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map from a set of gap equations of the CPN−1 model to those of the Gross-Neveu (GN)

model (or the gap equation and the Bogoliubov-de Gennes equation), which enables us to

find the self-consistent solutions. We find that the Higgs field of the CPN−1 model is given

as a zero mode of solutions of the GN model, and consequently only topologically non-

trivial solutions of the GN model yield nontrivial solutions of the CPN−1 model. A stable

single soliton is constructed from an anti-kink of the GN model and has a broken (Higgs)

phase inside its core, in which CPN−1 modes are localized, with a symmetric (confining)

phase outside. We further find a stable periodic soliton lattice constructed from a real kink

crystal in the GN model, while the Ablowitz-Kaup-Newell-Segur hierarchy yields multiple

solitons at arbitrary separations.
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1 Introduction

Nonlinear sigma models such as the CPN−1 model in 1+1 dimensions [1–4] are known to

share a number of phenomena common with 3+1 dimensional QCD, e.g. asymptotic free-

dom, dynamical mass generation, confinement, and instantons [5–12]. The mass gap can be

best shown in the large-N analysis in which one solves the gap equations self-consistently,

to be consistent with the Coleman-Mermin-Wagner (CMW) theorem forbidding a gapless

excitations in 1+1 dimensions [13, 14]. The CPN−1 model, or the CP 1 model equivalent to

the O(3) sigma model, appears in a wide range of physics from particle physics to condensed

matter physics. The relation between the 1+1 dimensional Heisenberg antiferromagnetic

spin chain and the O(3) sigma model has been shown in refs. [15, 16]. Recently, the quan-

tum phase transition, so-called deconfined criticality is proposed in the antiferromagnetic

system [17–19]. The sigma model with topological term is known to describe the integer

quantum Hall effect [20]. The supersymmetric CPN−1 model was also investigated [21, 22]

for which the all order calculation in coupling constant is possible for Gell-Mann-Low func-

tion [12], and dynamical mass gap was proved by the mirror symmetry [23]. The analogy

between 3+1 dimensional Yang-Mills theory and 1+1 dimensional sigma model, pointed

out in ref. [5], has been recently revealed in a rather nontrivial way; a non-Abelian vor-

tex string in a U(N) gauge theory with N scalar fields in the fundamental representation

carries CPN−1 moduli [24–27] (see refs. [28–31] as a review), yielding a nontrivial relation

between the CPN−1 model on the string worldsheet and the bulk gauge theory [32, 33].

The CPN−1 model defined on an interval [34–36] or on a ring [37, 38] was also studied.

The CPN−1 model or the O(3) sigma model at finite temperature and/or density was

also investigated in which Berezinskii- Kosterlitz-Thouless transition at nonzero density
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was examined [39, 40]. One of recent developments is a resurgent structure of the CPN−1

model [41–45], in which a molecule of fractional instantons [46–49] called a bion, plays a

crucial role. In spite of tremendous studies of the CPN−1 model, there was no study on

inhomogeneous configurations (such as solitons) at quantum level,except for a numerical

study of the CPN−1 model on an interval [36].

The situation is rather different for an interacting fermionic theory: the Gross-Neveu

(GN) [50] or Nambu-Jona-Lasino model [51, 52], exhibiting dynamical symmetry break-

ing of discrete or continuous chiral symmetry, thereby sharing an important property with

QCD [53–55]. This model is equivalent at the large-N limit or in the mean field approxima-

tion to a set of the Bogoliubov-de Gennes (BdG) equations and the gap equation, appearing

in condensed matter systems such as conducting polymers [56–59], superconductors, super-

fluids and ultracold atomic gases [60–62]. Self-consistent analytical solutions such as a real

kink [53, 56], a twisted (complex) kink [54], a real kink-anti-kink (polaron) [53, 63, 64], a

real kink-anti-kink-kink [55, 65, 66] and more general real solutions [67] have been known.

Recently, a theoretical progress has been achieved for inhomogeneous condensates in the

1+1 dimensional (chiral) GN model, e.g., the exact self-consistent and inhomogeneous con-

densates such as a real kink crystal [68, 69] (Larkin-Ovchinnikov(LO) state [70]), a chiral

spiral (Fulde-Ferrell(FF) state [71]), and a twisted kink crystal [72, 73] (FF-LO state)

have been found by mapping the equations to the nonlinear Schrödinger equation, and

such states have been shown to be ground states in a certain region of the phase diagram

for finite temperature and density [74]. More generally, multiple twisted kinks with ar-

bitrary phase and positions [75, 76] can be further constructed systematically due to the

integrable structure behind the model known as the Ablowitz-Kaup-Newell-Segur (AKNS)

hierarchy for the nonlinear Schrödinger equation [77–79]. Recent developments include

time-dependent soliton scatterings [80, 81], multi-component condensates [82–84], a ring

geometry [85], and an interval with a Casimir force [86].

In the present work, we reveal an unexpected relation between these two completely

different theories, the CPN−1 and GN models developed independently. By finding a

map from a set of gap equations of the CPN−1 model to those of the GN model, we

find self-consistent analytical solutions of stable inhomogeneous condensates in the quan-

tum CPN−1 model, that is, a single soliton, a soliton lattice and multiple solitons at

arbitrary separations.

2 Model and method

We consider the CPN−1 model on an infinite space:

S =

∫
dtdx [(Dµni)

∗(Dµni)− λ(n∗ini − r)] , (2.1)

where ni (i = 1, · · · , N) are complex scalar fields, Dµ = ∂µ − iAµ, and λ(x) is a Lagrange

multiplier. The “radius” r is known to have connection with a coupling constant gYM in

the Yang-Mills theory; r = 4π/g2
YM if we realize this model on a non-Abelian vortex in

U(N) gauge theory. Here we note that the model does not have kinetic term for Aµ and
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thus we focus on the case of Aµ = 0 throughout this paper. We separate ni fields into a

classical field n1 = σ (real) and ni = τi (2, · · · , N). Integrating out the τi fields, we obtain

the effective action for σ as

Seff =

∫
dtdx

[
(N − 1)Tr ln(−∂µ∂µ + λ) + ∂µσ∂

µσ − λ(σ2 − r)
]
. (2.2)

In the following we consider and the leading contribution of 1/N expansion and thus we

replace N − 1 to N .1 One can formally write down the total energy functional as

E = N
∑
n

ωn +

∫
dx
[
(∂xσ)2 + λ(σ2 − r)

]
. (2.3)

The corresponding gap equations obtained from the static condition with respect to λ and

σ are [36]

N

2

∑
n

f2
n

ωn
+ σ2 − r = 0, (2.4)

∂2
xσ − λσ = 0, (2.5)

respectively, where fn(x) and ωn are orthonormal eigenstates and eigenvalues of the fol-

lowing equation

(−∂2
x + λ)fn(x) = ω2

nfn(x). (2.6)

We need to solve eqs. (2.4)–(2.6) in a self-consistent manner. We here note from eqs. (2.5)

and (2.6) that σ is proportional to a zero mode f0.

It is well known that assuming a uniform state in infinite system, one finds the confining

(unbroken) phase with a constant λ to be a unique solution, to be consistent with the CMW

theorem. For the case of a ring, in addition to it, there is a Higgs (broken) phase with a

constant σ for a smaller ring [37, 38].

One of the main results of this paper is a map from those equations to the gap equation

and eigenvalue equation for the GN model. In order to reduce the number of equations,

we introduce the new field ∆ such as

∆2 + ∂x∆ = λ(x). (2.7)

By using this function, we find a solution to eq. (2.5):

σ = A exp

[∫ x

dy∆(y)

]
, (2.8)

where A is the integral constant. The energy in eq. (2.3) can be rewritten as

Etot = N
∑
n

ωn − r
∫ ∞
−∞

dx(∆2 + ∂x∆) + σ∂xσ|∞−∞ . (2.9)

1We note that the large N limit is considered to obtain the self-consistent equations and the rest does

not rely on the large N . Furthermore, the mean field approximation (for finite N) also yields the same

self-consistent equations. Thus the results in the following are expected to be qualitatively correct even in

the case of finite N .
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The rather nontrivial step is to rewrite eq. (2.6) as [See appendix A](
0 ∂x + ∆

−∂x + ∆ 0

)(
fn
gn

)
= ωn

(
fn
gn

)
, (2.10)

where gn’s are auxiliary fields and the elimination of gn yields eq. (2.6). We note that

eq. (2.10) together with eq. (2.7) describes a supersymmetric quantum mechanics, in which

the potential λ is given by the superpotential ∆ [87]. Eq. (2.10) is the positive energy part

of the BdG or Andreev equation which corresponds to the Hartree-Fock equation of the

GN model with N flavors [See appendix B]

LGN = ψ̄i/∂ψ +
g2

2
(ψ̄ψ)2. (2.11)

The corresponding Hartree-Fock equation becomes Hψ = Eψ, with H = −iγ5∂x + γ0∆,

where γ5 = −σ2 and γ0 = σ1 with the Pauli matrices σi. Here ∆ (real) satisfies 〈ψ̄ψ〉 =

−∆/g, which is called a gap equation. It is known that the Z2 symmetry is spontaneously

broken in the GN model, yielding two discrete vacua.

With a help of gn = (−∂x + ∆)fn/ωn, one can show that gn automatically gives a

orthonormal set if fn gives a orthonormal set. Eq. (2.10) has the particle-hole symmetry

which enables us to obtain the set {−ωn, f̃n, g̃n} from the set {ωn, fn, gn} by f̃n = fn and

g̃n = −gn. By taking the derivative of eq. (2.4) with respect to x and by substituting

eqs. (2.8) and ωngn = (−∂x + ∆)fn into that, we obtain

∆ =
N

2r

∑
n

fngn = −N
2r

∑
n

f̃ng̃n, (2.12)

which has the same form with the gap equation for the GN model. Here we note that

corresponding fermionic coupling Ng2 = N/2r is proportional to the ’t Hooft coupling in

an underlying U(N) gauge theory Ng2
YM. Since we solve the differentiated one instead of

eq. (2.4) itself, we need to fix the integration constant A for σ by substituting eq. (2.8)

into eq. (2.4). For the BdG equation (2.10) and gap equation (2.12), various exact self-

consistent solutions are already known. From eq. (2.10) one can immediately find the zero

mode solution

f0(x) ∝ exp

[∫ x

dy∆(y)

]
, (2.13)

where the corresponding auxiliary field is g0(x) = 0. The zero mode solutions f0 in the

CPN−1 and GN models are identical. As denoted below eq. (2.6), the Higgs field σ(x) in

the CPN−1 model is proportional to the zero mode, thereby exists only when corresponding

∆ in the GN model is topologically nontrivial with allowing a normalizable zero mode [88].

3 Self-consistent analytical solutions

In the GN model, a constant gap ∆ = m is a solution which can be called the Bardeen-

Cooper-Schrieffer (BCS) phase, whereas that for m = 0 is called a normal phase. We show

that the BCS and normal phases in the GN model correspond to the confining and Higgs
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phases in the CPN−1 model, respectively. For the constant solution, ωn =
√

(πn/L)2 +m2

and the degenerated eigenfunctions are f
(1)
n =

√
2 sinπnx/L, f

(2)
n =

√
2 cosπnx/L. For

both the cases, g
(i)
n (x) = (−∂x + m)fn/ωn (i = 1, 2). Here we consider the periodic

boundary condition in domain [−L/2, L/2]. The infinite system can be obtained by taking

the proper limit of L → ∞. The substitution ∆ = m and corresponding eigenstates into

eq. (2.12) yields

m =
N

r

∑
n

m

ωn
, (3.1)

while eq. (2.4) becomes

σ2 = r −N
∑
n

1

ωn
. (3.2)

We find that the condition (3.1) for m 6= 0 and (3.2) for σ = 0 are equivalent

1 =
N

r

∑
n

1

ωn
, (3.3)

which gives the well known renormalization condition of the coupling constant g2 = 4π/r.

This results in two possibilities {λ = m2, σ = 0} (confining phase) and {λ = 0, σ = const}
(Higgs phase), but only the former satisfies the gap equation (2.4) and the latter is not

allowed in the infinite system [34, 35, 37, 38].

The solution ∆ = −m tanhmx is known as a topological kink solution interpolating

two discrete vacua of the GN model, which has a zero mode localized near the kink. In

the case of kink solution, the eigenvalue is the same with the constant solution ωn =√
(πn/L)2 +m2 while the degenerated eigenfunctions are f

(i)
n = (∂x −m tanhmx)g

(i)
n /ωn

with g
(1)
n =

√
2 sinπnx/L, g

(2)
n =

√
2 cosπnx/L. We also have a normalizable zero mode

f0(x) ∝ 1/ coshmx, g0(x) = 0. Thus eq. (2.12) yields

−m tanhmx =
N

r

∑
n

−m tanhmx

ωn
, (3.4)

which indeed gives the same condition with eq. (3.1). On the other hand, eq. (2.4) implies

σ2 = r −N
∑
n

1

ωn
+

m2

cosh2mx
N
∑
n

1

ω3
n

. (3.5)

In the case of m 6= 0, eq. (3.4) yields eq. (3.3) and we reach at

σ =
m

coshmx

√
N
∑
n

1

ω3
n

, (3.6)

which has a bright solitonic profile. Again, it is indeed proportional to the zero mode

solution. In this case, the mass gap function becomes

λ(x) = m2(1− 2 cosh−2mx), (3.7)

which has a gray soliton configuration and is called the Pöschl-Teller potential [87]. Since

all the eigenenergies of this solution are non-negative, the solution is stable. In figure 1, we

– 5 –
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σ
λ
∆

-5 5-10 10

1.0

-1.0

x

Figure 1. The configuration of σ (solid line) and λ (dashed line) for ∆ = −m tanhmx (dotted

line). Here we normalize as σ(0) = 1 and m = 1.

(a) ν=0.01 (b) ν=0.99 σ λ ∆σ λ ∆

-6 -4 -2

1.0

-1.0

2 4 50 x -15 -10 -5 5 10 150

1.0

-1.0

Figure 2. The bright soliton lattice configuration of σ (solid line) and λ (dashed line) for ν = 10−2

(left figure) and ν = 1 − 10−2 (right figure). The auxiliary field ∆ (dotted line) are also plotted.

Here we set, m = 1 and normalize the peak of σ to be 1.

plot the configuration of σ(x) and the mass gap function λ(x). The energy of the soliton

can be calculated by the energy Es for the soliton configuration in eqs. (3.6) and (3.7)

subtracted by E0 for the confining phase (σ0 = 0 and λ0 = m2), for both of which the

third term in eq. (2.9) vanishes from the equation of motion (2.5) and ωn’s are the same.

We thus obtain

Es − E0 =

∫ ∞
−∞

dxr(λ0 − λs) = 4rm. (3.8)

Since σ has a localized profile function, soliton core is in the Higgs (broken) phase

where the CPN−1 modes are localized, while the bulk is in the confining (symmetric)

phase, in contrast to a uniform system allowing only the confining phase in infinite system

to be consistent with the CMW theorem. It is known that the correlation function behaves

at large distance as x−1/N in 1+1 dimension [89], which inhibits the long-range order for

finite N . Here we have obtained the Higgs phase localized with length ∼ 1/m, thus the

robustness of our solitonic solution is expected if N is sufficiently large as ln(1/m)� N .2

The above solutions can be obtained from a soliton lattice obtained from a real kink

crystal in the GN model:

∆(x) = msn(mx, ν), (3.9)

2It is also the case of the CPN−1 model on a ring: the Higgs phase is allowed for a smaller ring [37, 38].
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where sn, cn, and dn (appearing later) are the Jacobi functions and ν is elliptic parameter.

Here the periodicity of the above solution is given by ` = 4K(ν)/m, where K(ν) is a

complete elliptic integral of the first kind. This solution together with eq. (2.8) gives a

soliton lattice:

σ = A

[
−
√
νcn(x, ν) + dn(x, ν)

1−
√
ν

]± 1√
ν

. (3.10)

In figure 2, we plot the mass gap function λ and σ for ν = 10−2 and ν = 1 − 10−2. The

auxiliary field ∆ are also plotted. The Higgs field σ in this solution has a bright soliton

lattice profile. By taking ν = 1 limit for ∆ = msn(mx + K(ν), ν), λ becomes constant

and σ = 0 in the whole system. This limit corresponds to the constant solution discussed

above. On the other hand, ∆ = msn(mx+2K(ν), ν) reduces to λ = m[1−2/ cosh2mx] and

σ(x) ∝ m/ coshmx. This corresponds to the kink solution [See appendix A]. Our periodic

soliton solutions can be put on a ring, while the previous studies on the CPN−1 model on

a ring dealt with only constant configurations [37, 38].

4 Higher order self-consistent analytical solutions

In the GN model, the integrable structure enables us to systematically construct all possi-

ble exact self-consistent solutions [78, 79]. The above solutions belong to the lowest order

(n = 1) of the AKNS hierarchy (denoted by AKNSn for n = 1, 2, · · · ) for the nonlinear

Schrödinger equation [78, 79] [See appendix B]. The configuration of a kink-anti-kink (po-

laron) in the GN model [63, 64] (in AKNS2) does not yield a nontrivial solution in the

CPN−1 model, while the three kink solution (in AKNS3) [55, 65, 66]

∆ = k tanh[kx− kδ +R]− ωbe
R[sinh(m+x− kδ + 2R) + sinh(m−x+ kδ)]

cosh(m+x− kδ + 2R) + e2R cosh(m−x+ kδ)
,

does. Here ωb =
√
m2 − k2, R = (1/2) ln(m+/m−), and m± = m± k. In figure 3, we plot

the configurations of σ, λ, and ∆ for various parameter choices. The symmetric case δ = 0

(a) looks like a double copy of a single soliton in figure 1. For larger δ the middle kink is

closer to the right anti-kink than the left anti-kink in ∆ as (b), and then the amplitude

of the Higgs field σ localized in the right soliton of λ decreases with increasing δ. On

the other hand, the parameter k controls the soliton-soliton distance [(a), (c), and (d)].

The two solitons merge for larger k and eventually becomes one soliton in k → 1. This is

possible because the three kink solution belongs to the same topological sector with the

single kink solution in the GN model. In general, AKNS2k+1 (k = 1, 2, · · · ) yields solutions

of k solitons with arbitrary positions exhibiting the similar behaviors.

5 Summary

We have found the map from the GN model to the CPN−1 model, which enables us to

construct, for the first time, the exact self-consistent stable inhomogeneous solutions of

the CPN−1 model; a single soliton, a soliton lattice and multiple solitons with arbitrary

separations. The Higgs (broken) phase appears inside the soliton cores where the Higgs

field σ has bright solitonic profiles and the CPN−1 moduli are confined.
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x

1.0

-1.0

-10 5

0

σ λ ∆(c) k=1-10
-2

,δ=0

1.0

-1.0

-10 50

x

(b) k=1-10
-3

,δ=2 σ λ ∆σ λ ∆(a) k=1-10
-3

,δ=0
1.0

-1.0

-10 0

x

5

1.0

-1.0

-10 5

0 x

σ λ ∆(d) k=1-10
-1

,δ=0

Figure 3. The two bright soliton configuration of σ (solid line) and λ (dashed line). The auxiliary

field ∆ (dotted line) are also plotted. Here we set, m = 1. In figure (a) and (b) we plot the case

of δ = 0 and δ = 2, respectively, with k = 1 − 10−3. In figure (c) and (d) we plot the case of

k = 1 − 10−2 and k = 1 − 10−1, respectively, with δ = 0. In the figure, we normalize σ such that

the hight of the highest peak is 1.

It is an open question whether there is a map to the chiral GN model with continuous

chiral symmetry, which allows a variety of complex solutions. In the (chiral) GN model, the

inhomogeneous phase is stabilized at the low temperature and high density [74], or in the

presence of a chiral chemical potential, equivalent to the constant Zeeman magnetic field

on the superconductivity [60]. Such analogies in the CPN−1 model may imply a possibility

of a crystaline phase. While our periodic soliton lattice can be put on a ring, an extension

to an interval [34–36] is also possible to calculate a Casimir force [90], since the exact

solutions in the GN model on an interval have been found recently [86]. Another relation

between the CPN−1 model and the GN model in 2 + 1 dimensions has recently been found

in ref. [91] in which the large-N free energy densities for the both theories are found to be

remarkably similar. Though it would be important to see whether the similar structure also

appears in the 1 + 1 dimensions, we leave it as a future problem. The connection between

our formalism and the bosonization scheme in 1 + 1 dimensions should be also important.

The former gives the coincidence of the self-consistent equations in CPN−1 model and the

GN model, whereas the latter yields the sine-Gordon model as the bosonized model of the

GN model [89]. We also leave it as a future problem. Physical consequences of our solitons

on a non-Abelian vortex in supersymmetric gauge theories [28–31] or dense QCD [92] will

be an important problem to be explored.
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A Alternative mapping

In this appendix, we show an alternative map from the Gross-Neveu model to the CPN−1

model. In our formalism, fn’s are chosen as upper components of BdG equation (un =

fn, vn = gn) in (
0 ∂x + ∆

−∂x + ∆ 0

)(
un
vn

)
= ωn

(
un
vn

)
, (A.1)

with

λ = ∆2 + ∂x∆, σ ∝ exp

(∫ x

dy∆

)
. (A.2)

For the same ∆, one can also define

λ̃ = ∆2 − ∂x∆, σ̃ ∝ exp

(
−
∫ x

dy∆

)
. (A.3)

These functions satisfy

∂2
xσ̃ − λ̃σ = 0, (A.4)

(−∂2
x + λ̃)vn = ω2

nvn, (A.5)

(N/2r)
∑
n

unvn = ∆. (A.6)

This implies that the lower component can also be mapped to the CPN−1 model (vn = fn,

un = gn) with the Higgs field σ̃ and the mass gap function λ̃. Thus the single ∆ corresponds

to two solutions in the CPN−1 model (for ∆ = m, those are identical).

For instance, in the case of the kink solution, we obtain

∆ = m tanhmx, (A.7)

λ = m2, σ = 0, (A.8)

λ̃ = m2(1− 2sech2mx), σ̃ = A sechmx, (A.9)

whereas in the case of the anti-kink solution, we obtain

∆ = −m tanhmx, (A.10)

λ = m2(1− 2sech2mx), σ = A sechmx, (A.11)

λ̃ = m2, σ̃ = 0. (A.12)

Thus both the solutions correspond to the same solution in the CPN−1 model.
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B Chiral Gross-Neveu model, Bogoliubov-de Gennes equation, and

AKNS hierarchy

In this appendix, we briefly summarize the self-consistent treatment of Gross-Neveu model

studied in refs. [78, 79]. The Lagrangian of the chiral Gross-Neveu model with N flavor is

given by

L = ψ̄i/∂ψ +
g2

2

[
(ψ̄ψ)2 + (ψ̄iγ5ψ)2

]
, (B.1)

where g > 0. By introducing the auxiliary fields ∆1 = −g2〈ψ̄ψ〉 and ∆2 = −g2〈ψ̄iγ5ψ〉,
and by taking the large N approximation (or mean field approximation) one can obtain

the following effective Lagrangian

Leff = ψ̄i/∂ψ +
(
∆1ψ̄ψ + ∆2ψ̄iγ

5ψ
)
− 1

2g2

(
∆2

1 + ∆2
2

)
. (B.2)

Thus we obtain the following total energy

Etot =

∫
dxψ†Hψ +

1

2g2

∫
dx(∆2

1 + ∆2
2), (B.3)

with the Bogoliubov-de Gennes (BdG) Hamiltonian

H =− iγ0γ1 d

dx
− γ0

(
∆1 + iγ5∆2

)
. (B.4)

The consistency condition of the auxiliary field ∆1 and ∆2 are called the gap equations

〈ψ̄ψ〉 = − 1

g2
∆1, 〈ψ̄iγ5ψ〉 = − 1

g2
∆2, (B.5)

which must be solved in a consistent manner with the BdG equation Hψ = Eψ. Here

the left hand sides of the gap equations can be, respectively, rewritten as N〈ψ̄1ψ1〉 and

N〈ψ̄1iγ
5ψ1〉, since the N flavors gives the same contributions, e.g., 〈ψ̄1ψ1〉 = 〈ψ̄2ψ2〉 =

· · · = 〈ψ̄NψN 〉. Thus we can rewrite the gap equations as

∆1 = −g2N〈ψ̄1ψ1〉, ∆2 = −g2N〈ψ̄1iγ
5ψ1〉. (B.6)

In the following, we use the chiral representation γ0 = σ1, γ1 = −iσ2, and γ5 = σ3.

For the BdG Hamiltonian, the Gor’kov resolvent R(x;E) = 1/〈x|(H − E)|x〉 satisfies

the Dikii-Eilenberger equation

∂xR(x;E)σ3 = [Q(E,∆), R(x;E)σ3] , (B.7)

Q(E,∆) =

(
iE −i∆
i∆∗ −iE

)
, (B.8)

where ∆ = ∆1 − i∆2. We note that the BdG equation can be written as ∂xψ = Qψ. The

Gor’kov resolvent must satisfies the conditions detR = −1
4 , TrRσ3 = 0, and R† = R.

The Dikii-Eilenberger equation and the BdG equation can be rewritten as

∂tQ− ∂xRσ3 + [Q,Rσ3] = 0, ∂xψ = Qψ, ∂tψ = Rσ3ψ, (B.9)
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with the constraint ∂tQ = 0. The first equation is the integrable condition (zero curvature

condition) of this system; ∂x∂tψ = ∂t∂xψ. Since we find the connection between BdG

system to the AKNS system, by using the machinery of the integrable system, one can

systematically expand the resolvent Rσ3 which yields AKNSn as

Rσ3 = i
n+2∑
j=1

cjV
(j), V (n) =

n−1∑
j=0

(2E)n−1−kM (j), (B.10)

where cj ’s are positive constants. Here M
(i)
i,j components of the matrices M (i) satisfy

M
(i)
11 = −M (i)

22 , M
(i)
12 = (M

(i)
21 )∗, and first few components are given by

M
(0)
11 = − i

2
,M

(0)
12 = 0, (B.11)

M
(1)
11 = 0,M

(1)
12 = i∆, (B.12)

M
(2)
11 = −i|∆|2,M (2)

12 = ∂x∆, (B.13)

M
(3)
11 = −2i=(∆∗∂x∆),M

(3)
12 = ∂2

x∆− 2|∆|2, (B.14)

M
(4)
11 = 2i<(∆∗∂2

x∆)− 2i|∂x∆|2 − 3|∆|4,

M
(4)
12 = −∂3

x∆ + 6|∆|2∂x∆. (B.15)

The higher components are calculable with a help of the following formula

i

2

[
σ3,M

(n+1)
]

= ∂xM
(n) +

[
M (1),M (n)

]
. (B.16)

We can also obtain the nonlinear Schrödinger equations for this system as
∑n+1

j=1 cjM
(j)
12 = 0.

The AKNS0, AKNS1, AKNS2 for instance, yield

− i
2
∂x∆ + c1∆ = 0, (B.17)

−1

4
(∂2
x∆− 2|∆|2∆)− c1

1

2
∂x∆ + c2∆ = 0, (B.18)

i

8
(∂3
x∆− 8|∆|2∂2

x∆)− c1
1

4
(∂2
x∆− 2|∆|2∆)− c2

1

2
∂x∆ + c3∆ = 0. (B.19)

The fermionic solutions are also calculable as

ψ2
1 = CV12

√
iV11 − ω
iV11 + ω

exp

[
iω

∫ x

0
dx

(
U12

V12
+
U21

V21

)]
, (B.20)

ψ2
1 = −CV21

√
iV11 + ω

iV11 − ω
exp

[
iω

∫ x

0
dx

(
U12

V12
+
U21

V21

)]
, (B.21)

where ψ = (ψ1, ψ2)T and C is the normalization constant. The square-root of those function

must be taken such as v/u = iV21/(iV11 − ω).
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