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1 Introduction

Strong/weak-coupling duality, or S-duality, exists in a number of quantum systems. In 4d

gauge theories, it takes the form of electromagnetic duality, which inverts the gauge cou-

pling and exchanges the roles of elementary charged particles and magnetic monopoles [1].

It is realized in the simplest manner in maximally supersymmetric Yang-Mills (SYM)

theory [2]. In this case, the spectrum of dyons in the Coulomb phase was shown to ex-

hibit SL(2,Z) duality [3], providing a robust evidence of S-duality. S-duality in quantum

field theories has also been a cornerstone of developing string dualities [4]. In both QFT

and string theory, S-duality provides valuable insights on the strongly coupled regions of

the systems.

S-duality of maximal SYM has many implications. In particular, this duality is related

to the existence of 6d superconformal field theories called (2, 0) theories [5]. 4d maximal

SYM theories with gauge groups U(N), SO(2N), EN are realized by compactifying 6d (2, 0)

theories on small T 2. The SL(2,Z) duality originates from the modular transformation on

T 2. On one side, this relation highlights the far-reaching implications of the 6d CFTs to

challenging lower dimensional systems. On the other hand, the 6d CFTs lack microscopic

definitions, so that S-duality can provide useful clues to better understand the mysterious

6d CFTs. In this paper, we study the S-duality of the 6d (2, 0) theories compactified on

finite T 2, and use it to explore some interesting properties of these systems.

Our key observable of the 6d (2, 0) theory is the partition function of the D0-D4 system.

More precisely, we study the Witten index of the quantum mechanical U(k) gauge theory

for k D0-branes bound to N separated D4-branes and fundamental open strings, and also

study their generating function for arbitrary k. In M-theory, this system is made of N

M5-branes wrapping S1. The D0-D4 systems describe the 6d (2, 0) CFT on M5-branes in
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the sectors with nonzero Kaluza-Klein momenta. From the viewpoint of 5d super-Yang-

Mills theory on D4-branes, this partition function is also known as Nekrasov’s instanton

partition function [6]. Although the 5d Yang-Mills description of its instanton solitons is

UV incomplete, the D0-D4 system provides a UV complete description for computing the

instanton partition function. The results in our paper rely only on the UV complete D0-D4

quantum mechanics.

The D0-D4 index was explored in [7]. From the 5d viewpoint, this is a partition

function on R4 × S1, where S1 is the temporal circle for the Witten index. However, with

D0-branes (Yang-Mills instantons) providing the Kaluza-Klein (KK) modes of M-theory,

there are evidences that this index (multiplied by a 5d perturbative part) is a partition

function of the 6d (2, 0) SCFT on R4×T 2. See [7, 8] for the AN−1 theories, and [9] for the

DN theories.

Regarding the D0-D4 index as a 6d partition function on R4 × T 2, one can naturally

ask if it transforms in a simple manner under the S-duality acting on T 2. In this paper,

we establish the S-duality of the prepotential of this index, finding a simple anomaly

of S-duality which we can naturally interpret with 6d chiral anomalies. Note that the

prepotential F is the leading coefficient of the free energy − logZ ∼ F (a,m)
ε1ε2

when the so-

called Omega deformation is taken to zero, ε1, ε2 → 0. a and m are Coulomb VEV and

5d N = 1∗ mass parameter, explained in section 2. The anomaly of S-duality takes the

following form. The prepotential F can be divided into two parts, F (a,m) = FS-dual(a,m)+

Fanom(m), where FS-dual is related to its S-dual prepotential by a 6d generalization of the

Legendre transformation. (See section 2 for details.) Fanom is a simple function which

does not obey S-duality, thus named anomalous part. We find Fanom in a closed form in

section 2, which in particular is independent of the Coulomb VEV a.

This finding has two major implications. Firstly, similar result was found for the

prepotential F 4d of the 4d N = 2∗ theory [10], related to our prepotential by taking the

small T 2 limit. F 4d is also given by the sum F 4d
S-dual(a,m) +F 4d

anom(m), where F 4d
S-dual is self

S-dual. Since F 4d
anom is independent of a, F 4d is S-dual in the Seiberg-Witten theory, which

only sees a derivatives of F 4d. In our 6d uplift, F appearing in the Seiberg-Witten theory

also does not see Fanom(m) for the same reason.

Secondly, the partition function Z itself is a Witten index of the 6d theory on R4,1×S1.

So the full prepotential F = FS-dual +Fanom including the a independent Fanom is physically

meaningful, as the leading part of the free energy − logZ when ε1, ε2 are small. At this

stage, we note our key discovery that Fanom contains a term proportional to N3 in a suitabe

large N limit, to be explained in section 2. In particular, we further consider the limit in

which the KK modes on the circle become light. This amounts to taking the chemical

potential β conjugate to the KK momentum (D0-brane charge) to be much smaller than

the inverse-radius of S1. The small β limit is the strong coupling limit of the 5d Yang-

Mills theory, or the limit in which the sixth circle decompactifies. This is the regime in

which 6d CFT physics should be visible. The prepotential in this limit can be computed

from our anomalous S-duality, since it relates the small β (strong coupling) regime to the

well-understood large β (weak coupling) regime. Fanom determines the small β limit of the

free energy, and makes it scale like N3. We also show that the term in the asymptotic free
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energy proportional to N3 is related to the chiral anomaly of the 6d (2, 0) theory, using

the methods of [11]. These findings show that the number of 5d KK fields for D0-brane

bound states grows like N3, as we decompactify the system to 6d.

The rest of this paper is organized as follows. In sections 2.1 and 2.2, we develop the

anomalous S-duality of the prepotential and test it either by expanding F in the 5d N = 1∗

mass m, or by making the ‘M-string’ expansion [8]. In section 2.3, we discuss the 6d (2, 0)

theories of DN and EN types. In section 3, we study the high temperature free energy and

show that it scales like N3 in a suitable large N limit. In section 3.1, we test our result

for U(1) theory. In section 3.2, we account for the imaginary part of the asymptotic free

energy from 6d chiral anomalies. Section 4 concludes with comments and future directions.

2 S-duality of 6d (2, 0) theories on R4 × T 2

We shall study the Witten index of the D0-D4 quantum mechanics, consisting of k D0-

branes and N D4-branes. This system is a quantum mechanical U(k) gauge theory with

8 supersymmetry and U(N) global symmetry. See, for instance, [7] for the details of this

system. Here, we shall only explain some basic aspects. The bosonic variables consist of

four Hermitian k × k matrices am ∼ aαβ̇ , two complex k ×N matrices qα̇, five Hermitian

k × k matrices ϕI , and a quantum mechanical U(k) gauge field At. Here, m = 1, 2, 3, 4 is

the vector index on R4 for the spatial worldvolume of the D4-branes. α and α̇ are doublet

indices of SU(2)l and SU(2)r respectively, which form SO(4) rotation of R4. I = 1, · · · , 5
is the vector index on R5 transverse to the D4-branes. When ϕI are all diagonal matrices,

their eigenvalues are interpreted as D0-brane positions transverse to D4-branes. Similarly,

when am are all diagonal, their eigenvalues are interpreted as D0-brane positions along

D4-brane worldvolume. qα̇ represent internal degrees of freedom. The bosonic potential

energy is given by

V =
1

2
DiDi − 1

2

[
ϕI , am

]2
+
∣∣ϕIqα̇∣∣2 − 1

4

[
ϕI , ϕJ

]2
, (2.1)

where traces are assumed if necessary, i = 1, 2, 3 is the SU(2)r triplet index. Di are given by

Di =
(
τ i
)α̇
β̇

(
qα̇q
†β̇ +

1

2

[
aβ̇α, aαα̇

])
, (2.2)

where τ i are the Pauli matrices.

This system flows in IR to two branches. Classically, they are described by two branches

of moduli space satisfying V = 0, or Di = 0, [ϕI , am] = 0, ϕIqα̇ = 0 and [ϕI , ϕJ ] = 0.

The first branch is obtained by taking qα̇ = 0, and am, ϕI to be diagonal matrices. The

k sets of eigenvalues of (am, ϕ
I) represent the positions of k D0-branes on R9, unbound

to the D4-branes. The second branch is obtained by taking ϕI = 0, and qα̇, am to satisfy

Di = 0. After modding out by the U(k) gauge orbit, one can show that this branch is

described by 4Nk real parameters. The two branches meet at ϕI = 0, qα̇ = 0. Far away

from this intersection, each branch is described by a nonlinear sigma model (NLSM) on its

moduli space. We are interested in the second branch, describing 6d CFT on M5-branes in
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the sector with k units of KK momentum. The Witten index of the second branch can be

computed easily by deforming the system by a Fayet-Iliopoulos (FI) parameter, shifting Di

in (2.2) by three constant ξi. After this deformation, the first branch becomes non-BPS,

since qα̇ = 0 cannot solve Di = 0 with ξi 6= 0. So the Witten index acquires contributions

only from the second branch.

One can understand the second branch from the low energy field theory of D4-branes,

the 5d maximal SYM theory. D0-branes are realized in Yang-Mills theory as instanton soli-

tons, classically described by finite energy stationary solutions of the following BPS equa-

tion,

Fmn = ±1

2
εmnpqFpq , m, n, p, q = 1, · · · , 4 . (2.3)

The finite energy solutions are labeled by the instanton number k, defined by

k ≡ 1

16π2

∫
R4

tr(F ∧ F ) ∈ Z . (2.4)

We shall consider D0-branes rather than anti-D0-branes, with k > 0, equivalently (2.3) with

+ sign. k corresponds to the rank of the U(k) gauge group of the quantum mechanics.

The solutions of Di = 0, modded out by the U(k) gauge orbit, provides the moduli space

of self-dual instantons. The NLSM on the second branch can be obtained by the moduli

space approximation of the instanton solitons. However, this moduli space is known to be

singular, having the so-called small instanton singularities. Due to these singularities, the

NLSM description is incomplete, and needs a UV completion. This is naturally interpreted

as inheriting the UV incompleteness of the 5d Yang-Mills description. Although we do not

know how to UV complete the full 5d SYM, the NLSM can be UV completed to the U(k)

quantum mechanics.

We shall study the D0-D4 system in the Coulomb phase, with scalar vacuum expecta-

tion value (VEV). For U(N) theories, the VEV is parametrized by constant N×N diagonal

matrices ΦI = diag(ΦI
1, · · · ,ΦI

N ). In the D0-D4 system, ΦI deforms the bosonic potential

V as

V =
1

2
DiDi − 1

2
[ϕI , am]2 − 1

4
[ϕI , ϕJ ]2 +

∣∣ϕIqα̇ − qα̇ΦI
∣∣2 . (2.5)

The N eigenvalues of ΦI correspond to the positions of N D4-branes on R5. We shall

separate the D4-branes along a line, giving nonzero VEV to Φ5 only. In this setting,

we shall study the BPS bound states of the D0-branes and the fundamental open strings

stretched along the Φ5 direction, suspended between a pair of D4-branes. The bound states

preserve 4 Hermitian supercharges. In 6d (2, 0) theory, we compactify a spatial direction

on a circle with radius R′. The BPS states saturate the bound E ≥ P
R′ + viqi, where E is

the energy, and P is the quantized momentum on S1 which is k in the D0-D4 system. vi are

the N eigenvalues of the scalar Φ5, and qi’s are the U(1)N electric charges in the Coulomb

branch, satisfying q1 + · · ·+ qN = 0. From the 6d viewpoint, they are the self-dual strings

with charges qi coming from open M2-branes, with P units of momenta on them. We also

define H ≡ R′(E − viqi), which is the (dimensionless) energy on the self-dual strings.

The 6d index is defined by

Z(τ,m, ε1,2, v) = Tr
[
(−1)F e2πiτ H+P

2 e−2πiτ̄ H−P
2 eε1(J1+JR)+ε2(J2+JR)e2mJLe−viqi

]
. (2.6)

– 4 –



J
H
E
P
1
2
(
2
0
1
7
)
1
2
0

Here, J1, J2 are two Cartans rotating the two 2-planes of R4, JL, JR are the Cartans of

SU(2)L×SU(2)R = SO(4) ⊂ SO(5) unbroken by the VEV of Φ5. The measure is chosen so

that it commutes with 2 of the 4 Hermitian supercharges preserved by the BPS states, or

a complex supercharge Q and its conjugate Q†. See [7] for the details. One also finds that
H−P

2 ∼ {Q,Q†}. Since only the states saturating the BPS bound H ≥ P contribute to

the index, Z is independent of τ̄ . With H = P understood, the factor e2πiτ H+P
2 → e2πiτP

weights the BPS states with the momentum P along the circle. So Z can be written as

Z(τ,m, ε1,2, v) = Zpert(m, ε1,2, v)
∞∑
k=0

qkZk(m, ε1,2, v) (2.7)

where q ≡ e2πiτ , and Z0 ≡ 1 by definition. Z can be computed in the weakly coupled

type IIA regime, in which D0-branes are much heavier than the stretched fundamental

strings. Zk is computed as the nonperturbative Witten index of the D0-D4 system with

fixed k. Zpert comes from the zero modes at P = 0, the perturbative open string modes

on the D4-branes. This factor can also be understood as coming from the perturbative

partition function of the 5d maximal SYM. Since we are in the weakly coupled regime,

Zpert can be computed unambiguously from the quadratic part of the Yang-Mills theory.

Although we compute Zpert and Zk in this special regime, we naturally expect the result

to be valid at general type IIA coupling, since this is a Witten index independent of the

continuous coupling.

Zk and Zpert are known for classical gauge groups. For U(N), Zk is given by [7, 12–14]

Zk =
∑

Yi;
∑N
i=1 |Yi|=k

N∏
i,j=1

∏
s∈Yi

sinh
Eij(s)+m−ε+

2 sinh
Eij(s)−m−ε+

2

sinh
Eij(s)

2 sinh
Eij(s)−2ε+

2

(2.8)

where ε± ≡ ε1±ε2
2 , and

Eij(s) = vi − vj − ε1hi(s) + ε2(vj(s) + 1) . (2.9)

The summation is made over N Young diagrams Yi with total number of boxes k, and

s runs over all boxes of the Young diagram Yi. hi(s) is the distance from s to the right

end of the Young diagram Yi, and vj(s) is the distance from s to the bottom end of the

Young diagram Yj . See [7] for the details. One often calls Zinst ≡
∑∞

k=0 q
kZk the instanton

partition function.

Zpert is given by [15, 16]

Zpert =
∏
α∈adj

[
Γ̃3(α(v)+ε++m

2πi | ε12πi ,
ε2
2πi)Γ̃3(α(v)+ε+−m

2πi | ε12πi ,
ε2
2πi)

Γ̃3(α(v)
2πi |

ε1
2πi ,

ε2
2πi)Γ̃3(α(v)+2ε+

2πi | ε12πi ,
ε2
2πi)

] 1
2

(2.10)

where Γ̃3(z|w1, w2) ≡ Γ3(z|1, w1, w2)Γ3(1 − z|1,−w1,−w2), and ΓN (z|w1, · · · , wN ) is the

Barnes’ Gamma function. As noted in [16], α in the adjoint representation includes Car-

tans, α = 0, for which ‘Γ3(0| ε12πi ,
ε2
2πi)’ in the denominator would diverge. For these α,
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one replaces ‘Γ̃3(0|w1, w2)’ factors by Γ̃′3(0|w1, w2) ≡ lim[zΓ̃3(z|w1, w2)]. See [16] for more

details. For t1 ≡ eε1 < 1, t2 ≡ eε2 < 1, Zpert can be rewritten as

Zpert = e−F
∏
α∈adj

∏
n1,n2≥0

[
(1− eα(v)tn1

1 tn2
2 )′(1− eα(v)t1t2t

n1
1 tn2

2 )

(1− eα(v)+ε+±mtn1
1 tn2

2 )

] 1
2

, (2.11)

where prime here again means excluding the zero modes at n1 = n2 = 0 for the Cartans

α = 0. The overall factor F is given for gauge group G by [15]

F = −πi
2

∑
α∈adj

[
ζ3

(
0,
α (v)

2πi
|1, ε1

2πi
,
ε2

2πi

)
+ ζ3

(
0,
α (v) + 2ε+

2πi
|1, ε1

2πi
,
ε2

2πi

)

− ζ3

(
0,
α(v) + ε+ ±m

2πi
|1, ε1

2πi
,
ε2

2πi

)]
= −πi

2

∑
α(v)∈adj

ε2+ −m2

2ε1ε2
(1− 2α(v)) =

πi(m2 − ε2+)

4ε1ε2
|G| , (2.12)

where ζ3 is the Barnes’ zeta function. When t1, t2 < eα(v) for all α ∈ adj, Zpert is rewrit-

ten as

Zpert(v, ε1,2,m) = e−FPE

[
1

2

sinh m+ε+
2 sinh m−ε+

2

sinh ε1
2 sinh ε2

2

χadj(e
v) +

r

2

]
, (2.13)

where PE[f(x, y, z, · · · )] ≡ exp
[∑∞

n=1
1
nf(nx, ny, nz, · · · )

]
, χadj ≡

∑
α∈adj e

α(v), and r is

the rank of gauge group which is r = N for U(N). The term r
2 in PE comes from excluding

r fermionic zero modes for the Cartans.

One may multiply an alternative perturbative factor Žpert ≡ e−ε0 [Z
U(1)
pert ]N Ẑpert to Zinst,

where [Z
U(1)
pert ]N is the perturbative partition function for the N Cartans, Ẑpert is defined by

Ẑpert = PE

[
sinh m+ε+

2 sinh m−ε+
2

sinh ε1
2 sinh ε2

2

∑
α>0

e−α(v)

]
, (2.14)

and

ε0 =
m2 − ε2+

2ε1ε2

∑
α>0

(α(v) + πi) . (2.15)

Here all sums are over positive roots α > 0. This expression is well defined when all α(v)

are positive for positive roots and larger than m, ε1,2. This expression will be useful when

studying S-duality from the M-string viewpoint, in section 2.2. Zpert and Žpert are dif-

ferent in subtle ways, which shall not affect the studies of prepotential in this paper but

has implications on the S-duality of Z, which we comment on in section 2.2. (2.14) has

a more natural interpretation as the Witten index of charged W-bosons in the Coulomb

phase [7]. However, as an abstract partition function, Zpert is more natural as it is mani-

festly Weyl-invariant.

– 6 –
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It will also be useful to know the simple structures of the Abelian partition function,

ZU(1) = Z
U(1)
pert Z

U(1)
inst . Firstly, the perturbative U(1) partition function can be written as

Z
U(1)
pert = e

−
πi(m2−ε2+)

4ε1ε2 PE

[
1

2

sinh m+ε+
2 sinh m−ε+

2

sinh ε1
2 sinh ε2

2

+
1

2

]

= e
−
πi(m2−ε2+)

4ε1ε2 PE

[
1

2

sinh m+ε−
2 sinh m−ε−

2

sinh ε1
2 sinh ε2

2

] (2.16)

at eε1 < 1, eε2 < 1, by following the discussions till (2.13) for N = 1. The instanton part

can be written as [17]

Z
U(1)
inst =

∞∑
k=0

qkZk = PE

[
sinh m+ε−

2 sinh m−ε−
2

sinh ε1
2 sinh ε2

2

q

1− q

]
, (2.17)

after summing over all Young diagrams in (2.8).

Given Z = ZpertZinst, or Ž = ŽpertZinst, one can write this partition function as

Z = PE

[
f(τ,m, ε1,2, v)

2 sinh ε1
2 · 2 sinh ε2

2

]
≡ exp

[ ∞∑
n=1

1

n

f(nτ, nm, nε1,2, nv)

2 sinh nε1
2 · 2 sinh nε2

2

]
, (2.18)

or a similar expression for Ž using f̌ . The expression appearing in PE is called the single

particle index, containing all the information on the BPS bound states. The coefficients

of f in fugacity expansion are also called Gopakumar-Vafa invariants [18, 19]. The factor
1

2 sinh
ε1
2
·2 sinh

ε2
2

comes from the center-of-mass zero modes of the particle on R4, which

would have caused the path integral for Z to diverge at ε1 = ε2 = 0. So ε1,2 also plays the

role of IR regulators. f(τ,m, ε1,2, v) takes into account the relative degrees of freedom of

the bound state, in which ε1,2 are just chemical potentials. In particular, ε1,2 → 0 limit is

smooth in f .

In this paper, we shall mostly discuss the limit ε1, ε2 → 0. In this limit, one finds

Zpert ∼ exp

[
−Fpert(v,m)

ε1ε2

]
, Zinst ∼ exp

[
−Finst(τ, v,m)

ε1ε2

]
(2.19)

from (2.18). F = Fpert + Finst is the prepotential. Finst can be obtained from (2.8) after

a straightforward but tedious calculation. Fpert can be obtained from (2.13), which is

given by

Fpert(v,m) =
πim2

4
|G|+

∑
α∈adj

(
Li3(e−α(v))− 1

2
Li3(e−(α(v)+m))− 1

2
Li3(e−(α(v)−m))

)
,

(2.20)

where Lis(x) =
∑∞

n=1
xn

ns for |x| < 1, and can be continued to the complex x plane with

a branch cut. The first term coming from F will play no role in this paper. One way

of obtaining (2.20) is to first take v,m to be purely imaginary, to guarantee convergence

of the sum in (2.13), and take the limit ε1,2 → 0 to obtain (2.20). Then, (2.20) can be

– 7 –
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analytically continued to complex v,m. One may alternatively start from Žpert and obtain

its prepotential,

F̌pert =
m2

2
(πi|∆+|+

∑
α>0

α(v)) +
∑
α>0

(
2Li3(e−α(v))− Li3(e−α(v)±m)

)
+ rF

U(1)
pert . (2.21)

∆+ is the set of positive roots. Here, from the identity

Lin(e2πix) + (−1)n(e−2πix) = −(2πi)n

n!
Bn(x) (2.22)

for 0 < Re(x) ≤ 1 and Im(x) < 0, where Bn(x)’s are Bernoulli polynomials, one finds

Li3(ex)− Li3(e−x) = −(2πi)3

6
B3

( x

2πi

)
(2.23)

for Re(x) > 0 and 0 < Im(x) ≤ 2π. So for simplicity, let us assume Re(α(v)) > ±Re(m)

for all positive roots α, and also Im(α(v)) is chosen such that all Im(α(v)±m) are within

the range (0, 2π] for positive roots. Then one finds

Fpert − F̌pert = −m
2

2

∑
α>0

α(v)− (2πi)3

6

∑
α>0

[
B3

(
α(v)

2πi

)
− 1

2
B3

(
α(v)±m

2πi

)]
= −πim

2

2
|∆+|

(2.24)

where we used B3(x) = x3− 3
2x

2 + 1
2x. So at least in this setting, Fpert and F̌pert differ only

by a trivial constant independent of v. The last constant will play no role in this paper.

It will be helpful to consider the prepotential of the U(1) theory separately. From (2.16)

and (2.17), the prepotential fU(1) = F
U(1)
pert + F

U(1)
inst for the U(1) theory is given by

fU(1) =

∞∑
n=1

(
2Li3(qn)−Li3(emqn)−Li3(e−mqn)

)
+

1

2

(
2Li3(1)−Li3(em)−Li3(e−m)

)
+
πim2

4
.

(2.25)

For studying the S-duality of this prepotential, it will be useful to make an expansion of

fU(1) in m. One first finds that the instanton part is given by

∞∑
n=1

(
2Li3(qn)−Li3(emqn)−Li3(e−mqn)

)
=−m2

∞∑
n=1

Li1(qn)−2
∞∑
j=1

∞∑
n=1

m2j+2

(2j+2)!
Li1−2j(q

n)

=m2
∞∑
n=1

log(1−qn)−2

∞∑
j,n,k=1

m2j+2

(2j+2)!
k2j−1qnk =m2 logφ(τ)−2

∞∑
j,k=1

m2j+2

(2j+2)!

k2j−1qk

1−qk

=m2 logφ(τ)+
∞∑
j=1

m2j+2

2j(2j+2)!
(E2j(τ)−1) , (2.26)

where φ(τ) =
∏∞
n=1(1− qn) = q−

1
24 η(τ) is the Euler function, and we used the identity

∞∑
k=1

k2j−1qk

1− qk
= −B2j

4j
(E2j(τ)− 1) (2.27)
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for the Eisenstein series E2n(τ). Bn are the Bernoulli numbers: B1 = ±1
2 , B2n+1 = 0,

B0 = 1 , B2 =
1

6
, B4 = − 1

30
, B6 =

1

42
, B8 = − 1

30
, (2.28)

and so on. The perturbative prepotential can be expanded in m by using

Lin(ez) =
zn−1

(n− 1)!
(Hn−1 − log(−z)) +

∞∑
k=0;k 6=n−1

ζ(n− k)

k!
zk , (2.29)

at small z, with Hn =
∑n

p=1
1
p . One finds

1

2

(
2Li3(1)− Li3(em)− Li3(e−m)

)
= m2

(
1

2
logm− 3

4
+

1

4
log(−1)

)
+
∞∑
j=1

B2jm
2j+2

2j(2j + 2)!

(2.30)

Combining all, one obtains

fU(1) = m2

(
1

2
logm− 3

4
+
πi

2
+ log φ(τ)

)
+

∞∑
n=1

m2n+2B2n

2n · (2n+ 2)!
E2n(τ) . (2.31)

This will be useful later for understanding NfU(1), as a part of the U(N) prepotential.

One can understand the chemical potentials from the viewpoint of the 4d effective

action in the Coulomb branch. The dimensionless variables m, ε1,2, v take the form of

m = RM , ε1,2 = Rε1,2 , v = Ra , (2.32)

whereR is the radius of the temporal circle of R4×S1. M is the mass deformation parameter

of the 4d N = 2∗ Yang-Mills theory, or the 5d N = 1∗ theory. (More precisely, M is 2π

times the mass.) ε1,2 are the Omega deformation parameters which have dimensions of

mass. a is the Coulomb VEV of the scalar field Φ5. τ is identified as

τ = i
R

R′
, (2.33)

where R′ is the radius of the sixth circle. This is the inverse gauge coupling in 4d. τ can be

complexified with a real part, given by the RR 1-form holonomy of type IIA theory on S1.

The 4 dimensional limit of the partition function is obtained by taking R → 0 with

fixed τ,M, ε1,2, a. From (2.8), one finds that all sinh functions of v, ε1,2,m are replaced

by linear functions of a, ε1,2,M , and the R dependences cancel between numerator and

denominator. As a result, the 4d limit Z4d
k of the instanton partition function is given by

a rational function of M, ε1,2, a of degree 0. This makes Z4d
inst and F 4d

inst to enjoy a simple

scaling property,

Z4d
inst(τ, λM, λε1,2, λa) = Z4d

inst(τ,M, ε1,2, a) , F 4d
inst(τ, λM, λa) = λ2F 4d

inst(τ,M, a) . (2.34)

This will be used in section 2.1 to provide two interpretations of the 4d S-duality, and

extend one version to 6d. As for the perturbative part Fpert, one can use (2.29) to obtain
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F 4d
pert ≡ limR→0 Fpert. One finds

F 4d
pert =

∑
α∈adj

[
M2

(
logR− 3

4

)
− α(a)2

2
logα(a)

+
(α(a) +M)2

4
log(α(a) +M) +

(α(a)−M)2

4
log(α(a)−M)

] (2.35)

where the first term independent of the Coulomb VEV is unphysical in the Seiberg-Witten

theory. The perturbative prepotential satisfies the following pseudo-scaling property,

F 4d
pert(λM,λa) = λ2

(
F 4d

pert(M,a) + |G|M
2

2
log λ

)
, (2.36)

which is homogenous and degree 2 up to a Coulomb VEV independent shift.

Zinst or Finst are only known as q expansion when q � 1, or τ → i∞. This is useful

when the ‘temperature’ is much smaller than the Kaluz-Klein scale 1
R′ , when the KK modes

are ‘heavy.’ However, to study 6d SCFT, it is more interesting to explore the regime q → 1,

or τ → i0+, in which case the circle effectively decompactifies. The two regimes are weakly

coupled and strongly coupled regimes, respectively. So if there is S-duality for the partition

function on R4 × T 2, it will be helpful to study the interesting decompactifying regime

from the well-understood region τ → i∞. Developing the S-duality of the prepotential F

is the goal of this section. (In section 2.2, we also comment on the S-duality of the full

partition function.)

2.1 S-duality and its anomaly

Following [10], we review the basic set up for studying the S-duality of 4 dimensional

prepotential, and extend it to the 6d theory on T 2.

The prepotential F of general 4d N = 2 gauge theory determines the effective action

in the Coulomb branch. The magnetic dual description uses the dual Coulomb VEV aD(a)

and the dual prepotential FD(aD), defined by the following Legendre transformation,

aD =
1

2πi

∂F

∂a
, FD(aD) = L[F ](a) ≡ F (a)− 2πiaDa = F − a∂F

∂a
. (2.37)

For theories with higher rank r > 1, a has many components, ai with i = 1, · · · , r. Ex-

pressions like a ∂
∂a should be understood with contracted i indices, i.e. a ∂

∂a →
∑r

i=1 ai
∂
∂ai

,

whose sum structures will not be explicitly shown to make the notations simpler. For

generic N = 2 theories, F, FD depend on other parameters like hypermultiplet masses and

the coupling constant (or the dynamically generated scale Λ instead of the coupling).

For 4d N = 2∗ theory, the prepotential F 4d (to be distinguished with the 6d prepo-

tential F which we shall consider later) depends on the microscopic coupling constant τ

and the adjoint hypermultiplet mass M . The prepotential can be divided into the classical,

perturbative, and instanton contributions,

F 4d = Fcl(τ, a) + F 4d
pert(a,M) + F 4d

inst(τ, a,M) ≡ Fcl(τ, a) + f4d(τ, a,M) (2.38)
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where Fcl(τ, a) = πiτa2, and F 4d
pert. f4d ≡ F 4d

pert + F 4d
inst is the quantum prepotential. To

study self S-dual theories, it is convenient to define F 4d
D as a function of the dual coupling

τD = − 1
τ . For the 4d N = 2∗ theory, F 4d

D is defined by

F 4d
D (τD, aD,M) = L[F 4d](τ, a,M) = F 4d(τ, a,M)− a∂F

4d

∂a
(τ, a,M) . (2.39)

Then, self S-duality exists if F 4d
D and F 4d are same function, F 4d

D (τ, a,M) = F 4d(τ, a,M).

This S-duality has been tested in detail in [10]. More precisely, it was found that

F 4d(τ, a,M) = F 4d
S-dual(τ, a,M) + F 4d

anom(τ,M) , (2.40)

where F 4d
S-dual satisfies

F 4d
S-dual(τD, aD,M) = F 4d

S-dual(τ, a,M)− a
∂F 4d

S-dual

∂a
(τ, a,M) , (2.41)

and F 4d
anom is an anomalous part of S-duality, depending on τ,M but is independent of the

Coulomb VEV a [10]. Since the Coulomb branch effective action is obtained by taking

a derivatives of F 4d, F 4d and F 4d
S-dual are identical in the Seiberg-Witten theory. This

establishes the S-duality of the 4d N = 2∗ theory in the Coulomb branch effective action.

Let us rephrase the 4d S-duality in a way that is suitable for 6d extension. F 4d
inst satisfies

the scaling property (2.34). Combining the perturbative part, one finds

F 4d(τ, λa, λM) = λ2

(
F 4d(τ, a,M) + |G|M

2

2
log λ

)
. (2.42)

Applying this to F 4d(τD, aD,m), one obtains

F 4d(τD, aD/τ,M/τ) = τ−2F 4d(τD, aD,M)− M2

2τ2
log τ . (2.43)

So the left hand side of (2.41) can be written as

F 4d
S-dual(τD, aD,M) = τ2F 4d

S-dual(τD, aD/τ,M/τ)

+
|G|M2

2
log τ + τ2F 4d

anom(τD,M/τ)− F 4d
anom(τD,M) .

(2.44)

Let us consider the structure of F 4d
anom. Since the prepotential has mass dimension 2, one

may think that its M dependence is simply M2. However, the perturbative part (2.35)

shows that there is a term rM2

2 logM in F 4d which scales in an odd manner. In the com-

putational framework of [10], which we shall explain below in our 6d version, F 4d
S-dual is

by construction taken to be a series expansion in M2. This means that the odd term
rM2

2 logM should have been put in F 4d
anom. Therefore, had one been doing the calcula-

tion of [10] using (2.35) as the perturbative part, one would have found that F 4d
anom =

rM2

2 logM +M2(· · · ), where (· · · ) only depends on τ . Using this structure, (2.44) can be

rewritten as

F 4d
S-dual(τD, aD,M) = τ2F 4d

S-dual(τD, aD/τ,M/τ) + (|G| − r)M
2

2
log τ . (2.45)
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So defining

F̃ 4d
S-dual(τ, a,M) = F 4d

S−dual(τ, a,M)− |G| − r
2

M2 logM , (2.46)

one finds that F̃ 4d
S-dual satisfies

τ2F̃ 4d
S-dual(τD, aD/τ,M/τ) = F̃ 4d

S-dual(τ, a,M)− a
∂F̃ 4d

S-dual

∂a
(τ, a,M) , (2.47)

instead of (2.41). To summarize, by trivially redefining F 4d
S-dual and F 4d

anom by the last term

of (2.46), one can reformulate the standard S-duality (2.41) as (2.47). Only (2.47) will

naturally generalize to the S-duality on R4 × T 2.

Now we seek for the S-duality of the 6d prepotential. Note that in 4d, (2.41) and (2.47)

are equivalent by making a minor redefinition of F 4d
anom, using (2.42). In 6d, a property

like (2.42) does not hold. Before making a quantitative study of the 6d S-duality, we first

explain that (2.47) is more natural in 6d. To discuss the 6d prepotential, it is convenient

to work with the dimensionless parameters v,m, ε1,2.

Firstly, in the 6d theory compactified on T 2, the complex mass parameter m is simply

the holonomy of the background gauge field for SU(2)L global symmetry, along the two

sides of T 2. Then after making an S-duality of the torus, exchanging two sides of T 2, one

naturally expects mD = m
τ . Let us briefly review this by taking a rectangular torus, for

simplicity. In this case, the complex structure τ of the torus is purely imaginary. τ is

related to the two radii of T 2 by

τ = i
R

R′
, (2.48)

where R′ is the radius of the circle which compactifies the 6d theory to 5d SYM, and

R is the radius of another circle which compactifies the 5d theory to 4d. The S-duality

transformation exchanges R ↔ R′. So the dual complex structure is τD = iR
′

R = − 1
τ .

More precisely, S-duality rotates the torus by 90 degrees on a plane. It also transforms the

two SU(2)L holonomies along the two circles. Let Re(M) be the holonomy on the circle

with radius R, and Im(M) that on the circle with radius R′. Under S-duality, one finds

Re(MD) = Im(M), Im(MD) = −Re(M). So one finds MD = −iM . In F , M appears in

the dimensionless combination m ≡ RM , which transforms as

mD = R′MD = −iR′M = −iR
′

R
m =

m

τ
. (2.49)

The final result holds for complex τ . Similar property holds for ε1,2 ≡ Rε1,2, i.e. εD1,2 =
ε1,2
τ .

This makes the appearance of M
τ to be more natural on the left hand side of (2.47).

Secondly, let us discuss how a should transform. In 4d, we already stated that

aD = τa+
1

2πi

∂f

∂a
(2.50)

naturally appears on the left hand side of (2.41). For simplicity, let us discuss these variables

in the limit of large Coulomb VEV, v ≡ Ra� 1, a� m. The second term can be ignored

in this limit, yielding the semi-classical result aD = τa. In this limit, we shall discuss

what is the natural S-dual variable using the Abelian 6d (2, 0) theory. In 4d, aD = τa is a
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natural aspect of S-duality being electromagnetic duality. Also, it makes sense to multiply

a by a complex number τ , since a is a complex variable living on a plane. However, in

6d CFT on T 2, a lives on a cylinder. The real part of a is the VEV of the real scalar in

the 6d self-dual tensor multiplet, which is noncompact. On the other hand, the imaginary

part of a comes from the holonomy of the 2-form tensor field B on T 2, implying that it

is a periodic variable. So it does not good make sense to rotate a living on a cylinder by

complex τ . More precisely, the 6d scalar φ and the 5d scalar a are related by a ∼ R′φ. So

one finds

a ∼ R′(φ+ iB12) , (2.51)

where 1 and 2 denote two directions of T 2. Thus, v = Ra ∼ RR′(φ + iB12) is invariant

under R↔ R′, meaning that it makes more sense to set vD ≈ v in the limit v � 1. Using

the dimensionful variables, This requires one to use aD
τ ≈ a as the dual variable, instead of

aD ≈ τa. This does not rotate the variable a by a complex number, so makes better sense

in 6d. Incidently, we have already found the alternative (but equivalent) statement (2.47)

of S-duality which uses aD
τ as the dual variable, instead of aD. Note that the usage of

aD
τ = a + 1

2πiτ
∂f4d

∂a is valid even beyond the semi-classical limit a � M . Thus, in the 6d

uplift, it is natural and consistent to regard vD ≡ RaD
τ = v+ 1

2πiτ
∂f
∂v . as the dual variable.1

So it appears natural to seek for a 6d generalization of (2.47) rather than (2.41). This

is what we shall establish in the rest of this section. Namely, we shall find that the 6d

prepotential is divided into two,

F = FS-dual(τ, v,m) + Fanom(τ,m) (2.52)

where v = Ra, m = RM , and Fanom is independent of the Coulomb VEV. FS-dual satisfies

τ2FS-dual

(
τD = −1

τ
, vD = v +

1

2πiτ

∂f

∂v
,
m

τ

)
= FS-dual(τ, v,m)− v∂FS-dual

∂v
(τ, v,m) .

(2.53)

We have some freedom to choose Fanom, by adding/subtracting v independent S-dual ex-

pressions to Fanom, FS-dual. We shall explain that one can choose Fanom as

Fanom = NfU(1)(τ,m) +
N3 −N

288
m4E2(τ) (2.54)

where fU(1) is the U(1) prepotential (2.25). The first term NfU(1) comes from the N 6d

Abelian tensor multiplets in U(1)N , which has their own S-duality anomaly. The second

term of Fanom is one of the key findings of this paper, which comes from the charged part

of the partition function. After replacing m = MR, and multiplying 1
R2 to the above Fanom

to get to the conventionally normalized prepotential (as noted in footnote 1), one can take

the 4d limit of Fanom. The second term proportional to N3 − N vanishes in the 4d limit

R→ 0, as it is proportional to M4R2.

1Here, one may wonder that f appearing on the right hand side should have been R2f . However, we

shall define the prepotential as the coefficient of the dimensionless 1
ε1ε2

, − logZ ∼ f
ε1ε2

, rather than f4d

ε1ε2

that is conventional in the Seiberg-Witten theory, making f dimensionless. Namely, fours in 6d is related

to the conventionally normalized prepotential by fours = R2fconventional.

– 13 –



J
H
E
P
1
2
(
2
0
1
7
)
1
2
0

With the motivations and results given, we now properly set up the calculation and

show the claims made above. As in 4d, we decompose the 6d prepotential as

F (τ, v,m) = Fcl + Fpert + Finst ≡ Fcl + f , (2.55)

where Fcl ≡ πiτv2. The prepotential is S-dual if it satisfies

τ2F

(
τD = −1

τ
, vD = v +

1

2πiτ

∂f

∂v
,mD =

m

τ

)
= F (τ, v,m)− v∂F

∂v
(τ, v,m) . (2.56)

We first study the structures of this equation, before showing that it is satisfied by our

FS-dual. Firstly, replacing F by Fcl, one can check that S-duality trivially holds at the

classical level:

τ2Fcl(τD, vD) = τ2

[
−πi
τ
v2

]
= −πiτv2 = Fcl(τ, v)− v∂Fcl

∂v
(τ, v) , (2.57)

where vD is replaced by its classical value vD = v (formally at f = 0). Now we sub-

tract (2.56) by (2.57) to find the following condition for the quantum prepotential f :

τ2f

(
−1

τ
, v +

1

2πiτ

∂f

∂v
,
m

τ

)
= f(τ, v,m) +

1

4πiτ

(
∂f

∂v
(τ, v,m)

)2

. (2.58)

We are going to study the last equation. Note again that the effective action in the

Coulomb branch only contains v derivatives of F , or f . Thus, in Seiberg-Witten theory,

f is ambiguous by addition of v independent functions, possibly depending on τ and m.

However, the S-duality requirement (2.58) is sensitive to the value of f , including the v

independent part. So when one tries to establish the S-duality of the Coulomb branch

effective action, one should have in mind that one may have to add suitable Coulomb VEV

independent terms to f computed microscopically from Z.

Following [10], we shall establish the S-duality (2.58) and its anomaly (2.54) by expand-

ing f in the mass m when it is small enough. We shall still get an exact statement (2.54),

which we check for certain orders in m. One should however have in mind that the exact

statement (2.54) may be valid only within a finite region of m, v in the complex planes.

In section 2.2, we shed more lights on the exactness of (2.54), by making an M-string

expansion [8].

As studied in the 4d limit [10], there is a natural way of achieving the S-duality

requirement (2.58). This is to require that f is expanded in quasi-modular forms of suitable

weights. To precisely explain its meaning, we first expand f in m as

f(τ, v,m) =
∞∑
n=1

m2nfn(τ, v) . (2.59)

This series makes sense as follows. Firstly, the m → 0 limit exhibits enhanced maximal

supersymmetry. So at m = 0, the classical prepotential Fcl = πiτv2 acquires no quantum

corrections, meaning that f vanishes at m = 0. Also, the prepotential is an even function
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of m, which restrict the expansion as above.2 Then, following [10], we require that fn
is a quasi-modular form of weight 2n − 2, which means the following. Quasi-modular

forms are polynomials of the first three Eisenstein series E2, E4, E6, where each series has

weight 2, 4, 6 respectively under S-duality in the following sense:

E2(−1/τ) = τ2

(
E2 +

6

πiτ

)
, E4(−1/τ) = τ4E4(τ) , E6(−1/τ) = τ6E6(τ) . (2.60)

More concretely, they are given by

E2 = 1− 24
∞∑
n=1

nqn

1− qn
, E4(τ) = 1 + 240

∞∑
n=1

n3qn

1− qn
, E6 = 1− 504

∞∑
n=1

n5qn

1− qn
. (2.61)

Higher Eisenstein series E2n are polynomials of E4, E6 with weight 2n. To study the quasi-

modular property, it is helpful to decompose their dependence on τ into the dependence

through E2 and the dependence through E4, E6. We thus write fn(τ, v, E2(τ)), where the τ

dependence through E2 is explicitly shown. A weight 2n−2 quasi-modular form fn satisfies

fn(−1/τ, v, E2(−1/τ)) = τ2n−2fn(τ, v, E2(τ) + δ) , (2.62)

where δ ≡ 6
πiτ . In terms of f , this is equivalent to

τ2f

(
−1

τ
, v,

m

τ
,E2(−1/τ)

)
= f(τ, v,m,E2(τ) + δ) . (2.63)

We now investigate how quasi-modularity is related to the S-duality (2.58). One can

make (2.63) to be equivalent to (2.58) by specifying the E2 dependence of f , which we now

turn to.

Let us first try to find the desired E2 dependence, by requiring both (2.58) and (2.63).

By applying (2.63) to f(− 1
τ , vD,

m
τ , E2(−1/τ)), one obtains

τ2f

(
−1

τ
, v +

δ

12

∂f

∂v
,
m

τ
,E2(−1/τ)

)
= f

(
τ, v +

δ

12

∂f

∂v
,m,E2(τ) + δ

)
, (2.64)

where again recall that δ ≡ 6
πiτ . Combining this with (2.58), one obtains

f

(
τ, v +

δ

12

∂f

∂v
,m,E2(τ) + δ

)
= f(τ, v,m,E2(τ)) +

δ

24

(
∂f

∂v
(τ, v,m,E2(τ))

)2

. (2.65)

We want to make this equation to hold, by specifying a particular E2 dependence of f .

[10] showed that the desired E2 dependence is

∂f

∂E2
= − 1

24

(
∂f

∂v

)2

. (2.66)

For the sake of completeness, we repeat the logics presented in [10] and expand it to make

a proof. In fact, we shall make a stronger claim than needed. Namely, we need to find

2Strictly speaking, there is a term rm2

2
logm in the perturbative part, which is easiest to see from the

4d limit (2.35). However, we shall expand fS-dual as (2.59), while the term rm2

2
logm is moved to Fanom.
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the E2 dependence of f which guarantees (2.65) only at δ = 6
πiτ . However, we shall

show that (2.66) guarantees (2.65) for arbitrary independent parameter δ, and then set

δ = 6
πiτ later.

As a warm-up, we follow [10] to make a series expansion of the left hand side of (2.65)

in small δ, to see how (2.66) guarantees (2.65) at low orders. One finds that

(l.h.s.) = f +
δ

12

(
∂f

∂v

)2

+ δ
∂f

∂E2
+O(δ2) . (2.67)

So at δ0 and δ1 orders, one finds that it agrees with the right hand side if (2.66) is met.

Now assuming (2.66), we consider whether (2.65) is satisfied in full generality. To this

end, we take δ derivative of both sides of (2.65), at fixed τ, v, E2,

∂

∂δ
(l.h.s.) =

1

12

∂f

∂v

∂f̃

∂ṽ
+

∂f̃

∂Ẽ2

=
1

12

∂f

∂v

∂f̃

∂ṽ
− 1

24

(
∂f̃

∂ṽ

)2

,
∂

∂δ
(r.h.s.) =

1

24

(
∂f

∂v

)2

(2.68)

where for simplicity, we defined

ṽ = v +
δ

12

∂f

∂v
, Ẽ2 = E2 + δ , f̃ = f(τ, ṽ, Ẽ2) . (2.69)

Note that at the second step of the first equation in (2.68), we used ∂f̃

∂Ẽ2
= − 1

24

(
∂f̃
∂ṽ

)2

which follows from (2.66). If (2.65) holds for general δ, its first derivative would yield

∂f̃

∂ṽ
=
∂f

∂v
, (2.70)

which one can show by using (2.68). On the other hand, (2.70) together with the O(δ0)

component of (2.65) is equivalent to (2.65), since the O(δ0) component is the only infor-

mation lost by taking δ derivative. However, we have already shown around (2.67) that

the O(δ0) component of (2.65) is satisfied. Therefore, showing (2.70) will be equivalent to

showing (2.65). So will show (2.70) by assuming (2.66). We take δ derivative of ∂f̃
∂ṽ −

∂f
∂v

at fixed v,E2. Again using (2.66), one obtains

∂

∂δ

(
∂f̃

∂ṽ
− ∂f

∂v

)
= − 1

12

∂2f̃

∂ṽ2

(
∂f̃

∂ṽ
− ∂f

∂v

)
. (2.71)

So if ∂f̃
∂ṽ −

∂f
∂v is zero at a particular value of δ, (2.71) guarantees that it is zero at different

values of δ. Since we already checked around (2.67) that (2.65) is true up to O(δ1), we

have shown that (2.70) holds at O(δ0), or that ∂f̃
∂ṽ −

∂f
∂v = 0 at δ = 0. This establishes

that (2.66) implies (2.70), and in turn that (2.66) implies (2.65). Finally, we insert δ = 6
πiτ .

To summarize till here, (2.65) holds if f satisfies (2.66). But (2.65) and (2.63) implies

the S-duality relation (2.58). Therefore, S-duality requirement (2.58) is satisfied if f sat-

isfies the quasi-modular property (2.63) and the modular anomaly equation (2.66). In the

rest of this subsection, we shall discuss the last two equations.

Following and extending [10], we show that the prepotential f obeys the two proper-

ties (2.63), (2.66), up to an anomalous part which is independent of the Coulomb VEV v.

– 16 –



J
H
E
P
1
2
(
2
0
1
7
)
1
2
0

Again following [10], our strategy is to first find a prepotential fS-dual in a series of m2

which satisfies both (2.63) and (2.66). Then we show that f − fS-dual is independent of v.

We expand fS-dual like (2.59), fS-dual =
∑∞

n=1m
2nfn(τ, v). (2.66) is given in terms of

fn by

∂fn
∂E2

= − 1

24

n−1∑
m=1

∂fm
∂v

∂fn−m
∂v

(2.72)

for n ≥ 2. This equation can be used to recursively compute fn. Namely, once we know fm
for m = 1, · · · , n−1, one can integrate the right hand side of (2.72) with E2 to get fn, up to

an integration constant independent of E2. The integration constant is a polynomial of E4

and E6 with modular weight 2n−2, whose coefficients depend only on v. These integration

constants depending on v can be fixed once we know a few low order coefficients of f in q

expansion. Also, to start the recursive construction, the first coefficient f1 at m2 should be

known. It will turn out that this can be also fixed by the known perturbative part fpert [10].

This way, one can recursively generate the coefficients of fS-dual from (2.63), (2.66) and the

knowledge of the few low order coefficients of f in q expansion. We emphasize here that

our purpose of making a recursive construction of fS-dual is to show that the Coulomb VEV

dependent part of f is S-dual. Therefore, while fixing the integration constants and f1 in

fS-dual by using the low order q expansion coefficients of f , it suffices to use f up to the

addition of any convenient expression independent of v. So for technical reasons, we shall

fit these integration constants and f1 by comparing fS-dual with

f(τ, v,m)−NfU(1)(τ,m) (2.73)

rather than f itself. Note that NfU(1) is the prepotential contribution from U(1)N Cartan

part, coming from D0-branes bound to D4-branes but unbound to W-bosons which see

v. One reason for comparing with f −NfU(1) is that fU(1) does not admit a power series

expansion in m2 like (2.59). The S-duality anomaly of NfU(1) can be calculated separately

from (2.31).

With these understood, we start the recursive contruction by determining f1. This can

be fixed solely from the perturbative part of (f−NfU(1))pert [10]. Namely, when instantons

are bound to W-bosons, there are fermion zero modes which provide at least a factor of

m4 in f . This means that m2 term f1 should come from the perturbative part only. This

fact can also be straightforwardly checked from the microscopic calculus. So one finds

f1 = (f −NfU(1))pert

∣∣∣
m2

= −1

2

∑
α∈∆

Li1(eα(v)) =
1

2

∑
α∈∆

log(1− eα(v)) , (2.74)

where ∆ is the set of roots of U(N).

One can then compute f2 using (2.72) at n = 2,

∂f2

∂E2
= − 1

24

(
∂f1

∂v

)2

= − 1

96

∑
α,β∈∆

α · β
(1− eα(v))(1− eβ(v))

. (2.75)

One can integrate it with E2, to obtain

f2 = −E2(τ)

96

∑
α,β∈∆

α · β
(1− eα(v))(1− eβ(v))

. (2.76)
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There is no integration constant at weight 2. To proceed, we study the properties of the

U(N) roots. ∆ consists of vectors of the form ei − ej , i 6= j, i, j = 1, · · · , N , where ei are

N orthogonal unit vectors. α · β takes following possible values,

α · β = ±2 if ± β = α

α · β = ±1 if ± β ∈ Ψ(α)

α · β = 0 otherwise , (2.77)

where Ψ(α) is given for α = ei − ej by

Ψ(ei − ej) = {k 6= i, j : ei − ek, ek − ej} . (2.78)

For a given α, there are 2(N − 2) elements of Ψ(α). Using this, one finds

f2 =−E2(τ)

96

∑
α∈∆

2

1−eα(v)

(
1

1−eα(v)
− 1

1−e−α(v)

)
+
∑
α∈∆

∑
β∈Ψ(α)

1

1−eα(v)

(
1

1−eβ(v)
− 1

1−e−β(v)

)
=−E2(τ)

96

∑
α∈∆

4

(1−eα(v))2
−
∑
α∈∆

2(N−1)

1−eα(v)
+
∑
α∈∆

∑
β∈Ψ(α)

2

(1−eα(v))(1−eβ(v))


where we used 1

1−eα(v) − 1
1−e−α(v) = 2

1−eα(v) − 1. Using 1
(1−eα(v))2 = 1

1−eα(v) + eα(v)

(1−eα(v))2 =
1

1−eα(v) + Li−1(e−α(v)), the first term can be rewritten so that

f2 = −E2(τ)

96

4
∑
α∈∆

Li−1(eα(v))−
∑
α∈∆

2(N − 3)

1− eα(v)
+
∑
α∈∆

∑
β∈Ψ(α)

2

(1− eα(v))(1− eβ(v))

 .
(2.79)

Here, one can simplify the second term by using∑
α∈∆

1

1− eα(v)
=

1

2

∑
α∈∆

(
1

1− eα(v)
+

1

1− e−α(v)

)
=

1

2

∑
α∈∆

1 =
N(N − 1)

2
.

Also, using 1
(1−ex)(1−ey) + 1

(1−e−x)(1−ey−x)
+ 1

(1−ex−y)(1−e−y)
= 1, one finds

∑
α∈∆

∑
β∈Ψ(α)

1

(1−eα(v))(1−eβ(v))
=
∑
i 6=j

∑
k 6=i,j

[
1

(1−evi−vj )(1−evi−vk)
+

1

(1−evi−vj )(1−evk−vj )

]
=

1

3

∑
i 6=j 6=k 6=i

[(i, j,k)+(j,k, i)+(k, i, j)] =
∑

i 6=j 6=k 6=i

2

3
=

2

3
N(N−1)(N−2) , (2.80)

where at the second step we symmetrized the summand by making a cyclic permutation

of i, j, k. This simplifies the third term. One thus finds

f2 = −E2(τ)

24

[∑
α∈∆

Li−1(eα(v)) +
N3 −N

12

]
(2.81)

at O(m4) order.
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Before proceeding to higher order coefficients fn with n ≥ 3, let us first discuss f2

that we computed by requiring S-duality of fS-dual. Note that at m4, we have obtained an

all order result in the instanton expansion, coming from E2(τ) = 1− 24q − 72q2 − 96q3 −
168q4 · · · . So from the microscopic instanton calculus, one can expand f(τ, v,m) in small

m, and we can compare f and fS-dual at m4 order. We find that

(f −NfU(1))− fS-dual

∣∣∣
m4

=
N3 −N

288
m4E2(τ) , (2.82)

which we checked till q2 order for general N , and till q3 for N = 2, 3. Therefore, we

find that the microscopic prepotential is compatible with S-duality at m4 order, up to the

addition of an ‘anomalous’ term on the right hand side independent of the Coulomb VEV.

One can make further recursive calculations of fn for n ≥ 3, using (2.72), and test the

consistency of fS-dual with our microscopic f . The next recursion relation of (2.72) is

∂f3

∂E2
= − 1

12

∂f1

∂v

∂f2

∂v
. (2.83)

Knowing f1, f2, one can integrate (2.83) to obtain

f3 = −E2(τ)2

1152

∑
α∈∆

(2Li−3(eα(v))− 4Li−1(eα(v))2) + 2
∑
α∈∆

∑
β∈Ψ(α)

Li0(eα(v))Li−2(eβ(v))


+ c3(v)E4(τ) . (2.84)

The integration constant c3(v) can be determined by expanding f3 in q, and comparing

the q0 order with the perturbative contribution (f −NfU(1))pert at m6 order. One obtains

c3(v) =
1

2880

∑
α∈∆

Li−3(eα(v))− 1

288

∑
α∈∆

Li−2(eα(v))2 +
1

576

∑
α∈∆

∑
β∈Ψ(α)

Li0(eα(v))Li−2(eβ(v)) .

(2.85)

Inserting this c3(v) in (2.84), one can further study the higher order coefficients of f3 in q

expansion, against the microscopic result f . We find that

(f −NfU(1))− fS-dual

∣∣∣
m6

= 0 , (2.86)

which we checked till q2 order for general N , and till q3 order for N = 2, 3.

Integrating (2.72) to get higher fn’s, the integration constants take the following form,

fn(τ, v)←
∑

4a+6b=2n−2, a≥0, b≥0

ca,b(v)E4(τ)aE6(τ)b . (2.87)

More concretely, one would get

f4 ← c0,1E6 , f5 ← c2,0E
2
4 , f6 ← c1,1E4E6 , f7 ← c3,0E

3
4 + c0,2E

2
6 , f8 ← c2,1E

2
4E6 , · · ·

(2.88)

and so on. To fix the coefficients cp,q(v), one should use some low order data of f −NfU(1).

If there are k + 1 independent cp,q’s, one should use up to k instanton coefficients of
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f−NfU(1) to fix them. Then from k+1 or higher instantons, one can test fn by comparing

with f −NfU(1). For general N , we tested fS-dual against f −NfU(1) till m6 and q2 orders,

as already reported above. For U(2), we tested it till m14 (i.e. f7) and q3 orders. For U(3),

we tested it till m8 (i.e. f4) and q3 orders. The result is that there is no further difference

between fS-dual and f −NfU(1) from m6 and higher orders. Namely, we find that

f(τ, v,m) = fS-dual(τ, v,m) +NfU(1)(τ,m) +
N3 −N

288
m4E2(τ) . (2.89)

The S-duality transformation of fU(1) can be separately derived from (2.31), which is

τ2fU(1)(−1/τ,m/τ)− fU(1)(τ,m) =
m2

2
log

φ(−1/τ)2

τφ(τ)2
+
m4

288
(τ−2E2(−1/τ)− E2(τ))

=
m2

2

[
πiτ

6
+
πi

6τ
+ log(−i)

]
+

m4

48πiτ
, (2.90)

where η(−1/τ) =
√
−iτη(τ). Although we checked (2.89) in a serious expansion in small

m, we believe it is an exact property, valid for finite m. In section 2.2, we shall provide

another test of (2.89) by keeping m finite, but expanding f as a series of e−v at positive

Coulomb VEV v. Also, in section 2.3, we extend (2.89) to all ADE theories.

2.2 Derivation from M-strings

In this subsection, we provide another derivation of the S-duality of prepotential. The

analysis here will provide more evidence for our S-duality anomaly at finite m. It may also

provide strong hints towards the S-duality of the partition function Z(τ, v,m, ε1,2) at finite

ε1,2, but we postpone more extensive discussions on Z to a separate project.

We use an alternative partition function Ž(τ, v,m, ε1,2) = ŽpertZinst. This differs from

Z by a different perturbative partition function Žpert. For the purpose of studying the

prepotential in the limit ε1,2 → 0, we already saw that they differ only by a trivial term,

as shown in (2.24) in a suitable regime on the complex v plane. The last term of (2.24)

is separately invariant under the S-duality transformation (τ,m, ε1,2)→ (− 1
τ ,

m
τ ,

ε1,2
τ ), and

is independent of v, so it is completely fine to drop this constant factor when discussing

the S-duality of prepotential. Ž can be expanded in e−αi(v) when αi(v) are positive and

sufficiently large, where αi (i = 1, · · · , N−1) are the simple roots of SU(N). The expansion

takes the form of [8]

Z(τ, v,m, ε1,2) = e−ε0ZU(1)(τ,m, ε1,2)N
∞∑

n1,··· ,nN−1=0

e−
∑N−1
i=1 niαi(v)Z(ni)(τ,m, ε1,2)

≡ e−ε0ZNU(1)Ẑ .

(2.91)

ZNU(1) is for the D0-branes unbound to the W-bosons, just bound to one of the N D4-branes,

which is this independent of e−αi(v). ε0 is defined at the beginning of section 2 by

ε0 =
m2 − ε2+

2ε1ε2

∑
α>0

(α(v) + πi) . (2.92)
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This factor has to be multiplied to guarantee (2.24). This expansion is reliable in a par-

ticular Weyl chamber of the Coulomb branch, with sufficiently large αi(v) for all simple

roots. The coefficient Z(ni)(τ,m, ε1,2) at given self-dual string numbers ni is computed

from ‘M-strings,’ which are M2-branes suspended between separated M5-branes. Z(ni) is

the elliptic genus of the 2d quiver gauge theory with U(n1) × · · ·U(nN−1) gauge group.

See [20] for the details. Z(ni)(τ,m, ε1,2) is given by [8] (we follow the notations of [21])

Z(ni) =
∑

Y1,··· ,YN−1;|Yi|=ni

N∏
i=1

∏
s∈Yi

θ1(τ |Ei,i+1(s)−m+ε−
2πi )θ1(τ |Ei,i−1(s)+m+ε−

2πi )

θ1(τ |Ei,i(s)+ε12πi )θ1(τ |Ei,i(s)−ε22πi )
, (2.93)

where s = (a, b) denotes the position of each box in the Young diagram, and

Ei,j(s = (a, b)) = (Yi,a − b)ε1 − (Y T
j,b − a)ε2 . (2.94)

Yi,a is the length of the a’th row of Yi, and Y T
j,b is the length of the b’th column of Yj . Y0

and YN are empty by definition.

We study the S-duality of Ž in this setting. By using

θ1(− 1
τ ,

z
τ )

η(− 1
τ )

= e
πiz2

τ
θ1(τ, z)

η(τ)
, (2.95)

one can show that Z(ni) transforms as

Z(ni)

(
−1

τ
,
m

τ
,
ε1,2
τ

)
= exp

 1

4πiτ

ε1ε2 N−1∑
i,j=1

Aijninj+2(m2−ε2+)
N−1∑
i=1

ni

Z(ni)(τ,m,ε1,2) .

(2.96)

Aij is the Cartan matrix for SU(N), given by Aii = 2, Ai,i+1 = Ai,i−1 = −1 and Aij = 0

otherwise. This transformation can be expressed as a modular anomaly equation, as follows.

First note that Jacobi’s theta functions can be expressed as

θ1(τ |z) = 2πiz η(τ)3 exp

[ ∞∑
k=1

B2k

(2k)(2k)!
E2k(τ)(2πiz)2k

]
. (2.97)

τ dependence of Z(ni) can be understood as its dependence through E2n(τ), since η(τ)3

factors cancel out in (2.93). As we did in section 2.1 for the prepotential, the τ dependence

of Z(ni) can again be decomposed into its dependence through E2(τ), and the rest. To

emphasize this, we write Z(ni)(τ,m, ε1,2, E2). In this setting, the modular anomaly e
πiz2

τ

of (2.95) appears due to the dependence of θ1 on E2(τ), which is not modular. Therefore,

we can rephrase (2.96) as

∂

∂E2
Z(ni)(τ,m, ε1,2;E2) =

1

24

ε1ε2 N−1∑
i,j=1

Aijninj + 2(m2 − ε2+)

N−1∑
i=1

ni

Z(ni) . (2.98)

Let us consider Ẑ(τ, λ,m, ε1,2;E2) =
∑∞

ni=0 e
−niλiZ(ni)(τ,m, ε1,2;E2), where we defined

λi ≡ vi − vi+1 > 0 with the choice of simple roots αi = ei − ei+1. Here we view Ẑ as a
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function of λ’s, since it depends only on the differences of v’s. Now with the replacement

ni → − ∂
∂λi

in the Laplace transformation, one obtains

∂

∂E2
Ẑ(τ, λ,m, ε1,2;E2) =

1

24

ε1ε2 N−1∑
i,j=1

Aij
∂2

∂λi∂λj
− 2(m2 − ε2+)

N−1∑
i=1

∂

∂λi

 Ẑ . (2.99)

This is essentially the ‘holomorphic anomaly equation’, eq. (3.54) of [8]. In our context,

we continue to study it as the modular anomaly equation.

We shall get better intuitions on the modular anomaly equation. Consider Z̃ ≡ e−ε0Ẑ
with ε0 =

m2−ε2+
2ε1ε2

∑
α>0(α(v)+πi), still without (ZU(1))

N included. Since the v independent

part of ε0 is independent of E2, λ, it does not affect (2.99). The v dependent part can be

written as∑
α>0

α(v) =
∑
i<j

(vi − vj) =

N∑
i=1

[(N − i)− (i− 1)]vi =

N∑
i=1

(N + 1− 2i)vi . (2.100)

Since ∂λi(v)
∂vj

= δi,j−δi+1,j ,
∂
∂vj

acting on a function of λi’s can be written as ∂
∂vj

= ∂λi(v)
∂vj

∂
∂λi

,

∂

∂v1
=

∂

∂λ1
,

∂

∂vj
=

∂

∂λj
− ∂

∂λj−1
(j = 2, · · · , N − 1) ,

∂

∂vN
= − ∂

∂λN−1
. (2.101)

The Laplacian of v acting on a function of λ is given by

∇2 ≡
N∑
i=1

∂2

∂v2
i

= Aij
∂2

∂λi∂λj
. (2.102)

One also finds that
N−1∑
i=1

∂

∂λi
=

N∑
i=1

(a− i)∂vi (2.103)

for any number a. Acting ∇2 on Z̃ = e−ε0Ẑ, one obtains

∇2Z̃ = e−ε0∇2Ẑ−2
m2−ε2+
2ε1ε2

e−ε0
N∑
i=1

(N+1−2i)∂viẐ+

(
m2−ε2+
2ε1ε2

)2

e−ε0
N∑
i=1

(2i−N−1)2Ẑ

= e−ε0

[
∇2Ẑ−2

m2−ε2+
ε1ε2

N−1∑
i=1

∂

∂λi
Ẑ+

N3−N
3

(
m2−ε2+
2ε1ε2

)2

Ẑ

]
(2.104)

where we used ∂ε0
∂vi

=
m2−ε2+
2ε1ε2

(N + 1− 2i). Using (2.99), this can be rewritten as

∇2Z̃ = e−ε0

[
24

ε1ε2

∂

∂E2
Ẑ +

N3 −N
3

(
m2 − ε2+

2ε1ε2

)2

Ẑ

]
. (2.105)

Thus, one finds that the partition function

ZS-dual ≡ exp

[
ε1ε2
24

N3 −N
12

(
m2 − ε2+
ε1ε2

)2

E2

]
Z̃ = exp

[
N3 −N

288

(m2 − ε2+)2

ε1ε2
E2 − ε0

]
Ẑ

(2.106)

– 22 –



J
H
E
P
1
2
(
2
0
1
7
)
1
2
0

satisfies the modular anomaly equation

∂

∂E2
ZS-dual(τ, v,m, ε1,2;E2) =

ε1ε2
24
∇2ZS-dual . (2.107)

Also, from the M-string expansion form of Ẑ, and the form of the prefactors we multiplied

to define ZS-dual, ZS-dual satisfies the following quasi-modularity condition,

ZS-dual

(
−1

τ
, v,

m

τ
,
ε1,2
τ

;E2

(
−1

τ

))
= ZS-dual(τ, v,m, ε1,2, E2(τ) + δ) (2.108)

where δ = 6
πiτ . (2.107) and (2.108) are the two main properties of ZS-dual.

Using (2.107) and (2.108), we would like to study the relation between

ZS-dual(τ, v,m, ε1,2, E2) and ZS-dual(− 1
τ , v,

m
τ ,

ε1,2
τ , E2(− 1

τ )). Since Z̃ is related to ZS-dual in a

simple manner, answering this question will tell us how Z̃ transforms under S-duality. Then,

since we already understand how the U(1)N part ZNU(1) transforms under S-duality [38], we

shall in turn know the S-duality transformation of Ž. Using (2.108), we should understand

how ZS-dual(τ, v,m, ε1,2;E2(τ)+δ) and ZS-dual(τ, v,m, ε1,2;E2) are related to each other, at

same values of τ, v,m, ε1,2 but with a shift of E2 by δ = 6
πiτ . Let us formally regard E2 as

time variable, and ZS-dual as a wavefunction on the space formed by vi. Then (2.107) takes

the form of heat equation, or Euclidean Schrödinger equation for a free particle. More pre-

cisely, taking τ to be purely imaginary for simplicity, δ is real and negative. So −E2 plays

the role of time, and we would like to understand the time evolution ZS-dual(E2 + δ) by

−δ following the heat equation. The heat equation comes with proper sign when ε1ε2 < 0.

In this case, the time evolution is described by evolving ZS-dual(E2) by the Gaussian heat

kernel as

ZS-dual(τ, v,m, ε1,2;E2(τ) + δ) =

∫ ∞
−∞

N∏
i=1

dv′i K(v, v′)ZS-dual(τ, v
′,m, ε1,2;E2(τ)) , (2.109)

where

K(v, v′) =

(
iτ

ε1ε2

)N
2

exp

[
− πiτ
ε1ε2

(v − v′)2

]
(2.110)

is the heat kernel which approaches K(v, v′)→ δ(N)(v−v′) when iτ
ε1ε2
→ 0. When ε1ε2 > 0,

the ‘time evolution’ from ZS-dual(E2) to ZS-dual(E2 + δ) is described by the time reversal of

the heat equation. Therefore, one finds

ZS-dual(τ, v,m, ε1,2;E2(τ)) =

∫ ∞
−∞

N∏
i=1

dv′i K−(v, v′)ZS-dual(τ, v
′,m, ε1,2;E2(τ) + δ) (2.111)

with K−(v, v′) =
(
− iτ
ε1ε2

)N
2

exp
[
πiτ
ε1ε2

(v − v′)2
]

for ε1ε2 > 0.

The S-duality of fS-dual can be studied from (2.109) or (2.111) by a saddle point

approximation of the v′ integral at ε1,2 → 0. Using both equations yield identical results.

One finds

ZS-dual = e
− fS-dual

ε1ε2 ∼ exp

[
− f̂

ε1ε2
+
N3 −N

288

m4

ε1ε2
E2(τ)− m2

2ε1ε2

∑
α>0

(α(v) + πi)

]
(2.112)
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in the limit ε1,2 → 0, so that

fS-dual = f̂ − N3 −N
288

m4E2(τ) +
m2

2

∑
α>0

(α(v) + πi) . (2.113)

We shall show that fS-dual defined this way is the same fS-dual defined and computed in

section 2.1. Firstly, note that

f̂ = f̌−NfU(1)−
m2

2

∑
α<0

(α(v)+πi) = f−NfU(1)−
m2

2

∑
α<0

(α(v)+πi)− πim
2|∆+|
2

(2.114)

from the relations Ž = e−ε0 [ZU(1)]
N Ẑ and Ž ∼ Ze

πim2|∆+|
2ε1ε2 . Inserting this in (2.113), one

obtains

fS-dual = f −NfU(1) −
N3 −N

288
m4E2(τ)− πim2|∆+|

2
. (2.115)

This is completely the same as the relation between f and fS-dual that we found in sec-

tion 2.1, except the last term on the right hand side. However, we know that the last

term comes from using slightly different perturbative partition function in Ž, (2.24). Also

this term can be completely ignored for studying S-duality since it is separately invariant

under S-duality. Therefore, after discarding this last term, we find that fS-dual is the same

as fS-dual defined in section 2.1. Now one can independently check that fS-dual is S-dual.

Firstly, Since ZS-dual is quasi-modular, so is fS-dual, i.e.

τ2fS-dual

(
−1

τ
, v,

m

τ
,E2(−1/τ)

)
= fS-dual(τ, v,m,E2(τ) + δ) (2.116)

Secondly, inserting ZS-dual ∼ exp
[
−fS-dual

ε1ε2

]
into (2.107) and keeping the leading terms in

the limit ε1,2 → 0, one finds ∂fS-dual
∂E2

= − 1
24

(
∂fS-dual
∂v

)2
, the same modular anomaly equation

that we studied in section 2.1 [22]. The last two equations guarantee the S-duality of fS-dual,

completing an alternative proof of S-duality based on M-strings.

While making an alternative derivation of the S-duality and its anomaly, we did not

assume the smallness of m. On the other hand, around (2.24), we required Re(α(v)) >

±Re(m) for the positive roots α, and that Im(α(v) ± m) for positive roots be in the

range (0, 2π], to justify the uses of F̌pert and Žpert. So at least in this range, Fanom =

NfU(1) + N3−N
288 m4E2(τ) is exact at finite m. One can scan the whole complex planes of

v and m, considering the multiple values of Li3 function, to find the most general form of

the S-duality anomaly when (2.24) is violated. We shall not do this exercise here.

Before closing this subsection, we comment on the nature of the S-duality transforma-

tion of ZS-dual or Ž, and what it implies to the S-duality of Z. This issue is also related

to the S-duality of the 4d limit of Z, which was studied in the context of AGT corre-

spondence [23]. Taking the 4d limit R → 0 with fixed a,M, ε1,2,m, τ , (2.109) asserts that

Z4d(τ, a,m, ε1,2) is related to its S-dual by a Gaussian S-duality kernel. This is because

the R dependence K is given by

K(a, a′) = R−N
(
iτ

ε1ε2

)N
2

exp

[
− πiτ
ε1ε2

(a− a′)2

]
, (2.117)
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and the overall R dependence is absorbed into the v′ integration to be
∏
i da
′
i. Expanding

the exponent of the kernel, and inserting a = aD
τ , one obtains

exp

[
−
Fcl(a

′, τ)− Fcl(aD,− 1
τ )

ε1ε2

]
exp

[
πiaDa

′

ε1ε2

]
, (2.118)

where Fcl(a, τ) = πiτa2. The two Fcl’s can be absorbed into two Z4d’s on the left and right

hand sides of (2.109). Then, the 4d limit of (2.109) states that S-dualization is Fourier

transformation. Our studies imply that the same result holds for ZS-dual in 6d.

In fact, the proper S-duality transformation of the 4d partition function is known

not to be the Fourier transformation. Instead, based on the AGT correspondence, the

S-duality kernel is asserted to be a nontrivial function given by the partition function of

the 3d T [SU(N)] theory on S3 [24, 25]. On the other hand, it has been found that the

S-duality of the Omega deformed partition function is the Fourier transformation at all

perturbative orders in ε1, ε2 [15, 22, 26, 27]. An explanation of this was given in [26],

which finds that the choice of proper ‘normalization factor’ independent of τ dressing the

instanton partition function yields such a nonperturbative correction in ε1,2. This is the

‘choice’ of Z4d
pert, which was called N(a) and Ns(a) in [26]. Incidently, what we find in 6d

is analogous to the findings of [26]. Namely, Z was defined in section 2 with Zpert which

is manifestly invariant under Weyl symmetry. However, Ž was defined with Žpert which is

not invariant under Weyl symmetry. In fact, we checked that the ratio
Žpert

Zpert
at small ε1,2

is nonperturbative in ε1,2, which is qualitatively consistent with [26]. So along this line, it

will be interesting to pursue the 6d extensions of [26]. We stress again that, all our findings

in this subsection concerns the prepotential in the ε1,2 → 0 limit, for which the distinction

of Zpert or Žpert is irrelevant.

2.3 6d (2, 0) theories of DN and EN types

We generalize some studies we made for AN−1 type (2, 0) theories to DN and EN type

theories. For DN type theories, fS-dual can be compared with microscopic instanton calculus

for the 5d SO(2N) N = 1∗ theory, or the D0-D4-O4 matrix quantum mechanics [9]. For

EN types, we make a prediction of the S-duality and our knowledge of 5d perturbative

prepotential. All ADE results will be partly tested in section 3.2 from 6d chiral anomalies.

In the setting of section 2.1, the leading coefficient f1 of fS-dual =
∑∞

n=1m
2nfn is

obtained from (f − rfU(1))pert, where r is the rank of the gauge group. The result is

f1 =
1

2

∑
α∈∆

log(1− eα(v)) . (2.119)

Then using (2.72) at n = 2, one finds

f2 = −E2(τ)

96

∑
α,β∈∆

α · β
(1− eα(v))(1− eβ(v))

. (2.120)
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To proceed, we classify the roots β depending on their norm with α. The possibilities are

(1) : α · β = ±2 if ± β = α

(2) : α · β = ±1 if ± β ∈ Ψ(α)

(3) : α · β = 0 otherwise . (2.121)

It is again important to understand the set Ψ(α) for ADE, which we explain now.

ForDN = SO(2N), the 2N2−2N roots in ∆ are given by ±ei±ej , where i, j = 1, · · · , N
and i < j. Elements of Ψ(α) are given for various α by

α = ei − ej : Ψ(α) = {k 6= i, j : ei ± ek,±ek − ej} , 4(N − 2) elements

α = ei + ej : Ψ(α) = {k 6= i, j : ei ± ek, ej ± ek} , 4(N − 2) elements . (2.122)

For E6, the number of roots is |∆| = 72. 40 roots take the form of ±ei ± ej where i 6= j

and i, j = 1, · · · , 5, from the SO(10) subalgebra. Additional 32 roots take the form of

±1
2(±e1±· · ·± e5− e6− e7 + e8), where the total number of − signs is even. The structure

of Ψ(α) is given for various α as follows. Firstly, when α = ei − ej , then

Ψ(α) = {k 6= i, j : ei ± ek,±ek − ej} ∪
{

1

2
(ei − ej + · · · )

}
(2.123)

where · · · means that all possible signs are allowed in the 32 spinorial elements. Thus, one

finds 12 + 8 = 20 elements of Ψ(α) in this case. Similarly, for α = ei + ej , one finds

Ψ(α) = {k 6= i, j : ei ± ek, ej ± ek} ∪
{

1

2
(ei + ej + · · · )

}
(2.124)

where · · · means the same. So again, one finds |Ψ(α)| = 12 + 8 = 20. For α = −ei − ej ,
one can do a similar analysis. Finally, α can be one of the 32 spinorial elements, α =
s0
2 (s1e1 + · · ·+ s5e5 − e6 − e7 + e8) with s0, · · · , s5 = ±1 and s1 · · · s5 = 1. Then,

Ψ(α) = {s0(siei + sjej)} ∪ {α− s0(siei + sjej)} , (2.125)

so |Ψ(α)| = 5C2 + 5C2 = 20. For E7, |∆| = 126. 60 roots take the form of ±ei ± ej ,

i, j = 1, · · · , 6, from SO(12) subalgebra. Additional 64 roots take the form of ±1
2(±e1 ±

· · ·± e6− e7 + e8), with total number of − signs being even. Finally, 2 more roots are given

by ±(e7 − e8). When α = ±ei ± ej , Ψ(α) takes the same structure as that shown for E6.

For instance, for α = ei + ej , one finds Ψ(α) = {k 6= i, j|ei ± ek, ej ± ek} ∪ {1
2(ei + ej · · · )}

with |Ψ(α)| = 16 + 16 = 32. When α = s0
2 (s1e1 + · · ·+ s6e6 − e7 + e8), with s1 · · · s6 = 1,

one finds

Ψ(α) = {s0(siei + sjej)} ∪ {α− s0(siei + sjej)} ∪ {s0(e8 − e7), α+ s0(e7 − e8)} (2.126)

with |Ψ(α)| = 6C2 + 6C2 + 2 = 32. Finally, when α = e7 − e8, one finds

Ψ(α) =

{
s1 · · · s6 = −1

∣∣∣ 1

2
(s1e1 + · · · s6e6 + e7 − e8)

}
, (2.127)
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G AN−1 DN E6 E7 E8

r N − 1 N 6 7 8

|G| N2 − 1 2N2 −N 78 133 248

c2 N 2N − 2 12 18 30

Table 1. Data on simply laced Lie algebras.

with |Ψ(α)| = 32. The case with α = e8 − e7 is similar. For E8, |∆| = 240. 112 roots take

the form of ±ei ± ej , i, j = 1, · · · , 8, from SO(16) subalgebra. Additional 128 roots take

the form of 1
2(±e1±· · ·±e8) with number of − signs being even, forming the SO(16) spinor

representation. For α = ei+ej , one finds Ψ(α) = {k 6= i, j|ei±ek, ej±ek}∪{1
2(ei+ej · · · )},

with |Ψ(α)| = 24+32 = 56. Other cases with roots of the form α = ±ei±ej can be studied

similarly. For α = 1
2(s1e1 + · · · s8e8) with s1 · · · s8 = 1, one finds

Ψ(α) = {siei + sjej} ∪ {α− (siei + sjej)} (2.128)

with |Ψ(α)| = 8C2 + 8C2 = 56. Including the SU(N) case studied in section 2.1, one finds

|Ψ(α)| = 2c2 − 4, where c2 is the dual Coxeter number. See table 1. Another useful fact

that can be checked with all Ψ(α) we listed above is that, if β ∈ Ψ(α), then α − β is also

a root. One also finds α− β ∈ Ψ(α), since α · (α− β) = 1. So at given α, one finds∑
β∈Ψ(α)

fα,β =
∑

β∈Ψ(α)

fα,α−β (2.129)

for any expression fα,β .

By following the analysis for the U(N) case, till (2.1), one finds

f2 = −E2

96

4
∑
α∈∆

Li−1(eα(v))− (c2 − 3)(|G| − r) +
∑
α∈∆

∑
β∈Ψ(α)

2

(1− eα(v))(1− eβ(v))

 .
(2.130)

Now we use the identity (2.129) to rewrite the last term in the parenthesis as

2

3

∑
α∈∆

∑
β∈Ψ(α)

[
1

(1−eα(v))(1−eβ(v))
+

1

(1−e−α(v))(1−eβ(v)−α(v))
+

1

(1−eα(v)−β(v))(1−e−β(v))

]
.

(2.131)

On the second term, we relabeled α into −α in the first sum, and then took β − α with

β ∈ Ψ(α) as labeling the elements of Ψ(−α). The third term is simply the second term

with renaming α↔ β. Using the identity 1
(1−ex)(1−ey) + 1

(1−e−x)(1−ey−x)
+ 1

(1−ex−y)(1−e−y)
=

1, (2.131) becomes 2
3

∑
α∈∆

∑
β∈Ψ(α) 1 = 4

3(|G| − r)(c2 − 2). Thus, one obtains

f2 = −E2(τ)

24

[∑
α∈∆

Li−1(eα(v)) +
1

12
(c2 + 1)(|G| − r)

]

= −E2(τ)

24

[∑
α∈∆

Li−1(eα(v)) +
c2|G|

12

]
,

(2.132)

where at the last step we used the identity |G| = r(c2 + 1) for simply-laced Lie algebra.
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f2 contains E2(τ) = 1− 24q+ · · · , so makes a prediction on the instanton corrections.

For G = SO(2N), one can compare this against microscopic instanton calculus for the

5d N = 1∗ theory [9]. We compared the two results at 1 instanton level for SO(8).

Namely, (2.132) implies

f2|q1 = fS-dual|m4q1 =
∑
α∈∆

Li−1(eα(v)) +
c2|G|

12
, (2.133)

where Li−1(x) = x
(1−x)2 . On the other hand, the single instanton partition function Z1 for

the SO(2N) theory can be obtained by starting from the Witten index for the quantum

mechanics describing an O4− plane, 2 D0-branes and 2N D4-branes (in the covering space).

The index is a complicated residue sum. One should further subtract the contributions

from D0-branes unbound to D4-O4, which was explained in [9]. Following this procedure,

we checked that

fS-dual − (fSO(8) − 4fU(1))
∣∣∣
m4q1

=
c2|G|

12
. (2.134)

One can continue to generate higher order fn’s, and also the microscopic instanton calculus

for general DN at higher order in q, and compare them. Here we simply conjecture

f(τ, v,m) = fS-dual(τ, v,m) + rfU(1)(τ,m) +
c2|G|
288

m4E2(τ) (2.135)

for all G = SU(N), SO(2N), EN , where r is the rank of G. For G = SU(N), we have tested

it extensively in section 2.1, after adding one free tensor multiplet to make it U(N). For

G = SO(2N), we tested it till m4, q1 order only at N = 4, but in principle one can do all

the calculus of section 2.1, following the methods of [9]. For EN , this is just a prediction

by assuming S-duality and 5d perturbative results. The last term proportional to c2|G|
will be further tested in section 3, from the 6d chiral anomaly of SO(5) R-symmetry.

3 High temperature limit of the index

In this section, we compute the asymptotic form of the prepotential at strong coupling, or

high ‘temperature’ τ → i0. This is the limit in which the compactification radius R′ of

the sixth circle becomes large, or equivalently in which D0-branes become light. The key

technique of computation will be the anomalous S-duality that we developed in section 2.

Our convention is that the strong coupling theory of our interest is the ‘S-dualized’

theory. So we take τD → i0+, and τ = − 1
τD
→ i∞. Recall fS-dual satisfies

τ2fS-dual(τD, vD,mD) = fS-dual(τ, v,m) +
1

4πiτ

(
∂f

∂v

)2

(3.1)

where τD = − 1
τ , vD = v+ 1

2πiτ
∂f
∂v , mD = m

τ . We replaced fS-dual by f when it appears with

v derivatives, since fanom is independent of v. Inserting fS-dual = f − fanom, one finds that

τ2f(τD, vD,mD) = f(τ, v,m) +
1

4πiτ

(
∂f

∂v

)2

+ τ2fanom(τD,mD)− fanom(τ,m) . (3.2)

– 28 –



J
H
E
P
1
2
(
2
0
1
7
)
1
2
0

Using (2.90) and E2(−1/τ) = τ2
(
E2(τ) + 6

πiτ

)
, one obtains

τ2fanom(τD,mD)− fanom(τ,m) =
Nm2

2

(
log(−i)− πiτD

6
+
πiτ

6

)
+
N3m4

48πiτ
. (3.3)

Inserting this in (3.2), one obtains

f(τD,vD,mD) = τ−2f(τ,v,τmD)+
1

4πiτ3

(
∂f

∂v

)2

+
Nm2

D

2

(
log(−i)+

πi

6τ
+
πiτ

6

)
+
N3m4

D

48πi
τ .

(3.4)

We shall study it in the limit τ → i∞ with mD and vD fixed.

The limit τ → i∞ on the right hand side has to be understood with care, since

m = τmD scales with τ . Also, we should study how v scales with τ → i∞, at fixed vD.

Had v,m not scaled with τ , one would have naively expected that the instanton corrections

in f would have been suppressed at q � 1, so that we could replace f on the right hand

side by fpert. Let us check when this is correct. This expectation is correct if Fk(v,m) does

not scale to be larger than qk. From (2.8), Fk scales like Fk ∼ e±kNm at ±Re(m) � 1.

For this factor to be smaller than qk, one should require |Re(τmD)| < −2πiτ
N . Let us take

τ to be purely imaginary for convenience (although most of our final results are valid for

complex τ). Then, Fk can be ignored if

|Im(mD)| < 2π

N
. (3.5)

When Im(mD) reaches ±2π
N , we encounter a phase transition, beyond which one should

make a new q expansion on the right hand side. The correct nature of this phase transition

will be commented on later. To make the simplest calculus at τD → i0+, we take mD to

satisfy (3.5).

Let us also discuss how v should scale at fixed vD. We shall first assume that v is finite

at finite vD, and then show that it is consistent with ignoring finst. If finst can be ignored,

then the relation between v and vD can be simplified as

v = vD −
1

2πiτ

∂fpert

∂v
(v, τmD) . (3.6)

∂fpert

∂v is given by
∂fpert

∂v
=
∑
α∈∆

α

[
Li2(eα·v)− 1

2
Li2(eα·v±m)

]
. (3.7)

Since we assume that v is finite, the first term not containing m yields a subleading con-

tribution, from the 1
τ → 0 factor in (3.6). To be definite, we take Im(mD) < 0 so that

Re(m)� 1. Then,

Li2(eα(v)+m) = −Li2(e−α(v)−m)− π2

6
− 1

2
(log(−1) + α(v) +m)2 (3.8)

where we used Li2(ex)+Li2(e−x) = −π2

6 −
1
2 (log(−ex))2 with the branch cut at ex ∈ (1,∞).

So one can approximate

∂fpert

∂v
∼ −1

2

∑
α∈∆

α

[
−1

2
(m+ α(v) + log(−1))2

]
, (3.9)
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where −Li2(e−α(v)−m) can be ignored at Re(m)� 1. We ignored all the terms that vanish

after summing over α, or are subleading in the 1
τ → 0 limit. Expanding the square on the

right hand side, the term proportional to m2 = m2
Dτ

2 will vanish upon summing over α.

The next term proportional to mα(v) will be the nonzero leading term. One obtains

vi ≈ viD −
mD

4πi

∑
α∈∆

αiα · v = viD −
NmD

2πi
(Pv)i , (3.10)

where we used∑
α∈∆

α⊗ α =
∑
i 6=j

(ei − ej)⊗ (ei − ej) = 2(N − 1)1N×N − 2
∑
i 6=j

ei ⊗ ej ≡ 2NP . (3.11)

Here, P is the N×N projection to SU(N). Decomposing v = vU(1) +vSU(N), one finds that

vU(1) = (vU(1))D , vSU(N) ≈
1

1 + NmD
2πi

(vSU(N))D (3.12)

at τ → i∞.3 Inserting this back to
∂fpert

∂v , one obtains

∂fpert

∂vi
≈ −τmD

2

∑
α∈∆

αiα · v = −NτmD(vSU(N))
i = − NmD

1 + NmD
2πi

τ(vSU(N))
i
D . (3.13)

Also fpert itself is given by

fpert =
∑
α∈adj

(
Li3(eα(v))− 1

2
Li3(eα(v)±m)

)
≈ 1

12

∑
α∈adj

m3 =
N2τ3m3

D

12
(3.14)

where we used Li3(ex) ≈ −x3

6 −
πix2

2 + π2x
3 if the real part of x is positive and large.

Therefore, the asymptotic prepotential is given by

f(τD, vD,mD)→ τ−2f(τ, v, τmD) +
1

4πiτ3

(
∂f

∂v

)2

+
πiNm2

Dτ

12
+
N3m4

Dτ

48πi

≈
N2m3

Dτ

12
+
πiNm2

Dτ

12
+
N3m4

Dτ

48πi
. (3.15)

In particular, one finds that the Coulomb VEV vD does not appear in the asymptotic

limit. This is natural since the Coulomb VEV is a dimensionful parameter, which should

not be visible in the large momentum limit. This is a result for −2π
N < Im(mD) < 0.

When 0 < Im(mD) < 2π
N , all the analysis above is same except the step of approximating

1
τ2 fpert(v, τmD). In this case,

N2m3
D

12 τ is replaced by −N2m3
D

12 τ . Combining the two cases,

one obtains

f (±)
asymp = −π

3iτ

3N

[(
iNmD

2π

)2

± 2

(
iNmD

2π

)3

+

(
iNmD

2π

)4
]
, (3.16)

3At mD = − 2πi
N

, one finds that vSU(N) diverges. In this case, one has to approximate (3.6) by assuming

that v can scale with τ . At mD = − 2πi
N

, we checked for N = 2, 3 that vSU(N) scales like
√
τ , which grows

large but is much smaller than m = τmD. Due to this fact, v does not affect the asymptotic free energy,

and our final result for fasymp below will be reliable even at mD = − 2πi
N

.
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Nl2sgs

Figure 1. Type IIB 5-brane web for the 5d N = 1∗ system.

where ± signs are for 0 < ±Im(mD) < 2π
N , respectively. Finally, when Im(mD) = 0,

1
τ2 fpert(v, τmD) provides subleading contribution in τ so that one finds

f (0)
asymp = −π

3iτ

3N

[(
iNmD

2π

)2

+

(
iNmD

2π

)4
]
, (3.17)

where the superscript (0) means vanishing imaginary part of mD. At this stage, we note

that fasymp at Im(mD) 6= 0 can be written as the following holomorphic function with a

branch cut,

fasymp = − iτ

2πN

(
2Li4(1)− Li4(eNmD)− Li4(e−NmD)

)
. (3.18)

This expression will be helpful later.

We first investigate fasymp for purely imaginary mD ≡ ix, at −2π
N < x < 2π

N . One finds

fasymp = −π
3iτ

3N

[(
Nx

2π

)2

− 2

∣∣∣∣Nx2π

∣∣∣∣3 +

(
Nx

2π

)4
]
. (3.19)

The partition function undergoes a phase transition at x = 0, from certain perturbative

particles being massless at mD ∼ x = 0. One may wonder how fasymp behaves beyond

x = ±2π
N . At x = ±2π

N , one finds from the S-dual picture that finst cannot be ignored,

since Fkq
k ∼ (e±Nme2πiτ )k ∼ O(1) at m = τmD → ∓2πiτ . This means that particles

with nonzero instanton number become light at these points. One can get some insights

on these nonperturbative massless particles.

To see this, it is helpful to recall the type IIB 5-brane web realization of the 5d N = 1∗

system. More precisely, we realize the ‘S-dualized’ setting at τ → i∞, using weakly coupled

type IIB string theory. The brane web first consists of N D5-branes and 1 NS5-brane, all
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extended on 01234 directions, transverse to 789, and forming a web on the x5-x6 plane. One

makes a twisted compactification (x5, x6) ∼ (x5 + 2πRIIB, x
6 +M`2s). The D5-branes wrap

x5 direction, and form a web with the NS5-brane extended along x6, as shown in figure 1.

The twisted compactification guarantees that the open strings with tension τF1 = 1
2πα′

(where α′ = `2s) suspended between D5-branes across the web have mass M
2π . D1-branes

wrapping x5 ending on NS5-brane are identified as Yang-Mills instantons. Unit instanton’s

mass is given by τD1 · 2πRIIB = 2πRIIB
2πα′gs

, which should be identified with 1
R′ in our M5-brane

setting. So one obtains 2πRIIB = 2πα′gs
R′ . On the other hand, τ is given at zero axion by

τ = i
gs

, which should be identified in our M5-brane setting as i RR′ . So one finds gs = R′

R .

These provide the relations between the parameters RIIB, gs and the M5-brane parameters

R,R′. The slope of the (N, 1) 5-brane is ∆x6

∆x5 = 1
gsN

, where ∆x5 and ∆x6 are the distances

between the two ends of the segment on figure 1. We stated above that ∆x6 = Mα′, so

one finds ∆x5 = NMgsα
′.

In this setting, the segment of (N, 1) 5-brane shrinks at M = 0. Here, the perturbative

hypermultiplet particle becomes massless, corresponding to the fundamental strings con-

necting D5-branes across the NS5-brane. This causes the so-called flop phase transition.

The singular term proportional to |x|3 in (3.19) is caused by fpert in the S-dual setting,

from the particles becoming massless at M = 0. So we conclude that the cusp ∝ |x|3 is

due to the flop transition.

As one increases positive M , the next transition happens when the (N, 1) brane seg-

ment goes around the circle in x5 direction, as shown on the bottom-right side of figure 1.

This happens at ∆x5 = NMgsα
′ = 2πRIIB,

NMgsα
′ = 2πRIIB =

2πα′gs
R′

=
2πα′

R
. (3.20)

So one finds that the transition happens at

mD =
m

τ
=
MR

i/gs
= −2πi

N
, (3.21)

precisely when Finst cannot be ignored. Across x = ±2π
N , i.e. m = ∓2πiτ

N , the N D5-brane

segment shrinks. So across this value, another transition happens, with the D1-brane

segment extended along the shrinking segment being massless.

As one continues to change M , transitions due to non-perturbative massless particles

will happen at x = 2πn
N with n being integers. At n = 1, 2, · · · , N − 1, the nature of this

transition is hard to study. This is because the massless particles are nontrivial bound

states of D1-branes. Also, studying the τ → i∞ approximations around x = 0, not all

massless particles were responsible for the cusp at x = 0. So it will be important to know

which types of massless particles contribute to the cusp of fasymp at x = 2πn
N . However,

if n is a multiple of N , one finds from the 5-brane web diagram that the transition is an

SL(2,Z) transformation of the transition at x = 0, so that the same type of cusp will

happen. Indeed this has to be the case, since x ∼ x + 2π (or mD ∼ mD + 2πi) is the

periodicity of the instanton partition function.

Interestingly, if one takes the holomorphic extension (3.18) within |Im(mD)| < 2π
N to

the whole region of mD, one gets a definite prediction on fasymp as a function of real x,
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Figure 2. Continuation of the asymptotic free energy across flop transitions.

and also on the nature of phase transitions at all n. Plotting (3.18) for the entire real

x, one finds figure 2. fasymp(x) for 2πn
N < x < 2π(n+1)

N is given by simply translating the

function in the range 0 < x < 2π
N by 2πn

N . This means that all the cusp structures are

completely the same at all n, at least in fasymp(x). It will be interesting to understand

how the non-perturbative massless particles cause the same cusp in (3.18). Also, in (3.18)

or in figure 2, fasymp has a shorter period x ∼ x + 2π
N . It will be interesting to see if the

reduced period has to do with multiple-wrapping of M5-branes on S1, analogous to the

mutiple-winding fundamental strings [28].

Now we study fasymp for purely real mD. The asymptotic free energy is given by

− logZ ∼ f
(0)
asymp

ε1ε2
=

i

3ε1ε2τD

[
N3m4

D

16π
−
πNm2

D

4

]
. (3.22)

Holding real mD fixed, and further taking the large N limit, one finds that the free energy

is proportional to N3. Namely, one finds that the single particle index f(τ, ε1, ε2,m, v) in

the limit ε1,2 → 0, τ → i0+ is given by

∞∑
n=1

1

n
f(nτ, ε1,2 = 0, nm, nv)→ − i

3ε1ε2τ

[
N3m4

16π
− πNm2

4

]
, (3.23)

where we dropped the D subscripts. This shows that the microscopic entropy (with minus

sign for fermions) of light D0-branes bound to N D4-branes exhibit large number of bound

states proportional to N3. The second term proportional to N clearly comes from N free

tensor multiplets, as this comes from the S-dualization of NfU(1). One can understand

that the first term proportional to N3m4 is a remnant of the cancelation between bosonic

and fermionic states in the index, since this term vanishes at m = 0. It will be interesting

to guess what kind of index f(τ, ε1,2 = 0,m, v) would exhibit the above behavior in the

high temperature limit. In particular, having the analytic expression (3.18) given in terms

of Li4 functions, with chemical potentials multiplied by N , it will be interesting to seek for

an interpretation using multiple-wrapping of M5-branes, or instanton partons [29].

Finally, we comment that one can obtain the asymptotic free energy at τD → i0+ for

all ADE theories, starting from (2.135) and following the analysis of this section. To make
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a similar calculation, one also needs to know the perturbative partition function, and the

range of Im(mD) in which the instanton correction finst can be ignored on the right hand

side. The perturbative prepotential is straightforward for all ADE. As for the instanton

part, we should know when Fkq
k is much smaller than 1 at q → 0 for large real part of

m = τmD. The leading behavior of Fk for large real m can be easily inferred, by knowing

the correct parameter scalings between the 5d N = 1∗ theory and the pure N = 1 theory.

Namely, one finds

Fkq
k ∼ ekc2mqk , (3.24)

where c2 is the dual Coxeter number of the gauge group G. This is because the pure 5d

N = 1 theory is obtained by taking the limit m → ∞, q → 0, with Λ ∼ ec2mq held fixed.

This means that one can ignore the instanton part in the region −2π
c2
< Im(mD) < 2π

c2
. By

following the analysis for the U(N) case, the asymptotic free energies of ADE theories are

given by

f (±)
asymp = −π

3iτ

3

[
r

(
imD

2π

)2

± 2|G|
(
imD

2π

)3

+ (c2|G|+ r)

(
imD

2π

)4
]
, (3.25)

where ± signs are for 0 < ±Im(mD) < 2π
c2

, and

f (0)
asymp = −π

3iτ

3

[
r

(
imD

2π

)2

+ (c2|G|+ r)

(
imD

2π

)4
]

(3.26)

for Im(mD) = 0.

3.1 Tests with U(1) partition function

We provide a small consistency check of fasymp for the U(1) case. By this exercise, one can

also get better intuitions on the true nature of the approximations and phase transitions,

which perhaps may be a bit obscure in our S-duality based approach.

In the previous S-duality based approach, we first took ε1, ε2 → 0 limit of the partition

function, to focus on the prepotential only. Then using the S-duality, we extracted out

the β → 0 asymptotics of the prepotential, where q = e2πiτ = e−β , at finite m and N .

We reconsider the same limits directly with the U(1) instanton partition function. The

instanton partition function is given by

Zinst = exp

[ ∞∑
n=1

1

n

sinh n(m±ε−)
2

sinh nε1
2 sinh nε2

2

e−nβ

1− e−nβ

]
∼ exp

[
4

ε1ε2

∞∑
n=1

sinh2 nm
2

n3

e−nβ

1− e−nβ

]
(3.27)

in the ε1, ε2 → 0 limit. Now we take the β → 0 limit at fixed m. This is somewhat tricky

at real m, which we also take to be positive. This is because the above formula is valid for

m < β when m is real. Physically, this is because the partition function Z has poles at

m = nβ for all positive integers n. So with fixed real m, one would hit many poles as one

takes the β → 0 limit. To deal with this situation more easily, we first continue m to be

purely imaginary, m = ix, and continue back later to complex m.
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Inserting m = ix and taking β → 0 limit, one obtains

Z ∼ exp

[
− 4

ε1ε2β

∞∑
n=1

sin2 nx
2

n4

]
= exp

[
1

ε1ε2β

∞∑
n=1

1

n4

(
einx + e−inx − 2

)]

= exp

[
1

ε1ε2β

(
Li4(eix) + Li4(e−ix)− 2Li4(1)

)]
. (3.28)

The final expression can be continued to complex x. Here, we use the property

Lin(e2πix) + (−1)nLin(e−2πix) = −(2πi)n

n!
Bn(x) , (3.29)

where 0 ≤ Re(x) < 1 for Im(x) ≥ 0. Bn(x) are the Bernoulli polynomials, given by

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
. (3.30)

In particular, one finds B4(x) = 1
30

(
−1 + 30x2 − 60x3 + 30x4

)
, so that

Li4(eix)+Li4(e−ix) = −(2π)4

24
B4(x/2π) =

2π4

90
−2π4

3

[( x
2π

)2
− 2

( x
2π

)3
+
( x

2π

)4
]

(3.31)

for 0 ≤ x < 2π. This leads to the asymptotic formula

− logZ ∼ 2π4

3ε1ε2β

[( x
2π

)2
− 2

( x
2π

)3
+
( x

2π

)4
]

(3.32)

for 0 ≤ x < 2π, which is in complete agreement with the S-duality-based result, (3.19),

upon inserting −iτ → 2π
β and N = 1. When −2π < x ≤ 0, we use a different identity of

Li4 function to find a similar expression, with the sign of the O(x3) term flipped. This also

shows that the continuation (3.18) beyond −2π < x < 2π by the Li4 functions to complex

x is indeed correct.

3.2 6d chiral anomalies on Omega-deformed R4 × T 2

In this subsection, we shall discuss the connection between the S-duality anomaly and the

6d chiral anomalies of global symmetries. In particular, we shall independently compute

some part of our asymptotic free energy fasymp based on chiral anomaly only. However,

let us start by giving a general comment, on why one should naturally expect S-duality

anomaly of the partition function if the system has chiral anomaly.

Consider a partition function of even dimensional chiral theories on T 2, like 2d theories

on T 2 or our system on R4×T 2. For a global symmetry, one turns on a background gauge

field A. In particular, let us turn on the flat connection of A on T 2. We shall only be

interested in Abelian flat connections, characterized by the commuting holonomies along

the two circles of T 2. Large gauge transformations would have made both holonomies to

be periodic, had there been no chiral anomalies. For simplicity, let us take a rectangular

torus with two radii r1, r2, respectively. Then the large gauge transformations would

have given the periods A1 ∼ A1 + 1
r1

and A2 ∼ A2 + 1
r2

. With matter fields having
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integral charge q of this global symmetry, the modes of these fields would have frequencies

(ω1, ω2) = (n1
r1

+ qA1,
n2
r2

+ qA2) on T 2, with integral n1, n2, which is invariant under the

periodic shifts of A1, A2. This is a consequence of these gauge symmetries. However, in

quantum observables like the partition function on T 2, these large gauge transformations

may fail to be symmetries for theories with chiral anomalies. This is because one has to

regularize the path integral over these modes, by regarding one of the two directions as

temporal circle [30]. By this procedure, one of the two holonomies A1, A2 fail to be periodic

in the partition functions. This is precisely what happen for the 2d elliptic genera [31]. We

expect that similar things will happen to 6d chiral theories on R4×T 2, but we cannot make

this expectation more precise here. We shall simply assume the failure of double periodicity

of background holonomies due to chiral anomalies, and then explain that it forces the

partition function to have S-duality anomaly, as we found in section 2 by nonzero Fanom.

Let us write the background holonomies as a complex number m. Had a free energy

F (τ,m) on T 2 been exactly S-dual, then its exact S-duality F (−1/τ,m/τ) = F (τ,m)

means that m has double period. This is because if the right hand side has period in one

direction, say F (τ,m) = F (τ,m+ 1), the left hand side forces F (− 1
τ ,

m
τ ) = F (− 1

τ ,
m
τ + 1

τ ),

and thus F (τ,m) = F (τ,m− τ), contradicting the obstruction of double periodicity from

chiral anomaly. This comment applies to our 6d partition functions. So we naturally expect

S-duality anomaly.

With these motivations in mind, rather than trying to elaborate on it, we shall make

a concretely calculation which shows that a particular term in our asymptotic high tem-

perature free energy dictated by Fanom can be computed using 6d chiral anomaly only.

Let us first explain the anomalies of the 6d (2, 0) theory of AN−1 type. More precisely,

we shall consider the anomaly of the interacting AN−1 type theory times a decoupled free

self-dual tensor multiplet theory. This corresponds to the system of N M5-branes including

the decoupled center-of-mass multiplet. The anomaly polynomial 8-form is given by

I8 = NI8(1) +N(N2 − 1)
p2(N)

24
(3.33)

where I8(1) is the anomaly of the single M5-brane theory, or one free (2, 0) tensor multiplet,

I8(1) =
1

48

[
p2(N)− p2(T ) +

1

4
(p1(T )− p1(N))2

]
. (3.34)

The Pontryagin classes are defined by

p1 = − 1

2(2π)2
trR2 , p2 =

1

(2π)4

[
−1

4
trR4 +

1

8
(trR2)2

]
. (3.35)

Here, traces are acting on either 6 × 6 matrices for SO(5, 1) tangent bundle T , or 5 × 5

matrices for SO(5) normal bundle N . Taking their curvatures to be R and F , respectively,

one finds

(2π)4I8 =
N

48

[
−1

4
trF 4 +

1

8
(trF 2)2 +

1

4
trR4 − 1

8
(trR2)2 +

1

16
(trR2 − trF 2)2

]
+
N3 −N

24

(
−1

4
trF 4 +

1

8
(trF 2)2

)
. (3.36)
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We shall restrict F to a Cartan part. In particular, since we shall be taking the Omega

backgrounds to be small, the Cartan for SU(2)R will have much smaller background field

than SU(2)L, from ε+ � m. So we shall only turn on the background field for the Cartan in

SU(2)L ⊂ SO(5), corresponding to our N = 1∗ mass m. F is a 5× 5 matrix-valued 2-form,

whose components are F ab = −F ba with a, b = 1, · · · , 5. The component corresponding to

the Cartan of SU(2)L is obtained by keeping F 12 = −F 21 = −F 34 = F 43 ≡ F only. With

this restriction, one finds tr(F 2)→ −4F 2, tr(F 4)→ 4F 4. Inserting these, the SO(5, 1) and

U(1) ⊂ SU(2)L anomalies are given by

(2π)4I8 →
N3

24
F 4 +

N

48

[
1

2
F 2trR2 +

1

4
trR4 − 1

8
(trR2)2

]
. (3.37)

Only the first term N3

24 F
4 will be relevant for the computations below.

Our goal is to compute some part of the asymptotic free energy at high temperature

τD → 0, using 6d chiral anomalies. Recall that we found

Seff = − logZ → fasympt

ε1ε2
=

i

24 · 3πε1ε2τD
[
N3m4 − 4π2Nm2 + · · ·

]
(3.38)

where · · · stands for the m3 term which exists when m has imaginary component. The

m3 term will not be of our interest in this subsection. We obtained this expression at

ε1,2 � 1 and τD → 0, where τD ≡ β
4π (µ + i) is the same τD used before. Often, we

used purely imaginary τD with µ = i, but we keep real µ in this subsection to see a

clear relation to chiral anomalies. For a reason to be explained below, we would like

to study the asymptotic free energy when all the chemical potentials ε1,2,m are purely

imaginary. So inserting iε1,2, im (with real ε1,2,m) in the places of ε1,2,m in (3.38), one

obtains Seff = − i
24·3πε1ε2τD

[
N3m4 + 4π2Nm2 +O(m3)

]
. In this setting, we focus on the

imaginary part of the effective action,

Im(Seff) = − µ

12ε1ε2β(1 + µ2)

[
N3m4 + 4π2Nm2 +O(m3)

]
, (3.39)

and compute it from 6d chiral anomalies. Especially, we shall compute part of Im(Seff)

from the 5d effective action approach for the 6d theory on small temporal circle. 6d chiral

anomaly determines a special class of terms in the 5d effective action. It turns out that,

knowing the terms determined by anomaly, one can only compute the term proportional

to m4. So we shall pay attention to the first term

Im(Seff)
∣∣∣
m4

= − µN3m4

12ε1ε2β(1 + µ2)
. (3.40)

We shall argue below that this term is completely dictated by 6d chiral anomaly, and then

we re-compute this term using chiral anomaly only. This will provide another strong test

of our findings from the D0-D4 calculus. Then, since one naturally expects that super-

symmetrization of (3.40) is holomorphic in τD, one can reconstruct the term − iN3m4

24·3πε1ε2τD
in (3.38).
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We shall consider the 6d anomaly from the viewpoint of 5d effective action, obtained

by compactification on a small circle of circumference β � 1, and discuss our asymptotic

free energy fasympt on R4
ε1,2×T

2 in this setting. On T 2, regarding one circle as the temporal

circle, the partition function is an index of the form

Z(τ, v,m, ε1,2) = Tr
[
(−1)F e−

β
2

(H−iµP )e
∑2
a=1 εa(Ja+JR)e2mJLe−viqi

]
. (3.41)

Real ε1,2,m is consistent with the conventions for the partition function presented at the

beginning of section 2. In this setting, the chemical potentials ε1,2,m will twist the transla-

tion on the temporal circle in a way that the twisted time evolution is not unitary (simply

because the factors in the trace are not unitary transformations). This would cause a

complex deformation of the Euclidean action by twisting with chemical potentials.4 For a

technical reason, it will be convenient to keep these twistings to preserve the reality of the

action. So we replace

e
∑2
a=1 εa(Ja+JR)e2mJLe−viqi → ei

∑2
a=1 εa(Ja+JR)e2imJLe−iviqi , (3.42)

which will make real twists of the Euclidean action. This is equivalent to the insertions of

iε1,2, im around (3.40). The factor e−
β
2
H demands us to consider a 6d Euclidean theory

whose temporal coordinate y satisfies periodicity y ∼ y + β
2 . This forms a circle of the

T 2. Another circle factor is labeled by x, which we take to have periodicity x ∼ x + 2π.

Defining τD = β
4π (µ+ i), one obtains

e−
β
2

(H−iµP ) ≡ e2πiτD
H+P

2 e−2πiτ̄D
H−P

2 = e−2πImτDH+2πiReτDP . (3.43)

So τD is the complex structure of T 2. This torus is endowed with the metric

ds2(T 2) = (dx− µdy)2 + dy2 (3.44)

and periods (x, y) ∼ (x+ 2π, y) ∼ (x+ βµ
2 , y+ β

2 ). Including the chemical potential εa, the

metric of R4 × T 2 is given by

ds2(R4 × T 2) =
∑
a=1,2

∣∣∣∣dza − 2iεa
β
zady

∣∣∣∣2 + (dx− µdy)2 + dy2 , (3.45)

where za are complex coordinates of C2 ∼ R4 with charges Ja[zb] = δab. Finally, the

chemical potential m is realized as the background gauge field A = 2m
β dy for U(1) ⊂

SU(2)L. Also, H−P
2 ∼ {Q, Q̄}, where Q is a supercharge preserved by the index. So Z is

independent of τ̄ .

4Strictly speaking, Lagrangian formulation is not known in 6d. So when we refer to a Lagrangian

description, we mean a 5d Lagrangian after reducing on a small circle. See also comments in [11] concerning

the conversion between twistings and background gauge fields in the presence of anomalies.
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Following [11] (see also [32]), we shall make a KK reduction on the small circle along

y, for small inverse-temperature β � 1. To this end, one rewrites the background in the

form of

ds2 = e2φ(dy + a)2 + hijdx
idxj , (3.46)

where hij with i, j = 1, · · · 5 is the 5d metric, e2φ = 1+µ2 + 4
β2

∑
a ε

2
a|za|2 is the dilaton, and

a =
1

1 + µ2 + 4ε2a|za|2
β2

(
−µdx− 2εa|za|2

β
dφa

)
(3.47)

is the gravi-photon field, where za = |za|eiφa . The 6d background gauge field A for U(1) ⊂
SU(2)L is also rewritten in the form A = A6(dy + a) + A, where A is the 5d background

gauge field and A6 is the 5d scalar. So one finds A6 = 2m
β and A = −A6a.

If the 6d theory compactified on a small circle has no 5d massless modes, one can

express the thermal partition function in terms of a 5d local effective field theory of back-

ground fields, where the 5d derivative expansion corresponds to a β series expansion. As

noted in [11], with massless modes in 5d, there could be nonlocal part of the effective action

which is smooth in the β → 0 limit. In our case, the non-local part comes from the 5d

perturbative maximal SYM. There is additional difficulty in using the derivative expansion

in our setting, since some of our background fields are proportional to β−1, which may spoil

the orderings provided by the derivative expansion. So it appears tricky to directly employ

the formalism of [11, 32].

However, one can study the imaginary part (3.39) of our asymptotic free energy using

the 5d approach. The imaginary part can be computed completely by knowing the 5d

Chern-Simons like terms. To explain this, note first that we have been careful to set all

our background fields to be real, e.g. by setting our chemical potentials to be imaginary.

With real background fields turned on, suppose that we first reduce the 6d theory on a

small circle to a general 5d Lorentzian spacetime. Then the 5d effective action is real,

since Hermiticity is not broken in the Lorentzian theory. Now we Wick-rotate the ‘time’

direction in this 5d setting. Since all background fields are real, the only possible step which

may cause complex effective action is the Wick rotation to Euclidean 5d space. Here, note

that we are seeking for an effective action of the vectors a,A, ω (spin connection), tensor

hij , and scalars A6, φ. To compute the imaginary part, one can focus on the local terms.

This is because the nonlocal terms come from the determinant of 5d maximal SYM whose

fields are covariantized by real background fields, which is real. Among the local terms

obtained from scalar Lagrangian density, we should seek for terms containing the tensor

εijklm to obtain imaginary contribution after Wick rotation. It should be contracted with

antisymmetric tensors formed by the background fields. There are many possibilities,

arranged in derivative expansion. For instance, there could be complicated terms like

∼ da ∧ dA ∧ dφf(φ,A6), and so on.

Although there are many terms, let us comment that there can be gauge invariant

terms and gauge non-invariant terms in the imaginary action. The latter class should exist

because the 5d effective action should realize 6d chiral anomalies. The coefficients of the

terms in the latter class are thus completely determined by known 6d anomalies [11, 32].
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Among the gauge invariant terms, there can be action coming from gauge invariant La-

grangian density, like the term that we illustrated in the last paragraph. Finally, there may

be Chern-Simons terms in which Lagrangian densities are not gauge invariant but their

integrals are. So the imaginary action takes the following structure,

SCS =S
(1)
CS +S

(2)
CS +SGI (3.48)

S
(1)
CS =

iκ1

β3

∫
a∧da∧da+

iκ2

β

∫
A∧dA∧da+

iκ3

β

∫
a∧R∧R+iκ4

∫
A∧dA∧dA+· · ·

S
(2)
CS =− iDr1

96π2

∫ (
A4

6a∧da∧da+4A3
6A∧da∧da+6A2

6A∧dA∧da+4A6A∧dA∧dA
)
+· · · ,

where r1 = β
4π is the radius of the small sixth circle with circumference β

2 . S
(1)
CS consists

of the gauge invariant Chern-Simons terms. S
(2)
CS is part of the gauge non-invariant Chern-

Simons terms that comes from U(1) ⊂ SU(2)L ⊂ SO(5)R normal bundle anomaly in 6d,

namely the first term ∼ N3

24 F
4 of (3.37). Anomaly matching fixes D = N3, as well as the

relative coefficients as shown on the second line.5 The omitted terms · · · in S
(1)
CS are other

Chern-Simons terms containing ω, which we do not need here. The omitted terms in S
(2)
CS

can all be computed from mixed anomalies and gravitational anomalies of (3.37), which

we do not work out here as we shall not need them. Finally, SGI is the action containing

εijklm associated with gauge invariant Lagrangian density, e.g. da ∧ da ∧ dφf(φ,A6), dA∧
dA ∧ d[(da)ij(dA)ij ]g(φ,A6), and so on. One point we emphasize is that SGI can come in

infinite series of derivative expansion, while S
(1)
CS and S

(2)
CS consist of finite number of terms

and can be completely classified.

The imaginary terms have rich possibilities. Here we consider the terms which are

nonzero with our background, and also the leading terms in small ε1,2, proportional to
1
ε1ε2

. A6 = 2m
β is constant in our background. Also, A = −A6a is constant times the

graviphoton. Plugging in these values, one obtains

(A6)nεijklm(rank 5 antisymmetric tensor of a, φ, ω, h) . (3.49)

The parenthesis consists of the fields reduced from 6d metric (3.45). Note that, after

plugging in constant A6 and A = −A6a, all terms should be formally gauge invariant in

the remaining fields. This is because the only possible gauge non-invariant terms S
(2)
CS ,

completely dictated by anomaly, also become gauge invariant like A4
6a ∧ da ∧ da with

constant A6.

Now we note the fact that, in the 6d metric, all za coordinates of R4 are multiplied

by εa. So in the parenthesis of (3.49), the only za’s not associated with εa are derivatives.

So one makes a formal derivative expansion of this term, assigning the ‘mass dimensions’

[a] = 0, [φ] = 0, [h] = 0, [ω] = 1. The lowest order term comes in two derivatives, and

is proportional to a ∧ da ∧ da. There can be no other gauge-invariant terms at this order.

This term indeed yields the desired 1
ε1ε2

scaling. Firstly, the integral dxd2z1d
2z1 can be

scaled into ( β2

ε1ε2
)2 times a measure depending on εaza

β . Also, two derivatives in a∧ da∧ da
5Following [11], we show the form of the action with constant value of A6, taking into account the

covariant anomaly rather than the consistent anomaly. This is sufficient for our calculus of the free energy.
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can also be scaled with εa
β , yielding another overall factor ε1ε2

β2 . za in the remaining integral

appear in the combination εaza
β , including the integration variable, so is independent of εa.

So this term yields the right scaling ∼ 1
ε1ε2

. Therefore, to compute (3.40), we only need to

consider those terms that reduce to

(A6)na ∧ da ∧ da (3.50)

upon plugging in our background. This implies that one does not have to consider SGI

of (3.48), since they are associated with local Lagrangian density and cannot provide terms

like (3.50).

So we only consider S
(1)
CS and S

(2)
CS of (3.48). Unlike the coefficients of S

(2)
CS , coefficients

of S
(1)
CS cannot be determined with our limited knowledge of the 6d theory. So even after

restricting our interest to the imaginary part (3.39) of the effective action, we cannot

compute them all due to our ignorance on these coefficients. Since the second term of

S
(1)
CS is quadratic in A, we cannot compute the O(m2) term of (3.39). This is why we

shall not need the mixed anomaly contributions in S
(2)
CS coming from the term ∼ F 2trR2

in (3.37), which will also yield a contribution at O(m2), since knowing them is incomplete

to compute the whole O(m2) contributions. Also, the O(m3) term cannot be computed

since we do not know κ4. However, the Chern-Simons terms that are quartic in A and

A6 are completely dictated by 6d anomalies, as shown on the second line of (3.48). Note

that quartic Chern-Simons term is allowed precisely because we allow gauge non-invariant

Chern-Simons term, to match 6d anomalies which are fourth order in the fields. Thus, we

can compute (3.40) from S
(2)
CS of (3.48). Note also that, for imaginary chemical potentials,

we have found earlier in this section that fasymp undergoes phase transitions due to massless

particles. This only changes O(m3) or lower order terms, so that the m4 order that we are

going to compute is unaffected.

We also note in passing that, we can turn the logic around and use our D0-D4 results

to constrain the 5d effective action. Namely, we know from our D0-D4 calculus the O(m2)

and O(m3) coefficients of Im(fasymp), and also the vanishing of the O(m0) coefficient. This

knowledge can be used to constrain κ1, κ2, κ3, · · · of (3.48). This information may be useful

for studying other high temperature partition functions of the 6d (2, 0) theories.

Coming back to the computation of (3.40), we plug A = −A6a and A6 = 2m
β into S

(2)
CS

of (3.48) to obtain
iN3(A6)4r1

96π2

∫
a ∧ da ∧ da . (3.51)

To compute this, one should evaluate the gravi-photon Chern-Simons term,∫
a ∧ da ∧ da =

∫ (
1 + µ2 +

4ε2a|za|2

β2

)−3

(−µdx) ∧ 2
4ε1ε2
β2

4dx1 ∧ dy1 ∧ dx2 ∧ dy2 (3.52)

where za ≡ xa + iya, with x1, y1, x2, y2 being the Cartesian coordinates of R4. Since∫
dx = 2π,

∫
dxadya = π

∫
d(r2

a), (3.52) becomes

− 64π3µε1ε2
β2

∫ ∞
0

d(r2
1)d(r2

2)(
1+µ2+ 4ε2ar

2
a

β2

)3 =−4π3µβ2

ε1ε2

∫ ∞
0

dXdY

(1+µ2+X+Y )3
=− 2π3µβ2

(1+µ2)ε1ε2
,

(3.53)
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where X =
4ε21r

2
1

β2 , Y =
4ε22r

2
2

β2 . So one obtains

iN3(A6)4r1

96π2

∫
a∧da∧da = −i N3β

3 · 27π3
· 16m4

β4
· 2π3µβ2

(1 + µ2)ε1ε2
= −i N3m4µ

12ε1ε2β(1 + µ2)
, (3.54)

where we plugged in r1 = β
4π . This precisely agrees with (3.40), based on D0-D4 calculus.

Finally, let us comment that the same calculation can be done to test some part

of (3.25) for all ADE theories. For ADE, (3.25) yields the imaginary part

Im(Seff)
∣∣∣
m4

= − µ(c2|G|+ r)m4

12ε1ε2β(1 + µ2)
, (3.55)

simply by changing the coefficient N3 → c2|G| + r from (3.25). On the other hand, the

anomaly polynomial (3.33) is replaced by the following polynomial

I8 = rI8(1) + c2|G|
p2(N)

24
(3.56)

for ADE. Again after restricting SO(5)R to U(1) ⊂ SU(2)L, the term N3

24 F
4 of (3.37) is

replaced by c2|G|+r
24 F 4. So the calculations of this subsection can be done by replacing all

N3 by c2|G|+ r, completely reproducing (3.55).

4 Conclusions and remarks

In this paper, we explored S-duality of the prepotential of the 6d (2, 0) theories compactified

on T 2, on the Coulomb branch. We found evidences of S-duality and its anomaly. Using

this result, we computed the asymptotic free energy of this system compactified on S1 (in

the index version), when the Omega background parameters ε1,2 and the chemical potential

β conjugate to the KK momentum are small. The asymptotic free energy is proportional

to N3 in a suitable large N limit, showing that the light KK fields exhibit the N3 degrees

of freedom. After suitably complexifying the chemical potentials, we showed that the

imaginary part of the free energy proportional to N3 is completely reproduced from the 6d

chiral anomaly of the SO(5) R-symmetry. Most results are generalized to the ADE class

of (2, 0) theories.

In the literatures, the N3 scalings of various observables of 6d (2, 0) theory have been

found, using various approaches. Thermal entropy of black M5-branes [33] or various other

quantities are computed from the gravity dual. Chiral anomalies are computed from the

anomaly inflow mechanism [34]. The supersymmetric Casimir energy on S5 was computed

from the superconformal index [35–40]. Perhaps among these, the mysteries of 6d CFT

may be most directly addressed from the thermal partition function calculus of [33]. So

it would be desirable to have a microscopic view of this phenomenon by directly counting

states of the 6d CFTs. As far as we are aware of, such a direct account for N3 scaling

of states has not been available from a microscopic quantum calculus yet. Our studies

show the N3 scalings of the microscopically counted degrees of freedom. More precisely,

we compactified the 6d SCFT on S1, so N3 degrees of freedom are absent at low energy.
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However, at high temperature compared to the inverse-radius of the circle, we expect the

6d CFT physics to be visible, hopefully in our F . One subtlety is that fermionic states

are counted with minus sign in the index, so there may be cancelation between bosons and

fermions. Even after this possible cancelation, we find that the uncanceled free energy still

exhibits N3 scaling, which proves that the 6d CFT has N3 degrees of freedom. We have

provided an alternative study of the asymptotic free energy based on 6d chiral anomalies,

which completely agrees with our D0-D4 calculus.

Our studies based on D0-D4 system also shows that the light D0-brane particles are

responsible for the UV enhancement of degrees of freedom. Since D0-branes are the key

objects which construct M-theory at strong coupling limit of the type IIA strings, it is

natural to see that they are also responsible for the N3 degrees of freedom of the 6d (2, 0)

theory. It will be interesting to better understand the single particle index f(τ, ε1,2,m, v)

which yields this behavior. In particular, conjectures on instanton partons [29] may be

addressed in more detail.

The Coulomb branch partition function on R4 × T 2 was used as building blocks of

interesting CFT indices in the symmetric phase. We comment that our asymptotic free

energy proportional to N3 does not appear in these symmetric phase indices. Let us explain

this with the 6d superconformal index, and the DLCQ index.

Firstly, it has been proposed that the D0-D4 partition function, or more precisely

this partition function multiplied by the 5d perturbative part, is a building block for the

6d superconformal indices [35–38] on S5 × S1. So one might wonder whether our finding

logZ ∝ N3m4

ε1ε2β
(with τD = iβ

2π ) at high temperature has implications to the supercofonrmal

index. One can immediately see that the answer is negative. For this discussion, the

relevant formula is presented in [38], which uses the product of 3 copies of Coulomb branch

partition functions on R4×T 2 as the integrand. The angular momentum chemical potentials

of U(1)2 ⊂ SO(6) on S5 are labeled by three numbers a1, a2, a3 satisfying a1 + a2 + a3 = 0.

In this setting, the 3 sets of Omega deformation parameters are given by (ε1, ε2) = (a2 −
a1, a3− a1), (a3− a2, a1− a2), (a1− a3, a2− a3) respectively. Since the asymptotic formula

for Z is obtained in the limit of small ε1, ε2, one can study the superconformal index in the

limit of small a1, a2, a3. In this limit, the most divergent part in ε1,2 is given by

logZS5×S1 ∼
N3m4

β

[
1

(a2−a1)(a3−a1)
+

1

(a3−a2)(a1−a2)
+

1

(a1−a3)(a2−a3)

]
. (4.1)

It is an identity that the sum in the square bracket vanishes, so that the leading asymptotic

part proportional to N3 vanishes on S5 × S1. So our fasymp has no implication to the

superconformal index. However, study of the subleading part O(ε1,2)0 will be interesting,

along the lines of our section 2.2. We hope to come back to this problem in the near future.

Secondly, the M5-brane theory compactified on a lightlike circle can be studied using

the D0-D4 quantum mechanics [41, 42]. Its index at DLCQ momentum k can be computed

by integrating the D0-D4 index in the Coulomb branch suitably with the Coulomb VEV

v, as explained in [7]. So one finds (again with τD = iβ
2π → 0)

ZDLCQ ∼ exp

[
− N3m4

24ε1ε2β

]
. (4.2)
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Here, unlike the partition function on R4 × T 2, where we have notion of multi-particles

so that logZ itself is meaningful as the singe particle index, the DLCQ index is defined

with a confining harmonic potential on R4 [7]. Thus, the exponent cannot be physically

meaningful separately. Also, the definition of ZDLCQ is such that ε+ = ε1+ε2
2 has to be real

and bigger than other fugacities, as e−ε+ < 1 plays the role of main convergence parameter.

So one has to set ε1ε2 > 0. This implies that ZDLCQ does not exhibit exponential growth,

but is rather highly suppressed at small β, presumably due to boson/fermion cancelation.

From these observations on the superconformal index and the DLCQ index, one real-

izes that ZR4×T 2 contains interesting dynamical information which may be wiped out in

other observables.

Omega deformed partition functions can also be used to study 6d (1, 0) superconformal

field theories. In fact, for many 6d (1, 0) systems, the index on R4 × T 2 is known in the

‘self-dual string expansion,’ similar to the M-string expansion explained in our section 2.2.

The coefficients like Z(ni) of section 2.2 are elliptic genera of 2d CFTs for the 6d self-dual

strings in the tensor branch. Those elliptic genera have been studied for various 6d (1, 0)

theories [43–48]. The S-duality anomaly and the high temperature asymptotic free energies

could be studied using the approaches explored in this paper. This may be an interesting

approach to explore the rich physics of 6d CFTs and their compactifications to 5d/4d.

It would also be interesting to further study the S-duality of the full index of the (2, 0)

theory, based on some ideas sketched in our section 2.2. Following [26], we find it interesting

to study the Wilson/’t Hooft line defects uplifted to 6d surface operators. S-dualities of

other defect operators should also be interesting.

Finally, one may ask if a suitable M2-brane partition function on R2
ε × S1 can exhibit

N
3
2 scaling, where ε is the Omega deformation parameter. Although this scaling has been

microscopically computed from the S3 partition function, or the entanglement entropy,

perhaps better physical intuitions can be obtained by directly accounting for where such

degrees of freedom come from, like we did for 6d SCFTs on S1 from D0-branes (instan-

ton solitons).

Acknowledgments

We thank Prarit Agarwal, Joonho Kim, Kimyeong Lee, Jaemo Park, Jaewon Song, Shuichi

Yokoyama for helpful discussions, and especially Hee-Cheol Kim for many inspiring discus-

sions and comments. We also thank Joonho Kim for helping us with the SO(8) instanton

calculus. This work is supported in part by NRF Grant 2015R1A2A2A01003124 (SK, JN),

and Hyundai Motor Chung Mong-Koo Foundation (JN).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

– 44 –

https://creativecommons.org/licenses/by/4.0/


J
H
E
P
1
2
(
2
0
1
7
)
1
2
0

References

[1] C. Montonen and D.I. Olive, Magnetic Monopoles as Gauge Particles?, Phys. Lett. B 72

(1977) 117 [INSPIRE].

[2] H. Osborn, Topological Charges for N = 4 Supersymmetric Gauge Theories and Monopoles

of Spin 1, Phys. Lett. B 83 (1979) 321 [INSPIRE].

[3] A. Sen, Dyon-monopole bound states, selfdual harmonic forms on the multi-monopole moduli

space and SL(2,Z) invariance in string theory, Phys. Lett. B 329 (1994) 217

[hep-th/9402032] [INSPIRE].

[4] E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B 443 (1995) 85

[hep-th/9503124] [INSPIRE].

[5] E. Witten, Some comments on string dynamics, in Los Angeles 1995, Future perspectives in

string theory, World Scientific, (1996), pp. 501–523, hep-th/9507121 [INSPIRE].

[6] N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math.

Phys. 7 (2003) 831 [hep-th/0206161] [INSPIRE].

[7] H.-C. Kim, S. Kim, E. Koh, K. Lee and S. Lee, On instantons as Kaluza-Klein modes of

M5-branes, JHEP 12 (2011) 031 [arXiv:1110.2175] [INSPIRE].
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