nqol@ﬂn[ol(%]”)

+dg4[34}nd%2[34]n<[O3O4}n[0304]n>) :
This structure is precisely reflected in the actual result, (4.17).

Cross-channel. As stated in eq. (4.1), in addition to the sum of the s-channel Feynman
diagrams, given by (4.15), we must also include the ¢-channel and u-channel diagrams.
The sum of the ¢- channel diagrams is simply (4.15), but with hg <> h3, and 79 <> 73 and
correspondingly for the cross-ratio x — 1/z. The sum of the u-channel diagram is (4.15),
but with ho <+ hy, and m <> 74 and correspondingly = —1—zx.

Tt is most convenient to look at 6522)3 found in section 3.2 as a function of h; (as it is symmetric under
permutations, we are free to do this). Then, all of the poles in h; arise form the gamma functions in the
ai; the generalized hypergeometric functions, as functions of hi, do not have any poles.

°Tn fact, this is a bit subtle. One may notice that even though p(h) =0 for h=2n+1 or h=3-2A+2n,
one would still have a pole at these h, because the product ci2ncsan gives rise to a double pole at these
values. However, this divergence is an artifact of an earlier step, in which we exchanged the order of the
h contour integral and the time integrals. More simply stated, what we should really do is instead of the
contour C in the fermion four-point function in (4.6), we should use a contour C’ which excludes h=2n+1
and h=3—2A+2n; since the integrand vanishes at these values of h, this is a justified replacement.
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Figure 12. A contribution to the eight-point function. This was included in both lines shown
before in figure 9, and so must be subtracted due to double counting.

It is straight forward to combine these three contributions into a single expression
suited to performing the OPE. To do this, one should use (4.8), which has an integral over
the conformal block plus its shadow, Blys, () = B(h,ha)Flysy(x)+B(1—h,h12) Fiogh ().
The range of h is %—ioo <h< %—l—ioo and h=2n. Since these form a complete basis, one
could expand Blys,(1—z) and Bly,,(1/7) in terms of the basis of 31@34(33). This would be
analogous to the computation in [26], though slightly different since there one has a linear
combination of the block plus shadow block that is different from Blys,.

Combining these three channels is actually unnecessary for us, since, as we will see
later, in the bulk computation of the four-point function, there are three types of Witten
diagrams, s, t, and u channel, related to the SYK s, ¢, u channel Feynman diagrams.'!
Subtracting a planar. The first term on the second line of (4.1) is the diagram shown
in figure 12. This is similar to the sum of the s-channel exchange diagrams we already
computed, the only difference being that it only sums planar diagrams, and that instead of
the full fermion four-point function F appearing in the exchange, one has the free fermion
four-point function, Fy. This allows us to immediately write the answer,

dh p°(h) T(h)?2
(Our)-+Ourlt = [ S e i Fhate) (4.19)

Closing the contour yields a sum of both single-trace and double-trace conformal blocks.
The single-trace blocks are for operators of dimension 2A+2n+1, which serve to cancel
the same blocks that arise from expanding the exchange diagrams in the cross-channel.
The double-trace blocks are again for operators of the type [O102], and [O304]s,.

Mellin space. It is sometimes useful to represent the four-point function in Mellin space,
see appendix A.1 for our conventions. In order to find the Mellin transform of (O---Oy)s,
denoted by Ms(h;,v12), it is most convenient to use the form of the expression in (4.7). The

11t may be of interest to do this calculation anyway, in order to compute the 1 /N corrections to the
OPE coefficients. One should note, however, that we are only computing the connected piece of the
bilinear four-point function. In order to compute the 1/N anomalous dimensions of operators, one needs
to compute the disconnected diagrams as well: in particular, one needs the loop corrections to the fermion
four-point function.
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Figure 13. A contribution to the ten-point function.

integral appearing there is denoted by 8?234 in appendix A, see eq. (A.10), and its Melin
transform, MP,,(712), is given in (A.23). Therefore Mg (hi,v12) is the contour integral,

1L [ dh p(h) ~h
M. (h; =— | — M . 4.20
s(hi,r12) 2/02m' v c12n341—h Mi934(712) (4.20)

Similarly, the Mellin transform of (O;---O4)? is,

1 [ dh p°(h) ~
0 _ 2 (2 h
M; (hi7712)—2/02mch01h Clon Caq1—, M1234(712) - (4.21)

Due to the complexity of cq23, these expressions are not in themselves especially en-
lightening. In section 6 we will study the limit of h; > 1, in which the full four-point
function, as well as its Mellin transform, significantly simplify.

5 Higher-point correlation functions

In the previous section we computed the bilinear four-point function. It is straightforward
to generalize to higher-point functions. These will be expressed in terms of contour integrals
involving the p(h) from summing ladders in section 2, the ¢123 computed in section 3, and
higher-point conformal blocks.

For instance, consider a fermion ten-point function. An example of a class of diagrams
that contribute is shown in figure 13. To compute such diagrams, we use the same method
as in the previous section, writing the intermediate fermion four-point functions (of which
there are now two) in the form given by eq. (4.6). The contribution to the bilinear five-point
function is then,

<01(T1)'“(95(75)>s=1/cm plha) /thb plho) (5.1)

4 Jo 2mi cp,C1—h, Jo 270 cpyCl—p,

></dTadTb<(91(71)(92(72)(9ha(7a)><(91—ha(Ta)OS(TS)Ohb(Tb)><(91—hb(Tb)(94(74)(95(75)> :

The integrals over 7,7, will be evaluated in the next section; the result is a sum of five-point
conformal blocks and their shadows. After changing variables, h, —1—h, and h,—1—hy
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on some of the terms, similar to what was done in the case of the bilinear four-point
function, we find,

h 7hb
C12hg Cha 3hy Chy 45 F 19945 (L1,22)

(5.2)
where f;dffg (21,x2) is the five-point conformal block, depending on the two cross-ratios of

dha p(he) T(ha)? /dhb p(hy) T (hy)?
C

<01(7'1)...O5(7'5)>s:/c o c}%a ['(2hg) Je 2mi c}%b I'(2hy)

times
’ _ T12T34 . _ T23T45

- y 2= .
T13724 T247T35

x1 (5.3)

The prescription for writing a general connected p-point correlation function
(Ohy-++Op,), to leading nontrivial order in 1/N, is clear. One draws all Feynman-like
skeletons, in which the lines are ladders and there are “cubic interactions” cjo3 (where
c123 is the coefficient of (O10203) found in section 3). For each internal line, one has a
contour integral,

dha p(ha) T(ha)?
/6271'1' ¢z T(2hg) (54)

The integrand consists of the “cubic interactions” cjo3, and a p-point conformal block.
One writes down such an expression for each of the skeleton diagrams. One should then
subtract diagrams with no exchanged melons in some channels, which were over-counted;
these have the same rules but with a p® and a cg22)3 (as was discussed in the four-point
function case, eq. (4.19)). Finally, if ¢ is sufficiently large, there are additional contact
diagrams one must add, which consist of four or more ladders meeting at a melon; these
are discussed in appendix E. From the correlation functions (O, ---Op,,), one can obtain

the 2p-point fermion correlation function, as discussed in appendix D.

5.1 Five-point conformal blocks

In conformal field theories, the functional form of the building blocks of correlation func-
tions is fully fixed by conformal invariance. As discussed in appendix A, the OPE takes
the form,

01(7'1)02(7'2):2012h612h(7'12782)0h7 (5.5)
h

where Cyop,(712,02) accounts for descendants of Oy, and is fully determined by the functional
form of the three-point function. The conformal blocks are in turn fully determined by the
Ci2n(T12,02). For instance, the four-point block is,

Fioga () =Cron(T12,02) Caa1(734,04) (On(12) O (1)), (5.6)

and the five-point block is,

Flasht (21,22) = Cran, (112,02) Casn, (745, 04) (O, (12) O3(73) On, (1)) - (5.7)

To determine the higher-point conformal blocks, one simply continues to successively apply
the OPE. See [27] for a recent study, in the context of Virasoro blocks.

— 95—



An alternative way to obtain an explicit form for the higher-point S'Ls conformal blocks
is to simply evaluate the integrals that appear in the higher-point correlation function. For
instance, the expression that appeared in the five-point function is,

Bis /dTadTb<01(Tl)02(T2)Oh( a)){O1-1, (1) O3(73) O1-1, (7)) (O, (15) Oa(74) O5(75)) ,

where we have changed hj, — 1—hy, relative to (5.1), in order to make the expression more
symmetric. Through a change of variables, we rewrite this so that it is a function of the
two cross-ratios x1,z2 defined in (5.3),

1 h12 h3

12345_ |712|h1+h2‘745‘h4+h5 |734,h3

has a,b

7'35
C123457 (58)

T34

7—24
723

7'23
713

B

where,

|1 —Tqa —Tpag e thoths—2

|Ta|ha_h12 ‘Ta — 1|ha+h12 |Tb|hb+h45 |Tb_ 1 ’hb—h45 :

Clypas=lza|' |$21hb/d7ad7b (5.9)
Let us assume 0 < z1,79 < 1. From the integral definition of the Appell function F» we notice
that, if our integral were in the range 0 <7,,7 <1, then Cfé%% would be proportional to,

1=ha g 1= h s, [2 ha—hy—h3 1+hio—h, 1—hgs—hy

. 5.10
1 9 2h, 2-2hy o (5.10)

The differential equation defining the Appell function F5 has a total of four solutions, which
follow from (5.10). Our integral Cfé%% should be a linear combination of these. We set
the coefficients by studying the integral Cfég45 in various limits, similar to what we did for
the integral appearing in the three-point function in section 3.2. The result is expressed in
terms of the five-point conformal blocks,

1 h12 h3 T35 has

[Frthe s haths gy |hs Imyg | Trag | D7y
hat+hy—h3 het+hia hy—has -
Oha 2hy T2

TZ3 7'24

ha,h
f1534§($17952) =

|T12

Xzl a;Qng (5.11)

and is given by,

Blsss = B(hashy+hs—1)B(hy,hy—ha) Fissi (e1,22)
+B(1—=ha,h12)B(hy,ha+hs—1) Flogie™ (1, 2)
+B<ha,hb+h3—1>ﬁ<1—hb,h45>ff5gi;hb<x1,x2>
+B(1—hah12) B(1—hyhas) Flogse ™" (21,22),

where ((h,A) is defined in appendix A, see eq. (A.13). We established which of the four
terms in this expression is identified as the five-point conformal block by looking at the
small 7y2,745 behavior.

One could, in this way, compute six-point blocks and higher, though we will stop here.
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6 Generalized free field theory

In the previous sections we gave a prescription for determining all correlation functions in
SYK, (O, ---Op,,). The operators Oy have small anomalous dimensions when the dimension
h is large, h>1. As we showed, the correlators of these are determined from the weak
coupling limit of cSYK: generalized free field theory of fermions, and can be found through
Wick contraction. This provides significant simplification.

In this section, we study the generalized free field theory of N fermions of dimension
A, in the singlet sector. In section 6.1 we compute the correlation functions of the primary
O(N) invariant fermion bilinears. Then in section 6.2 and section 6.3 we use saddle point
analysis to simplify the three-point and four-point functions, respectively, in the limit of
large h;.

6.1 Wick contractions and generating function
The fermion bilinear, primary, O(N) invariant operators are given by,

1 N n
Onzi dnr(?:Xia?_TXia (61)
NppD

where d,,, is,

_ (-1)"
o = o S DT (A+n—r) T+ )T (A7) ° (6.2)

Due to fermion antisymmetry, only correlation functions of O,, involving odd n are nonzero.
As a result, throughout this paper O, has been used to denote what in the current language
is Ogp41; for the purposes of this section, the current definition is more convenient.

Wick contractions. The correlation functions of the O, follow trivially by Wick con-
tractions. The connected piece of a p-point correlation function is,

1 ip—Tp OT1
<On1(7'1)"'0np(7p)>:@ Z dmh"'dnprp (817 81 G(Tlp))

T1,e0Tp

X (O 052 G (112)) (0522 052 G(7a3)) -+ (a”z;l‘“*a;“f'a(rp_lp)) +perm . (6.3)

P

Using that dp, =(—1)"d;n—r, one can see that the addition of permutations gives a factor
(I—(=1)™)---(1—=(—=1)") multiplying the term we explicitly wrote. Making use of the
derivative of the two-point function,

T(2A+p) (-1)?
rea)

8?G(7’12)=G(7’12) (6.4)
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the p-point function becomes,

(Oy (1) -+ O, (1)) = N’1722 (HéniZOdd> 11((2A2;§G(le)G(TQvg)”'G(Tp—lp)G(Tlp)

i

I'(2A+n,—rp+r1)

X Z dn1r1 ) nprp(_1)72+~--7"p—l Np—Tp+T1
T1y--Tp Tlp
F(2A+n1—T1+T2) F(2A+n2 T2+7“3) (2A+np 1—Tp— 1+7"p) 6.5
n1—ri+re ng—ro+7r3 Np—1—Tp—1+7Tp ( : )
T12 723 Tp—1p

Generating function. It is convenient to introduce a generating O(7,z) which includes
all the O, (7), see for instance [28],

2)=> On(7)z" . (6.6)
n=0

Using the explicit definition of the O, in terms of fermions the generating O(7,x) becomes,
T

O(rz)= ﬁZD(va)Xi(T)D(_xaT)Xi(T)7 (6.7)
i=1

where we have defined,

D(x,7)—2m5) (ata) Eal N 1(2v/20;) . (6.8)

We now compute the correlation functions of O(7,z). The two-point function is,

<O(7'1,.’L'1)O(T2,]72)> = H(xl,Tl,—xQ,TQ)H(—IL’l,Tl,CEQ,Tz) (69)
—H(l’l,Tl,.TQ,TQ)H(—JIl,Tl,—1’2,7’2)
where
H(x1,m1,29,72) = D(21,71) D(22,72)G(12) - (6.10)

Using the definition of D(z;,7;) and acting with the derivatives on G(712), and then using
the integral definition of the Gamma function, performing the sum, and evaluating the
resulting integral, we get,

1-A
G(Tlg) (:Ele)? 1 %2 129
H(z1,7m1,22,72)= e 2 Jaq|2,/—— | . (6.11)
(QA) 7'12 7'122

If we insert H into (6.9), and Taylor expand, we recover the two-point functions
(On(11)Op(72)). In the A=0 limit these are,

2n+1 2 4n+1 1
217 N, 5 2 I'(2n+3)
(0(a1,m)0@2,m)) = ;55 QZ< ) <(2n!)) T ) AT )

(6.12)
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In the large n limit these simplify to,

((%)Y“(Z)M’ n>1. (6.13)

A p-point correlation function of the O(7,x) is a simple generalization of the two-point

function,

(O(11,21)O(12,22) - O(1p,xp)) = (6.14)

:H($1,T1,—mp,Tp)H(—fL’l,7'1,xz,TQ)H(—xg,TQ,wg,Tg)"'H(—J}p_l,Tp_l,xp,Tp)+p€I'm.

To obtain the correlators of the O,,, one should Taylor expand the right-hand side, ex-
tracting the coefficient of the " term. Upon Taylor expansion, each of the permutations
gives the same contribution, up to a sign, and serves to ensure that the correlation function
(On, (11)--On, (7)) is nonzero only for odd n;.

6.2 Asymptotic three-point function

We would like to find the form of the three-point function (O, (71)On,(72)Ons(73)) in
the limit that ni,n9,n3 > 1. This is simplest to do through study of the correlator
(O(11,21)O(12,22)O(73,23)).1? Writing this out explicitly,

1=a —
(O(1,7)O2, ) Ol 7)) = EATTIT20) W? \ s 2953\ ENCREY
I'(24) T 713 T3
T23 T13 T122
X exp <371 —x2 )JA 1( 5 >
T12713 7'127'23 7137'2 Tiy
xXJa_1| 2 —m;xg JA_ 1( 1/1:2963> +7 perm.
713
If we were to expand this, it would give, for A — 0,
(O(z1,m1)0(22,72)O(3,73)) = (6.16)
1 2n1+1 2n2+1 2n3+1 83(2)
Ty Lo L3 ninans3

— F(2A)3 (2”1) (277/2) (2”3)' ’7—12‘2 ni+ng— n3)+1‘7—23‘2 no+ns—ni +1‘7-31|2(n3+n1 n2)+1 )

where sﬁi)m% is a triple sum, see eq. (B.8).
More directly, we can extract the desired correlator through a triple contour integral
over the unit circle,

dxi

3
(On, (11) Oy (72) Opg (73)>=HfW<(9(x1a71)0($2772)0(9€3773)> : (6.17)

1211 section 3.2 we found the three-point function by evaluating Feynman diagrams, obtaining an expres-
sion in terms of a generalized hypergeometric function at argument 1; see eq. (B.8) for the expression in
the current context. However, since some of the arguments of this hypergeometric function are negative,
written as a single sum, it includes both positive and negative terms, which makes its asymptotic analysis,
in this form, difficult.
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To work with (6.15), we use the following representation of the Bessel function,

z\v [ ds 1 22
1@ =(2) [ e e (s—= 6.18
v(2) 2 /1:27” syl p< 45) (6.18)
where the contour £ comes in from —oo, circles around the origin, and returns to —oo.
With this representation of the Bessel function, we have (O, (71)Op, (72)On,(73)) in terms
of six-contour integrals. In the limit of large n;, we may evaluate these by saddle point
analysis. We will only be interested in the dominant term, and will not compute the

subleading corrections. Dropping all terms that are not exponential in the n;, and not
distinguishing between n; and n; —1, we have,

ds; dz;
(O (71) Oy (72) Oy (73)) Sg“ “2“3”3 / - Hf -

271

723 T13 T12
xexp | z1 —x2 +3
T127T13 T12723 T13723

3

Toxg 1 xrix3 1 r1x9 1

xexp | — > nilogzitsi— g — syt yo —tsz— 5o — |. (6.19)

2 2 2
i1 To3 S1 Ti3 S2 Tio S3

Note that, at this level of approximation, it makes no difference what A is. The saddle
equations from varying the s; are,

2 T2X3 2 T1X3 2 T1x2
S1=— 5 So = 5 83:— 2 . (620)
723 713 Ti2
The saddle equations from varying the x; are,
ny 3 Z2 723
e =0 (6.21)
T1 Ti382 Ti283 T12713
ng 3 x1 T13
e =0 (6.22)
T2 TH381 Tio83 T12723
ns o 1 T12
——— + + —=0. (6.23)

T3 TayS1 TizS2  T13T23

We multiply the first equation by x1, the second by x9, and the third by z3. We then
apply (6.20) to simplify the left-hand side. This gives,

723 713 T12
So+83=n1—21 , S1+83=n2+I2 , S1+S2=n3—I3 . (6.24)
T12713 T12723 T13723
We now trivially solve for the z;, and insert into (6.20) to get,
1= (ng—s1—s3)(n3—s1—s2), s3=(n1—s2—s3)(ng—s1—52),
52 = (n1—sy—s3)(no—s1—53) .
Solving gives two solutions. The first is,
nan nin nin
213 _ 113 _ 112 (6.25)

= y S2= , S3= y
ni+ng+nsg ni1+ns+ng ni+ng+mnsg
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and is the dominant saddle, while the second is,

nan3 ning ning
s1I=—"—, Sg=—— " §3=— | (6.26)
—ni+ng2+n3 ny—ng+ng ny+ng—nsg

Inserting the dominant saddle into the integrand, we find the three-point function is,

0 0 0 N 1 (eN)N
< ni (Tl) ng (7—2) n3 (7—3)> ~ |7_23|n2+n37n1 |7-13|n1+n37n2 ‘7-12|n1+n27n3 n%nl grm §n3
ni,ng,ng > 1, (6.27)

where we defined N =nq+ns+ns.
In terms of Sy nqng, comparing (6.27) with (6.16), we have that,

@ (2N)2V ~ (2N)!
Sninans ™ (9 )20 (205202 (20g) 215 (2n1)1(2na)!(2n3)!

ni,nz,nz>1. (6.28)

Equipped with the asymptotic limit of the three-point function, we can find the asymptotic
limit of the cubic couplings of the dual bulk scalars ¢, dual to Og,1 [8]. With the ¢,
canonically normalized, we have,

N!
T'(N —2n1+3)D(N —2ny+ ) T(N —2n3+3)

ni1,n2,n3>1, (6.29)

Aningng &

where we have, for simplicity, dropped any order-one factors that may have appeared. One
would ultimately like to have a string-like bulk interpretation of these couplings.

6.3 Asymptotic four-point function

To find the behavior of the four-point function (O, (71)---Op,(74)) for large n; we per-
form an analogous analysis as with the three-point function. Representing the four-point
function as a contour integral, and dropping all terms that aren’t exponential, we have,

ds; dx;
<On1 (7'1) On4 (7'4)> Sgn 7-127-237-347—41 / i H% i (630)

211
T24 T13 T13
Xexp| —I1 — T2 — X3 — T4
T12714 T12723 T237T34 T14T34
4
Tz T3 T3T4 TaT1
X exp —E n;logx;+s1+ = —l— Sot—5—+s3t—5—tsat— .
i—1 T1251 72352 73453 T4154

At large n; we can approximate the integral by its saddle. Varying with respect to the s;
gives the saddle equations,

2 T1X2

(6.31)
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Varying, in addition, with respect to x; gives the saddle equations,

ny Z2 T4 T24

Il 7'12251 T42184 T12T14 ( )
n x X T

R (6.33)
T2  Ti2S1 To3S82  T12723
n x X T
T3 To3S82 T3483 T23T34

L L S E— (6.35)

2 2 o
T4 T3yS3 Ty184 T14T34

We multiply the first equation by x1, the second by x3, and so on, and use (6.31) to simplify,

T24 713
S4+s1=n1+ x1, S1+Ss2=n2+ x2, (6.36)
T12T14 T12723
T13
So+S3=mn3+ xs3, S3+Ss4=n4+ T4 .
T23T34 T14T34

Now, using the saddle equations, at the saddle we see that the four-point function is,
1
(O (11)... 0, (74)) = exp (Zn) (6.37)
L=

Trivially solving (6.36) for the x; and inserting into (6.31) gives, in terms of the cross-
ratio x= 112734

T13T24 ’
st = (1—z)(sats1—m1)(s1+52—n2) (6.38)
52 = z(s1+52—n2)(s9+53—n3)
52 = (1—2)(sa+s3—n3)(s3+54—74)

si = x(s3+s4—nq)(s4+s1—n1) .

The solution to these equations for general n; is complicated. A simple case, which we
focus on, is when all of the dimensions n; are equal.

Equal n;. We set nj =ny=n3=n4. In this case we can simplify (6.37) to,

1
w1, (6.39)

(On,y(11)...0p, (14)) =exp(4n)
(7'12272237'??472%13%3%3%3421) 2

The symmetric product of the times can alternatively be written as,

2
1—=x
2 2 2 2 4 4
T12723734T41 = 712734 (x . (6-40)

We define s;=s;/n;. Then, since (n/e)" ~nl,
1 1 1

(m)* ()™ ((osmyss,)

(On, (11)...0p, (T1)) =

ny>1. (6.41)

To complete the evaluation of the four-point function we need to solve (6.38) for the s;,
and insert their product into (6.41). There are eight solutions to (6.38). In writing them,
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we assume that we have a time-ordered correlation function, so that cross-ratio of times is
in the range 0 <x <1. The other time orderings can be worked out in a similar fashion. Of
the eight saddle, two saddles give the product,

x—1
51598384 = —— . 6.42
51528354 = ¢ (6.42)
Another two saddles give,
e e x
4
SIS = 15—y (6.43)
while the remaining four saddles give,
e~ z(1—x)
= . 6.44
ST e at/I—a)! (644
The dominant saddle, for all values of 0 <x <1, is clearly the one for which,
e~ z(l1—x)
6.45
T L av/I—a) (645)
Inserting this into (6.41), we have,
~1 (Vz+v1—z+1)1\™" 1
@) ...0 R~ 1. 6.46
Onm--Ontr g (MR ) ol mste e

As we cross the boundaries: =0 or x =1, we observe the Stokes phenomenon: the
dominant saddle changes. This means that if we want to consider the limit of x — 0, or
x— 1, we must account for multiple saddles. This can already be seen from (6.46) since,
by itself, it has incorrect small = behavior. In particular, expanding around small x gives
rises to powers /2, however the single-trace and double-trace operators appearing in the
OPE have integer dimension, so there should not be any terms with odd m. If we were to
include one of the other saddles,

e~ z(l1—x)

51595384 = ,
1525354 (—vatvi—a)

and have it come with the same phase, then this would eliminate the odd m in the expan-

(6.47)

sion. Of course, to actually determine the phase one should compute fluctuations about
the saddle, which we have not done.

Mellin transform. It is sometimes useful to study the four-point function in Mellin
space, reviewed in appendix A.1. In terms of the variables u =22 and v= (1—2)2, the
four-point function (6.46) is,

_ /A4 )4\ ™
(O () O ) = i s ()

) (75,72, (6.48)

uv

Notice that, since v and v are not independent, we could have written this in other ways.
This ambiguity reflects the non-uniqueness of the Mellin amplitude for CFT; four-point
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Figure 14. The Witten diagrams for the AdS computation of CFT correlation functions of O.
The (a) two-point function (b) three-point function and (c¢) four-point function.

functions. However, the choice we made is natural because it is symmetric. Using the
standard Mellin-Barnes representation, we can write,

((u1/4+v1/4+1)4)”1 (6.49)

uv

(W T 4n1 /2m/2m (—4ni+s+)T(—s)D(—t) (ut)* (v1)f,

and comparing with (A.22), we find the Mellin amplitude is,

-1 16 F(4n1—4712—4714)F(4'712—4n1)1"(4'yl4—4n1)
ny!)4 T'(—4n;) I'(n1—y12—714)?T (712)*T'(714)? '

For a CFT; four-point function, it would seem more natural to consider a Mellin

M (y12,714) = ( (6.50)

amplitude that is a function of only one variable. The reason for studying a two variable
Mellin amplitude is because this is natural from the AdSs perspective, as will be discussed
in the next section.

7 Bulk

7.1 Constructing the bulk

The bilinear, primary, O(N) invariant singlets O,, are, via the AdS/CFT dictionary, dual
to scalar fields ¢, in AdSs. Knowing all large N connected correlation functions of the O,,,
in principle, fully fixes the classical bulk Lagrangian of the AdS dual of SYK.

On general grounds, we expect the bulk Lagrangian, up to order 1/N, to take the form,

Sbulk = /d If|: (a¢n) n¢n \/N nmk¢n¢m¢k

1

+N(Aﬁmmmmqﬁm+A2mkla¢n8¢m¢k¢l+...) SNCAY

~ 34—



We have not included cubic interaction terms with derivatives, as these can be eliminated
through field redefinitions [8]. At the quartic level, it is no longer possible to eliminate
derivatives, and indeed there should generically be an infinite number of independent quar-
tic terms, with various combinations of derivatives.

To establish the coefficients appearing in Spy, one should use this bulk action to
compute CFT correlation functions, and fix the coefficients so as to match the SYK cor-
relation functions. This is simple to do for the two-point and the three-point functions, as
their functional form is fixed by conformal invariance. Evaluating the Witten diagram for
the two-point function, figure 14(a), gives the standard relation between the mass of ¢,
and the dimension of O,,, m2 =h,(h,—1). From the Witten diagram for the three-point
function, figure 14(b), one obtains a simple relation between the cubic coupling Ay, and
the coefficient of the SYK three-point function, ¢pmk-

Starting with the four-point function, the mapping is more involved. Conformal
invariance restricts the four-point function to be a function of the cross-ratio, but is
insufficient to fix the functional form. As result, matching between bulk and boundary
requires matching two functions, rather than just two numbers. In particular, on the
bulk side, computation of the four-point function involves summing over the exchange
and contact Witten diagrams, shown in figure 14(c). One must sum over all exchange
diagrams: in each of the three channels there is one for each exchanged ¢,. One must also
sum over all contact Witten diagrams, accounting for the generically infinite number of
quartic terms appearing in the bulk Lagrangian.

One way of organizing the four-point function is by expanding each of the Witten
diagrams as a sum of conformal blocks, and similarly for the SYK four-point function,
and then adjusting the bulk couplings so as to make the coeflicients of all blocks match.
The matching of the single-trace blocks is automatic, as these only depend on the cubic
couplings. In particular, the s-channel Witten diagrams, expanded in terms of s-channel
blocks, will contain single-trace blocks whose coefficients will match the coefficients of the
single-trace blocks coming from the sum of s-channel SYK Feynman diagrams, that were
computed in section 4.3. The same holds for the t-channel and u-channel. The matching
of coefficients of double-trace blocks is where the challenge lies: both the exchange and
contact Witten diagrams will contain double-trace blocks, so one must adjust the quartic
couplings in order for the total coeflicients of the double-trace blocks to match the SYK
result. An approach of this type has been pursued in [29-31], in the context of the duality
between the free O(N) model and Vasiliev theory.

A more tractable way of constructing the bulk at the quartic level, at least for local
bulk theories of a few fields, is to study the four-point function in Mellin space. As discussed
in [32], a contact Witten diagram has a Mellin amplitude that is a polynomial in the Mellin
variables, whose order is set by the number of derivatives in the quartic interaction. In
previous sections we wrote the SYK four-point function in Mellin space, so one could study
it further in this context. The simplest limit is when all four operators have equal and large
dimension, in which case the Mellin amplitude takes the form (6.50). This does not have
a natural interpretation as a polynomial, nor should we have expected it to, if the bulk
Lagrangian has terms with an arbitrarily large number of derivatives, and moreover, no
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large gap. We leave an analysis of the bulk at the quartic level to future work: it is likely
that the bulk theory should be regarded as a theory of extended objects, rather than local
fields. So one should understand the CFT four-point function in this context instead.

The only thing that we will do in the rest of the section is analyze further the exchange
Witten diagrams and relate them to SYK exchange Feynman diagrams.

7.2 Preliminaries

We begin by collecting some relevant equations for AdS, computations of correlation func-
tions. The discussion follows [32], with the notational exception that there h denotes
one-half of the boundary spacetime dimension, whereas for us the boundary spacetime
dimension is one and h denotes the operator dimension.

Letting X denote a bulk coordinate and P a boundary coordinate, both in embedding
space, the bulk-boundary propagator is,

Ch I'(h)
Gp(X,P)=—————, wh Ch=—rw1—"-+—. 7.2
WX P)=gp xye Where G 27T (h+3) (7:2)
Correspondingly, this leads to a CFT two-point function,
(OWPYOWP) = 5o (7.3)
R(£1)Op(12 NN .
2

where, upon converting from embedding space to physical space, —2P; - P, = (171 —72)*.

Consider a cubic bulk interaction with coupling equal to one, ¢1¢p2¢s, involving fields
¢; dual to operators O; of dimension h;. The corresponding tree-level Witten diagram
determining the CFT three-point function involves a product of three bulk-boundary prop-
agators, see figure 14(b),

(01(P)Os(Py)O3(Py)) = /A X G (PG (X.P2) Gy (X.P) (7.4)

Evaluation of the integral gives,

Aps(hi,h2,h3)

(O1(P1)O02()03(P3)) =

(=2Py-Py) 5 (m2py - Py) R (2P ) R
(7.5)
where,
T (h1+h22+h3—1 ) T (hz-‘rhzs—fu ) T <h1+h23—h2 ) r (h1+h22—h3>
Apa(hi,ha,hs) = (7.6)

1670 (hy+3)T(he+3)T(hs+3)

As a result, the relation between the cubic couplings Ajo3 and the coefficients c193 of the
CFT three-point function is,

C
Mogg=— 2B /0,CoCs, (7.7)

Apa(hi,ha,hs3)

where the C; appear due to the CFT convention of two-point functions having norm equal
to one.
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Figure 15. A convenient way to evaluate an exchange Witten diagram is to make use of the
split-representation of the bulk two-point function.

For computing exchange Witten diagrams, we will need the bulk propagator for a field
dual to an operator of dimension h,
I'(h) 4

Ghp(X,)Y)=——— " u PR (h,h,Qh,—) : (7.8)
BB 2y/al(h+1) u

where u= (X —Y)2. One can verify the following representation of the propagator minus
the “shadow” propagator, written in terms of two bulk-boundary propagators,

/ APy G (P, X )G (Po, Y ) = ——— (GgB(X,Y)—G}Bth(X,Y)) . (7.9)
0AdS

(1—2h)
One may notice the similarity between (7.8) and the CFT; conformal blocks, and be-
tween (7.9) and the representation of the conformal block plus its shadow as a product
of a three-point function involving O and a three-point function involving its shadow,
see appendix A. This similarity will be utilized later, in connecting boundary Feynman
diagrams to bulk Witten diagrams. Performing a contour integral of (7.9) over h gives the
standard split-representation,

Gh (XY)/dhc 2(he—3)* / APy G, (X, Po)G1p, (Y, Po) (7.10)
BB\A, T )= 210 (he—h)(he—1+h) Joaas 0Gh X, 10)G1-n Y, 10), .

where the h. integral runs parallel to the imaginary axis, %—ioo <h.< %—i—ioo. Finally, a
delta function in AdS can also be written in terms of a split-representation, with the same

contour,
dh. 1
6(X—Y):—2/,(hc—)2/ dPy Gy (X, Py)G 11, (Y,Pp) . (7.11)
211 2 9AdS

7.3 Exchange Witten diagrams

Consider an s-channel exchange diagram, shown in figure 15, where a field dual to an
operator of dimension A is exchanged. This is given by,

W, = / dXdY Gp, (11,X)Gh, (19, X)G% 5 (X, Y) Gy (13,Y) G, (74,Y) (7.12)

In appendix F we evaluate this; using the split-representation for the bulk propagator gives
a nice form in terms of single-trace and double-trace conformal blocks. For the bulk dual
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of SYK, since the bulk theory contains a whole tower of fields, we must sum over all the
op, dual to Oy, that can be exchanged, requiring us to evaluate,

C12h C34h,
1
(010:0500)s hzh Ao(h1,ha,h) Aps(hs,hy,h) G (7-13)

X / dXdY G, (11,X) G, (19, X) G 5 (X, Y )Gy (73,Y )Gy (74,Y)

where we have made use of the expression (7.7) relating the cubic couplings to the SYK
three-point function coefficients. The sum is over all the physical Oy in the theory; in
particular the A >0 that satisfy the transcendental equation, k.(h)=1 given in (2.11). The
most direct way to evaluate this would be to use the expression in appendix F for a single
Witten diagram expressed as a single-trace conformal block and a sum of double-trace
blocks, see eq. (F.4), and then evaluate the sum over all the operators h,. This will yield a
sum of single-trace and double-trace blocks. The coefficients of the single-trace blocks will
clearly be the same as what was found for SYK s-channel exchange diagrams, c¢iop¢34p, See
eq. (4.17). The coefficients of the double-trace blocks, however, will be complicated. In
what follows, we will perform some manipulations to simplify them.

An important step is to start by replacing the sum over the dimensions of the exchanged
operators with a contour integral,

[ dh p(h) T(h)? C12h C34h
(0:10:0500)s = /ch' ¢z T'(2h) Apa(h1,h2,h) Apa(hs,ha,h)

Ch, (7.14)

X/dXdYGh1(TlaX)Ghz(7-27X)G%B(X>Y)Gh3(7_37Y)Gh4(7-4ay) .

To verify that this step is correct, we should check that if we close the contour in (7.14)
we get back to (7.13). In particular, the integrand in (7.14) should not have any poles
except at those h equal to the physical dimensions, k.(h)=1, and moreover, for these h
the residue of the poles should agree with what is in (7.13). The latter property is clearly
satisfied, due to the definition of ¢ in terms of the residue of p(h), (2.28). To check
the former, that there are no additional poles, recall the analytic structure of cy9p/cp,
discussed at the end of section 4.3. For A in the right-half complex plane, the only poles
we need to potentially be concerned about are at h = hj+ho+2n, however Apy(hi,he,h)
also has poles at these h, so the ratio c12,/Apg(hi,h2,h) is finite at h=hi+ho+2n. Thus,
we are justified in going from (7.13) to (7.14).
Proceeding, we make use of the property (4.12) relating c¢yop, to ¢121_p to note that,

chcizi—n  Apa(hi,ha,h) I'(2)21(3-h)
ci—ncian Apa(hi,h2,1—h) F(lfh) I'(3+h)

(7.15)

One can verify this implies the following identity,

1 1 (Chc341—h Apo(hg,ha,h)  p(1=h) chcrzi—n  Apa(ha,he,h) )
2 (1—-2h) \ c1-nezan Aa(hs,ha,1—=h) ~ p(h) ci_ncian Apa(hi,ha,1—h)
L'(h)?

"T(2n) -
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Inserting this identity into (7.14) we get,

dh p(h) C12h C34h
010:0304)s= | —
(01020504} /027Ti ¢, Apo(h1,ha,h) Apy(hs,ha,h)
Lo <Ch6341—h Apo(hs,ha,h) +P(1—h)ch0121—h Apo(hi,ha,h) >
2 (1-2h) \ e1-neczan Apo(hs,ha,1=h) ~ p(h) ci-pcian Apa(hi,ha,1-h)

y / AXAY G, (71, X) G, (72, X) G (X, Y G (75, Y ) Gy (72, Y )

(7.16)

Recall that the contour C has two pieces: a line parrallel to the imaginary axis, and circles
around even integers, as was shown in figure 4. Let us focus on the contribution of the line
piece. For this, we may change variables h—1—h for the second term to get,

(01020304)s D /dXdYGhl(Tl,X)GhQ(Tz,X)th (73,Y) G, (14,Y)

x/ dh p(h) C12h C341-h 1 1
h=1+is 270 cpci—p Apo(hi,hah) Apo(hs;ha,1—h) 2 (1—2h)

(Cha(X.Y)-GEHXY)).

Recalling the representation of the bulk two-point function minus its shadow, as given
in (7.9), we rewrite this as,
1/ dh p(h) C12h C341—h

h

O01050304)sD = — 7.17
(01020504) 2 Jh=1+1is 2mi chc1—p Apa(ha,ha,h) Ao (hs,ha,1—) (7.17)

X /dXdeToGhl (7‘1,X)Gh2 (TQ,X)Gh3 (Tg,Y)G}M (T4,Y)Gh(To,X)G1_h(To,Y).

Recognizing that the integral over X of three bulk-boundary propagators is what appears
in the cubic Witten diagram, (7.4), and similarly for the integral over Y, we finally have,

<0102@3O4>SD;/ dh.(h>/d70<01(71)02(72)0h(70)>((93(73)04(74)01—h(70)>~
h=1+is 2mi cpe1—p

This precisely matches the analogous SYK answer, (4.7), for the s-channel exchange Feyn-
man diagrams, for the contribution of the line piece of the contour.

If we suppose, for the moment, that the contour C necessary for a complete basis of con-
formal blocks in a one-dimensional CF'T consisted only of the line parallel to the imaginary
axis (and did not also require circles around positive even integers), then the above would
have demonstrated that the sum over all s-channel exchange Feynman diagrams in SYK
(figure 2) is equal to the sum over all s-channel exchange Witten diagrams. This would be
a remarkably simple result. Furthermore, it would imply that the SYK Feynman diagrams
with no exchanged melons, figure 12, are dual to the sum over all contact Witten diagrams.

Unfortunately, we must also include the contribution of the contour in (7.14) coming
from circles wrapping h=2n. Here we can not change variables, so as to form the combina-
tion of the bulk propagator and its shadow needed to apply (7.9). We can of course use the
expression for an individual Witten diagram as a sum of conformal blocks, and then sum
over the h=2n. This will give the same single-trace piece as in the SYK s-channel exchange
diagrams answer, as it must, but there will be additional double-trace terms (which, aside
from simplicity, we had no reason not to expect).
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8 Discussion

The conformal symmetry of SYK at strong coupling fully fixes the functional form of the
building blocks of all correlation functions. The dynamical information in the fermion two-
point, four-point, and six-point functions is captured by A, p(h), and cj23, respectively.
All higher-point functions are built out of these ingredients.

The structure of ¢123 is remarkable. Viewed as a function of, for instance, hg, it has
poles at precisely hs = hy+ho+2n. These poles give rise to the double-trace blocks in
the bilinear four-point function. This is presumably a general result for large N conformal
field theories: that the analytic continuation of a three-point function of scalar operators of
dimensions h; has poles at h; =h;+hj+2n, where 7,3,k are distinct and chosen from 1,2,3.13
It is essential that there be no additional poles, with the exception of those at the hg for
which p(hsg) =0, or else the bilinear four-point function would have the wrong structure.
Furthermore, the c123 are analytic functions of h; and A, and lead to universality: to the
extent that two theories in the SYK family have similar dimensions h; and A, be they
SYK at different ¢ or ¢cSYK at different couplings, the ci23, and by extension, all higher-
point functions (not accounting for the additional contact diagrams in appendix E), will
be similar. The large dimension bilinears have small anomalous dimensions. As a result,
their correlators are well approximated by those of ¢cSYK at weak coupling: generalized
free field theory of fermions of dimension A, in the singlet sector.

Knowing all large-N CFT correlation functions, in principle, determines the full tree-
level AdS dual Lagrangian. However, thinking of the bulk as a collection of fields ¢,, dual
to the O,,, with some particular masses and couplings, is not the optimal language: there
should be a string-like interpretation of the bulk, which still needs to be formulated. The
place to start understanding the bulk is with the correlators of the large dimension opera-
tors: the interactions of the very massive bulk fields. We gave a simple expression for the cu-
bic couplings of these. There is a vague resemblance to string theory: a three-point function
of vertex operators for massive string modes comes with combinatorial factors, as a result of
the derivatives. The four-point function of four equal and large dimension O, is also simple,
and should have some string-like interpretation. We hope to report on this in future work.
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A Conformal blocks

Let O; be CFT; operators of dimensions h;. Performing an OPE expansion,

O1(11)Oa(2) = c121C121(T12,02) O, (A.1)
h

13A simple CFT three-point function is the one obtained by computing the Witten diagram for scalars
with cubic interaction ¢1d2¢3. This yields (7.6), which indeed has poles at h; =h;+hi+2n.
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where cyo;, are the OPE coefficients, and the function Cyop(712,02) is present in order to
include the contributions of all the decedents of Oj,. The functional form of Cyop(712,02) is
fully fixed by conformal invariance: SL(2,R) for a CFT;. In particular, applying the OPE
to the first two operators in a three-point function gives,

(O1(711)O2(12)O3(73)) = C123C123(T12,02) (O3(12) O3(73)) (A.2)

The function Cy23(712,02) can now be found in an explicit form, through Taylor expansion,
in powers of 719, of the conformal three-point function on the left-hand side of the above,

1 ’T12‘h3_h1_h2
C123(7—12782)|7_23|2h3 = Trig|Pitha—ha [ e tha—h (A-3)
hs—hi—hso
T T
= ‘ 12‘ o <1+(h2—h1—h3)12—|—...>.
|Ta3|2hs 23

Equipped with Cy23(712), through successive application of the OPE, the functional form of
the building blocks of any correlation function is fixed. In particular, consider a four-point
function, and apply the OPE either once or twice,

(01(11)02(72)O3(73)Ou(74)) = Y c12nC121(712,02) (On(72) O3(73)Oa(7a))  (AA)
h

1

‘7_24|2h :

= ZC12h634hc12h(712,52)Cs4h(734,54) (A.5)

h

The conformal blocks are identified as the functions appearing in the latter expansion,

1
f1h234(x)ECl2h(7'12;82>634h(7'34784)W, (A.6)

so that,

(O1(11)O2(72) O3(73)Oa(74)) = Y _ croncsan Fiaza (@) - (A.7)
h
The explicit functional form of the conformal blocks is in terms of a hypergeometric func-
tion [33],

hi2 h34 1

|7-12|h1+h2|7—34|h3+h4

724 T14

$h2F1(h—h12,h+h34,2h,$), (AS)

]:{1234(1'):‘

T14 713

where h;; =h;—h; and x is the conformal cross-ratio,

p=12T3 (A.9)
T13724

A simple alternative way of deriving the conformal blocks is through the shadow for-
malism [34, 35], see also [18, 36]. For an operator Oy, having dimension h, its shadow O;_y,

14The notation, ff234(:c), is somewhat inaccurate, because as a result of the prefactors, the conformal
blocks are really functions of all the times, not just x.
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has dimension 1—h. Consider the integral of a product of a three-point function involving
O}, and a three-point function involving Oq_p,

Bl = / 70 (01 (1) O(72) O (1)) {O1 1 (70) O3 (75) O (7))

_ fam el imal (A10)
- O|7—10|h+h12‘7—20‘h—h12 ’7—30‘1—h+h34|740’1—h—h34 ’ ’

After a change of variables this becomes,

1 1 hi2

‘7—12 |h1+h2 ’7—34‘h3+h4

T24

T14

atl
T13

-
81234_

h3a ‘1_x|h12—h34|$|h
/dTO‘T0|h—h12|7.0_$’h+h12|7-0_1|1—h—h34 :
(A.11)
Evaluating the integral gives a sum of a conformal block of an exchanged Oj and a con-

formal block of its shadow,
8?234:5(h7h34)-7:{1234(x)+5(1—h7h12)]:112_32($)a (A.12)

where we defined,

D(HA)D(52)  T(i-h)
F( 1—1‘§+A)F( 1—]‘5—A) I“(h)

In evaluating the integral, we have taken the cross-ratio to be in the range 0 <z < 1.

B(h>A):ﬁ

(A.13)

Through a simple change of variables, one can obtain By, for other ranges of z as well.

In the special case that the four external operators are fermions with dimension A, this
kind of integral was encountered in the SYK fermion four-point function, see eq. (2.12), in
which case U, (z) was defined as,

2

TP Vh) = A0 FR @)+ (=10 FX (@), (A14)
where F% () denotes the conformal block (A.8) with h;=A,

sgn(T12)sgn(7s4)
FA(z)=
A(w) ‘7.12|2A|734|2A

2"y Fy (h,h,2h,x) (A.15)

Since we are dealing with fermions, we have added an antisymmetry factor of
sgn(7i2)sgn(7s4) relative to the definition in (A.8).
A.1 Mellin space

Mellin space is useful for large N CFTs [32, 37]. The Mellin amplitude M(~;;) for a
four-point function is defined by,

[dr] I'(7ig)
= [ —— M (v , Al
O1(n)--0u(r)= [ ool (A16)
where the v;; have the constraints,
4
Svi=0,  vi=vi  v=—hi, (A.17)
j=1
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and the integral [dy] is over two independent ~;;, which we will take to be 712 and 714.
Solving the constraints for the others,

—hi2+h3y4
M3 =h1—v12—"714, YW=, T (A.18)
hi+hos—hs+hy —hi13—hoy
Youa = 5 — V12— 714, Y= N2 (A.19)
The four-point function can therefore be written as,
h1a—h34 hi3+hoy
(135) " 2 (734)
(O1(11) -+ O4(1a)) = 2572 )h1 9 331+h27h3+h4 (A.20)
13 (34) 2
dry12 dy1g e
- M F .. Y12 Y14
ot O (7127714) H (%]) U v ’
1<)
where,
2 2 2 2
U= 122 ?;4:91:2, v= 124 223:(1—:1;)2 . (A.21)
T13T24 T13T24

We see that, unlike in dimensions greater than one, in one dimension the cross-ratios u and v
are not independent. This leads to the non-uniqueness of the four-point Mellin amplitude.
In higher dimensions, the p-point Mellin amplitude is also not unique, for p > d+2. In
the case that all the operators have the same external dimension, h1 = hy = hg = hy, the
four-point function simplifies to,

1
(TE373,)M

dry12 d’714 2 2 2 _ _
— M I r T'(hy— — T2y T4
></ omi O (’7127’714) (712) (’714) ( 1—712 714) U v

(O1(m1)-+-O1(7a)) = (A.22)

In order to find the Mellin transform of a general four-point function, it is convenient
to have the Mellin transform of a conformal block plus its shadow, Bfys,. We will denote
this by M{L234(712,714). A simple way to find M{LQM is to start with the integral definition
of Bz, (A.10) and evaluate it through the standard Mellin-Barnes technique. After an
appropriate change of variables, it can be brought into the form (A.16), with,

1

e _ i
1234(712,714) = T( h+2h12 )I( hf2h12 )( 17h;rh34 )D( 17h27h34 )

D(y12+ 275702 D(ypp 4 1002
['(712) F(’le—ih”’;rh“)

(A.23)

B Large q limit

In this appendix we study the large ¢ limit of the three-point and four-point functions. As
a result of the fermions having a small anomalous dimension in the infrared, A=1/q, there
are some simplifications.
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For ¢>1, the dimensions of the O,, approach their free-field values, 2n+1,

12n°+n+1
hp=2n+1+2¢,, enzgm, n>1, ¢>1, (B.1)
while the OPE coefficients in the large ¢ limit behave as,
1+2 I'2n+1
2 =¢é n(1+2n) vl (2n+1) g>1. (B.2)

" (n(142n) 4+ 1) (n(142n) — 1) T (2n+ 1 )24n-2"
Three-point function

The contact diagram contribution to the three-point function (O10203) has a coefficient
that was denoted by 651)3, given in (3.17), 6512)3 20102031523, where Ig;} was given in (3.15).

Inserting (B.1) into Ilé?) and expanding to leading order in € gives [8],

T =2 et g, (B.3)

€nq€ns€ng

1) .
where 3(12?3 is,

iy = (= (B.4)
o F(%+n2+n3—n1)f’(% +n1+n3—n2)F(%+n1+n2—n3)F(1+n1+n2+n3)
720 (142n1)T(142n2)T(1+2n3)

The planar diagram contribution to the three-point function has a coefficient that was
denoted by 0322)3, given in (3.34) as 0522)3 :616203§(h1)f(hg)f(h?))zgé, where Ig% EIS%(Z =1)
was given in (3.30). Taking the large ¢ limit this simplifies. Defining

F=e+A, (B.5)
the factor, &(h,,) simplifies to,
€, 1
Ehp)="(n+=), q>1, (B.6)
€n 2
while the expression for Ig% simplifies to,
+ —\( T =\ (T - 1 1
Ig;):sg)?) (2(61 +62+)(_62++53 1(63 ta)_ F o T _) soog>1, (B.7)
€] €] €5 €5 €5 €5 €] €5 €3 €] € €5

(2)

where we are using the short hand ¢;=¢,,, and sy is,
8(2) _ (2711 +2n272n3)!(2n2+2n371)!
1237 (20, —1)!(2np—1)!(2n3—1)!(1+2ny —2n3)!
[1—2n1 242n1 1-2n3 —2n3 :|
><4F3 ;

2 1—2n2—2n3 2+2n2—2n3 ’

In writing it in this form we have assumed n; >ne >ng. Using the definition of 4F3, this
may be written as a single finite sum. Previously, in [8], we found (B.7) without taking
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the large ¢ limit of the exact answer, but rather by evaluating the integral I g% to leading
order in 1/q. There we noted that sg)g is the same expression that appears in computing
the three-point function in a generalized free field theory with fermions of dimension A, in

the limit A —0. Specifically (see eq. (6.14)),

2 277,1 2712 2n3 2n1+p27p1
w-- 2 GGG ®9
PLpaps P P2 p3 P2

% 2no+p3—p2 ) [ 2n3+p1—p3 P1—p2+2n2—2n3
p3+1 p1+1 (—1—2)113—P2+2n1—2n3 >

where z is a cross ratio of times; the answer is independent of z. While it is not manifest
that (B.8) and (B.9) are the same, one can verify that they are.

Four-point function

The s-channel contribution to the four-point function was given in (4.17). The only term

that was not explicitly stated there is the residue of cx19/cp, at h="hi+ho+2n. This consists

of two terms, coming from chlgzcgll)fl—c,(lll)? Using (3.17) gives,

e iy (L mA D (1) D (1= hy)D(L—h1 —ha—2n)
ch |h=hithoron 0l T(1—h;—n)L(1—ha—n)T(3—hi—hg—n)
1
-1l . B.10
% [cosw(hﬁ-hg) } ( )

For the other contribution, using (3.34), and noting that the term giving the residue comes
from a gamma function in «y, we get,

2 _ —hy—hoy—
Rescgﬂé . 2(_1)n F(2A2+1)3 F(l 22h1)r(1 hy 2h2 2n)
cn Ih=hithoton — 7T nl T(1=A)3 T(hy) r(Rathziln)

y T 2+h12—2A) F(2+h22—2A) F(l_hé_]w)

T 1—h12+2A)F(1—h22+2A) F(hrghz)

F(2h1;—2n) F(2h1+2h22+2n—1) F(3—h1—2h2—2A) 1

F(172h2172’n)1’\(272]11722}127271) F(h1+h22+2A) F(an—l—l)

—2n 2h1+2ho+2n—1 h1—1+2A hl'l (B.11)
2h1 hi+ho—1+2A hi+hs B '

><4F3

The large ¢ limit of these expressions is not much simpler, so we won’t write it.

Another term entering the four-point function is ¢34y at h=h1+ho+2n. In the large ¢
limit, h; are close to odd integers, and so h is close to an even integer. This has a different
large ¢ limit from the one we already studied, in which all three dimensions are close to
odd integers. In the current case, two of the dimensions are odd, and one is even. Taking,
more generally,

h1=2n1+2+428, ho=2no+1+2c, h3=2n3+1+2e;, (B.12)
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Figure 16. In the limit that the coupling goes to zero, the only surviving Feynman diagram is the
one without any melons.

and assuming hj > hg > hs (the other cases can be similarly worked out), we find the large
q limit to be,

@ o (e2bes) (24201) (L4+200) (14205 (24 2 1205 —2n3)T (202 -+ 2n3)
e AT (2n1 +1)T(2n2)L(2n3)0(2+2n5 — 2n3)
—2n1 34+2n1 1-2n3 —2
o F n1 3+2n ns ng (B.13)

2 1—2n9—2n3 2+2’I’L2*2’I’L3’

It is also straightforward to take the large ¢ limit of the other piece, 0%)3, but it does not
simplify significantly.
Finally, the expression for the four-point function contains a p(h). Since the large ¢

limit of k.(h) is simple, k.(h) —2/(h(h—1)), we have that, at large ¢,

1 1 4h-2

— B.14
e1+es 2 h(h—1)—2’ ( )

p(h)—

where we took h=h;+ha+2n and used the large ¢ expression for h; given in (B.1).

C Free field theory

The ¢SYK model [11] is a variant of SYK that is conformally invariant for all values of the
coupling. All the results in the paper can be trivially generalized to ¢cSYK for arbitrary
coupling. In this appendix we study the particular limit of weak coupling, in which cSYK
becomes a generalized free field theory of fermions of dimension A.

The ¢SYK model [11] has an action made up of the SYK interaction term (2.2) along
with a bilocal kinetic term (2.6). The model has SL(2,R) symmetry for any value of the
(marginal) coupling J, with a fermion two-point function,

—sgn(T
c(r) :bmgﬂ) | (©.1)
where b is given implicitly through,
b’ 1

It is trivial to generalize the J>>1 results in the body of the paper to any value of J.
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% O *E I
Figure 17. The fermion six point function. Using the split representation of the four-point

function, we can obtain the six-point function from the three-point functions of the bilinears.

In the limit J— 0, the action becomes that of a generalized free field theory, (2.6). In
this limit the kernel k.(h) (2.11) near the poles can be expanded as,

Tn I'(2n+4A)
ko(R) = s T=2(1—-A)(1-2A . (03
)= —Gny2asn T =20 STantorearazoa) (O
At leading order in J2, the bilinear dimensions h,, are therefore,
hn=2A+2n+1+(1—2b)y, . (C.4)

Note that (1—2b) scales like J? for small J. We can now take the limit of J=0, to find for
the OPE coefficients ¢, [11],

) 2 (AA+1+4n)T(2n+1+2A)%T(2n+4A)

S VCYNE T(2n+2)0(dn+2+4A) ’

J=0. (C.5)

Let us look at the three-point function (O10203) in the limit of J—0. At zero-coupling,
the only Feynman diagrams that appear are of the type shown in figure 16. Taking the

general result for the coefficient 0522)3 given in (3.34) for the sum of the planar diagrams,

and using the dimensions (C.4), we find that cg)?), now denoted as c{rfg is,

e oo sin? (21 A)T(2A)2T (202 +2) [ o, T(—2n; —2A)
3 72T (2ny—2n3+1)T(—2n9 — 2n3 —4A)T (203 — 211 —2n9 —2A)
y I'(2n3+4A)(2n2+2)I'(1—2n9—4A) —7mesc(4rA)(2n3+-2)
F(2n3+2)F(2n2+4A)—F(2n2+2)F(2n3+4A)
—1-2n3 —2n1—2A —2n3—2A 1—|—2n1—|—2A.1 (C.6)
14+2n9—2n3 —2no—2n3—4A 2A ’ ' '
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In writing it in this form we have assumed nji >ns >ns.

In section 6 we studied the generalized free field theory in a more direct way, computing
the three-point function in terms of Wick contractions, see eq. (6.5), which instead gives
the answer in the form of a triple sum.

D Fermion correlation functions

In this appendix we show how to obtain a fermion 2p-point correlation function from the
p-point correlation functions of the O;.
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Let us start with the fermion six-point function. Since the O; are contained in the OPE
of the fermions, it is clear that, due to conformal symmetry, one can obtain the fermion
six-point function from the three-point functions of the ;. Indeed, such an expression was
given in eq. (3.7).!> Here we just give an alternative form of the expression.

The fermion six-point function is expressed in terms of three fermion four-point func-
tions in (4.3). Making use of the fermion four-point function in the form (4.6), and then
making use of (4.4) gives the desired expression, see figure 17,

S /1 [dhi p(hy)
S= — ——— | [ dradmyd7e(x(11) X (72) On, (70)) (X (73) X (74) Oy (15))
H(/ )/ bdTe (X (1) X (72) O X (73)X(74) Opy (71

2 Je 2mi cpc1—p,

X (X(75)X(76) Ong (Te) {O1-1y (Ta) O1- 1y (1) O (7)) - (D-1)

Making use of (2.10), this can be written explicitly as,

21

3
1 [dh;
5 =T1(5 [ merth)) Glrmlmal® GG (02)
=1

|h1+h2—h3—1 ’Tac|h1+h3_h2_1 |Tbc|h2+h3_h1_1

Clehyl—hol— T
X hul=hzl-hs / dr,dmydr, [7a
C1—h1C1—hyCl—hg

’TalTaZ |h1 |7—b37—b4|h2 ‘7—057—@6 |h3

This expression allows us to verify that the argument given in section 3.1 for identify-
ing the three-point function (O10203) from the fermion six-point function is correct. In
particular, the three-point function is picked out as the coefficient of the term that has the
correct scaling powers of 72,734,756, in the limit that these become small,

S=) " ChyChyCny G(112)|m12]™ G(734) 734]" G (756) 756" (Ohy (72) Oy (74) Oy (76)) + -
hi,ha,h3
(D.3)

There are two contributions to this term coming from (D.2). The first involves setting, in
the integrand, 71 =79, 73 =74 and 75 =7, and then performing the integral. The second
involves doing a change of variables in the integral, 7, — 7,712+ 72, T» = TpT34+T4, Te —
TeTs6+ 76, then taking 71 — 7o, 73 — 74, 75 — 76 and then performing the integral. We then
relate ¢1_p, 1—hy 1—hg 1O Chy hy.hy through repeated use of (4.12). We then recover (D.3).

There is a clear generalization of (D.1) to higher-point correlation functions. Specif-
ically, the leading order in 1/N fully connected piece of a 2p-point fermion correlation is

given by,
N2 Z (i (T1) X2 (72) -+ X, (T2p—1) X (T2p)) D H <2/c 27 Ch(Cl)h>
AT i=1 iCl1—h,;
p
X/dTal.--dTapH<X(7'2i—1)X(7'2i)Ohi(Tai)><Olhl (Tay)-- 01—, (Ta,)) -
i=1
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Figure 18. There is an additional contribution to the eight-point function, involving four four-
point functions meeting at a melon. This diagram is not planar, so it is difficult to draw. We have
shown it for SYK with ¢=6, unlike the other diagrams in the paper which are drawn for g=4.

E Contact diagrams

There is an additional contribution to the fermion eight-point function, shown in figure 18,
which has four ladders glued to a single melon,

4
5::_(q—1)(q_2)(q_3)J2/dTadTbG(Tab)q4H.F(Tgi_1,TQi,Ta,Tb) . (El)

i=1
This gives rise to a contribution to the bilinear four-point function (O1(71)---Oa(74)) that is,

4
dtedTy hi

Imabl? 5

Tab
TiaTib

C=cicacseqs(q—1)(g—2)(¢—3)b?

(E.2)

This diagram is novel, and unlike the other contributions to the four-point function
studied in the body of the paper, in the sense that it is not made up of fermion six-point
functions glued together.

For a 2p-point fermion correlation function, there will be an analogous, novel, contact
diagram, consisting of p ladders glued to a melon, as long g>p. This term takes the form,

—1)! P
E(q]_p§|JQ/dTadTbG(Tab)q_pr(Tm177_2i77—a;7-b)7 (E3)

i=1

and gives a contribution to the p-point function (O1(7)---Op(7p)) that is,

p
dradmy hi

‘Tab’2 i

Tab
TiaTib

(E.4)

1)1
Cl"'Cp(q )'bq

(q—p)!

=1

These integrals can be rewritten in terms of conformal cross-ratios. For instance, for the
four-point function, we change variables to,

TalT23 Ty2T13
A=Ta72 g TRTs (E.5)
Ta2T13 Ty1T23

15This expression is valid as long as the times in the six-point function are time-ordered, so that the OPE
is valid.
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which gives,

h3+hy
_ | 721112 g P | a
C=cicaezea(q—1)(g—2)(g—3)b 4 T3l |rio| 2| rgy R tha |1_$|—h1+h2+h310’
(E.6)
where,
‘1 AB|h1+h2+h3+h4—2
= | dAdB E.7
o=/ AP B A(1-B)PAre—D By )

where x is the cross-ratio of times. We will not proceed further with evaluating this
integral, however one could evaluate it using similar methods as those employed in the
paper: considering a restricted integration range and recognizing that portion of the integral
as giving rise to a multivariable generalized hypergeometric function, finding all solutions to
the differential equation defining this function, and then writing the result for the integral
as a linear combination of solutions, and fixing the coefficients from different scaling limits.

F Witten diagrams

In this appendix we recall the evaluation of exchange and contact Witten diagrams [38—41].

Exchange diagram. Consider an s-channel exchange Witten diagram, W, defined
by (7.12) and shown in figure 15. This involves external fields ¢; dual to operators O;
of dimension h;, and an exchanged ¢y, dual to an operator Oy, of dimension h. Making use
of the split representation of the bulk propagator, (7.10), we write this as,

(h,he) / dP, / dXdY G, (X,Py)G1n. (Y, Py)
0AdS AdS
XGhl (Xapl)GhQ (XaPQ)Gh:s (Y>P3)Gh4 (Y7P4)¢ (Fl)

where the integration contour is parallel to the imaginary axis 5 —i00<h.< %—i—ioo, and we
defined,

2(he—3)°
(he—h)(he—1+h)

We see that W involves a product of two three-point functions (7.4), integrated over Py.

puw(h;he) = (F.2)
The Py integral, done in (A.12), gives a conformal block plus its shadow, leaving,

dhc
(h,he)Apa(hi,ha,he)Apo(hs,ha,1—he)

[ﬂ(hc,h34>fm4< ) +BL=he,hi2) Figl (@)

We change integration variables h.— 1—h, for the second term, and use,

Apa(hs,ha,he) I'(he)
he,h ; F.3
Apo(hs.ha,l=he) Blheshan) T Val(h.—1) (F-3)
in order to write this as,
dhC - h
We= pw h h ABa(hl,hQ,h )ABa(h37h4,hc)f12C34<$), (F4)
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where,

- ( ~3)
pw(h;he) = —2V/m— =5 he)

If we wish, we can, for 0 <z <1, close the contour to the right, writing the result as the

expected sum of single-trace and double-trace conformal blocks. For simplicity, we assume

none of the h; are equal and that hy+he>1/2 and h3+hy>1/2. Then,

pu(hihe) . (F.5)

We=d(hi,h) Flosa+ Y _en(hiho,ha,ha, i) Fiagi 204y e (ha,hayha,ho,h) Figgt”
n=0 n=0

(F.6)
where the coefficient of the single-trace block is,
L(h+3)

d(hiah):2\FWA38(}117h27h)ABa(h37h47h)7 (F.7)

while the coeflicients of the double-trace blocks are,
en(h1,h2,h3,ha,h) = —pw(h,h1+hao+2n)Aps(hs, ha,h1+ha+2n)
x Res Apg(hi,hahe)
he=h1+ho+2n
where,
2(—1)" h+h+—f hi+ ho+
Res Apy(hi,ha,he) T e UL n)1 :
he=h1+ha+2n n! 167 (h1+5)T (ho+3)T(h1+ho+2n+13)

Contact diagram. One can evaluate a contact Witten diagram using similar methods.
Consider the contact diagram arising from the interaction, ¢1¢2¢3¢4. We need to evaluate,

Wc:/ dX G, (X, P1)Ghy (X, P2)Ghy (X, P3)Gh, (X, Py) . (F.8)
AdS
We may trivially rewrite this as,
Wc:/A dXdY Gp, (X, P1)Ghy (X, P2)d(X —Y)G}, (Y, P3)Gp, (Y, Ps), (F.9)
ds

and use the split-representation of the delta function [32],

dhe
S(X—Y)= / - pe(he) /8 ARG (X Bo) G (Y, ). (F.10)
ds

211

where the contour is as before, and,

pelhe)=—2 <hc—;>2 . (F.11)

Following the same steps as in the calculation of the exchange Wittten diagram gives for
the contact Witten diagram,

dhC _
W, / he)Apo(hi hashe) Apo(hs hahe) Flsy, (@), (F.12)
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where, .
Flhe)= =272 1 (F.13)
(he)

If we wish, we can, for 0 <x <1, close the contour to the right and write W, as a sum of

double-trace conformal blocks.
A general quartic interaction in the bulk will involve derivatives. For any specific
set of derivatives it straightforward to write the contact Witten diagram as a sum of
conformal blocks, as in the above case without derivatives, but it is difficult to write a

general expression.

G  An AdS; brane in AdS;

The SYK model contains a tower of primary O(N) invariant bilinears, O,,, with dimensions
hy. By the AdS/CFT dictionary, these are dual to a tower of massive fields ¢,, with masses,

m2=hp(h,—1) . (G.1)

For SYK at large ¢, the dimensions are, to leading order in 1/q, given by h, = 2n-+
1. Therefore, for large n, the masses are approximates m, =~ 2n-+1. A natural way to
approximately produce a spectrum of this type is to view it as arising from a Kaluza-
Klein tower of a single scalar field in AdSs x S*.'6 To account for the bulk cubic couplings
Ak ®n®m®r, it is natural to introduce a cubic interaction ¢3 in the AdSsxS' space.
One can then trivially compute the resulting cubic couplings: they are given by overlaps
of the wavefunctions ¢ along the S'. These couplings are, however, clearly a poor
approximation to the true Ak, given in (6.29). For instance, these are of order-one,
whereas the actual A\, grow exponentially as n,m,k uniformly get large.

The spectrum of the scalar in AdS; x S is only approximately that of large-¢ SYK
for n>1. In this appendix we will show that placing an AdSo brane inside of AdSs, and
considering a scalar in the AdSs spacetime, will exactly reproduce the large ¢ SYK spec-
trum. However, the cubic couplings will still be completely off. This illustrates, perhaps
unsurprisingly, that the spectrum is not by itself a strong enough clue as to the nature of
the bulk theory.

We write AdS3 in coordinates,

ds® =dr?*4cosh®rds3, (G.2)

where ds% is the metric on AdS,. Which coordinates one picks on the AdSs will not be
relevant for us; a simple choice is global coordinates,

ds3= (—dt*+dp?) . (G.3)

cosZp

The interpretation of (G.2) is that at each r there is an AdSy space with radius coshr. The
range of r is from —oo to oo.

Y6We thank N. Nekrasov for discussions on this. See [42] for work in a similar direction.
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We place a brane at some constant r, which without loss of generality, we take to be at
r=0. The tension of the brane is tuned so that it is static; for a general discussion, see [43].
The wave equation for a scalar in AdSs, (D—m2) ¢ =0, in terms of coordinates (G.2) is,

Oy (cosh®ro,¢) + Oap=m>¢, (G.4)

cosh?r cosh?r

where [l is the AdSs Laplacian. Letting the solution be of the form,

o(rpt) = f ) (pnt),  f(r) =) (@.5)

~ coshr’
and letting m3 denote the eigenvalue of the AdSy Laplacian, et (p,t) =m3v(p,t), we get
that the radial wavefunction satisfies,

1 m3 (m2+41)

L __
w'(r) 2cosh2ru(r) 2

5 u(r) . (G.6)

This is of the form of a Schrédinger equation for a particle of energy —(m?+1)/2 in a
potential —m3/(2cosh?r). Note that the mass m is fixed: this is the mass of the scalar in
AdSs3, which we choose at the beginning. On the other hand, mq is arbitrary and will only
be constrained by quantization requirements. In particular, in order for —(m?+1)/2 to be
an eigenenergy of the potential, the values m3 can not be arbitrary. This is a bit different
from the scenario in which one compactifies along a compact manifold.

In fact, this potential is the Poschl-Teller potential. Letting,
mi=n(n+1), p?=m2+1, (G.7)

where n is a positive integer, the eigenenergies are y=1,2,...,n. The eigenfunctions are
the associated Legendre functions, u(r)= P} (tanh(r)).

We will choose the AdSs scalar to be massless, m=0. Then, from the point of view of
the AdS, brane, a massless particle in AdS3 looks like a tower of particles with masses m3 =
n(n+1). This reproduces the large ¢ SYK spectrum, up to the fact that we should keep
only odd n. This can be achieved through an appropriate choice of boundary conditions, as
the Legendre polynomials P! (tanh(r)) are odd under r — —r for even n, and even for odd n.

Let us now compute the cubic couplings. In the AdS3 space we take the action,

S= / dtdpdry/—g(¢0¢+ A4 (G.8)

and insert -
6= FuPVnlpt),  Fulr) = Pi(tanh(r)) (G.9)

n=1

We rewrite the action as,

s = [apir=m 3 ([ 102100 ) o) (Benne0)vnlpt)  (G10)

[ apity=ga 3 ([ dreosi?f(r) ) 505) ) )i o001

n,m,k
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where go denotes the determinant of the AdSs metric. Rescaling the fields,

In=Naths  Noun= [drfu(0)fnl0), np=2n), (G.11)

we have,
§— / dpdt/=g2 [Z%(DQ—n(w 1))Jn+knmk%1§mzﬂk] (G.12)

where,
N /d 2 G.13
nmk—NnNme T COs Tfn(’f‘)fm(r)fk(T) ( : )

Evaluating Appny, the growth with n is slow, and inconsistent with the required couplings
of the bulk dual of SYK, (6.29).
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